1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// Replaces repeated sequences of instructions with function calls. 12 /// 13 /// This works by placing every instruction from every basic block in a 14 /// suffix tree, and repeatedly querying that tree for repeated sequences of 15 /// instructions. If a sequence of instructions appears often, then it ought 16 /// to be beneficial to pull out into a function. 17 /// 18 /// The MachineOutliner communicates with a given target using hooks defined in 19 /// TargetInstrInfo.h. The target supplies the outliner with information on how 20 /// a specific sequence of instructions should be outlined. This information 21 /// is used to deduce the number of instructions necessary to 22 /// 23 /// * Create an outlined function 24 /// * Call that outlined function 25 /// 26 /// Targets must implement 27 /// * getOutliningCandidateInfo 28 /// * buildOutlinedFrame 29 /// * insertOutlinedCall 30 /// * isFunctionSafeToOutlineFrom 31 /// 32 /// in order to make use of the MachineOutliner. 33 /// 34 /// This was originally presented at the 2016 LLVM Developers' Meeting in the 35 /// talk "Reducing Code Size Using Outlining". For a high-level overview of 36 /// how this pass works, the talk is available on YouTube at 37 /// 38 /// https://www.youtube.com/watch?v=yorld-WSOeU 39 /// 40 /// The slides for the talk are available at 41 /// 42 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 43 /// 44 /// The talk provides an overview of how the outliner finds candidates and 45 /// ultimately outlines them. It describes how the main data structure for this 46 /// pass, the suffix tree, is queried and purged for candidates. It also gives 47 /// a simplified suffix tree construction algorithm for suffix trees based off 48 /// of the algorithm actually used here, Ukkonen's algorithm. 49 /// 50 /// For the original RFC for this pass, please see 51 /// 52 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 53 /// 54 /// For more information on the suffix tree data structure, please see 55 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 56 /// 57 //===----------------------------------------------------------------------===// 58 #include "llvm/CodeGen/MachineOutliner.h" 59 #include "llvm/ADT/DenseMap.h" 60 #include "llvm/ADT/Statistic.h" 61 #include "llvm/ADT/Twine.h" 62 #include "llvm/CodeGen/MachineFunction.h" 63 #include "llvm/CodeGen/MachineModuleInfo.h" 64 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 65 #include "llvm/CodeGen/MachineRegisterInfo.h" 66 #include "llvm/CodeGen/Passes.h" 67 #include "llvm/CodeGen/TargetInstrInfo.h" 68 #include "llvm/CodeGen/TargetSubtargetInfo.h" 69 #include "llvm/IR/DIBuilder.h" 70 #include "llvm/IR/IRBuilder.h" 71 #include "llvm/IR/Mangler.h" 72 #include "llvm/Support/Allocator.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include <functional> 77 #include <map> 78 #include <sstream> 79 #include <tuple> 80 #include <vector> 81 82 #define DEBUG_TYPE "machine-outliner" 83 84 using namespace llvm; 85 using namespace ore; 86 using namespace outliner; 87 88 STATISTIC(NumOutlined, "Number of candidates outlined"); 89 STATISTIC(FunctionsCreated, "Number of functions created"); 90 91 // Set to true if the user wants the outliner to run on linkonceodr linkage 92 // functions. This is false by default because the linker can dedupe linkonceodr 93 // functions. Since the outliner is confined to a single module (modulo LTO), 94 // this is off by default. It should, however, be the default behaviour in 95 // LTO. 96 static cl::opt<bool> EnableLinkOnceODROutlining( 97 "enable-linkonceodr-outlining", 98 cl::Hidden, 99 cl::desc("Enable the machine outliner on linkonceodr functions"), 100 cl::init(false)); 101 102 namespace { 103 104 /// Represents an undefined index in the suffix tree. 105 const unsigned EmptyIdx = -1; 106 107 /// A node in a suffix tree which represents a substring or suffix. 108 /// 109 /// Each node has either no children or at least two children, with the root 110 /// being a exception in the empty tree. 111 /// 112 /// Children are represented as a map between unsigned integers and nodes. If 113 /// a node N has a child M on unsigned integer k, then the mapping represented 114 /// by N is a proper prefix of the mapping represented by M. Note that this, 115 /// although similar to a trie is somewhat different: each node stores a full 116 /// substring of the full mapping rather than a single character state. 117 /// 118 /// Each internal node contains a pointer to the internal node representing 119 /// the same string, but with the first character chopped off. This is stored 120 /// in \p Link. Each leaf node stores the start index of its respective 121 /// suffix in \p SuffixIdx. 122 struct SuffixTreeNode { 123 124 /// The children of this node. 125 /// 126 /// A child existing on an unsigned integer implies that from the mapping 127 /// represented by the current node, there is a way to reach another 128 /// mapping by tacking that character on the end of the current string. 129 DenseMap<unsigned, SuffixTreeNode *> Children; 130 131 /// A flag set to false if the node has been pruned from the tree. 132 bool IsInTree = true; 133 134 /// The start index of this node's substring in the main string. 135 unsigned StartIdx = EmptyIdx; 136 137 /// The end index of this node's substring in the main string. 138 /// 139 /// Every leaf node must have its \p EndIdx incremented at the end of every 140 /// step in the construction algorithm. To avoid having to update O(N) 141 /// nodes individually at the end of every step, the end index is stored 142 /// as a pointer. 143 unsigned *EndIdx = nullptr; 144 145 /// For leaves, the start index of the suffix represented by this node. 146 /// 147 /// For all other nodes, this is ignored. 148 unsigned SuffixIdx = EmptyIdx; 149 150 /// For internal nodes, a pointer to the internal node representing 151 /// the same sequence with the first character chopped off. 152 /// 153 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 154 /// Ukkonen's algorithm does to achieve linear-time construction is 155 /// keep track of which node the next insert should be at. This makes each 156 /// insert O(1), and there are a total of O(N) inserts. The suffix link 157 /// helps with inserting children of internal nodes. 158 /// 159 /// Say we add a child to an internal node with associated mapping S. The 160 /// next insertion must be at the node representing S - its first character. 161 /// This is given by the way that we iteratively build the tree in Ukkonen's 162 /// algorithm. The main idea is to look at the suffixes of each prefix in the 163 /// string, starting with the longest suffix of the prefix, and ending with 164 /// the shortest. Therefore, if we keep pointers between such nodes, we can 165 /// move to the next insertion point in O(1) time. If we don't, then we'd 166 /// have to query from the root, which takes O(N) time. This would make the 167 /// construction algorithm O(N^2) rather than O(N). 168 SuffixTreeNode *Link = nullptr; 169 170 /// The parent of this node. Every node except for the root has a parent. 171 SuffixTreeNode *Parent = nullptr; 172 173 /// The number of times this node's string appears in the tree. 174 /// 175 /// This is equal to the number of leaf children of the string. It represents 176 /// the number of suffixes that the node's string is a prefix of. 177 unsigned OccurrenceCount = 0; 178 179 /// The length of the string formed by concatenating the edge labels from the 180 /// root to this node. 181 unsigned ConcatLen = 0; 182 183 /// Returns true if this node is a leaf. 184 bool isLeaf() const { return SuffixIdx != EmptyIdx; } 185 186 /// Returns true if this node is the root of its owning \p SuffixTree. 187 bool isRoot() const { return StartIdx == EmptyIdx; } 188 189 /// Return the number of elements in the substring associated with this node. 190 size_t size() const { 191 192 // Is it the root? If so, it's the empty string so return 0. 193 if (isRoot()) 194 return 0; 195 196 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 197 198 // Size = the number of elements in the string. 199 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 200 return *EndIdx - StartIdx + 1; 201 } 202 203 SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link, 204 SuffixTreeNode *Parent) 205 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} 206 207 SuffixTreeNode() {} 208 }; 209 210 /// A data structure for fast substring queries. 211 /// 212 /// Suffix trees represent the suffixes of their input strings in their leaves. 213 /// A suffix tree is a type of compressed trie structure where each node 214 /// represents an entire substring rather than a single character. Each leaf 215 /// of the tree is a suffix. 216 /// 217 /// A suffix tree can be seen as a type of state machine where each state is a 218 /// substring of the full string. The tree is structured so that, for a string 219 /// of length N, there are exactly N leaves in the tree. This structure allows 220 /// us to quickly find repeated substrings of the input string. 221 /// 222 /// In this implementation, a "string" is a vector of unsigned integers. 223 /// These integers may result from hashing some data type. A suffix tree can 224 /// contain 1 or many strings, which can then be queried as one large string. 225 /// 226 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 227 /// suffix tree construction. Ukkonen's algorithm is explained in more detail 228 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 229 /// paper is available at 230 /// 231 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 232 class SuffixTree { 233 public: 234 /// Stores each leaf node in the tree. 235 /// 236 /// This is used for finding outlining candidates. 237 std::vector<SuffixTreeNode *> LeafVector; 238 239 /// Each element is an integer representing an instruction in the module. 240 ArrayRef<unsigned> Str; 241 242 private: 243 /// Maintains each node in the tree. 244 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 245 246 /// The root of the suffix tree. 247 /// 248 /// The root represents the empty string. It is maintained by the 249 /// \p NodeAllocator like every other node in the tree. 250 SuffixTreeNode *Root = nullptr; 251 252 /// Maintains the end indices of the internal nodes in the tree. 253 /// 254 /// Each internal node is guaranteed to never have its end index change 255 /// during the construction algorithm; however, leaves must be updated at 256 /// every step. Therefore, we need to store leaf end indices by reference 257 /// to avoid updating O(N) leaves at every step of construction. Thus, 258 /// every internal node must be allocated its own end index. 259 BumpPtrAllocator InternalEndIdxAllocator; 260 261 /// The end index of each leaf in the tree. 262 unsigned LeafEndIdx = -1; 263 264 /// Helper struct which keeps track of the next insertion point in 265 /// Ukkonen's algorithm. 266 struct ActiveState { 267 /// The next node to insert at. 268 SuffixTreeNode *Node; 269 270 /// The index of the first character in the substring currently being added. 271 unsigned Idx = EmptyIdx; 272 273 /// The length of the substring we have to add at the current step. 274 unsigned Len = 0; 275 }; 276 277 /// The point the next insertion will take place at in the 278 /// construction algorithm. 279 ActiveState Active; 280 281 /// Allocate a leaf node and add it to the tree. 282 /// 283 /// \param Parent The parent of this node. 284 /// \param StartIdx The start index of this node's associated string. 285 /// \param Edge The label on the edge leaving \p Parent to this node. 286 /// 287 /// \returns A pointer to the allocated leaf node. 288 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, 289 unsigned Edge) { 290 291 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 292 293 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 294 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent); 295 Parent.Children[Edge] = N; 296 297 return N; 298 } 299 300 /// Allocate an internal node and add it to the tree. 301 /// 302 /// \param Parent The parent of this node. Only null when allocating the root. 303 /// \param StartIdx The start index of this node's associated string. 304 /// \param EndIdx The end index of this node's associated string. 305 /// \param Edge The label on the edge leaving \p Parent to this node. 306 /// 307 /// \returns A pointer to the allocated internal node. 308 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, 309 unsigned EndIdx, unsigned Edge) { 310 311 assert(StartIdx <= EndIdx && "String can't start after it ends!"); 312 assert(!(!Parent && StartIdx != EmptyIdx) && 313 "Non-root internal nodes must have parents!"); 314 315 unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); 316 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 317 SuffixTreeNode(StartIdx, E, Root, Parent); 318 if (Parent) 319 Parent->Children[Edge] = N; 320 321 return N; 322 } 323 324 /// Set the suffix indices of the leaves to the start indices of their 325 /// respective suffixes. Also stores each leaf in \p LeafVector at its 326 /// respective suffix index. 327 /// 328 /// \param[in] CurrNode The node currently being visited. 329 /// \param CurrIdx The current index of the string being visited. 330 void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) { 331 332 bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 333 334 // Store the length of the concatenation of all strings from the root to 335 // this node. 336 if (!CurrNode.isRoot()) { 337 if (CurrNode.ConcatLen == 0) 338 CurrNode.ConcatLen = CurrNode.size(); 339 340 if (CurrNode.Parent) 341 CurrNode.ConcatLen += CurrNode.Parent->ConcatLen; 342 } 343 344 // Traverse the tree depth-first. 345 for (auto &ChildPair : CurrNode.Children) { 346 assert(ChildPair.second && "Node had a null child!"); 347 setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size()); 348 } 349 350 // Is this node a leaf? 351 if (IsLeaf) { 352 // If yes, give it a suffix index and bump its parent's occurrence count. 353 CurrNode.SuffixIdx = Str.size() - CurrIdx; 354 assert(CurrNode.Parent && "CurrNode had no parent!"); 355 CurrNode.Parent->OccurrenceCount++; 356 357 // Store the leaf in the leaf vector for pruning later. 358 LeafVector[CurrNode.SuffixIdx] = &CurrNode; 359 } 360 } 361 362 /// Construct the suffix tree for the prefix of the input ending at 363 /// \p EndIdx. 364 /// 365 /// Used to construct the full suffix tree iteratively. At the end of each 366 /// step, the constructed suffix tree is either a valid suffix tree, or a 367 /// suffix tree with implicit suffixes. At the end of the final step, the 368 /// suffix tree is a valid tree. 369 /// 370 /// \param EndIdx The end index of the current prefix in the main string. 371 /// \param SuffixesToAdd The number of suffixes that must be added 372 /// to complete the suffix tree at the current phase. 373 /// 374 /// \returns The number of suffixes that have not been added at the end of 375 /// this step. 376 unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { 377 SuffixTreeNode *NeedsLink = nullptr; 378 379 while (SuffixesToAdd > 0) { 380 381 // Are we waiting to add anything other than just the last character? 382 if (Active.Len == 0) { 383 // If not, then say the active index is the end index. 384 Active.Idx = EndIdx; 385 } 386 387 assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 388 389 // The first character in the current substring we're looking at. 390 unsigned FirstChar = Str[Active.Idx]; 391 392 // Have we inserted anything starting with FirstChar at the current node? 393 if (Active.Node->Children.count(FirstChar) == 0) { 394 // If not, then we can just insert a leaf and move too the next step. 395 insertLeaf(*Active.Node, EndIdx, FirstChar); 396 397 // The active node is an internal node, and we visited it, so it must 398 // need a link if it doesn't have one. 399 if (NeedsLink) { 400 NeedsLink->Link = Active.Node; 401 NeedsLink = nullptr; 402 } 403 } else { 404 // There's a match with FirstChar, so look for the point in the tree to 405 // insert a new node. 406 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 407 408 unsigned SubstringLen = NextNode->size(); 409 410 // Is the current suffix we're trying to insert longer than the size of 411 // the child we want to move to? 412 if (Active.Len >= SubstringLen) { 413 // If yes, then consume the characters we've seen and move to the next 414 // node. 415 Active.Idx += SubstringLen; 416 Active.Len -= SubstringLen; 417 Active.Node = NextNode; 418 continue; 419 } 420 421 // Otherwise, the suffix we're trying to insert must be contained in the 422 // next node we want to move to. 423 unsigned LastChar = Str[EndIdx]; 424 425 // Is the string we're trying to insert a substring of the next node? 426 if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 427 // If yes, then we're done for this step. Remember our insertion point 428 // and move to the next end index. At this point, we have an implicit 429 // suffix tree. 430 if (NeedsLink && !Active.Node->isRoot()) { 431 NeedsLink->Link = Active.Node; 432 NeedsLink = nullptr; 433 } 434 435 Active.Len++; 436 break; 437 } 438 439 // The string we're trying to insert isn't a substring of the next node, 440 // but matches up to a point. Split the node. 441 // 442 // For example, say we ended our search at a node n and we're trying to 443 // insert ABD. Then we'll create a new node s for AB, reduce n to just 444 // representing C, and insert a new leaf node l to represent d. This 445 // allows us to ensure that if n was a leaf, it remains a leaf. 446 // 447 // | ABC ---split---> | AB 448 // n s 449 // C / \ D 450 // n l 451 452 // The node s from the diagram 453 SuffixTreeNode *SplitNode = 454 insertInternalNode(Active.Node, NextNode->StartIdx, 455 NextNode->StartIdx + Active.Len - 1, FirstChar); 456 457 // Insert the new node representing the new substring into the tree as 458 // a child of the split node. This is the node l from the diagram. 459 insertLeaf(*SplitNode, EndIdx, LastChar); 460 461 // Make the old node a child of the split node and update its start 462 // index. This is the node n from the diagram. 463 NextNode->StartIdx += Active.Len; 464 NextNode->Parent = SplitNode; 465 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 466 467 // SplitNode is an internal node, update the suffix link. 468 if (NeedsLink) 469 NeedsLink->Link = SplitNode; 470 471 NeedsLink = SplitNode; 472 } 473 474 // We've added something new to the tree, so there's one less suffix to 475 // add. 476 SuffixesToAdd--; 477 478 if (Active.Node->isRoot()) { 479 if (Active.Len > 0) { 480 Active.Len--; 481 Active.Idx = EndIdx - SuffixesToAdd + 1; 482 } 483 } else { 484 // Start the next phase at the next smallest suffix. 485 Active.Node = Active.Node->Link; 486 } 487 } 488 489 return SuffixesToAdd; 490 } 491 492 public: 493 /// Construct a suffix tree from a sequence of unsigned integers. 494 /// 495 /// \param Str The string to construct the suffix tree for. 496 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 497 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 498 Root->IsInTree = true; 499 Active.Node = Root; 500 LeafVector = std::vector<SuffixTreeNode *>(Str.size()); 501 502 // Keep track of the number of suffixes we have to add of the current 503 // prefix. 504 unsigned SuffixesToAdd = 0; 505 Active.Node = Root; 506 507 // Construct the suffix tree iteratively on each prefix of the string. 508 // PfxEndIdx is the end index of the current prefix. 509 // End is one past the last element in the string. 510 for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; 511 PfxEndIdx++) { 512 SuffixesToAdd++; 513 LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 514 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 515 } 516 517 // Set the suffix indices of each leaf. 518 assert(Root && "Root node can't be nullptr!"); 519 setSuffixIndices(*Root, 0); 520 } 521 }; 522 523 /// Maps \p MachineInstrs to unsigned integers and stores the mappings. 524 struct InstructionMapper { 525 526 /// The next available integer to assign to a \p MachineInstr that 527 /// cannot be outlined. 528 /// 529 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 530 unsigned IllegalInstrNumber = -3; 531 532 /// The next available integer to assign to a \p MachineInstr that can 533 /// be outlined. 534 unsigned LegalInstrNumber = 0; 535 536 /// Correspondence from \p MachineInstrs to unsigned integers. 537 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 538 InstructionIntegerMap; 539 540 /// Corresponcence from unsigned integers to \p MachineInstrs. 541 /// Inverse of \p InstructionIntegerMap. 542 DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; 543 544 /// The vector of unsigned integers that the module is mapped to. 545 std::vector<unsigned> UnsignedVec; 546 547 /// Stores the location of the instruction associated with the integer 548 /// at index i in \p UnsignedVec for each index i. 549 std::vector<MachineBasicBlock::iterator> InstrList; 550 551 // Set if we added an illegal number in the previous step. 552 // Since each illegal number is unique, we only need one of them between 553 // each range of legal numbers. This lets us make sure we don't add more 554 // than one illegal number per range. 555 bool AddedIllegalLastTime = false; 556 557 /// Maps \p *It to a legal integer. 558 /// 559 /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, 560 /// \p IntegerInstructionMap, and \p LegalInstrNumber. 561 /// 562 /// \returns The integer that \p *It was mapped to. 563 unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { 564 // We added something legal, so we should unset the AddedLegalLastTime 565 // flag. 566 AddedIllegalLastTime = false; 567 568 // Get the integer for this instruction or give it the current 569 // LegalInstrNumber. 570 InstrList.push_back(It); 571 MachineInstr &MI = *It; 572 bool WasInserted; 573 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 574 ResultIt; 575 std::tie(ResultIt, WasInserted) = 576 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 577 unsigned MINumber = ResultIt->second; 578 579 // There was an insertion. 580 if (WasInserted) { 581 LegalInstrNumber++; 582 IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); 583 } 584 585 UnsignedVec.push_back(MINumber); 586 587 // Make sure we don't overflow or use any integers reserved by the DenseMap. 588 if (LegalInstrNumber >= IllegalInstrNumber) 589 report_fatal_error("Instruction mapping overflow!"); 590 591 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 592 "Tried to assign DenseMap tombstone or empty key to instruction."); 593 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 594 "Tried to assign DenseMap tombstone or empty key to instruction."); 595 596 return MINumber; 597 } 598 599 /// Maps \p *It to an illegal integer. 600 /// 601 /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. 602 /// 603 /// \returns The integer that \p *It was mapped to. 604 unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { 605 // Only add one illegal number per range of legal numbers. 606 if (AddedIllegalLastTime) 607 return IllegalInstrNumber; 608 609 // Remember that we added an illegal number last time. 610 AddedIllegalLastTime = true; 611 unsigned MINumber = IllegalInstrNumber; 612 613 InstrList.push_back(It); 614 UnsignedVec.push_back(IllegalInstrNumber); 615 IllegalInstrNumber--; 616 617 assert(LegalInstrNumber < IllegalInstrNumber && 618 "Instruction mapping overflow!"); 619 620 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 621 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 622 623 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 624 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 625 626 return MINumber; 627 } 628 629 /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 630 /// and appends it to \p UnsignedVec and \p InstrList. 631 /// 632 /// Two instructions are assigned the same integer if they are identical. 633 /// If an instruction is deemed unsafe to outline, then it will be assigned an 634 /// unique integer. The resulting mapping is placed into a suffix tree and 635 /// queried for candidates. 636 /// 637 /// \param MBB The \p MachineBasicBlock to be translated into integers. 638 /// \param TII \p TargetInstrInfo for the function. 639 void convertToUnsignedVec(MachineBasicBlock &MBB, 640 const TargetInstrInfo &TII) { 641 unsigned Flags = TII.getMachineOutlinerMBBFlags(MBB); 642 MachineBasicBlock::iterator It = MBB.begin(); 643 for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; It++) { 644 // Keep track of where this instruction is in the module. 645 switch (TII.getOutliningType(It, Flags)) { 646 case InstrType::Illegal: 647 mapToIllegalUnsigned(It); 648 break; 649 650 case InstrType::Legal: 651 mapToLegalUnsigned(It); 652 break; 653 654 case InstrType::LegalTerminator: 655 mapToLegalUnsigned(It); 656 // The instruction also acts as a terminator, so we have to record that 657 // in the string. 658 mapToIllegalUnsigned(It); 659 break; 660 661 case InstrType::Invisible: 662 // Normally this is set by mapTo(Blah)Unsigned, but we just want to 663 // skip this instruction. So, unset the flag here. 664 AddedIllegalLastTime = false; 665 break; 666 } 667 } 668 669 // After we're done every insertion, uniquely terminate this part of the 670 // "string". This makes sure we won't match across basic block or function 671 // boundaries since the "end" is encoded uniquely and thus appears in no 672 // repeated substring. 673 mapToIllegalUnsigned(It); 674 } 675 676 InstructionMapper() { 677 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 678 // changed. 679 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 680 "DenseMapInfo<unsigned>'s empty key isn't -1!"); 681 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 682 "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 683 } 684 }; 685 686 /// An interprocedural pass which finds repeated sequences of 687 /// instructions and replaces them with calls to functions. 688 /// 689 /// Each instruction is mapped to an unsigned integer and placed in a string. 690 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 691 /// is then repeatedly queried for repeated sequences of instructions. Each 692 /// non-overlapping repeated sequence is then placed in its own 693 /// \p MachineFunction and each instance is then replaced with a call to that 694 /// function. 695 struct MachineOutliner : public ModulePass { 696 697 static char ID; 698 699 /// Set to true if the outliner should consider functions with 700 /// linkonceodr linkage. 701 bool OutlineFromLinkOnceODRs = false; 702 703 /// Set to true if the outliner should run on all functions in the module 704 /// considered safe for outlining. 705 /// Set to true by default for compatibility with llc's -run-pass option. 706 /// Set when the pass is constructed in TargetPassConfig. 707 bool RunOnAllFunctions = true; 708 709 StringRef getPassName() const override { return "Machine Outliner"; } 710 711 void getAnalysisUsage(AnalysisUsage &AU) const override { 712 AU.addRequired<MachineModuleInfo>(); 713 AU.addPreserved<MachineModuleInfo>(); 714 AU.setPreservesAll(); 715 ModulePass::getAnalysisUsage(AU); 716 } 717 718 MachineOutliner() : ModulePass(ID) { 719 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 720 } 721 722 /// Remark output explaining that not outlining a set of candidates would be 723 /// better than outlining that set. 724 void emitNotOutliningCheaperRemark( 725 unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, 726 OutlinedFunction &OF); 727 728 /// Remark output explaining that a function was outlined. 729 void emitOutlinedFunctionRemark(OutlinedFunction &OF); 730 731 /// Find all repeated substrings that satisfy the outlining cost model. 732 /// 733 /// If a substring appears at least twice, then it must be represented by 734 /// an internal node which appears in at least two suffixes. Each suffix 735 /// is represented by a leaf node. To do this, we visit each internal node 736 /// in the tree, using the leaf children of each internal node. If an 737 /// internal node represents a beneficial substring, then we use each of 738 /// its leaf children to find the locations of its substring. 739 /// 740 /// \param ST A suffix tree to query. 741 /// \param Mapper Contains outlining mapping information. 742 /// \param[out] CandidateList Filled with candidates representing each 743 /// beneficial substring. 744 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions 745 /// each type of candidate. 746 /// 747 /// \returns The length of the longest candidate found. 748 unsigned 749 findCandidates(SuffixTree &ST, 750 InstructionMapper &Mapper, 751 std::vector<std::shared_ptr<Candidate>> &CandidateList, 752 std::vector<OutlinedFunction> &FunctionList); 753 754 /// Replace the sequences of instructions represented by the 755 /// \p Candidates in \p CandidateList with calls to \p MachineFunctions 756 /// described in \p FunctionList. 757 /// 758 /// \param M The module we are outlining from. 759 /// \param CandidateList A list of candidates to be outlined. 760 /// \param FunctionList A list of functions to be inserted into the module. 761 /// \param Mapper Contains the instruction mappings for the module. 762 bool outline(Module &M, 763 const ArrayRef<std::shared_ptr<Candidate>> &CandidateList, 764 std::vector<OutlinedFunction> &FunctionList, 765 InstructionMapper &Mapper); 766 767 /// Creates a function for \p OF and inserts it into the module. 768 MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, 769 InstructionMapper &Mapper); 770 771 /// Find potential outlining candidates and store them in \p CandidateList. 772 /// 773 /// For each type of potential candidate, also build an \p OutlinedFunction 774 /// struct containing the information to build the function for that 775 /// candidate. 776 /// 777 /// \param[out] CandidateList Filled with outlining candidates for the module. 778 /// \param[out] FunctionList Filled with functions corresponding to each type 779 /// of \p Candidate. 780 /// \param ST The suffix tree for the module. 781 /// 782 /// \returns The length of the longest candidate found. 0 if there are none. 783 unsigned 784 buildCandidateList(std::vector<std::shared_ptr<Candidate>> &CandidateList, 785 std::vector<OutlinedFunction> &FunctionList, 786 SuffixTree &ST, InstructionMapper &Mapper); 787 788 /// Helper function for pruneOverlaps. 789 /// Removes \p C from the candidate list, and updates its \p OutlinedFunction. 790 void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList); 791 792 /// Remove any overlapping candidates that weren't handled by the 793 /// suffix tree's pruning method. 794 /// 795 /// Pruning from the suffix tree doesn't necessarily remove all overlaps. 796 /// If a short candidate is chosen for outlining, then a longer candidate 797 /// which has that short candidate as a suffix is chosen, the tree's pruning 798 /// method will not find it. Thus, we need to prune before outlining as well. 799 /// 800 /// \param[in,out] CandidateList A list of outlining candidates. 801 /// \param[in,out] FunctionList A list of functions to be outlined. 802 /// \param Mapper Contains instruction mapping info for outlining. 803 /// \param MaxCandidateLen The length of the longest candidate. 804 void pruneOverlaps(std::vector<std::shared_ptr<Candidate>> &CandidateList, 805 std::vector<OutlinedFunction> &FunctionList, 806 InstructionMapper &Mapper, unsigned MaxCandidateLen); 807 808 /// Construct a suffix tree on the instructions in \p M and outline repeated 809 /// strings from that tree. 810 bool runOnModule(Module &M) override; 811 812 /// Return a DISubprogram for OF if one exists, and null otherwise. Helper 813 /// function for remark emission. 814 DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) { 815 DISubprogram *SP; 816 for (const std::shared_ptr<Candidate> &C : OF.Candidates) 817 if (C && C->getMF() && (SP = C->getMF()->getFunction().getSubprogram())) 818 return SP; 819 return nullptr; 820 } 821 822 /// Populate and \p InstructionMapper with instruction-to-integer mappings. 823 /// These are used to construct a suffix tree. 824 void populateMapper(InstructionMapper &Mapper, Module &M, 825 MachineModuleInfo &MMI); 826 827 /// Initialize information necessary to output a size remark. 828 /// FIXME: This should be handled by the pass manager, not the outliner. 829 /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy 830 /// pass manager. 831 void initSizeRemarkInfo( 832 const Module &M, const MachineModuleInfo &MMI, 833 StringMap<unsigned> &FunctionToInstrCount); 834 835 /// Emit the remark. 836 // FIXME: This should be handled by the pass manager, not the outliner. 837 void emitInstrCountChangedRemark( 838 const Module &M, const MachineModuleInfo &MMI, 839 const StringMap<unsigned> &FunctionToInstrCount); 840 }; 841 } // Anonymous namespace. 842 843 char MachineOutliner::ID = 0; 844 845 namespace llvm { 846 ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) { 847 MachineOutliner *OL = new MachineOutliner(); 848 OL->RunOnAllFunctions = RunOnAllFunctions; 849 return OL; 850 } 851 852 } // namespace llvm 853 854 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 855 false) 856 857 void MachineOutliner::emitNotOutliningCheaperRemark( 858 unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, 859 OutlinedFunction &OF) { 860 // FIXME: Right now, we arbitrarily choose some Candidate from the 861 // OutlinedFunction. This isn't necessarily fixed, nor does it have to be. 862 // We should probably sort these by function name or something to make sure 863 // the remarks are stable. 864 Candidate &C = CandidatesForRepeatedSeq.front(); 865 MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr); 866 MORE.emit([&]() { 867 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", 868 C.front()->getDebugLoc(), C.getMBB()); 869 R << "Did not outline " << NV("Length", StringLen) << " instructions" 870 << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size()) 871 << " locations." 872 << " Bytes from outlining all occurrences (" 873 << NV("OutliningCost", OF.getOutliningCost()) << ")" 874 << " >= Unoutlined instruction bytes (" 875 << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")" 876 << " (Also found at: "; 877 878 // Tell the user the other places the candidate was found. 879 for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) { 880 R << NV((Twine("OtherStartLoc") + Twine(i)).str(), 881 CandidatesForRepeatedSeq[i].front()->getDebugLoc()); 882 if (i != e - 1) 883 R << ", "; 884 } 885 886 R << ")"; 887 return R; 888 }); 889 } 890 891 void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) { 892 MachineBasicBlock *MBB = &*OF.MF->begin(); 893 MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr); 894 MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction", 895 MBB->findDebugLoc(MBB->begin()), MBB); 896 R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by " 897 << "outlining " << NV("Length", OF.Sequence.size()) << " instructions " 898 << "from " << NV("NumOccurrences", OF.getOccurrenceCount()) 899 << " locations. " 900 << "(Found at: "; 901 902 // Tell the user the other places the candidate was found. 903 for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) { 904 905 // Skip over things that were pruned. 906 if (!OF.Candidates[i]->InCandidateList) 907 continue; 908 909 R << NV((Twine("StartLoc") + Twine(i)).str(), 910 OF.Candidates[i]->front()->getDebugLoc()); 911 if (i != e - 1) 912 R << ", "; 913 } 914 915 R << ")"; 916 917 MORE.emit(R); 918 } 919 920 unsigned MachineOutliner::findCandidates( 921 SuffixTree &ST, InstructionMapper &Mapper, 922 std::vector<std::shared_ptr<Candidate>> &CandidateList, 923 std::vector<OutlinedFunction> &FunctionList) { 924 CandidateList.clear(); 925 FunctionList.clear(); 926 unsigned MaxLen = 0; 927 928 // FIXME: Visit internal nodes instead of leaves. 929 for (SuffixTreeNode *Leaf : ST.LeafVector) { 930 assert(Leaf && "Leaves in LeafVector cannot be null!"); 931 if (!Leaf->IsInTree) 932 continue; 933 934 assert(Leaf->Parent && "All leaves must have parents!"); 935 SuffixTreeNode &Parent = *(Leaf->Parent); 936 937 // If it doesn't appear enough, or we already outlined from it, skip it. 938 if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree) 939 continue; 940 941 // Figure out if this candidate is beneficial. 942 unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size(); 943 944 // Too short to be beneficial; skip it. 945 // FIXME: This isn't necessarily true for, say, X86. If we factor in 946 // instruction lengths we need more information than this. 947 if (StringLen < 2) 948 continue; 949 950 // If this is a beneficial class of candidate, then every one is stored in 951 // this vector. 952 std::vector<Candidate> CandidatesForRepeatedSeq; 953 954 // Figure out the call overhead for each instance of the sequence. 955 for (auto &ChildPair : Parent.Children) { 956 SuffixTreeNode *M = ChildPair.second; 957 958 if (M && M->IsInTree && M->isLeaf()) { 959 // Never visit this leaf again. 960 M->IsInTree = false; 961 unsigned StartIdx = M->SuffixIdx; 962 unsigned EndIdx = StartIdx + StringLen - 1; 963 964 // Trick: Discard some candidates that would be incompatible with the 965 // ones we've already found for this sequence. This will save us some 966 // work in candidate selection. 967 // 968 // If two candidates overlap, then we can't outline them both. This 969 // happens when we have candidates that look like, say 970 // 971 // AA (where each "A" is an instruction). 972 // 973 // We might have some portion of the module that looks like this: 974 // AAAAAA (6 A's) 975 // 976 // In this case, there are 5 different copies of "AA" in this range, but 977 // at most 3 can be outlined. If only outlining 3 of these is going to 978 // be unbeneficial, then we ought to not bother. 979 // 980 // Note that two things DON'T overlap when they look like this: 981 // start1...end1 .... start2...end2 982 // That is, one must either 983 // * End before the other starts 984 // * Start after the other ends 985 if (std::all_of(CandidatesForRepeatedSeq.begin(), 986 CandidatesForRepeatedSeq.end(), 987 [&StartIdx, &EndIdx](const Candidate &C) { 988 return (EndIdx < C.getStartIdx() || 989 StartIdx > C.getEndIdx()); 990 })) { 991 // It doesn't overlap with anything, so we can outline it. 992 // Each sequence is over [StartIt, EndIt]. 993 // Save the candidate and its location. 994 995 MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx]; 996 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 997 998 CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt, 999 EndIt, StartIt->getParent(), 1000 FunctionList.size()); 1001 } 1002 } 1003 } 1004 1005 // We've found something we might want to outline. 1006 // Create an OutlinedFunction to store it and check if it'd be beneficial 1007 // to outline. 1008 if (CandidatesForRepeatedSeq.empty()) 1009 continue; 1010 1011 // Arbitrarily choose a TII from the first candidate. 1012 // FIXME: Should getOutliningCandidateInfo move to TargetMachine? 1013 const TargetInstrInfo *TII = 1014 CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo(); 1015 1016 OutlinedFunction OF = 1017 TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq); 1018 1019 // If we deleted every candidate, then there's nothing to outline. 1020 if (OF.Candidates.empty()) 1021 continue; 1022 1023 std::vector<unsigned> Seq; 1024 for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++) 1025 Seq.push_back(ST.Str[i]); 1026 OF.Sequence = Seq; 1027 OF.Name = FunctionList.size(); 1028 1029 // Is it better to outline this candidate than not? 1030 if (OF.getBenefit() < 1) { 1031 emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF); 1032 continue; 1033 } 1034 1035 if (StringLen > MaxLen) 1036 MaxLen = StringLen; 1037 1038 // The function is beneficial. Save its candidates to the candidate list 1039 // for pruning. 1040 for (std::shared_ptr<Candidate> &C : OF.Candidates) 1041 CandidateList.push_back(C); 1042 FunctionList.push_back(OF); 1043 1044 // Move to the next function. 1045 Parent.IsInTree = false; 1046 } 1047 1048 return MaxLen; 1049 } 1050 1051 // Remove C from the candidate space, and update its OutlinedFunction. 1052 void MachineOutliner::prune(Candidate &C, 1053 std::vector<OutlinedFunction> &FunctionList) { 1054 // Get the OutlinedFunction associated with this Candidate. 1055 OutlinedFunction &F = FunctionList[C.FunctionIdx]; 1056 1057 // Update C's associated function's occurrence count. 1058 F.decrement(); 1059 1060 // Remove C from the CandidateList. 1061 C.InCandidateList = false; 1062 1063 LLVM_DEBUG(dbgs() << "- Removed a Candidate \n"; 1064 dbgs() << "--- Num fns left for candidate: " 1065 << F.getOccurrenceCount() << "\n"; 1066 dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit() 1067 << "\n";); 1068 } 1069 1070 void MachineOutliner::pruneOverlaps( 1071 std::vector<std::shared_ptr<Candidate>> &CandidateList, 1072 std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper, 1073 unsigned MaxCandidateLen) { 1074 1075 // Return true if this candidate became unbeneficial for outlining in a 1076 // previous step. 1077 auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) { 1078 1079 // Check if the candidate was removed in a previous step. 1080 if (!C.InCandidateList) 1081 return true; 1082 1083 // C must be alive. Check if we should remove it. 1084 if (FunctionList[C.FunctionIdx].getBenefit() < 1) { 1085 prune(C, FunctionList); 1086 return true; 1087 } 1088 1089 // C is in the list, and F is still beneficial. 1090 return false; 1091 }; 1092 1093 // TODO: Experiment with interval trees or other interval-checking structures 1094 // to lower the time complexity of this function. 1095 // TODO: Can we do better than the simple greedy choice? 1096 // Check for overlaps in the range. 1097 // This is O(MaxCandidateLen * CandidateList.size()). 1098 for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; 1099 It++) { 1100 Candidate &C1 = **It; 1101 1102 // If C1 was already pruned, or its function is no longer beneficial for 1103 // outlining, move to the next candidate. 1104 if (ShouldSkipCandidate(C1)) 1105 continue; 1106 1107 // The minimum start index of any candidate that could overlap with this 1108 // one. 1109 unsigned FarthestPossibleIdx = 0; 1110 1111 // Either the index is 0, or it's at most MaxCandidateLen indices away. 1112 if (C1.getStartIdx() > MaxCandidateLen) 1113 FarthestPossibleIdx = C1.getStartIdx() - MaxCandidateLen; 1114 1115 // Compare against the candidates in the list that start at most 1116 // FarthestPossibleIdx indices away from C1. There are at most 1117 // MaxCandidateLen of these. 1118 for (auto Sit = It + 1; Sit != Et; Sit++) { 1119 Candidate &C2 = **Sit; 1120 1121 // Is this candidate too far away to overlap? 1122 if (C2.getStartIdx() < FarthestPossibleIdx) 1123 break; 1124 1125 // If C2 was already pruned, or its function is no longer beneficial for 1126 // outlining, move to the next candidate. 1127 if (ShouldSkipCandidate(C2)) 1128 continue; 1129 1130 // Do C1 and C2 overlap? 1131 // 1132 // Not overlapping: 1133 // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices 1134 // 1135 // We sorted our candidate list so C2Start <= C1Start. We know that 1136 // C2End > C2Start since each candidate has length >= 2. Therefore, all we 1137 // have to check is C2End < C2Start to see if we overlap. 1138 if (C2.getEndIdx() < C1.getStartIdx()) 1139 continue; 1140 1141 // C1 and C2 overlap. 1142 // We need to choose the better of the two. 1143 // 1144 // Approximate this by picking the one which would have saved us the 1145 // most instructions before any pruning. 1146 1147 // Is C2 a better candidate? 1148 if (C2.Benefit > C1.Benefit) { 1149 // Yes, so prune C1. Since C1 is dead, we don't have to compare it 1150 // against anything anymore, so break. 1151 prune(C1, FunctionList); 1152 break; 1153 } 1154 1155 // Prune C2 and move on to the next candidate. 1156 prune(C2, FunctionList); 1157 } 1158 } 1159 } 1160 1161 unsigned MachineOutliner::buildCandidateList( 1162 std::vector<std::shared_ptr<Candidate>> &CandidateList, 1163 std::vector<OutlinedFunction> &FunctionList, SuffixTree &ST, 1164 InstructionMapper &Mapper) { 1165 1166 std::vector<unsigned> CandidateSequence; // Current outlining candidate. 1167 unsigned MaxCandidateLen = 0; // Length of the longest candidate. 1168 1169 MaxCandidateLen = 1170 findCandidates(ST, Mapper, CandidateList, FunctionList); 1171 1172 // Sort the candidates in decending order. This will simplify the outlining 1173 // process when we have to remove the candidates from the mapping by 1174 // allowing us to cut them out without keeping track of an offset. 1175 std::stable_sort( 1176 CandidateList.begin(), CandidateList.end(), 1177 [](const std::shared_ptr<Candidate> &LHS, 1178 const std::shared_ptr<Candidate> &RHS) { return *LHS < *RHS; }); 1179 1180 return MaxCandidateLen; 1181 } 1182 1183 MachineFunction * 1184 MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, 1185 InstructionMapper &Mapper) { 1186 1187 // Create the function name. This should be unique. For now, just hash the 1188 // module name and include it in the function name plus the number of this 1189 // function. 1190 std::ostringstream NameStream; 1191 NameStream << "OUTLINED_FUNCTION_" << OF.Name; 1192 1193 // Create the function using an IR-level function. 1194 LLVMContext &C = M.getContext(); 1195 Function *F = dyn_cast<Function>( 1196 M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C))); 1197 assert(F && "Function was null!"); 1198 1199 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1200 // which gives us better results when we outline from linkonceodr functions. 1201 F->setLinkage(GlobalValue::InternalLinkage); 1202 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1203 1204 // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's 1205 // necessary. 1206 1207 // Set optsize/minsize, so we don't insert padding between outlined 1208 // functions. 1209 F->addFnAttr(Attribute::OptimizeForSize); 1210 F->addFnAttr(Attribute::MinSize); 1211 1212 // Include target features from an arbitrary candidate for the outlined 1213 // function. This makes sure the outlined function knows what kinds of 1214 // instructions are going into it. This is fine, since all parent functions 1215 // must necessarily support the instructions that are in the outlined region. 1216 const Function &ParentFn = OF.Candidates.front()->getMF()->getFunction(); 1217 if (ParentFn.hasFnAttribute("target-features")) 1218 F->addFnAttr(ParentFn.getFnAttribute("target-features")); 1219 1220 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1221 IRBuilder<> Builder(EntryBB); 1222 Builder.CreateRetVoid(); 1223 1224 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1225 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1226 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1227 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1228 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1229 1230 // Insert the new function into the module. 1231 MF.insert(MF.begin(), &MBB); 1232 1233 // Copy over the instructions for the function using the integer mappings in 1234 // its sequence. 1235 for (unsigned Str : OF.Sequence) { 1236 MachineInstr *NewMI = 1237 MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); 1238 NewMI->dropMemRefs(MF); 1239 1240 // Don't keep debug information for outlined instructions. 1241 NewMI->setDebugLoc(DebugLoc()); 1242 MBB.insert(MBB.end(), NewMI); 1243 } 1244 1245 TII.buildOutlinedFrame(MBB, MF, OF); 1246 1247 // Outlined functions shouldn't preserve liveness. 1248 MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness); 1249 MF.getRegInfo().freezeReservedRegs(MF); 1250 1251 // If there's a DISubprogram associated with this outlined function, then 1252 // emit debug info for the outlined function. 1253 if (DISubprogram *SP = getSubprogramOrNull(OF)) { 1254 // We have a DISubprogram. Get its DICompileUnit. 1255 DICompileUnit *CU = SP->getUnit(); 1256 DIBuilder DB(M, true, CU); 1257 DIFile *Unit = SP->getFile(); 1258 Mangler Mg; 1259 // Get the mangled name of the function for the linkage name. 1260 std::string Dummy; 1261 llvm::raw_string_ostream MangledNameStream(Dummy); 1262 Mg.getNameWithPrefix(MangledNameStream, F, false); 1263 1264 DISubprogram *OutlinedSP = DB.createFunction( 1265 Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()), 1266 Unit /* File */, 1267 0 /* Line 0 is reserved for compiler-generated code. */, 1268 DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */ 1269 false, true, 0, /* Line 0 is reserved for compiler-generated code. */ 1270 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 1271 true /* Outlined code is optimized code by definition. */); 1272 1273 // Don't add any new variables to the subprogram. 1274 DB.finalizeSubprogram(OutlinedSP); 1275 1276 // Attach subprogram to the function. 1277 F->setSubprogram(OutlinedSP); 1278 // We're done with the DIBuilder. 1279 DB.finalize(); 1280 } 1281 1282 return &MF; 1283 } 1284 1285 bool MachineOutliner::outline( 1286 Module &M, const ArrayRef<std::shared_ptr<Candidate>> &CandidateList, 1287 std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper) { 1288 1289 bool OutlinedSomething = false; 1290 // Replace the candidates with calls to their respective outlined functions. 1291 for (const std::shared_ptr<Candidate> &Cptr : CandidateList) { 1292 Candidate &C = *Cptr; 1293 // Was the candidate removed during pruneOverlaps? 1294 if (!C.InCandidateList) 1295 continue; 1296 1297 // If not, then look at its OutlinedFunction. 1298 OutlinedFunction &OF = FunctionList[C.FunctionIdx]; 1299 1300 // Was its OutlinedFunction made unbeneficial during pruneOverlaps? 1301 if (OF.getBenefit() < 1) 1302 continue; 1303 1304 // Does this candidate have a function yet? 1305 if (!OF.MF) { 1306 OF.MF = createOutlinedFunction(M, OF, Mapper); 1307 emitOutlinedFunctionRemark(OF); 1308 FunctionsCreated++; 1309 } 1310 1311 MachineFunction *MF = OF.MF; 1312 MachineBasicBlock &MBB = *C.getMBB(); 1313 MachineBasicBlock::iterator StartIt = C.front(); 1314 MachineBasicBlock::iterator EndIt = C.back(); 1315 assert(StartIt != C.getMBB()->end() && "StartIt out of bounds!"); 1316 assert(EndIt != C.getMBB()->end() && "EndIt out of bounds!"); 1317 1318 const TargetSubtargetInfo &STI = MF->getSubtarget(); 1319 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1320 1321 // Insert a call to the new function and erase the old sequence. 1322 auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *OF.MF, C); 1323 1324 // If the caller tracks liveness, then we need to make sure that anything 1325 // we outline doesn't break liveness assumptions. 1326 // The outlined functions themselves currently don't track liveness, but 1327 // we should make sure that the ranges we yank things out of aren't 1328 // wrong. 1329 if (MBB.getParent()->getProperties().hasProperty( 1330 MachineFunctionProperties::Property::TracksLiveness)) { 1331 // Helper lambda for adding implicit def operands to the call instruction. 1332 auto CopyDefs = [&CallInst](MachineInstr &MI) { 1333 for (MachineOperand &MOP : MI.operands()) { 1334 // Skip over anything that isn't a register. 1335 if (!MOP.isReg()) 1336 continue; 1337 1338 // If it's a def, add it to the call instruction. 1339 if (MOP.isDef()) 1340 CallInst->addOperand( 1341 MachineOperand::CreateReg(MOP.getReg(), true, /* isDef = true */ 1342 true /* isImp = true */)); 1343 } 1344 }; 1345 1346 // Copy over the defs in the outlined range. 1347 // First inst in outlined range <-- Anything that's defined in this 1348 // ... .. range has to be added as an implicit 1349 // Last inst in outlined range <-- def to the call instruction. 1350 std::for_each(CallInst, std::next(EndIt), CopyDefs); 1351 } 1352 1353 // Erase from the point after where the call was inserted up to, and 1354 // including, the final instruction in the sequence. 1355 // Erase needs one past the end, so we need std::next there too. 1356 MBB.erase(std::next(StartIt), std::next(EndIt)); 1357 OutlinedSomething = true; 1358 1359 // Statistics. 1360 NumOutlined++; 1361 } 1362 1363 LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1364 1365 return OutlinedSomething; 1366 } 1367 1368 void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M, 1369 MachineModuleInfo &MMI) { 1370 // Build instruction mappings for each function in the module. Start by 1371 // iterating over each Function in M. 1372 for (Function &F : M) { 1373 1374 // If there's nothing in F, then there's no reason to try and outline from 1375 // it. 1376 if (F.empty()) 1377 continue; 1378 1379 // There's something in F. Check if it has a MachineFunction associated with 1380 // it. 1381 MachineFunction *MF = MMI.getMachineFunction(F); 1382 1383 // If it doesn't, then there's nothing to outline from. Move to the next 1384 // Function. 1385 if (!MF) 1386 continue; 1387 1388 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1389 1390 if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF)) 1391 continue; 1392 1393 // We have a MachineFunction. Ask the target if it's suitable for outlining. 1394 // If it isn't, then move on to the next Function in the module. 1395 if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs)) 1396 continue; 1397 1398 // We have a function suitable for outlining. Iterate over every 1399 // MachineBasicBlock in MF and try to map its instructions to a list of 1400 // unsigned integers. 1401 for (MachineBasicBlock &MBB : *MF) { 1402 // If there isn't anything in MBB, then there's no point in outlining from 1403 // it. 1404 // If there are fewer than 2 instructions in the MBB, then it can't ever 1405 // contain something worth outlining. 1406 // FIXME: This should be based off of the maximum size in B of an outlined 1407 // call versus the size in B of the MBB. 1408 if (MBB.empty() || MBB.size() < 2) 1409 continue; 1410 1411 // Check if MBB could be the target of an indirect branch. If it is, then 1412 // we don't want to outline from it. 1413 if (MBB.hasAddressTaken()) 1414 continue; 1415 1416 // MBB is suitable for outlining. Map it to a list of unsigneds. 1417 Mapper.convertToUnsignedVec(MBB, *TII); 1418 } 1419 } 1420 } 1421 1422 void MachineOutliner::initSizeRemarkInfo( 1423 const Module &M, const MachineModuleInfo &MMI, 1424 StringMap<unsigned> &FunctionToInstrCount) { 1425 // Collect instruction counts for every function. We'll use this to emit 1426 // per-function size remarks later. 1427 for (const Function &F : M) { 1428 MachineFunction *MF = MMI.getMachineFunction(F); 1429 1430 // We only care about MI counts here. If there's no MachineFunction at this 1431 // point, then there won't be after the outliner runs, so let's move on. 1432 if (!MF) 1433 continue; 1434 FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount(); 1435 } 1436 } 1437 1438 void MachineOutliner::emitInstrCountChangedRemark( 1439 const Module &M, const MachineModuleInfo &MMI, 1440 const StringMap<unsigned> &FunctionToInstrCount) { 1441 // Iterate over each function in the module and emit remarks. 1442 // Note that we won't miss anything by doing this, because the outliner never 1443 // deletes functions. 1444 for (const Function &F : M) { 1445 MachineFunction *MF = MMI.getMachineFunction(F); 1446 1447 // The outliner never deletes functions. If we don't have a MF here, then we 1448 // didn't have one prior to outlining either. 1449 if (!MF) 1450 continue; 1451 1452 std::string Fname = F.getName(); 1453 unsigned FnCountAfter = MF->getInstructionCount(); 1454 unsigned FnCountBefore = 0; 1455 1456 // Check if the function was recorded before. 1457 auto It = FunctionToInstrCount.find(Fname); 1458 1459 // Did we have a previously-recorded size? If yes, then set FnCountBefore 1460 // to that. 1461 if (It != FunctionToInstrCount.end()) 1462 FnCountBefore = It->second; 1463 1464 // Compute the delta and emit a remark if there was a change. 1465 int64_t FnDelta = static_cast<int64_t>(FnCountAfter) - 1466 static_cast<int64_t>(FnCountBefore); 1467 if (FnDelta == 0) 1468 continue; 1469 1470 MachineOptimizationRemarkEmitter MORE(*MF, nullptr); 1471 MORE.emit([&]() { 1472 MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange", 1473 DiagnosticLocation(), 1474 &MF->front()); 1475 R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner") 1476 << ": Function: " 1477 << DiagnosticInfoOptimizationBase::Argument("Function", F.getName()) 1478 << ": MI instruction count changed from " 1479 << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore", 1480 FnCountBefore) 1481 << " to " 1482 << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter", 1483 FnCountAfter) 1484 << "; Delta: " 1485 << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta); 1486 return R; 1487 }); 1488 } 1489 } 1490 1491 bool MachineOutliner::runOnModule(Module &M) { 1492 // Check if there's anything in the module. If it's empty, then there's 1493 // nothing to outline. 1494 if (M.empty()) 1495 return false; 1496 1497 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1498 1499 // If the user passed -enable-machine-outliner=always or 1500 // -enable-machine-outliner, the pass will run on all functions in the module. 1501 // Otherwise, if the target supports default outlining, it will run on all 1502 // functions deemed by the target to be worth outlining from by default. Tell 1503 // the user how the outliner is running. 1504 LLVM_DEBUG( 1505 dbgs() << "Machine Outliner: Running on "; 1506 if (RunOnAllFunctions) 1507 dbgs() << "all functions"; 1508 else 1509 dbgs() << "target-default functions"; 1510 dbgs() << "\n" 1511 ); 1512 1513 // If the user specifies that they want to outline from linkonceodrs, set 1514 // it here. 1515 OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining; 1516 InstructionMapper Mapper; 1517 1518 // Prepare instruction mappings for the suffix tree. 1519 populateMapper(Mapper, M, MMI); 1520 1521 // Construct a suffix tree, use it to find candidates, and then outline them. 1522 SuffixTree ST(Mapper.UnsignedVec); 1523 std::vector<std::shared_ptr<Candidate>> CandidateList; 1524 std::vector<OutlinedFunction> FunctionList; 1525 1526 // Find all of the outlining candidates. 1527 unsigned MaxCandidateLen = 1528 buildCandidateList(CandidateList, FunctionList, ST, Mapper); 1529 1530 // Remove candidates that overlap with other candidates. 1531 pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen); 1532 1533 // If we've requested size remarks, then collect the MI counts of every 1534 // function before outlining, and the MI counts after outlining. 1535 // FIXME: This shouldn't be in the outliner at all; it should ultimately be 1536 // the pass manager's responsibility. 1537 // This could pretty easily be placed in outline instead, but because we 1538 // really ultimately *don't* want this here, it's done like this for now 1539 // instead. 1540 1541 // Check if we want size remarks. 1542 bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark(); 1543 StringMap<unsigned> FunctionToInstrCount; 1544 if (ShouldEmitSizeRemarks) 1545 initSizeRemarkInfo(M, MMI, FunctionToInstrCount); 1546 1547 // Outline each of the candidates and return true if something was outlined. 1548 bool OutlinedSomething = outline(M, CandidateList, FunctionList, Mapper); 1549 1550 // If we outlined something, we definitely changed the MI count of the 1551 // module. If we've asked for size remarks, then output them. 1552 // FIXME: This should be in the pass manager. 1553 if (ShouldEmitSizeRemarks && OutlinedSomething) 1554 emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount); 1555 1556 return OutlinedSomething; 1557 } 1558