1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// Replaces repeated sequences of instructions with function calls.
12 ///
13 /// This works by placing every instruction from every basic block in a
14 /// suffix tree, and repeatedly querying that tree for repeated sequences of
15 /// instructions. If a sequence of instructions appears often, then it ought
16 /// to be beneficial to pull out into a function.
17 ///
18 /// The MachineOutliner communicates with a given target using hooks defined in
19 /// TargetInstrInfo.h. The target supplies the outliner with information on how
20 /// a specific sequence of instructions should be outlined. This information
21 /// is used to deduce the number of instructions necessary to
22 ///
23 /// * Create an outlined function
24 /// * Call that outlined function
25 ///
26 /// Targets must implement
27 ///   * getOutliningCandidateInfo
28 ///   * buildOutlinedFrame
29 ///   * insertOutlinedCall
30 ///   * isFunctionSafeToOutlineFrom
31 ///
32 /// in order to make use of the MachineOutliner.
33 ///
34 /// This was originally presented at the 2016 LLVM Developers' Meeting in the
35 /// talk "Reducing Code Size Using Outlining". For a high-level overview of
36 /// how this pass works, the talk is available on YouTube at
37 ///
38 /// https://www.youtube.com/watch?v=yorld-WSOeU
39 ///
40 /// The slides for the talk are available at
41 ///
42 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
43 ///
44 /// The talk provides an overview of how the outliner finds candidates and
45 /// ultimately outlines them. It describes how the main data structure for this
46 /// pass, the suffix tree, is queried and purged for candidates. It also gives
47 /// a simplified suffix tree construction algorithm for suffix trees based off
48 /// of the algorithm actually used here, Ukkonen's algorithm.
49 ///
50 /// For the original RFC for this pass, please see
51 ///
52 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
53 ///
54 /// For more information on the suffix tree data structure, please see
55 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
56 ///
57 //===----------------------------------------------------------------------===//
58 #include "llvm/CodeGen/MachineOutliner.h"
59 #include "llvm/ADT/DenseMap.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/ADT/Twine.h"
62 #include "llvm/CodeGen/MachineFunction.h"
63 #include "llvm/CodeGen/MachineModuleInfo.h"
64 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
65 #include "llvm/CodeGen/MachineRegisterInfo.h"
66 #include "llvm/CodeGen/Passes.h"
67 #include "llvm/CodeGen/TargetInstrInfo.h"
68 #include "llvm/CodeGen/TargetSubtargetInfo.h"
69 #include "llvm/IR/DIBuilder.h"
70 #include "llvm/IR/IRBuilder.h"
71 #include "llvm/IR/Mangler.h"
72 #include "llvm/Support/Allocator.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <functional>
77 #include <map>
78 #include <sstream>
79 #include <tuple>
80 #include <vector>
81 
82 #define DEBUG_TYPE "machine-outliner"
83 
84 using namespace llvm;
85 using namespace ore;
86 using namespace outliner;
87 
88 STATISTIC(NumOutlined, "Number of candidates outlined");
89 STATISTIC(FunctionsCreated, "Number of functions created");
90 
91 // Set to true if the user wants the outliner to run on linkonceodr linkage
92 // functions. This is false by default because the linker can dedupe linkonceodr
93 // functions. Since the outliner is confined to a single module (modulo LTO),
94 // this is off by default. It should, however, be the default behaviour in
95 // LTO.
96 static cl::opt<bool> EnableLinkOnceODROutlining(
97     "enable-linkonceodr-outlining",
98     cl::Hidden,
99     cl::desc("Enable the machine outliner on linkonceodr functions"),
100     cl::init(false));
101 
102 namespace {
103 
104 /// Represents an undefined index in the suffix tree.
105 const unsigned EmptyIdx = -1;
106 
107 /// A node in a suffix tree which represents a substring or suffix.
108 ///
109 /// Each node has either no children or at least two children, with the root
110 /// being a exception in the empty tree.
111 ///
112 /// Children are represented as a map between unsigned integers and nodes. If
113 /// a node N has a child M on unsigned integer k, then the mapping represented
114 /// by N is a proper prefix of the mapping represented by M. Note that this,
115 /// although similar to a trie is somewhat different: each node stores a full
116 /// substring of the full mapping rather than a single character state.
117 ///
118 /// Each internal node contains a pointer to the internal node representing
119 /// the same string, but with the first character chopped off. This is stored
120 /// in \p Link. Each leaf node stores the start index of its respective
121 /// suffix in \p SuffixIdx.
122 struct SuffixTreeNode {
123 
124   /// The children of this node.
125   ///
126   /// A child existing on an unsigned integer implies that from the mapping
127   /// represented by the current node, there is a way to reach another
128   /// mapping by tacking that character on the end of the current string.
129   DenseMap<unsigned, SuffixTreeNode *> Children;
130 
131   /// A flag set to false if the node has been pruned from the tree.
132   bool IsInTree = true;
133 
134   /// The start index of this node's substring in the main string.
135   unsigned StartIdx = EmptyIdx;
136 
137   /// The end index of this node's substring in the main string.
138   ///
139   /// Every leaf node must have its \p EndIdx incremented at the end of every
140   /// step in the construction algorithm. To avoid having to update O(N)
141   /// nodes individually at the end of every step, the end index is stored
142   /// as a pointer.
143   unsigned *EndIdx = nullptr;
144 
145   /// For leaves, the start index of the suffix represented by this node.
146   ///
147   /// For all other nodes, this is ignored.
148   unsigned SuffixIdx = EmptyIdx;
149 
150   /// For internal nodes, a pointer to the internal node representing
151   /// the same sequence with the first character chopped off.
152   ///
153   /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
154   /// Ukkonen's algorithm does to achieve linear-time construction is
155   /// keep track of which node the next insert should be at. This makes each
156   /// insert O(1), and there are a total of O(N) inserts. The suffix link
157   /// helps with inserting children of internal nodes.
158   ///
159   /// Say we add a child to an internal node with associated mapping S. The
160   /// next insertion must be at the node representing S - its first character.
161   /// This is given by the way that we iteratively build the tree in Ukkonen's
162   /// algorithm. The main idea is to look at the suffixes of each prefix in the
163   /// string, starting with the longest suffix of the prefix, and ending with
164   /// the shortest. Therefore, if we keep pointers between such nodes, we can
165   /// move to the next insertion point in O(1) time. If we don't, then we'd
166   /// have to query from the root, which takes O(N) time. This would make the
167   /// construction algorithm O(N^2) rather than O(N).
168   SuffixTreeNode *Link = nullptr;
169 
170   /// The parent of this node. Every node except for the root has a parent.
171   SuffixTreeNode *Parent = nullptr;
172 
173   /// The number of times this node's string appears in the tree.
174   ///
175   /// This is equal to the number of leaf children of the string. It represents
176   /// the number of suffixes that the node's string is a prefix of.
177   unsigned OccurrenceCount = 0;
178 
179   /// The length of the string formed by concatenating the edge labels from the
180   /// root to this node.
181   unsigned ConcatLen = 0;
182 
183   /// Returns true if this node is a leaf.
184   bool isLeaf() const { return SuffixIdx != EmptyIdx; }
185 
186   /// Returns true if this node is the root of its owning \p SuffixTree.
187   bool isRoot() const { return StartIdx == EmptyIdx; }
188 
189   /// Return the number of elements in the substring associated with this node.
190   size_t size() const {
191 
192     // Is it the root? If so, it's the empty string so return 0.
193     if (isRoot())
194       return 0;
195 
196     assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
197 
198     // Size = the number of elements in the string.
199     // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
200     return *EndIdx - StartIdx + 1;
201   }
202 
203   SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link,
204                  SuffixTreeNode *Parent)
205       : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
206 
207   SuffixTreeNode() {}
208 };
209 
210 /// A data structure for fast substring queries.
211 ///
212 /// Suffix trees represent the suffixes of their input strings in their leaves.
213 /// A suffix tree is a type of compressed trie structure where each node
214 /// represents an entire substring rather than a single character. Each leaf
215 /// of the tree is a suffix.
216 ///
217 /// A suffix tree can be seen as a type of state machine where each state is a
218 /// substring of the full string. The tree is structured so that, for a string
219 /// of length N, there are exactly N leaves in the tree. This structure allows
220 /// us to quickly find repeated substrings of the input string.
221 ///
222 /// In this implementation, a "string" is a vector of unsigned integers.
223 /// These integers may result from hashing some data type. A suffix tree can
224 /// contain 1 or many strings, which can then be queried as one large string.
225 ///
226 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
227 /// suffix tree construction. Ukkonen's algorithm is explained in more detail
228 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
229 /// paper is available at
230 ///
231 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
232 class SuffixTree {
233 public:
234   /// Stores each leaf node in the tree.
235   ///
236   /// This is used for finding outlining candidates.
237   std::vector<SuffixTreeNode *> LeafVector;
238 
239   /// Each element is an integer representing an instruction in the module.
240   ArrayRef<unsigned> Str;
241 
242 private:
243   /// Maintains each node in the tree.
244   SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
245 
246   /// The root of the suffix tree.
247   ///
248   /// The root represents the empty string. It is maintained by the
249   /// \p NodeAllocator like every other node in the tree.
250   SuffixTreeNode *Root = nullptr;
251 
252   /// Maintains the end indices of the internal nodes in the tree.
253   ///
254   /// Each internal node is guaranteed to never have its end index change
255   /// during the construction algorithm; however, leaves must be updated at
256   /// every step. Therefore, we need to store leaf end indices by reference
257   /// to avoid updating O(N) leaves at every step of construction. Thus,
258   /// every internal node must be allocated its own end index.
259   BumpPtrAllocator InternalEndIdxAllocator;
260 
261   /// The end index of each leaf in the tree.
262   unsigned LeafEndIdx = -1;
263 
264   /// Helper struct which keeps track of the next insertion point in
265   /// Ukkonen's algorithm.
266   struct ActiveState {
267     /// The next node to insert at.
268     SuffixTreeNode *Node;
269 
270     /// The index of the first character in the substring currently being added.
271     unsigned Idx = EmptyIdx;
272 
273     /// The length of the substring we have to add at the current step.
274     unsigned Len = 0;
275   };
276 
277   /// The point the next insertion will take place at in the
278   /// construction algorithm.
279   ActiveState Active;
280 
281   /// Allocate a leaf node and add it to the tree.
282   ///
283   /// \param Parent The parent of this node.
284   /// \param StartIdx The start index of this node's associated string.
285   /// \param Edge The label on the edge leaving \p Parent to this node.
286   ///
287   /// \returns A pointer to the allocated leaf node.
288   SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx,
289                              unsigned Edge) {
290 
291     assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
292 
293     SuffixTreeNode *N = new (NodeAllocator.Allocate())
294         SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent);
295     Parent.Children[Edge] = N;
296 
297     return N;
298   }
299 
300   /// Allocate an internal node and add it to the tree.
301   ///
302   /// \param Parent The parent of this node. Only null when allocating the root.
303   /// \param StartIdx The start index of this node's associated string.
304   /// \param EndIdx The end index of this node's associated string.
305   /// \param Edge The label on the edge leaving \p Parent to this node.
306   ///
307   /// \returns A pointer to the allocated internal node.
308   SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx,
309                                      unsigned EndIdx, unsigned Edge) {
310 
311     assert(StartIdx <= EndIdx && "String can't start after it ends!");
312     assert(!(!Parent && StartIdx != EmptyIdx) &&
313            "Non-root internal nodes must have parents!");
314 
315     unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx);
316     SuffixTreeNode *N = new (NodeAllocator.Allocate())
317         SuffixTreeNode(StartIdx, E, Root, Parent);
318     if (Parent)
319       Parent->Children[Edge] = N;
320 
321     return N;
322   }
323 
324   /// Set the suffix indices of the leaves to the start indices of their
325   /// respective suffixes. Also stores each leaf in \p LeafVector at its
326   /// respective suffix index.
327   ///
328   /// \param[in] CurrNode The node currently being visited.
329   /// \param CurrIdx The current index of the string being visited.
330   void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) {
331 
332     bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
333 
334     // Store the length of the concatenation of all strings from the root to
335     // this node.
336     if (!CurrNode.isRoot()) {
337       if (CurrNode.ConcatLen == 0)
338         CurrNode.ConcatLen = CurrNode.size();
339 
340       if (CurrNode.Parent)
341         CurrNode.ConcatLen += CurrNode.Parent->ConcatLen;
342     }
343 
344     // Traverse the tree depth-first.
345     for (auto &ChildPair : CurrNode.Children) {
346       assert(ChildPair.second && "Node had a null child!");
347       setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size());
348     }
349 
350     // Is this node a leaf?
351     if (IsLeaf) {
352       // If yes, give it a suffix index and bump its parent's occurrence count.
353       CurrNode.SuffixIdx = Str.size() - CurrIdx;
354       assert(CurrNode.Parent && "CurrNode had no parent!");
355       CurrNode.Parent->OccurrenceCount++;
356 
357       // Store the leaf in the leaf vector for pruning later.
358       LeafVector[CurrNode.SuffixIdx] = &CurrNode;
359     }
360   }
361 
362   /// Construct the suffix tree for the prefix of the input ending at
363   /// \p EndIdx.
364   ///
365   /// Used to construct the full suffix tree iteratively. At the end of each
366   /// step, the constructed suffix tree is either a valid suffix tree, or a
367   /// suffix tree with implicit suffixes. At the end of the final step, the
368   /// suffix tree is a valid tree.
369   ///
370   /// \param EndIdx The end index of the current prefix in the main string.
371   /// \param SuffixesToAdd The number of suffixes that must be added
372   /// to complete the suffix tree at the current phase.
373   ///
374   /// \returns The number of suffixes that have not been added at the end of
375   /// this step.
376   unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) {
377     SuffixTreeNode *NeedsLink = nullptr;
378 
379     while (SuffixesToAdd > 0) {
380 
381       // Are we waiting to add anything other than just the last character?
382       if (Active.Len == 0) {
383         // If not, then say the active index is the end index.
384         Active.Idx = EndIdx;
385       }
386 
387       assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
388 
389       // The first character in the current substring we're looking at.
390       unsigned FirstChar = Str[Active.Idx];
391 
392       // Have we inserted anything starting with FirstChar at the current node?
393       if (Active.Node->Children.count(FirstChar) == 0) {
394         // If not, then we can just insert a leaf and move too the next step.
395         insertLeaf(*Active.Node, EndIdx, FirstChar);
396 
397         // The active node is an internal node, and we visited it, so it must
398         // need a link if it doesn't have one.
399         if (NeedsLink) {
400           NeedsLink->Link = Active.Node;
401           NeedsLink = nullptr;
402         }
403       } else {
404         // There's a match with FirstChar, so look for the point in the tree to
405         // insert a new node.
406         SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
407 
408         unsigned SubstringLen = NextNode->size();
409 
410         // Is the current suffix we're trying to insert longer than the size of
411         // the child we want to move to?
412         if (Active.Len >= SubstringLen) {
413           // If yes, then consume the characters we've seen and move to the next
414           // node.
415           Active.Idx += SubstringLen;
416           Active.Len -= SubstringLen;
417           Active.Node = NextNode;
418           continue;
419         }
420 
421         // Otherwise, the suffix we're trying to insert must be contained in the
422         // next node we want to move to.
423         unsigned LastChar = Str[EndIdx];
424 
425         // Is the string we're trying to insert a substring of the next node?
426         if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
427           // If yes, then we're done for this step. Remember our insertion point
428           // and move to the next end index. At this point, we have an implicit
429           // suffix tree.
430           if (NeedsLink && !Active.Node->isRoot()) {
431             NeedsLink->Link = Active.Node;
432             NeedsLink = nullptr;
433           }
434 
435           Active.Len++;
436           break;
437         }
438 
439         // The string we're trying to insert isn't a substring of the next node,
440         // but matches up to a point. Split the node.
441         //
442         // For example, say we ended our search at a node n and we're trying to
443         // insert ABD. Then we'll create a new node s for AB, reduce n to just
444         // representing C, and insert a new leaf node l to represent d. This
445         // allows us to ensure that if n was a leaf, it remains a leaf.
446         //
447         //   | ABC  ---split--->  | AB
448         //   n                    s
449         //                     C / \ D
450         //                      n   l
451 
452         // The node s from the diagram
453         SuffixTreeNode *SplitNode =
454             insertInternalNode(Active.Node, NextNode->StartIdx,
455                                NextNode->StartIdx + Active.Len - 1, FirstChar);
456 
457         // Insert the new node representing the new substring into the tree as
458         // a child of the split node. This is the node l from the diagram.
459         insertLeaf(*SplitNode, EndIdx, LastChar);
460 
461         // Make the old node a child of the split node and update its start
462         // index. This is the node n from the diagram.
463         NextNode->StartIdx += Active.Len;
464         NextNode->Parent = SplitNode;
465         SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
466 
467         // SplitNode is an internal node, update the suffix link.
468         if (NeedsLink)
469           NeedsLink->Link = SplitNode;
470 
471         NeedsLink = SplitNode;
472       }
473 
474       // We've added something new to the tree, so there's one less suffix to
475       // add.
476       SuffixesToAdd--;
477 
478       if (Active.Node->isRoot()) {
479         if (Active.Len > 0) {
480           Active.Len--;
481           Active.Idx = EndIdx - SuffixesToAdd + 1;
482         }
483       } else {
484         // Start the next phase at the next smallest suffix.
485         Active.Node = Active.Node->Link;
486       }
487     }
488 
489     return SuffixesToAdd;
490   }
491 
492 public:
493   /// Construct a suffix tree from a sequence of unsigned integers.
494   ///
495   /// \param Str The string to construct the suffix tree for.
496   SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
497     Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
498     Root->IsInTree = true;
499     Active.Node = Root;
500     LeafVector = std::vector<SuffixTreeNode *>(Str.size());
501 
502     // Keep track of the number of suffixes we have to add of the current
503     // prefix.
504     unsigned SuffixesToAdd = 0;
505     Active.Node = Root;
506 
507     // Construct the suffix tree iteratively on each prefix of the string.
508     // PfxEndIdx is the end index of the current prefix.
509     // End is one past the last element in the string.
510     for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End;
511          PfxEndIdx++) {
512       SuffixesToAdd++;
513       LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
514       SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
515     }
516 
517     // Set the suffix indices of each leaf.
518     assert(Root && "Root node can't be nullptr!");
519     setSuffixIndices(*Root, 0);
520   }
521 };
522 
523 /// Maps \p MachineInstrs to unsigned integers and stores the mappings.
524 struct InstructionMapper {
525 
526   /// The next available integer to assign to a \p MachineInstr that
527   /// cannot be outlined.
528   ///
529   /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
530   unsigned IllegalInstrNumber = -3;
531 
532   /// The next available integer to assign to a \p MachineInstr that can
533   /// be outlined.
534   unsigned LegalInstrNumber = 0;
535 
536   /// Correspondence from \p MachineInstrs to unsigned integers.
537   DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
538       InstructionIntegerMap;
539 
540   /// Corresponcence from unsigned integers to \p MachineInstrs.
541   /// Inverse of \p InstructionIntegerMap.
542   DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
543 
544   /// The vector of unsigned integers that the module is mapped to.
545   std::vector<unsigned> UnsignedVec;
546 
547   /// Stores the location of the instruction associated with the integer
548   /// at index i in \p UnsignedVec for each index i.
549   std::vector<MachineBasicBlock::iterator> InstrList;
550 
551   // Set if we added an illegal number in the previous step.
552   // Since each illegal number is unique, we only need one of them between
553   // each range of legal numbers. This lets us make sure we don't add more
554   // than one illegal number per range.
555   bool AddedIllegalLastTime = false;
556 
557   /// Maps \p *It to a legal integer.
558   ///
559   /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
560   /// \p IntegerInstructionMap, and \p LegalInstrNumber.
561   ///
562   /// \returns The integer that \p *It was mapped to.
563   unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
564     // We added something legal, so we should unset the AddedLegalLastTime
565     // flag.
566     AddedIllegalLastTime = false;
567 
568     // Get the integer for this instruction or give it the current
569     // LegalInstrNumber.
570     InstrList.push_back(It);
571     MachineInstr &MI = *It;
572     bool WasInserted;
573     DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
574         ResultIt;
575     std::tie(ResultIt, WasInserted) =
576         InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
577     unsigned MINumber = ResultIt->second;
578 
579     // There was an insertion.
580     if (WasInserted) {
581       LegalInstrNumber++;
582       IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
583     }
584 
585     UnsignedVec.push_back(MINumber);
586 
587     // Make sure we don't overflow or use any integers reserved by the DenseMap.
588     if (LegalInstrNumber >= IllegalInstrNumber)
589       report_fatal_error("Instruction mapping overflow!");
590 
591     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
592            "Tried to assign DenseMap tombstone or empty key to instruction.");
593     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
594            "Tried to assign DenseMap tombstone or empty key to instruction.");
595 
596     return MINumber;
597   }
598 
599   /// Maps \p *It to an illegal integer.
600   ///
601   /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
602   ///
603   /// \returns The integer that \p *It was mapped to.
604   unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
605     // Only add one illegal number per range of legal numbers.
606     if (AddedIllegalLastTime)
607       return IllegalInstrNumber;
608 
609     // Remember that we added an illegal number last time.
610     AddedIllegalLastTime = true;
611     unsigned MINumber = IllegalInstrNumber;
612 
613     InstrList.push_back(It);
614     UnsignedVec.push_back(IllegalInstrNumber);
615     IllegalInstrNumber--;
616 
617     assert(LegalInstrNumber < IllegalInstrNumber &&
618            "Instruction mapping overflow!");
619 
620     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
621            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
622 
623     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
624            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
625 
626     return MINumber;
627   }
628 
629   /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
630   /// and appends it to \p UnsignedVec and \p InstrList.
631   ///
632   /// Two instructions are assigned the same integer if they are identical.
633   /// If an instruction is deemed unsafe to outline, then it will be assigned an
634   /// unique integer. The resulting mapping is placed into a suffix tree and
635   /// queried for candidates.
636   ///
637   /// \param MBB The \p MachineBasicBlock to be translated into integers.
638   /// \param TII \p TargetInstrInfo for the function.
639   void convertToUnsignedVec(MachineBasicBlock &MBB,
640                             const TargetInstrInfo &TII) {
641     unsigned Flags = TII.getMachineOutlinerMBBFlags(MBB);
642     MachineBasicBlock::iterator It = MBB.begin();
643     for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; It++) {
644       // Keep track of where this instruction is in the module.
645       switch (TII.getOutliningType(It, Flags)) {
646       case InstrType::Illegal:
647         mapToIllegalUnsigned(It);
648         break;
649 
650       case InstrType::Legal:
651         mapToLegalUnsigned(It);
652         break;
653 
654       case InstrType::LegalTerminator:
655         mapToLegalUnsigned(It);
656         // The instruction also acts as a terminator, so we have to record that
657         // in the string.
658         mapToIllegalUnsigned(It);
659         break;
660 
661       case InstrType::Invisible:
662         // Normally this is set by mapTo(Blah)Unsigned, but we just want to
663         // skip this instruction. So, unset the flag here.
664         AddedIllegalLastTime = false;
665         break;
666       }
667     }
668 
669     // After we're done every insertion, uniquely terminate this part of the
670     // "string". This makes sure we won't match across basic block or function
671     // boundaries since the "end" is encoded uniquely and thus appears in no
672     // repeated substring.
673     mapToIllegalUnsigned(It);
674   }
675 
676   InstructionMapper() {
677     // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
678     // changed.
679     assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
680            "DenseMapInfo<unsigned>'s empty key isn't -1!");
681     assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
682            "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
683   }
684 };
685 
686 /// An interprocedural pass which finds repeated sequences of
687 /// instructions and replaces them with calls to functions.
688 ///
689 /// Each instruction is mapped to an unsigned integer and placed in a string.
690 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
691 /// is then repeatedly queried for repeated sequences of instructions. Each
692 /// non-overlapping repeated sequence is then placed in its own
693 /// \p MachineFunction and each instance is then replaced with a call to that
694 /// function.
695 struct MachineOutliner : public ModulePass {
696 
697   static char ID;
698 
699   /// Set to true if the outliner should consider functions with
700   /// linkonceodr linkage.
701   bool OutlineFromLinkOnceODRs = false;
702 
703   /// Set to true if the outliner should run on all functions in the module
704   /// considered safe for outlining.
705   /// Set to true by default for compatibility with llc's -run-pass option.
706   /// Set when the pass is constructed in TargetPassConfig.
707   bool RunOnAllFunctions = true;
708 
709   StringRef getPassName() const override { return "Machine Outliner"; }
710 
711   void getAnalysisUsage(AnalysisUsage &AU) const override {
712     AU.addRequired<MachineModuleInfo>();
713     AU.addPreserved<MachineModuleInfo>();
714     AU.setPreservesAll();
715     ModulePass::getAnalysisUsage(AU);
716   }
717 
718   MachineOutliner() : ModulePass(ID) {
719     initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
720   }
721 
722   /// Remark output explaining that not outlining a set of candidates would be
723   /// better than outlining that set.
724   void emitNotOutliningCheaperRemark(
725       unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
726       OutlinedFunction &OF);
727 
728   /// Remark output explaining that a function was outlined.
729   void emitOutlinedFunctionRemark(OutlinedFunction &OF);
730 
731   /// Find all repeated substrings that satisfy the outlining cost model.
732   ///
733   /// If a substring appears at least twice, then it must be represented by
734   /// an internal node which appears in at least two suffixes. Each suffix
735   /// is represented by a leaf node. To do this, we visit each internal node
736   /// in the tree, using the leaf children of each internal node. If an
737   /// internal node represents a beneficial substring, then we use each of
738   /// its leaf children to find the locations of its substring.
739   ///
740   /// \param ST A suffix tree to query.
741   /// \param Mapper Contains outlining mapping information.
742   /// \param[out] CandidateList Filled with candidates representing each
743   /// beneficial substring.
744   /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions
745   /// each type of candidate.
746   ///
747   /// \returns The length of the longest candidate found.
748   unsigned
749   findCandidates(SuffixTree &ST,
750                  InstructionMapper &Mapper,
751                  std::vector<std::shared_ptr<Candidate>> &CandidateList,
752                  std::vector<OutlinedFunction> &FunctionList);
753 
754   /// Replace the sequences of instructions represented by the
755   /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
756   /// described in \p FunctionList.
757   ///
758   /// \param M The module we are outlining from.
759   /// \param CandidateList A list of candidates to be outlined.
760   /// \param FunctionList A list of functions to be inserted into the module.
761   /// \param Mapper Contains the instruction mappings for the module.
762   bool outline(Module &M,
763                const ArrayRef<std::shared_ptr<Candidate>> &CandidateList,
764                std::vector<OutlinedFunction> &FunctionList,
765                InstructionMapper &Mapper);
766 
767   /// Creates a function for \p OF and inserts it into the module.
768   MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
769                                           InstructionMapper &Mapper);
770 
771   /// Find potential outlining candidates and store them in \p CandidateList.
772   ///
773   /// For each type of potential candidate, also build an \p OutlinedFunction
774   /// struct containing the information to build the function for that
775   /// candidate.
776   ///
777   /// \param[out] CandidateList Filled with outlining candidates for the module.
778   /// \param[out] FunctionList Filled with functions corresponding to each type
779   /// of \p Candidate.
780   /// \param ST The suffix tree for the module.
781   ///
782   /// \returns The length of the longest candidate found. 0 if there are none.
783   unsigned
784   buildCandidateList(std::vector<std::shared_ptr<Candidate>> &CandidateList,
785                      std::vector<OutlinedFunction> &FunctionList,
786                      SuffixTree &ST, InstructionMapper &Mapper);
787 
788   /// Helper function for pruneOverlaps.
789   /// Removes \p C from the candidate list, and updates its \p OutlinedFunction.
790   void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList);
791 
792   /// Remove any overlapping candidates that weren't handled by the
793   /// suffix tree's pruning method.
794   ///
795   /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
796   /// If a short candidate is chosen for outlining, then a longer candidate
797   /// which has that short candidate as a suffix is chosen, the tree's pruning
798   /// method will not find it. Thus, we need to prune before outlining as well.
799   ///
800   /// \param[in,out] CandidateList A list of outlining candidates.
801   /// \param[in,out] FunctionList A list of functions to be outlined.
802   /// \param Mapper Contains instruction mapping info for outlining.
803   /// \param MaxCandidateLen The length of the longest candidate.
804   void pruneOverlaps(std::vector<std::shared_ptr<Candidate>> &CandidateList,
805                      std::vector<OutlinedFunction> &FunctionList,
806                      InstructionMapper &Mapper, unsigned MaxCandidateLen);
807 
808   /// Construct a suffix tree on the instructions in \p M and outline repeated
809   /// strings from that tree.
810   bool runOnModule(Module &M) override;
811 
812   /// Return a DISubprogram for OF if one exists, and null otherwise. Helper
813   /// function for remark emission.
814   DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) {
815     DISubprogram *SP;
816     for (const std::shared_ptr<Candidate> &C : OF.Candidates)
817       if (C && C->getMF() && (SP = C->getMF()->getFunction().getSubprogram()))
818         return SP;
819     return nullptr;
820   }
821 
822   /// Populate and \p InstructionMapper with instruction-to-integer mappings.
823   /// These are used to construct a suffix tree.
824   void populateMapper(InstructionMapper &Mapper, Module &M,
825                       MachineModuleInfo &MMI);
826 
827   /// Initialize information necessary to output a size remark.
828   /// FIXME: This should be handled by the pass manager, not the outliner.
829   /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy
830   /// pass manager.
831   void initSizeRemarkInfo(
832       const Module &M, const MachineModuleInfo &MMI,
833       StringMap<unsigned> &FunctionToInstrCount);
834 
835   /// Emit the remark.
836   // FIXME: This should be handled by the pass manager, not the outliner.
837   void emitInstrCountChangedRemark(
838       const Module &M, const MachineModuleInfo &MMI,
839       const StringMap<unsigned> &FunctionToInstrCount);
840 };
841 } // Anonymous namespace.
842 
843 char MachineOutliner::ID = 0;
844 
845 namespace llvm {
846 ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) {
847   MachineOutliner *OL = new MachineOutliner();
848   OL->RunOnAllFunctions = RunOnAllFunctions;
849   return OL;
850 }
851 
852 } // namespace llvm
853 
854 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
855                 false)
856 
857 void MachineOutliner::emitNotOutliningCheaperRemark(
858     unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
859     OutlinedFunction &OF) {
860   // FIXME: Right now, we arbitrarily choose some Candidate from the
861   // OutlinedFunction. This isn't necessarily fixed, nor does it have to be.
862   // We should probably sort these by function name or something to make sure
863   // the remarks are stable.
864   Candidate &C = CandidatesForRepeatedSeq.front();
865   MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr);
866   MORE.emit([&]() {
867     MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
868                                       C.front()->getDebugLoc(), C.getMBB());
869     R << "Did not outline " << NV("Length", StringLen) << " instructions"
870       << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size())
871       << " locations."
872       << " Bytes from outlining all occurrences ("
873       << NV("OutliningCost", OF.getOutliningCost()) << ")"
874       << " >= Unoutlined instruction bytes ("
875       << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")"
876       << " (Also found at: ";
877 
878     // Tell the user the other places the candidate was found.
879     for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) {
880       R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
881               CandidatesForRepeatedSeq[i].front()->getDebugLoc());
882       if (i != e - 1)
883         R << ", ";
884     }
885 
886     R << ")";
887     return R;
888   });
889 }
890 
891 void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) {
892   MachineBasicBlock *MBB = &*OF.MF->begin();
893   MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr);
894   MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction",
895                               MBB->findDebugLoc(MBB->begin()), MBB);
896   R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by "
897     << "outlining " << NV("Length", OF.Sequence.size()) << " instructions "
898     << "from " << NV("NumOccurrences", OF.getOccurrenceCount())
899     << " locations. "
900     << "(Found at: ";
901 
902   // Tell the user the other places the candidate was found.
903   for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) {
904 
905     // Skip over things that were pruned.
906     if (!OF.Candidates[i]->InCandidateList)
907       continue;
908 
909     R << NV((Twine("StartLoc") + Twine(i)).str(),
910             OF.Candidates[i]->front()->getDebugLoc());
911     if (i != e - 1)
912       R << ", ";
913   }
914 
915   R << ")";
916 
917   MORE.emit(R);
918 }
919 
920 unsigned MachineOutliner::findCandidates(
921     SuffixTree &ST, InstructionMapper &Mapper,
922     std::vector<std::shared_ptr<Candidate>> &CandidateList,
923     std::vector<OutlinedFunction> &FunctionList) {
924   CandidateList.clear();
925   FunctionList.clear();
926   unsigned MaxLen = 0;
927 
928   // FIXME: Visit internal nodes instead of leaves.
929   for (SuffixTreeNode *Leaf : ST.LeafVector) {
930     assert(Leaf && "Leaves in LeafVector cannot be null!");
931     if (!Leaf->IsInTree)
932       continue;
933 
934     assert(Leaf->Parent && "All leaves must have parents!");
935     SuffixTreeNode &Parent = *(Leaf->Parent);
936 
937     // If it doesn't appear enough, or we already outlined from it, skip it.
938     if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree)
939       continue;
940 
941     // Figure out if this candidate is beneficial.
942     unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size();
943 
944     // Too short to be beneficial; skip it.
945     // FIXME: This isn't necessarily true for, say, X86. If we factor in
946     // instruction lengths we need more information than this.
947     if (StringLen < 2)
948       continue;
949 
950     // If this is a beneficial class of candidate, then every one is stored in
951     // this vector.
952     std::vector<Candidate> CandidatesForRepeatedSeq;
953 
954     // Figure out the call overhead for each instance of the sequence.
955     for (auto &ChildPair : Parent.Children) {
956       SuffixTreeNode *M = ChildPair.second;
957 
958       if (M && M->IsInTree && M->isLeaf()) {
959         // Never visit this leaf again.
960         M->IsInTree = false;
961         unsigned StartIdx = M->SuffixIdx;
962         unsigned EndIdx = StartIdx + StringLen - 1;
963 
964         // Trick: Discard some candidates that would be incompatible with the
965         // ones we've already found for this sequence. This will save us some
966         // work in candidate selection.
967         //
968         // If two candidates overlap, then we can't outline them both. This
969         // happens when we have candidates that look like, say
970         //
971         // AA (where each "A" is an instruction).
972         //
973         // We might have some portion of the module that looks like this:
974         // AAAAAA (6 A's)
975         //
976         // In this case, there are 5 different copies of "AA" in this range, but
977         // at most 3 can be outlined. If only outlining 3 of these is going to
978         // be unbeneficial, then we ought to not bother.
979         //
980         // Note that two things DON'T overlap when they look like this:
981         // start1...end1 .... start2...end2
982         // That is, one must either
983         // * End before the other starts
984         // * Start after the other ends
985         if (std::all_of(CandidatesForRepeatedSeq.begin(),
986                         CandidatesForRepeatedSeq.end(),
987                         [&StartIdx, &EndIdx](const Candidate &C) {
988                           return (EndIdx < C.getStartIdx() ||
989                                   StartIdx > C.getEndIdx());
990                         })) {
991           // It doesn't overlap with anything, so we can outline it.
992           // Each sequence is over [StartIt, EndIt].
993           // Save the candidate and its location.
994 
995           MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx];
996           MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
997 
998           CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt,
999                                                 EndIt, StartIt->getParent(),
1000                                                 FunctionList.size());
1001         }
1002       }
1003     }
1004 
1005     // We've found something we might want to outline.
1006     // Create an OutlinedFunction to store it and check if it'd be beneficial
1007     // to outline.
1008     if (CandidatesForRepeatedSeq.empty())
1009       continue;
1010 
1011     // Arbitrarily choose a TII from the first candidate.
1012     // FIXME: Should getOutliningCandidateInfo move to TargetMachine?
1013     const TargetInstrInfo *TII =
1014         CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo();
1015 
1016     OutlinedFunction OF =
1017         TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq);
1018 
1019     // If we deleted every candidate, then there's nothing to outline.
1020     if (OF.Candidates.empty())
1021       continue;
1022 
1023     std::vector<unsigned> Seq;
1024     for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++)
1025       Seq.push_back(ST.Str[i]);
1026     OF.Sequence = Seq;
1027     OF.Name = FunctionList.size();
1028 
1029     // Is it better to outline this candidate than not?
1030     if (OF.getBenefit() < 1) {
1031       emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF);
1032       continue;
1033     }
1034 
1035     if (StringLen > MaxLen)
1036       MaxLen = StringLen;
1037 
1038     // The function is beneficial. Save its candidates to the candidate list
1039     // for pruning.
1040     for (std::shared_ptr<Candidate> &C : OF.Candidates)
1041       CandidateList.push_back(C);
1042     FunctionList.push_back(OF);
1043 
1044     // Move to the next function.
1045     Parent.IsInTree = false;
1046   }
1047 
1048   return MaxLen;
1049 }
1050 
1051 // Remove C from the candidate space, and update its OutlinedFunction.
1052 void MachineOutliner::prune(Candidate &C,
1053                             std::vector<OutlinedFunction> &FunctionList) {
1054   // Get the OutlinedFunction associated with this Candidate.
1055   OutlinedFunction &F = FunctionList[C.FunctionIdx];
1056 
1057   // Update C's associated function's occurrence count.
1058   F.decrement();
1059 
1060   // Remove C from the CandidateList.
1061   C.InCandidateList = false;
1062 
1063   LLVM_DEBUG(dbgs() << "- Removed a Candidate \n";
1064              dbgs() << "--- Num fns left for candidate: "
1065                     << F.getOccurrenceCount() << "\n";
1066              dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit()
1067                     << "\n";);
1068 }
1069 
1070 void MachineOutliner::pruneOverlaps(
1071     std::vector<std::shared_ptr<Candidate>> &CandidateList,
1072     std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper,
1073     unsigned MaxCandidateLen) {
1074 
1075   // Return true if this candidate became unbeneficial for outlining in a
1076   // previous step.
1077   auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) {
1078 
1079     // Check if the candidate was removed in a previous step.
1080     if (!C.InCandidateList)
1081       return true;
1082 
1083     // C must be alive. Check if we should remove it.
1084     if (FunctionList[C.FunctionIdx].getBenefit() < 1) {
1085       prune(C, FunctionList);
1086       return true;
1087     }
1088 
1089     // C is in the list, and F is still beneficial.
1090     return false;
1091   };
1092 
1093   // TODO: Experiment with interval trees or other interval-checking structures
1094   // to lower the time complexity of this function.
1095   // TODO: Can we do better than the simple greedy choice?
1096   // Check for overlaps in the range.
1097   // This is O(MaxCandidateLen * CandidateList.size()).
1098   for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
1099        It++) {
1100     Candidate &C1 = **It;
1101 
1102     // If C1 was already pruned, or its function is no longer beneficial for
1103     // outlining, move to the next candidate.
1104     if (ShouldSkipCandidate(C1))
1105       continue;
1106 
1107     // The minimum start index of any candidate that could overlap with this
1108     // one.
1109     unsigned FarthestPossibleIdx = 0;
1110 
1111     // Either the index is 0, or it's at most MaxCandidateLen indices away.
1112     if (C1.getStartIdx() > MaxCandidateLen)
1113       FarthestPossibleIdx = C1.getStartIdx() - MaxCandidateLen;
1114 
1115     // Compare against the candidates in the list that start at most
1116     // FarthestPossibleIdx indices away from C1. There are at most
1117     // MaxCandidateLen of these.
1118     for (auto Sit = It + 1; Sit != Et; Sit++) {
1119       Candidate &C2 = **Sit;
1120 
1121       // Is this candidate too far away to overlap?
1122       if (C2.getStartIdx() < FarthestPossibleIdx)
1123         break;
1124 
1125       // If C2 was already pruned, or its function is no longer beneficial for
1126       // outlining, move to the next candidate.
1127       if (ShouldSkipCandidate(C2))
1128         continue;
1129 
1130       // Do C1 and C2 overlap?
1131       //
1132       // Not overlapping:
1133       // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
1134       //
1135       // We sorted our candidate list so C2Start <= C1Start. We know that
1136       // C2End > C2Start since each candidate has length >= 2. Therefore, all we
1137       // have to check is C2End < C2Start to see if we overlap.
1138       if (C2.getEndIdx() < C1.getStartIdx())
1139         continue;
1140 
1141       // C1 and C2 overlap.
1142       // We need to choose the better of the two.
1143       //
1144       // Approximate this by picking the one which would have saved us the
1145       // most instructions before any pruning.
1146 
1147       // Is C2 a better candidate?
1148       if (C2.Benefit > C1.Benefit) {
1149         // Yes, so prune C1. Since C1 is dead, we don't have to compare it
1150         // against anything anymore, so break.
1151         prune(C1, FunctionList);
1152         break;
1153       }
1154 
1155       // Prune C2 and move on to the next candidate.
1156       prune(C2, FunctionList);
1157     }
1158   }
1159 }
1160 
1161 unsigned MachineOutliner::buildCandidateList(
1162     std::vector<std::shared_ptr<Candidate>> &CandidateList,
1163     std::vector<OutlinedFunction> &FunctionList, SuffixTree &ST,
1164     InstructionMapper &Mapper) {
1165 
1166   std::vector<unsigned> CandidateSequence; // Current outlining candidate.
1167   unsigned MaxCandidateLen = 0;            // Length of the longest candidate.
1168 
1169   MaxCandidateLen =
1170       findCandidates(ST, Mapper, CandidateList, FunctionList);
1171 
1172   // Sort the candidates in decending order. This will simplify the outlining
1173   // process when we have to remove the candidates from the mapping by
1174   // allowing us to cut them out without keeping track of an offset.
1175   std::stable_sort(
1176       CandidateList.begin(), CandidateList.end(),
1177       [](const std::shared_ptr<Candidate> &LHS,
1178          const std::shared_ptr<Candidate> &RHS) { return *LHS < *RHS; });
1179 
1180   return MaxCandidateLen;
1181 }
1182 
1183 MachineFunction *
1184 MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
1185                                         InstructionMapper &Mapper) {
1186 
1187   // Create the function name. This should be unique. For now, just hash the
1188   // module name and include it in the function name plus the number of this
1189   // function.
1190   std::ostringstream NameStream;
1191   NameStream << "OUTLINED_FUNCTION_" << OF.Name;
1192 
1193   // Create the function using an IR-level function.
1194   LLVMContext &C = M.getContext();
1195   Function *F = dyn_cast<Function>(
1196       M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C)));
1197   assert(F && "Function was null!");
1198 
1199   // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1200   // which gives us better results when we outline from linkonceodr functions.
1201   F->setLinkage(GlobalValue::InternalLinkage);
1202   F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1203 
1204   // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's
1205   // necessary.
1206 
1207   // Set optsize/minsize, so we don't insert padding between outlined
1208   // functions.
1209   F->addFnAttr(Attribute::OptimizeForSize);
1210   F->addFnAttr(Attribute::MinSize);
1211 
1212   // Include target features from an arbitrary candidate for the outlined
1213   // function. This makes sure the outlined function knows what kinds of
1214   // instructions are going into it. This is fine, since all parent functions
1215   // must necessarily support the instructions that are in the outlined region.
1216   const Function &ParentFn = OF.Candidates.front()->getMF()->getFunction();
1217   if (ParentFn.hasFnAttribute("target-features"))
1218     F->addFnAttr(ParentFn.getFnAttribute("target-features"));
1219 
1220   BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1221   IRBuilder<> Builder(EntryBB);
1222   Builder.CreateRetVoid();
1223 
1224   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1225   MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
1226   MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1227   const TargetSubtargetInfo &STI = MF.getSubtarget();
1228   const TargetInstrInfo &TII = *STI.getInstrInfo();
1229 
1230   // Insert the new function into the module.
1231   MF.insert(MF.begin(), &MBB);
1232 
1233   // Copy over the instructions for the function using the integer mappings in
1234   // its sequence.
1235   for (unsigned Str : OF.Sequence) {
1236     MachineInstr *NewMI =
1237         MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
1238     NewMI->dropMemRefs(MF);
1239 
1240     // Don't keep debug information for outlined instructions.
1241     NewMI->setDebugLoc(DebugLoc());
1242     MBB.insert(MBB.end(), NewMI);
1243   }
1244 
1245   TII.buildOutlinedFrame(MBB, MF, OF);
1246 
1247   // Outlined functions shouldn't preserve liveness.
1248   MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness);
1249   MF.getRegInfo().freezeReservedRegs(MF);
1250 
1251   // If there's a DISubprogram associated with this outlined function, then
1252   // emit debug info for the outlined function.
1253   if (DISubprogram *SP = getSubprogramOrNull(OF)) {
1254     // We have a DISubprogram. Get its DICompileUnit.
1255     DICompileUnit *CU = SP->getUnit();
1256     DIBuilder DB(M, true, CU);
1257     DIFile *Unit = SP->getFile();
1258     Mangler Mg;
1259     // Get the mangled name of the function for the linkage name.
1260     std::string Dummy;
1261     llvm::raw_string_ostream MangledNameStream(Dummy);
1262     Mg.getNameWithPrefix(MangledNameStream, F, false);
1263 
1264     DISubprogram *OutlinedSP = DB.createFunction(
1265         Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()),
1266         Unit /* File */,
1267         0 /* Line 0 is reserved for compiler-generated code. */,
1268         DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */
1269         false, true, 0, /* Line 0 is reserved for compiler-generated code. */
1270         DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
1271         true /* Outlined code is optimized code by definition. */);
1272 
1273     // Don't add any new variables to the subprogram.
1274     DB.finalizeSubprogram(OutlinedSP);
1275 
1276     // Attach subprogram to the function.
1277     F->setSubprogram(OutlinedSP);
1278     // We're done with the DIBuilder.
1279     DB.finalize();
1280   }
1281 
1282   return &MF;
1283 }
1284 
1285 bool MachineOutliner::outline(
1286     Module &M, const ArrayRef<std::shared_ptr<Candidate>> &CandidateList,
1287     std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper) {
1288 
1289   bool OutlinedSomething = false;
1290   // Replace the candidates with calls to their respective outlined functions.
1291   for (const std::shared_ptr<Candidate> &Cptr : CandidateList) {
1292     Candidate &C = *Cptr;
1293     // Was the candidate removed during pruneOverlaps?
1294     if (!C.InCandidateList)
1295       continue;
1296 
1297     // If not, then look at its OutlinedFunction.
1298     OutlinedFunction &OF = FunctionList[C.FunctionIdx];
1299 
1300     // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
1301     if (OF.getBenefit() < 1)
1302       continue;
1303 
1304     // Does this candidate have a function yet?
1305     if (!OF.MF) {
1306       OF.MF = createOutlinedFunction(M, OF, Mapper);
1307       emitOutlinedFunctionRemark(OF);
1308       FunctionsCreated++;
1309     }
1310 
1311     MachineFunction *MF = OF.MF;
1312     MachineBasicBlock &MBB = *C.getMBB();
1313     MachineBasicBlock::iterator StartIt = C.front();
1314     MachineBasicBlock::iterator EndIt = C.back();
1315     assert(StartIt != C.getMBB()->end() && "StartIt out of bounds!");
1316     assert(EndIt != C.getMBB()->end() && "EndIt out of bounds!");
1317 
1318     const TargetSubtargetInfo &STI = MF->getSubtarget();
1319     const TargetInstrInfo &TII = *STI.getInstrInfo();
1320 
1321     // Insert a call to the new function and erase the old sequence.
1322     auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *OF.MF, C);
1323 
1324     // If the caller tracks liveness, then we need to make sure that anything
1325     // we outline doesn't break liveness assumptions.
1326     // The outlined functions themselves currently don't track liveness, but
1327     // we should make sure that the ranges we yank things out of aren't
1328     // wrong.
1329     if (MBB.getParent()->getProperties().hasProperty(
1330             MachineFunctionProperties::Property::TracksLiveness)) {
1331       // Helper lambda for adding implicit def operands to the call instruction.
1332       auto CopyDefs = [&CallInst](MachineInstr &MI) {
1333         for (MachineOperand &MOP : MI.operands()) {
1334           // Skip over anything that isn't a register.
1335           if (!MOP.isReg())
1336             continue;
1337 
1338           // If it's a def, add it to the call instruction.
1339           if (MOP.isDef())
1340             CallInst->addOperand(
1341                 MachineOperand::CreateReg(MOP.getReg(), true, /* isDef = true */
1342                                           true /* isImp = true */));
1343         }
1344       };
1345 
1346       // Copy over the defs in the outlined range.
1347       // First inst in outlined range <-- Anything that's defined in this
1348       // ...                           .. range has to be added as an implicit
1349       // Last inst in outlined range  <-- def to the call instruction.
1350       std::for_each(CallInst, std::next(EndIt), CopyDefs);
1351     }
1352 
1353     // Erase from the point after where the call was inserted up to, and
1354     // including, the final instruction in the sequence.
1355     // Erase needs one past the end, so we need std::next there too.
1356     MBB.erase(std::next(StartIt), std::next(EndIt));
1357     OutlinedSomething = true;
1358 
1359     // Statistics.
1360     NumOutlined++;
1361   }
1362 
1363   LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
1364 
1365   return OutlinedSomething;
1366 }
1367 
1368 void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M,
1369                                      MachineModuleInfo &MMI) {
1370   // Build instruction mappings for each function in the module. Start by
1371   // iterating over each Function in M.
1372   for (Function &F : M) {
1373 
1374     // If there's nothing in F, then there's no reason to try and outline from
1375     // it.
1376     if (F.empty())
1377       continue;
1378 
1379     // There's something in F. Check if it has a MachineFunction associated with
1380     // it.
1381     MachineFunction *MF = MMI.getMachineFunction(F);
1382 
1383     // If it doesn't, then there's nothing to outline from. Move to the next
1384     // Function.
1385     if (!MF)
1386       continue;
1387 
1388     const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1389 
1390     if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF))
1391       continue;
1392 
1393     // We have a MachineFunction. Ask the target if it's suitable for outlining.
1394     // If it isn't, then move on to the next Function in the module.
1395     if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs))
1396       continue;
1397 
1398     // We have a function suitable for outlining. Iterate over every
1399     // MachineBasicBlock in MF and try to map its instructions to a list of
1400     // unsigned integers.
1401     for (MachineBasicBlock &MBB : *MF) {
1402       // If there isn't anything in MBB, then there's no point in outlining from
1403       // it.
1404       // If there are fewer than 2 instructions in the MBB, then it can't ever
1405       // contain something worth outlining.
1406       // FIXME: This should be based off of the maximum size in B of an outlined
1407       // call versus the size in B of the MBB.
1408       if (MBB.empty() || MBB.size() < 2)
1409         continue;
1410 
1411       // Check if MBB could be the target of an indirect branch. If it is, then
1412       // we don't want to outline from it.
1413       if (MBB.hasAddressTaken())
1414         continue;
1415 
1416       // MBB is suitable for outlining. Map it to a list of unsigneds.
1417       Mapper.convertToUnsignedVec(MBB, *TII);
1418     }
1419   }
1420 }
1421 
1422 void MachineOutliner::initSizeRemarkInfo(
1423     const Module &M, const MachineModuleInfo &MMI,
1424     StringMap<unsigned> &FunctionToInstrCount) {
1425   // Collect instruction counts for every function. We'll use this to emit
1426   // per-function size remarks later.
1427   for (const Function &F : M) {
1428     MachineFunction *MF = MMI.getMachineFunction(F);
1429 
1430     // We only care about MI counts here. If there's no MachineFunction at this
1431     // point, then there won't be after the outliner runs, so let's move on.
1432     if (!MF)
1433       continue;
1434     FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount();
1435   }
1436 }
1437 
1438 void MachineOutliner::emitInstrCountChangedRemark(
1439     const Module &M, const MachineModuleInfo &MMI,
1440     const StringMap<unsigned> &FunctionToInstrCount) {
1441   // Iterate over each function in the module and emit remarks.
1442   // Note that we won't miss anything by doing this, because the outliner never
1443   // deletes functions.
1444   for (const Function &F : M) {
1445     MachineFunction *MF = MMI.getMachineFunction(F);
1446 
1447     // The outliner never deletes functions. If we don't have a MF here, then we
1448     // didn't have one prior to outlining either.
1449     if (!MF)
1450       continue;
1451 
1452     std::string Fname = F.getName();
1453     unsigned FnCountAfter = MF->getInstructionCount();
1454     unsigned FnCountBefore = 0;
1455 
1456     // Check if the function was recorded before.
1457     auto It = FunctionToInstrCount.find(Fname);
1458 
1459     // Did we have a previously-recorded size? If yes, then set FnCountBefore
1460     // to that.
1461     if (It != FunctionToInstrCount.end())
1462       FnCountBefore = It->second;
1463 
1464     // Compute the delta and emit a remark if there was a change.
1465     int64_t FnDelta = static_cast<int64_t>(FnCountAfter) -
1466                       static_cast<int64_t>(FnCountBefore);
1467     if (FnDelta == 0)
1468       continue;
1469 
1470     MachineOptimizationRemarkEmitter MORE(*MF, nullptr);
1471     MORE.emit([&]() {
1472       MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange",
1473                                           DiagnosticLocation(),
1474                                           &MF->front());
1475       R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner")
1476         << ": Function: "
1477         << DiagnosticInfoOptimizationBase::Argument("Function", F.getName())
1478         << ": MI instruction count changed from "
1479         << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore",
1480                                                     FnCountBefore)
1481         << " to "
1482         << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter",
1483                                                     FnCountAfter)
1484         << "; Delta: "
1485         << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta);
1486       return R;
1487     });
1488   }
1489 }
1490 
1491 bool MachineOutliner::runOnModule(Module &M) {
1492   // Check if there's anything in the module. If it's empty, then there's
1493   // nothing to outline.
1494   if (M.empty())
1495     return false;
1496 
1497   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1498 
1499   // If the user passed -enable-machine-outliner=always or
1500   // -enable-machine-outliner, the pass will run on all functions in the module.
1501   // Otherwise, if the target supports default outlining, it will run on all
1502   // functions deemed by the target to be worth outlining from by default. Tell
1503   // the user how the outliner is running.
1504   LLVM_DEBUG(
1505     dbgs() << "Machine Outliner: Running on ";
1506     if (RunOnAllFunctions)
1507       dbgs() << "all functions";
1508     else
1509       dbgs() << "target-default functions";
1510     dbgs() << "\n"
1511   );
1512 
1513   // If the user specifies that they want to outline from linkonceodrs, set
1514   // it here.
1515   OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining;
1516   InstructionMapper Mapper;
1517 
1518   // Prepare instruction mappings for the suffix tree.
1519   populateMapper(Mapper, M, MMI);
1520 
1521   // Construct a suffix tree, use it to find candidates, and then outline them.
1522   SuffixTree ST(Mapper.UnsignedVec);
1523   std::vector<std::shared_ptr<Candidate>> CandidateList;
1524   std::vector<OutlinedFunction> FunctionList;
1525 
1526   // Find all of the outlining candidates.
1527   unsigned MaxCandidateLen =
1528       buildCandidateList(CandidateList, FunctionList, ST, Mapper);
1529 
1530   // Remove candidates that overlap with other candidates.
1531   pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen);
1532 
1533   // If we've requested size remarks, then collect the MI counts of every
1534   // function before outlining, and the MI counts after outlining.
1535   // FIXME: This shouldn't be in the outliner at all; it should ultimately be
1536   // the pass manager's responsibility.
1537   // This could pretty easily be placed in outline instead, but because we
1538   // really ultimately *don't* want this here, it's done like this for now
1539   // instead.
1540 
1541   // Check if we want size remarks.
1542   bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark();
1543   StringMap<unsigned> FunctionToInstrCount;
1544   if (ShouldEmitSizeRemarks)
1545     initSizeRemarkInfo(M, MMI, FunctionToInstrCount);
1546 
1547   // Outline each of the candidates and return true if something was outlined.
1548   bool OutlinedSomething = outline(M, CandidateList, FunctionList, Mapper);
1549 
1550   // If we outlined something, we definitely changed the MI count of the
1551   // module. If we've asked for size remarks, then output them.
1552   // FIXME: This should be in the pass manager.
1553   if (ShouldEmitSizeRemarks && OutlinedSomething)
1554     emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount);
1555 
1556   return OutlinedSomething;
1557 }
1558