1596f483aSJessica Paquette //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2596f483aSJessica Paquette //
3596f483aSJessica Paquette //                     The LLVM Compiler Infrastructure
4596f483aSJessica Paquette //
5596f483aSJessica Paquette // This file is distributed under the University of Illinois Open Source
6596f483aSJessica Paquette // License. See LICENSE.TXT for details.
7596f483aSJessica Paquette //
8596f483aSJessica Paquette //===----------------------------------------------------------------------===//
9596f483aSJessica Paquette ///
10596f483aSJessica Paquette /// \file
11596f483aSJessica Paquette /// Replaces repeated sequences of instructions with function calls.
12596f483aSJessica Paquette ///
13596f483aSJessica Paquette /// This works by placing every instruction from every basic block in a
14596f483aSJessica Paquette /// suffix tree, and repeatedly querying that tree for repeated sequences of
15596f483aSJessica Paquette /// instructions. If a sequence of instructions appears often, then it ought
16596f483aSJessica Paquette /// to be beneficial to pull out into a function.
17596f483aSJessica Paquette ///
18596f483aSJessica Paquette /// This was originally presented at the 2016 LLVM Developers' Meeting in the
19596f483aSJessica Paquette /// talk "Reducing Code Size Using Outlining". For a high-level overview of
20596f483aSJessica Paquette /// how this pass works, the talk is available on YouTube at
21596f483aSJessica Paquette ///
22596f483aSJessica Paquette /// https://www.youtube.com/watch?v=yorld-WSOeU
23596f483aSJessica Paquette ///
24596f483aSJessica Paquette /// The slides for the talk are available at
25596f483aSJessica Paquette ///
26596f483aSJessica Paquette /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
27596f483aSJessica Paquette ///
28596f483aSJessica Paquette /// The talk provides an overview of how the outliner finds candidates and
29596f483aSJessica Paquette /// ultimately outlines them. It describes how the main data structure for this
30596f483aSJessica Paquette /// pass, the suffix tree, is queried and purged for candidates. It also gives
31596f483aSJessica Paquette /// a simplified suffix tree construction algorithm for suffix trees based off
32596f483aSJessica Paquette /// of the algorithm actually used here, Ukkonen's algorithm.
33596f483aSJessica Paquette ///
34596f483aSJessica Paquette /// For the original RFC for this pass, please see
35596f483aSJessica Paquette ///
36596f483aSJessica Paquette /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
37596f483aSJessica Paquette ///
38596f483aSJessica Paquette /// For more information on the suffix tree data structure, please see
39596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
40596f483aSJessica Paquette ///
41596f483aSJessica Paquette //===----------------------------------------------------------------------===//
42596f483aSJessica Paquette #include "llvm/ADT/DenseMap.h"
43596f483aSJessica Paquette #include "llvm/ADT/Statistic.h"
44596f483aSJessica Paquette #include "llvm/ADT/Twine.h"
45596f483aSJessica Paquette #include "llvm/CodeGen/MachineFrameInfo.h"
46596f483aSJessica Paquette #include "llvm/CodeGen/MachineFunction.h"
47596f483aSJessica Paquette #include "llvm/CodeGen/MachineInstrBuilder.h"
48596f483aSJessica Paquette #include "llvm/CodeGen/MachineModuleInfo.h"
49*ffe4abc5SJessica Paquette #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
50596f483aSJessica Paquette #include "llvm/CodeGen/Passes.h"
51596f483aSJessica Paquette #include "llvm/IR/IRBuilder.h"
52596f483aSJessica Paquette #include "llvm/Support/Allocator.h"
53596f483aSJessica Paquette #include "llvm/Support/Debug.h"
54596f483aSJessica Paquette #include "llvm/Support/raw_ostream.h"
55596f483aSJessica Paquette #include "llvm/Target/TargetInstrInfo.h"
56596f483aSJessica Paquette #include "llvm/Target/TargetMachine.h"
57596f483aSJessica Paquette #include "llvm/Target/TargetRegisterInfo.h"
58596f483aSJessica Paquette #include "llvm/Target/TargetSubtargetInfo.h"
59596f483aSJessica Paquette #include <functional>
60596f483aSJessica Paquette #include <map>
61596f483aSJessica Paquette #include <sstream>
62596f483aSJessica Paquette #include <tuple>
63596f483aSJessica Paquette #include <vector>
64596f483aSJessica Paquette 
65596f483aSJessica Paquette #define DEBUG_TYPE "machine-outliner"
66596f483aSJessica Paquette 
67596f483aSJessica Paquette using namespace llvm;
68*ffe4abc5SJessica Paquette using namespace ore;
69596f483aSJessica Paquette 
70596f483aSJessica Paquette STATISTIC(NumOutlined, "Number of candidates outlined");
71596f483aSJessica Paquette STATISTIC(FunctionsCreated, "Number of functions created");
72596f483aSJessica Paquette 
73596f483aSJessica Paquette namespace {
74596f483aSJessica Paquette 
75acffa28cSJessica Paquette /// \brief An individual sequence of instructions to be replaced with a call to
76acffa28cSJessica Paquette /// an outlined function.
77acffa28cSJessica Paquette struct Candidate {
78acffa28cSJessica Paquette 
79acffa28cSJessica Paquette   /// Set to false if the candidate overlapped with another candidate.
80acffa28cSJessica Paquette   bool InCandidateList = true;
81acffa28cSJessica Paquette 
82acffa28cSJessica Paquette   /// The start index of this \p Candidate.
83acffa28cSJessica Paquette   size_t StartIdx;
84acffa28cSJessica Paquette 
85acffa28cSJessica Paquette   /// The number of instructions in this \p Candidate.
86acffa28cSJessica Paquette   size_t Len;
87acffa28cSJessica Paquette 
88acffa28cSJessica Paquette   /// The index of this \p Candidate's \p OutlinedFunction in the list of
89acffa28cSJessica Paquette   /// \p OutlinedFunctions.
90acffa28cSJessica Paquette   size_t FunctionIdx;
91acffa28cSJessica Paquette 
92d87f5449SJessica Paquette   /// Target-defined unsigned defining how to emit a call for this candidate.
93d87f5449SJessica Paquette   unsigned CallClass = 0;
94d87f5449SJessica Paquette 
95acffa28cSJessica Paquette   /// \brief The number of instructions that would be saved by outlining every
96acffa28cSJessica Paquette   /// candidate of this type.
97acffa28cSJessica Paquette   ///
98acffa28cSJessica Paquette   /// This is a fixed value which is not updated during the candidate pruning
99acffa28cSJessica Paquette   /// process. It is only used for deciding which candidate to keep if two
100acffa28cSJessica Paquette   /// candidates overlap. The true benefit is stored in the OutlinedFunction
101acffa28cSJessica Paquette   /// for some given candidate.
102acffa28cSJessica Paquette   unsigned Benefit = 0;
103acffa28cSJessica Paquette 
104d87f5449SJessica Paquette   Candidate(size_t StartIdx, size_t Len, size_t FunctionIdx, unsigned CallClass)
105d87f5449SJessica Paquette       : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx),
106d87f5449SJessica Paquette         CallClass(CallClass) {}
107acffa28cSJessica Paquette 
108acffa28cSJessica Paquette   Candidate() {}
109acffa28cSJessica Paquette 
110acffa28cSJessica Paquette   /// \brief Used to ensure that \p Candidates are outlined in an order that
111acffa28cSJessica Paquette   /// preserves the start and end indices of other \p Candidates.
112acffa28cSJessica Paquette   bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; }
113acffa28cSJessica Paquette };
114acffa28cSJessica Paquette 
115acffa28cSJessica Paquette /// \brief The information necessary to create an outlined function for some
116acffa28cSJessica Paquette /// class of candidate.
117acffa28cSJessica Paquette struct OutlinedFunction {
118acffa28cSJessica Paquette 
119acffa28cSJessica Paquette   /// The actual outlined function created.
120acffa28cSJessica Paquette   /// This is initialized after we go through and create the actual function.
121acffa28cSJessica Paquette   MachineFunction *MF = nullptr;
122acffa28cSJessica Paquette 
123809d708bSJessica Paquette   /// A numbefr assigned to this function which appears at the end of its name.
124acffa28cSJessica Paquette   size_t Name;
125acffa28cSJessica Paquette 
126acffa28cSJessica Paquette   /// The number of candidates for this OutlinedFunction.
127acffa28cSJessica Paquette   size_t OccurrenceCount = 0;
128acffa28cSJessica Paquette 
129acffa28cSJessica Paquette   /// \brief The sequence of integers corresponding to the instructions in this
130acffa28cSJessica Paquette   /// function.
131acffa28cSJessica Paquette   std::vector<unsigned> Sequence;
132acffa28cSJessica Paquette 
133acffa28cSJessica Paquette   /// The number of instructions this function would save.
134acffa28cSJessica Paquette   unsigned Benefit = 0;
135acffa28cSJessica Paquette 
136d87f5449SJessica Paquette   /// Target-defined unsigned defining how to emit the frame for this function.
137d87f5449SJessica Paquette   unsigned FrameClass = 0;
138acffa28cSJessica Paquette 
139acffa28cSJessica Paquette   OutlinedFunction(size_t Name, size_t OccurrenceCount,
14078681be2SJessica Paquette                    const std::vector<unsigned> &Sequence, unsigned Benefit,
141d87f5449SJessica Paquette                    unsigned FrameClass)
142acffa28cSJessica Paquette       : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence),
143d87f5449SJessica Paquette         Benefit(Benefit), FrameClass(FrameClass) {}
144acffa28cSJessica Paquette };
145acffa28cSJessica Paquette 
146596f483aSJessica Paquette /// Represents an undefined index in the suffix tree.
147596f483aSJessica Paquette const size_t EmptyIdx = -1;
148596f483aSJessica Paquette 
149596f483aSJessica Paquette /// A node in a suffix tree which represents a substring or suffix.
150596f483aSJessica Paquette ///
151596f483aSJessica Paquette /// Each node has either no children or at least two children, with the root
152596f483aSJessica Paquette /// being a exception in the empty tree.
153596f483aSJessica Paquette ///
154596f483aSJessica Paquette /// Children are represented as a map between unsigned integers and nodes. If
155596f483aSJessica Paquette /// a node N has a child M on unsigned integer k, then the mapping represented
156596f483aSJessica Paquette /// by N is a proper prefix of the mapping represented by M. Note that this,
157596f483aSJessica Paquette /// although similar to a trie is somewhat different: each node stores a full
158596f483aSJessica Paquette /// substring of the full mapping rather than a single character state.
159596f483aSJessica Paquette ///
160596f483aSJessica Paquette /// Each internal node contains a pointer to the internal node representing
161596f483aSJessica Paquette /// the same string, but with the first character chopped off. This is stored
162596f483aSJessica Paquette /// in \p Link. Each leaf node stores the start index of its respective
163596f483aSJessica Paquette /// suffix in \p SuffixIdx.
164596f483aSJessica Paquette struct SuffixTreeNode {
165596f483aSJessica Paquette 
166596f483aSJessica Paquette   /// The children of this node.
167596f483aSJessica Paquette   ///
168596f483aSJessica Paquette   /// A child existing on an unsigned integer implies that from the mapping
169596f483aSJessica Paquette   /// represented by the current node, there is a way to reach another
170596f483aSJessica Paquette   /// mapping by tacking that character on the end of the current string.
171596f483aSJessica Paquette   DenseMap<unsigned, SuffixTreeNode *> Children;
172596f483aSJessica Paquette 
173596f483aSJessica Paquette   /// A flag set to false if the node has been pruned from the tree.
174596f483aSJessica Paquette   bool IsInTree = true;
175596f483aSJessica Paquette 
176596f483aSJessica Paquette   /// The start index of this node's substring in the main string.
177596f483aSJessica Paquette   size_t StartIdx = EmptyIdx;
178596f483aSJessica Paquette 
179596f483aSJessica Paquette   /// The end index of this node's substring in the main string.
180596f483aSJessica Paquette   ///
181596f483aSJessica Paquette   /// Every leaf node must have its \p EndIdx incremented at the end of every
182596f483aSJessica Paquette   /// step in the construction algorithm. To avoid having to update O(N)
183596f483aSJessica Paquette   /// nodes individually at the end of every step, the end index is stored
184596f483aSJessica Paquette   /// as a pointer.
185596f483aSJessica Paquette   size_t *EndIdx = nullptr;
186596f483aSJessica Paquette 
187596f483aSJessica Paquette   /// For leaves, the start index of the suffix represented by this node.
188596f483aSJessica Paquette   ///
189596f483aSJessica Paquette   /// For all other nodes, this is ignored.
190596f483aSJessica Paquette   size_t SuffixIdx = EmptyIdx;
191596f483aSJessica Paquette 
192596f483aSJessica Paquette   /// \brief For internal nodes, a pointer to the internal node representing
193596f483aSJessica Paquette   /// the same sequence with the first character chopped off.
194596f483aSJessica Paquette   ///
1954602c343SJessica Paquette   /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
196596f483aSJessica Paquette   /// Ukkonen's algorithm does to achieve linear-time construction is
197596f483aSJessica Paquette   /// keep track of which node the next insert should be at. This makes each
198596f483aSJessica Paquette   /// insert O(1), and there are a total of O(N) inserts. The suffix link
199596f483aSJessica Paquette   /// helps with inserting children of internal nodes.
200596f483aSJessica Paquette   ///
201596f483aSJessica Paquette   /// Say we add a child to an internal node with associated mapping S. The
202596f483aSJessica Paquette   /// next insertion must be at the node representing S - its first character.
203596f483aSJessica Paquette   /// This is given by the way that we iteratively build the tree in Ukkonen's
204596f483aSJessica Paquette   /// algorithm. The main idea is to look at the suffixes of each prefix in the
205596f483aSJessica Paquette   /// string, starting with the longest suffix of the prefix, and ending with
206596f483aSJessica Paquette   /// the shortest. Therefore, if we keep pointers between such nodes, we can
207596f483aSJessica Paquette   /// move to the next insertion point in O(1) time. If we don't, then we'd
208596f483aSJessica Paquette   /// have to query from the root, which takes O(N) time. This would make the
209596f483aSJessica Paquette   /// construction algorithm O(N^2) rather than O(N).
210596f483aSJessica Paquette   SuffixTreeNode *Link = nullptr;
211596f483aSJessica Paquette 
212596f483aSJessica Paquette   /// The parent of this node. Every node except for the root has a parent.
213596f483aSJessica Paquette   SuffixTreeNode *Parent = nullptr;
214596f483aSJessica Paquette 
215596f483aSJessica Paquette   /// The number of times this node's string appears in the tree.
216596f483aSJessica Paquette   ///
217596f483aSJessica Paquette   /// This is equal to the number of leaf children of the string. It represents
218596f483aSJessica Paquette   /// the number of suffixes that the node's string is a prefix of.
219596f483aSJessica Paquette   size_t OccurrenceCount = 0;
220596f483aSJessica Paquette 
221acffa28cSJessica Paquette   /// The length of the string formed by concatenating the edge labels from the
222acffa28cSJessica Paquette   /// root to this node.
223acffa28cSJessica Paquette   size_t ConcatLen = 0;
224acffa28cSJessica Paquette 
225596f483aSJessica Paquette   /// Returns true if this node is a leaf.
226596f483aSJessica Paquette   bool isLeaf() const { return SuffixIdx != EmptyIdx; }
227596f483aSJessica Paquette 
228596f483aSJessica Paquette   /// Returns true if this node is the root of its owning \p SuffixTree.
229596f483aSJessica Paquette   bool isRoot() const { return StartIdx == EmptyIdx; }
230596f483aSJessica Paquette 
231596f483aSJessica Paquette   /// Return the number of elements in the substring associated with this node.
232596f483aSJessica Paquette   size_t size() const {
233596f483aSJessica Paquette 
234596f483aSJessica Paquette     // Is it the root? If so, it's the empty string so return 0.
235596f483aSJessica Paquette     if (isRoot())
236596f483aSJessica Paquette       return 0;
237596f483aSJessica Paquette 
238596f483aSJessica Paquette     assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
239596f483aSJessica Paquette 
240596f483aSJessica Paquette     // Size = the number of elements in the string.
241596f483aSJessica Paquette     // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
242596f483aSJessica Paquette     return *EndIdx - StartIdx + 1;
243596f483aSJessica Paquette   }
244596f483aSJessica Paquette 
245596f483aSJessica Paquette   SuffixTreeNode(size_t StartIdx, size_t *EndIdx, SuffixTreeNode *Link,
246596f483aSJessica Paquette                  SuffixTreeNode *Parent)
247596f483aSJessica Paquette       : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
248596f483aSJessica Paquette 
249596f483aSJessica Paquette   SuffixTreeNode() {}
250596f483aSJessica Paquette };
251596f483aSJessica Paquette 
252596f483aSJessica Paquette /// A data structure for fast substring queries.
253596f483aSJessica Paquette ///
254596f483aSJessica Paquette /// Suffix trees represent the suffixes of their input strings in their leaves.
255596f483aSJessica Paquette /// A suffix tree is a type of compressed trie structure where each node
256596f483aSJessica Paquette /// represents an entire substring rather than a single character. Each leaf
257596f483aSJessica Paquette /// of the tree is a suffix.
258596f483aSJessica Paquette ///
259596f483aSJessica Paquette /// A suffix tree can be seen as a type of state machine where each state is a
260596f483aSJessica Paquette /// substring of the full string. The tree is structured so that, for a string
261596f483aSJessica Paquette /// of length N, there are exactly N leaves in the tree. This structure allows
262596f483aSJessica Paquette /// us to quickly find repeated substrings of the input string.
263596f483aSJessica Paquette ///
264596f483aSJessica Paquette /// In this implementation, a "string" is a vector of unsigned integers.
265596f483aSJessica Paquette /// These integers may result from hashing some data type. A suffix tree can
266596f483aSJessica Paquette /// contain 1 or many strings, which can then be queried as one large string.
267596f483aSJessica Paquette ///
268596f483aSJessica Paquette /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
269596f483aSJessica Paquette /// suffix tree construction. Ukkonen's algorithm is explained in more detail
270596f483aSJessica Paquette /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
271596f483aSJessica Paquette /// paper is available at
272596f483aSJessica Paquette ///
273596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
274596f483aSJessica Paquette class SuffixTree {
27578681be2SJessica Paquette public:
27678681be2SJessica Paquette   /// Stores each leaf node in the tree.
27778681be2SJessica Paquette   ///
27878681be2SJessica Paquette   /// This is used for finding outlining candidates.
27978681be2SJessica Paquette   std::vector<SuffixTreeNode *> LeafVector;
28078681be2SJessica Paquette 
281596f483aSJessica Paquette   /// Each element is an integer representing an instruction in the module.
282596f483aSJessica Paquette   ArrayRef<unsigned> Str;
283596f483aSJessica Paquette 
28478681be2SJessica Paquette private:
285596f483aSJessica Paquette   /// Maintains each node in the tree.
286d4cb9c6dSJessica Paquette   SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
287596f483aSJessica Paquette 
288596f483aSJessica Paquette   /// The root of the suffix tree.
289596f483aSJessica Paquette   ///
290596f483aSJessica Paquette   /// The root represents the empty string. It is maintained by the
291596f483aSJessica Paquette   /// \p NodeAllocator like every other node in the tree.
292596f483aSJessica Paquette   SuffixTreeNode *Root = nullptr;
293596f483aSJessica Paquette 
294596f483aSJessica Paquette   /// Maintains the end indices of the internal nodes in the tree.
295596f483aSJessica Paquette   ///
296596f483aSJessica Paquette   /// Each internal node is guaranteed to never have its end index change
297596f483aSJessica Paquette   /// during the construction algorithm; however, leaves must be updated at
298596f483aSJessica Paquette   /// every step. Therefore, we need to store leaf end indices by reference
299596f483aSJessica Paquette   /// to avoid updating O(N) leaves at every step of construction. Thus,
300596f483aSJessica Paquette   /// every internal node must be allocated its own end index.
301596f483aSJessica Paquette   BumpPtrAllocator InternalEndIdxAllocator;
302596f483aSJessica Paquette 
303596f483aSJessica Paquette   /// The end index of each leaf in the tree.
304596f483aSJessica Paquette   size_t LeafEndIdx = -1;
305596f483aSJessica Paquette 
306596f483aSJessica Paquette   /// \brief Helper struct which keeps track of the next insertion point in
307596f483aSJessica Paquette   /// Ukkonen's algorithm.
308596f483aSJessica Paquette   struct ActiveState {
309596f483aSJessica Paquette     /// The next node to insert at.
310596f483aSJessica Paquette     SuffixTreeNode *Node;
311596f483aSJessica Paquette 
312596f483aSJessica Paquette     /// The index of the first character in the substring currently being added.
313596f483aSJessica Paquette     size_t Idx = EmptyIdx;
314596f483aSJessica Paquette 
315596f483aSJessica Paquette     /// The length of the substring we have to add at the current step.
316596f483aSJessica Paquette     size_t Len = 0;
317596f483aSJessica Paquette   };
318596f483aSJessica Paquette 
319596f483aSJessica Paquette   /// \brief The point the next insertion will take place at in the
320596f483aSJessica Paquette   /// construction algorithm.
321596f483aSJessica Paquette   ActiveState Active;
322596f483aSJessica Paquette 
323596f483aSJessica Paquette   /// Allocate a leaf node and add it to the tree.
324596f483aSJessica Paquette   ///
325596f483aSJessica Paquette   /// \param Parent The parent of this node.
326596f483aSJessica Paquette   /// \param StartIdx The start index of this node's associated string.
327596f483aSJessica Paquette   /// \param Edge The label on the edge leaving \p Parent to this node.
328596f483aSJessica Paquette   ///
329596f483aSJessica Paquette   /// \returns A pointer to the allocated leaf node.
330596f483aSJessica Paquette   SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, size_t StartIdx,
331596f483aSJessica Paquette                              unsigned Edge) {
332596f483aSJessica Paquette 
333596f483aSJessica Paquette     assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
334596f483aSJessica Paquette 
33578681be2SJessica Paquette     SuffixTreeNode *N = new (NodeAllocator.Allocate())
33678681be2SJessica Paquette         SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent);
337596f483aSJessica Paquette     Parent.Children[Edge] = N;
338596f483aSJessica Paquette 
339596f483aSJessica Paquette     return N;
340596f483aSJessica Paquette   }
341596f483aSJessica Paquette 
342596f483aSJessica Paquette   /// Allocate an internal node and add it to the tree.
343596f483aSJessica Paquette   ///
344596f483aSJessica Paquette   /// \param Parent The parent of this node. Only null when allocating the root.
345596f483aSJessica Paquette   /// \param StartIdx The start index of this node's associated string.
346596f483aSJessica Paquette   /// \param EndIdx The end index of this node's associated string.
347596f483aSJessica Paquette   /// \param Edge The label on the edge leaving \p Parent to this node.
348596f483aSJessica Paquette   ///
349596f483aSJessica Paquette   /// \returns A pointer to the allocated internal node.
350596f483aSJessica Paquette   SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, size_t StartIdx,
351596f483aSJessica Paquette                                      size_t EndIdx, unsigned Edge) {
352596f483aSJessica Paquette 
353596f483aSJessica Paquette     assert(StartIdx <= EndIdx && "String can't start after it ends!");
354596f483aSJessica Paquette     assert(!(!Parent && StartIdx != EmptyIdx) &&
355596f483aSJessica Paquette            "Non-root internal nodes must have parents!");
356596f483aSJessica Paquette 
357596f483aSJessica Paquette     size_t *E = new (InternalEndIdxAllocator) size_t(EndIdx);
35878681be2SJessica Paquette     SuffixTreeNode *N = new (NodeAllocator.Allocate())
35978681be2SJessica Paquette         SuffixTreeNode(StartIdx, E, Root, Parent);
360596f483aSJessica Paquette     if (Parent)
361596f483aSJessica Paquette       Parent->Children[Edge] = N;
362596f483aSJessica Paquette 
363596f483aSJessica Paquette     return N;
364596f483aSJessica Paquette   }
365596f483aSJessica Paquette 
366596f483aSJessica Paquette   /// \brief Set the suffix indices of the leaves to the start indices of their
367596f483aSJessica Paquette   /// respective suffixes. Also stores each leaf in \p LeafVector at its
368596f483aSJessica Paquette   /// respective suffix index.
369596f483aSJessica Paquette   ///
370596f483aSJessica Paquette   /// \param[in] CurrNode The node currently being visited.
371596f483aSJessica Paquette   /// \param CurrIdx The current index of the string being visited.
372596f483aSJessica Paquette   void setSuffixIndices(SuffixTreeNode &CurrNode, size_t CurrIdx) {
373596f483aSJessica Paquette 
374596f483aSJessica Paquette     bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
375596f483aSJessica Paquette 
376acffa28cSJessica Paquette     // Store the length of the concatenation of all strings from the root to
377acffa28cSJessica Paquette     // this node.
378acffa28cSJessica Paquette     if (!CurrNode.isRoot()) {
379acffa28cSJessica Paquette       if (CurrNode.ConcatLen == 0)
380acffa28cSJessica Paquette         CurrNode.ConcatLen = CurrNode.size();
381acffa28cSJessica Paquette 
382acffa28cSJessica Paquette       if (CurrNode.Parent)
383acffa28cSJessica Paquette         CurrNode.ConcatLen += CurrNode.Parent->ConcatLen;
384acffa28cSJessica Paquette     }
385acffa28cSJessica Paquette 
386596f483aSJessica Paquette     // Traverse the tree depth-first.
387596f483aSJessica Paquette     for (auto &ChildPair : CurrNode.Children) {
388596f483aSJessica Paquette       assert(ChildPair.second && "Node had a null child!");
38978681be2SJessica Paquette       setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size());
390596f483aSJessica Paquette     }
391596f483aSJessica Paquette 
392596f483aSJessica Paquette     // Is this node a leaf?
393596f483aSJessica Paquette     if (IsLeaf) {
394596f483aSJessica Paquette       // If yes, give it a suffix index and bump its parent's occurrence count.
395596f483aSJessica Paquette       CurrNode.SuffixIdx = Str.size() - CurrIdx;
396596f483aSJessica Paquette       assert(CurrNode.Parent && "CurrNode had no parent!");
397596f483aSJessica Paquette       CurrNode.Parent->OccurrenceCount++;
398596f483aSJessica Paquette 
399596f483aSJessica Paquette       // Store the leaf in the leaf vector for pruning later.
400596f483aSJessica Paquette       LeafVector[CurrNode.SuffixIdx] = &CurrNode;
401596f483aSJessica Paquette     }
402596f483aSJessica Paquette   }
403596f483aSJessica Paquette 
404596f483aSJessica Paquette   /// \brief Construct the suffix tree for the prefix of the input ending at
405596f483aSJessica Paquette   /// \p EndIdx.
406596f483aSJessica Paquette   ///
407596f483aSJessica Paquette   /// Used to construct the full suffix tree iteratively. At the end of each
408596f483aSJessica Paquette   /// step, the constructed suffix tree is either a valid suffix tree, or a
409596f483aSJessica Paquette   /// suffix tree with implicit suffixes. At the end of the final step, the
410596f483aSJessica Paquette   /// suffix tree is a valid tree.
411596f483aSJessica Paquette   ///
412596f483aSJessica Paquette   /// \param EndIdx The end index of the current prefix in the main string.
413596f483aSJessica Paquette   /// \param SuffixesToAdd The number of suffixes that must be added
414596f483aSJessica Paquette   /// to complete the suffix tree at the current phase.
415596f483aSJessica Paquette   ///
416596f483aSJessica Paquette   /// \returns The number of suffixes that have not been added at the end of
417596f483aSJessica Paquette   /// this step.
418596f483aSJessica Paquette   unsigned extend(size_t EndIdx, size_t SuffixesToAdd) {
419596f483aSJessica Paquette     SuffixTreeNode *NeedsLink = nullptr;
420596f483aSJessica Paquette 
421596f483aSJessica Paquette     while (SuffixesToAdd > 0) {
422596f483aSJessica Paquette 
423596f483aSJessica Paquette       // Are we waiting to add anything other than just the last character?
424596f483aSJessica Paquette       if (Active.Len == 0) {
425596f483aSJessica Paquette         // If not, then say the active index is the end index.
426596f483aSJessica Paquette         Active.Idx = EndIdx;
427596f483aSJessica Paquette       }
428596f483aSJessica Paquette 
429596f483aSJessica Paquette       assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
430596f483aSJessica Paquette 
431596f483aSJessica Paquette       // The first character in the current substring we're looking at.
432596f483aSJessica Paquette       unsigned FirstChar = Str[Active.Idx];
433596f483aSJessica Paquette 
434596f483aSJessica Paquette       // Have we inserted anything starting with FirstChar at the current node?
435596f483aSJessica Paquette       if (Active.Node->Children.count(FirstChar) == 0) {
436596f483aSJessica Paquette         // If not, then we can just insert a leaf and move too the next step.
437596f483aSJessica Paquette         insertLeaf(*Active.Node, EndIdx, FirstChar);
438596f483aSJessica Paquette 
439596f483aSJessica Paquette         // The active node is an internal node, and we visited it, so it must
440596f483aSJessica Paquette         // need a link if it doesn't have one.
441596f483aSJessica Paquette         if (NeedsLink) {
442596f483aSJessica Paquette           NeedsLink->Link = Active.Node;
443596f483aSJessica Paquette           NeedsLink = nullptr;
444596f483aSJessica Paquette         }
445596f483aSJessica Paquette       } else {
446596f483aSJessica Paquette         // There's a match with FirstChar, so look for the point in the tree to
447596f483aSJessica Paquette         // insert a new node.
448596f483aSJessica Paquette         SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
449596f483aSJessica Paquette 
450596f483aSJessica Paquette         size_t SubstringLen = NextNode->size();
451596f483aSJessica Paquette 
452596f483aSJessica Paquette         // Is the current suffix we're trying to insert longer than the size of
453596f483aSJessica Paquette         // the child we want to move to?
454596f483aSJessica Paquette         if (Active.Len >= SubstringLen) {
455596f483aSJessica Paquette           // If yes, then consume the characters we've seen and move to the next
456596f483aSJessica Paquette           // node.
457596f483aSJessica Paquette           Active.Idx += SubstringLen;
458596f483aSJessica Paquette           Active.Len -= SubstringLen;
459596f483aSJessica Paquette           Active.Node = NextNode;
460596f483aSJessica Paquette           continue;
461596f483aSJessica Paquette         }
462596f483aSJessica Paquette 
463596f483aSJessica Paquette         // Otherwise, the suffix we're trying to insert must be contained in the
464596f483aSJessica Paquette         // next node we want to move to.
465596f483aSJessica Paquette         unsigned LastChar = Str[EndIdx];
466596f483aSJessica Paquette 
467596f483aSJessica Paquette         // Is the string we're trying to insert a substring of the next node?
468596f483aSJessica Paquette         if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
469596f483aSJessica Paquette           // If yes, then we're done for this step. Remember our insertion point
470596f483aSJessica Paquette           // and move to the next end index. At this point, we have an implicit
471596f483aSJessica Paquette           // suffix tree.
472596f483aSJessica Paquette           if (NeedsLink && !Active.Node->isRoot()) {
473596f483aSJessica Paquette             NeedsLink->Link = Active.Node;
474596f483aSJessica Paquette             NeedsLink = nullptr;
475596f483aSJessica Paquette           }
476596f483aSJessica Paquette 
477596f483aSJessica Paquette           Active.Len++;
478596f483aSJessica Paquette           break;
479596f483aSJessica Paquette         }
480596f483aSJessica Paquette 
481596f483aSJessica Paquette         // The string we're trying to insert isn't a substring of the next node,
482596f483aSJessica Paquette         // but matches up to a point. Split the node.
483596f483aSJessica Paquette         //
484596f483aSJessica Paquette         // For example, say we ended our search at a node n and we're trying to
485596f483aSJessica Paquette         // insert ABD. Then we'll create a new node s for AB, reduce n to just
486596f483aSJessica Paquette         // representing C, and insert a new leaf node l to represent d. This
487596f483aSJessica Paquette         // allows us to ensure that if n was a leaf, it remains a leaf.
488596f483aSJessica Paquette         //
489596f483aSJessica Paquette         //   | ABC  ---split--->  | AB
490596f483aSJessica Paquette         //   n                    s
491596f483aSJessica Paquette         //                     C / \ D
492596f483aSJessica Paquette         //                      n   l
493596f483aSJessica Paquette 
494596f483aSJessica Paquette         // The node s from the diagram
495596f483aSJessica Paquette         SuffixTreeNode *SplitNode =
49678681be2SJessica Paquette             insertInternalNode(Active.Node, NextNode->StartIdx,
49778681be2SJessica Paquette                                NextNode->StartIdx + Active.Len - 1, FirstChar);
498596f483aSJessica Paquette 
499596f483aSJessica Paquette         // Insert the new node representing the new substring into the tree as
500596f483aSJessica Paquette         // a child of the split node. This is the node l from the diagram.
501596f483aSJessica Paquette         insertLeaf(*SplitNode, EndIdx, LastChar);
502596f483aSJessica Paquette 
503596f483aSJessica Paquette         // Make the old node a child of the split node and update its start
504596f483aSJessica Paquette         // index. This is the node n from the diagram.
505596f483aSJessica Paquette         NextNode->StartIdx += Active.Len;
506596f483aSJessica Paquette         NextNode->Parent = SplitNode;
507596f483aSJessica Paquette         SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
508596f483aSJessica Paquette 
509596f483aSJessica Paquette         // SplitNode is an internal node, update the suffix link.
510596f483aSJessica Paquette         if (NeedsLink)
511596f483aSJessica Paquette           NeedsLink->Link = SplitNode;
512596f483aSJessica Paquette 
513596f483aSJessica Paquette         NeedsLink = SplitNode;
514596f483aSJessica Paquette       }
515596f483aSJessica Paquette 
516596f483aSJessica Paquette       // We've added something new to the tree, so there's one less suffix to
517596f483aSJessica Paquette       // add.
518596f483aSJessica Paquette       SuffixesToAdd--;
519596f483aSJessica Paquette 
520596f483aSJessica Paquette       if (Active.Node->isRoot()) {
521596f483aSJessica Paquette         if (Active.Len > 0) {
522596f483aSJessica Paquette           Active.Len--;
523596f483aSJessica Paquette           Active.Idx = EndIdx - SuffixesToAdd + 1;
524596f483aSJessica Paquette         }
525596f483aSJessica Paquette       } else {
526596f483aSJessica Paquette         // Start the next phase at the next smallest suffix.
527596f483aSJessica Paquette         Active.Node = Active.Node->Link;
528596f483aSJessica Paquette       }
529596f483aSJessica Paquette     }
530596f483aSJessica Paquette 
531596f483aSJessica Paquette     return SuffixesToAdd;
532596f483aSJessica Paquette   }
533596f483aSJessica Paquette 
534596f483aSJessica Paquette public:
535596f483aSJessica Paquette   /// Construct a suffix tree from a sequence of unsigned integers.
536596f483aSJessica Paquette   ///
537596f483aSJessica Paquette   /// \param Str The string to construct the suffix tree for.
538596f483aSJessica Paquette   SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
539596f483aSJessica Paquette     Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
540596f483aSJessica Paquette     Root->IsInTree = true;
541596f483aSJessica Paquette     Active.Node = Root;
542596f483aSJessica Paquette     LeafVector = std::vector<SuffixTreeNode *>(Str.size());
543596f483aSJessica Paquette 
544596f483aSJessica Paquette     // Keep track of the number of suffixes we have to add of the current
545596f483aSJessica Paquette     // prefix.
546596f483aSJessica Paquette     size_t SuffixesToAdd = 0;
547596f483aSJessica Paquette     Active.Node = Root;
548596f483aSJessica Paquette 
549596f483aSJessica Paquette     // Construct the suffix tree iteratively on each prefix of the string.
550596f483aSJessica Paquette     // PfxEndIdx is the end index of the current prefix.
551596f483aSJessica Paquette     // End is one past the last element in the string.
552596f483aSJessica Paquette     for (size_t PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) {
553596f483aSJessica Paquette       SuffixesToAdd++;
554596f483aSJessica Paquette       LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
555596f483aSJessica Paquette       SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
556596f483aSJessica Paquette     }
557596f483aSJessica Paquette 
558596f483aSJessica Paquette     // Set the suffix indices of each leaf.
559596f483aSJessica Paquette     assert(Root && "Root node can't be nullptr!");
560596f483aSJessica Paquette     setSuffixIndices(*Root, 0);
561596f483aSJessica Paquette   }
562596f483aSJessica Paquette };
563596f483aSJessica Paquette 
564596f483aSJessica Paquette /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings.
565596f483aSJessica Paquette struct InstructionMapper {
566596f483aSJessica Paquette 
567596f483aSJessica Paquette   /// \brief The next available integer to assign to a \p MachineInstr that
568596f483aSJessica Paquette   /// cannot be outlined.
569596f483aSJessica Paquette   ///
570596f483aSJessica Paquette   /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
571596f483aSJessica Paquette   unsigned IllegalInstrNumber = -3;
572596f483aSJessica Paquette 
573596f483aSJessica Paquette   /// \brief The next available integer to assign to a \p MachineInstr that can
574596f483aSJessica Paquette   /// be outlined.
575596f483aSJessica Paquette   unsigned LegalInstrNumber = 0;
576596f483aSJessica Paquette 
577596f483aSJessica Paquette   /// Correspondence from \p MachineInstrs to unsigned integers.
578596f483aSJessica Paquette   DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
579596f483aSJessica Paquette       InstructionIntegerMap;
580596f483aSJessica Paquette 
581596f483aSJessica Paquette   /// Corresponcence from unsigned integers to \p MachineInstrs.
582596f483aSJessica Paquette   /// Inverse of \p InstructionIntegerMap.
583596f483aSJessica Paquette   DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
584596f483aSJessica Paquette 
585596f483aSJessica Paquette   /// The vector of unsigned integers that the module is mapped to.
586596f483aSJessica Paquette   std::vector<unsigned> UnsignedVec;
587596f483aSJessica Paquette 
588596f483aSJessica Paquette   /// \brief Stores the location of the instruction associated with the integer
589596f483aSJessica Paquette   /// at index i in \p UnsignedVec for each index i.
590596f483aSJessica Paquette   std::vector<MachineBasicBlock::iterator> InstrList;
591596f483aSJessica Paquette 
592596f483aSJessica Paquette   /// \brief Maps \p *It to a legal integer.
593596f483aSJessica Paquette   ///
594596f483aSJessica Paquette   /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
595596f483aSJessica Paquette   /// \p IntegerInstructionMap, and \p LegalInstrNumber.
596596f483aSJessica Paquette   ///
597596f483aSJessica Paquette   /// \returns The integer that \p *It was mapped to.
598596f483aSJessica Paquette   unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
599596f483aSJessica Paquette 
600596f483aSJessica Paquette     // Get the integer for this instruction or give it the current
601596f483aSJessica Paquette     // LegalInstrNumber.
602596f483aSJessica Paquette     InstrList.push_back(It);
603596f483aSJessica Paquette     MachineInstr &MI = *It;
604596f483aSJessica Paquette     bool WasInserted;
605596f483aSJessica Paquette     DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
606596f483aSJessica Paquette         ResultIt;
607596f483aSJessica Paquette     std::tie(ResultIt, WasInserted) =
608596f483aSJessica Paquette         InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
609596f483aSJessica Paquette     unsigned MINumber = ResultIt->second;
610596f483aSJessica Paquette 
611596f483aSJessica Paquette     // There was an insertion.
612596f483aSJessica Paquette     if (WasInserted) {
613596f483aSJessica Paquette       LegalInstrNumber++;
614596f483aSJessica Paquette       IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
615596f483aSJessica Paquette     }
616596f483aSJessica Paquette 
617596f483aSJessica Paquette     UnsignedVec.push_back(MINumber);
618596f483aSJessica Paquette 
619596f483aSJessica Paquette     // Make sure we don't overflow or use any integers reserved by the DenseMap.
620596f483aSJessica Paquette     if (LegalInstrNumber >= IllegalInstrNumber)
621596f483aSJessica Paquette       report_fatal_error("Instruction mapping overflow!");
622596f483aSJessica Paquette 
62378681be2SJessica Paquette     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
62478681be2SJessica Paquette            "Tried to assign DenseMap tombstone or empty key to instruction.");
62578681be2SJessica Paquette     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
62678681be2SJessica Paquette            "Tried to assign DenseMap tombstone or empty key to instruction.");
627596f483aSJessica Paquette 
628596f483aSJessica Paquette     return MINumber;
629596f483aSJessica Paquette   }
630596f483aSJessica Paquette 
631596f483aSJessica Paquette   /// Maps \p *It to an illegal integer.
632596f483aSJessica Paquette   ///
633596f483aSJessica Paquette   /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
634596f483aSJessica Paquette   ///
635596f483aSJessica Paquette   /// \returns The integer that \p *It was mapped to.
636596f483aSJessica Paquette   unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
637596f483aSJessica Paquette     unsigned MINumber = IllegalInstrNumber;
638596f483aSJessica Paquette 
639596f483aSJessica Paquette     InstrList.push_back(It);
640596f483aSJessica Paquette     UnsignedVec.push_back(IllegalInstrNumber);
641596f483aSJessica Paquette     IllegalInstrNumber--;
642596f483aSJessica Paquette 
643596f483aSJessica Paquette     assert(LegalInstrNumber < IllegalInstrNumber &&
644596f483aSJessica Paquette            "Instruction mapping overflow!");
645596f483aSJessica Paquette 
64678681be2SJessica Paquette     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
647596f483aSJessica Paquette            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
648596f483aSJessica Paquette 
64978681be2SJessica Paquette     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
650596f483aSJessica Paquette            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
651596f483aSJessica Paquette 
652596f483aSJessica Paquette     return MINumber;
653596f483aSJessica Paquette   }
654596f483aSJessica Paquette 
655596f483aSJessica Paquette   /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
656596f483aSJessica Paquette   /// and appends it to \p UnsignedVec and \p InstrList.
657596f483aSJessica Paquette   ///
658596f483aSJessica Paquette   /// Two instructions are assigned the same integer if they are identical.
659596f483aSJessica Paquette   /// If an instruction is deemed unsafe to outline, then it will be assigned an
660596f483aSJessica Paquette   /// unique integer. The resulting mapping is placed into a suffix tree and
661596f483aSJessica Paquette   /// queried for candidates.
662596f483aSJessica Paquette   ///
663596f483aSJessica Paquette   /// \param MBB The \p MachineBasicBlock to be translated into integers.
664596f483aSJessica Paquette   /// \param TRI \p TargetRegisterInfo for the module.
665596f483aSJessica Paquette   /// \param TII \p TargetInstrInfo for the module.
666596f483aSJessica Paquette   void convertToUnsignedVec(MachineBasicBlock &MBB,
667596f483aSJessica Paquette                             const TargetRegisterInfo &TRI,
668596f483aSJessica Paquette                             const TargetInstrInfo &TII) {
669596f483aSJessica Paquette     for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et;
670596f483aSJessica Paquette          It++) {
671596f483aSJessica Paquette 
672596f483aSJessica Paquette       // Keep track of where this instruction is in the module.
673596f483aSJessica Paquette       switch (TII.getOutliningType(*It)) {
674596f483aSJessica Paquette       case TargetInstrInfo::MachineOutlinerInstrType::Illegal:
675596f483aSJessica Paquette         mapToIllegalUnsigned(It);
676596f483aSJessica Paquette         break;
677596f483aSJessica Paquette 
678596f483aSJessica Paquette       case TargetInstrInfo::MachineOutlinerInstrType::Legal:
679596f483aSJessica Paquette         mapToLegalUnsigned(It);
680596f483aSJessica Paquette         break;
681596f483aSJessica Paquette 
682596f483aSJessica Paquette       case TargetInstrInfo::MachineOutlinerInstrType::Invisible:
683596f483aSJessica Paquette         break;
684596f483aSJessica Paquette       }
685596f483aSJessica Paquette     }
686596f483aSJessica Paquette 
687596f483aSJessica Paquette     // After we're done every insertion, uniquely terminate this part of the
688596f483aSJessica Paquette     // "string". This makes sure we won't match across basic block or function
689596f483aSJessica Paquette     // boundaries since the "end" is encoded uniquely and thus appears in no
690596f483aSJessica Paquette     // repeated substring.
691596f483aSJessica Paquette     InstrList.push_back(MBB.end());
692596f483aSJessica Paquette     UnsignedVec.push_back(IllegalInstrNumber);
693596f483aSJessica Paquette     IllegalInstrNumber--;
694596f483aSJessica Paquette   }
695596f483aSJessica Paquette 
696596f483aSJessica Paquette   InstructionMapper() {
697596f483aSJessica Paquette     // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
698596f483aSJessica Paquette     // changed.
699596f483aSJessica Paquette     assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
700596f483aSJessica Paquette            "DenseMapInfo<unsigned>'s empty key isn't -1!");
701596f483aSJessica Paquette     assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
702596f483aSJessica Paquette            "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
703596f483aSJessica Paquette   }
704596f483aSJessica Paquette };
705596f483aSJessica Paquette 
706596f483aSJessica Paquette /// \brief An interprocedural pass which finds repeated sequences of
707596f483aSJessica Paquette /// instructions and replaces them with calls to functions.
708596f483aSJessica Paquette ///
709596f483aSJessica Paquette /// Each instruction is mapped to an unsigned integer and placed in a string.
710596f483aSJessica Paquette /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
711596f483aSJessica Paquette /// is then repeatedly queried for repeated sequences of instructions. Each
712596f483aSJessica Paquette /// non-overlapping repeated sequence is then placed in its own
713596f483aSJessica Paquette /// \p MachineFunction and each instance is then replaced with a call to that
714596f483aSJessica Paquette /// function.
715596f483aSJessica Paquette struct MachineOutliner : public ModulePass {
716596f483aSJessica Paquette 
717596f483aSJessica Paquette   static char ID;
718596f483aSJessica Paquette 
719596f483aSJessica Paquette   StringRef getPassName() const override { return "Machine Outliner"; }
720596f483aSJessica Paquette 
721596f483aSJessica Paquette   void getAnalysisUsage(AnalysisUsage &AU) const override {
722596f483aSJessica Paquette     AU.addRequired<MachineModuleInfo>();
723596f483aSJessica Paquette     AU.addPreserved<MachineModuleInfo>();
724596f483aSJessica Paquette     AU.setPreservesAll();
725596f483aSJessica Paquette     ModulePass::getAnalysisUsage(AU);
726596f483aSJessica Paquette   }
727596f483aSJessica Paquette 
728596f483aSJessica Paquette   MachineOutliner() : ModulePass(ID) {
729596f483aSJessica Paquette     initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
730596f483aSJessica Paquette   }
731596f483aSJessica Paquette 
73278681be2SJessica Paquette   /// Find all repeated substrings that satisfy the outlining cost model.
73378681be2SJessica Paquette   ///
73478681be2SJessica Paquette   /// If a substring appears at least twice, then it must be represented by
73578681be2SJessica Paquette   /// an internal node which appears in at least two suffixes. Each suffix is
73678681be2SJessica Paquette   /// represented by a leaf node. To do this, we visit each internal node in
73778681be2SJessica Paquette   /// the tree, using the leaf children of each internal node. If an internal
73878681be2SJessica Paquette   /// node represents a beneficial substring, then we use each of its leaf
73978681be2SJessica Paquette   /// children to find the locations of its substring.
74078681be2SJessica Paquette   ///
74178681be2SJessica Paquette   /// \param ST A suffix tree to query.
74278681be2SJessica Paquette   /// \param TII TargetInstrInfo for the target.
74378681be2SJessica Paquette   /// \param Mapper Contains outlining mapping information.
74478681be2SJessica Paquette   /// \param[out] CandidateList Filled with candidates representing each
74578681be2SJessica Paquette   /// beneficial substring.
74678681be2SJessica Paquette   /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each
74778681be2SJessica Paquette   /// type of candidate.
74878681be2SJessica Paquette   ///
74978681be2SJessica Paquette   /// \returns The length of the longest candidate found.
75078681be2SJessica Paquette   size_t findCandidates(SuffixTree &ST, const TargetInstrInfo &TII,
75178681be2SJessica Paquette                         InstructionMapper &Mapper,
75278681be2SJessica Paquette                         std::vector<Candidate> &CandidateList,
75378681be2SJessica Paquette                         std::vector<OutlinedFunction> &FunctionList);
75478681be2SJessica Paquette 
755596f483aSJessica Paquette   /// \brief Replace the sequences of instructions represented by the
756596f483aSJessica Paquette   /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
757596f483aSJessica Paquette   /// described in \p FunctionList.
758596f483aSJessica Paquette   ///
759596f483aSJessica Paquette   /// \param M The module we are outlining from.
760596f483aSJessica Paquette   /// \param CandidateList A list of candidates to be outlined.
761596f483aSJessica Paquette   /// \param FunctionList A list of functions to be inserted into the module.
762596f483aSJessica Paquette   /// \param Mapper Contains the instruction mappings for the module.
763596f483aSJessica Paquette   bool outline(Module &M, const ArrayRef<Candidate> &CandidateList,
764596f483aSJessica Paquette                std::vector<OutlinedFunction> &FunctionList,
765596f483aSJessica Paquette                InstructionMapper &Mapper);
766596f483aSJessica Paquette 
767596f483aSJessica Paquette   /// Creates a function for \p OF and inserts it into the module.
768596f483aSJessica Paquette   MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
769596f483aSJessica Paquette                                           InstructionMapper &Mapper);
770596f483aSJessica Paquette 
771596f483aSJessica Paquette   /// Find potential outlining candidates and store them in \p CandidateList.
772596f483aSJessica Paquette   ///
773596f483aSJessica Paquette   /// For each type of potential candidate, also build an \p OutlinedFunction
774596f483aSJessica Paquette   /// struct containing the information to build the function for that
775596f483aSJessica Paquette   /// candidate.
776596f483aSJessica Paquette   ///
777596f483aSJessica Paquette   /// \param[out] CandidateList Filled with outlining candidates for the module.
778596f483aSJessica Paquette   /// \param[out] FunctionList Filled with functions corresponding to each type
779596f483aSJessica Paquette   /// of \p Candidate.
780596f483aSJessica Paquette   /// \param ST The suffix tree for the module.
781596f483aSJessica Paquette   /// \param TII TargetInstrInfo for the module.
782596f483aSJessica Paquette   ///
783596f483aSJessica Paquette   /// \returns The length of the longest candidate found. 0 if there are none.
784596f483aSJessica Paquette   unsigned buildCandidateList(std::vector<Candidate> &CandidateList,
785596f483aSJessica Paquette                               std::vector<OutlinedFunction> &FunctionList,
78678681be2SJessica Paquette                               SuffixTree &ST, InstructionMapper &Mapper,
787c984e213SJessica Paquette                               const TargetInstrInfo &TII);
788596f483aSJessica Paquette 
789596f483aSJessica Paquette   /// \brief Remove any overlapping candidates that weren't handled by the
790596f483aSJessica Paquette   /// suffix tree's pruning method.
791596f483aSJessica Paquette   ///
792596f483aSJessica Paquette   /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
793596f483aSJessica Paquette   /// If a short candidate is chosen for outlining, then a longer candidate
794596f483aSJessica Paquette   /// which has that short candidate as a suffix is chosen, the tree's pruning
795596f483aSJessica Paquette   /// method will not find it. Thus, we need to prune before outlining as well.
796596f483aSJessica Paquette   ///
797596f483aSJessica Paquette   /// \param[in,out] CandidateList A list of outlining candidates.
798596f483aSJessica Paquette   /// \param[in,out] FunctionList A list of functions to be outlined.
799809d708bSJessica Paquette   /// \param Mapper Contains instruction mapping info for outlining.
800596f483aSJessica Paquette   /// \param MaxCandidateLen The length of the longest candidate.
801596f483aSJessica Paquette   /// \param TII TargetInstrInfo for the module.
802596f483aSJessica Paquette   void pruneOverlaps(std::vector<Candidate> &CandidateList,
803596f483aSJessica Paquette                      std::vector<OutlinedFunction> &FunctionList,
804809d708bSJessica Paquette                      InstructionMapper &Mapper, unsigned MaxCandidateLen,
805809d708bSJessica Paquette                      const TargetInstrInfo &TII);
806596f483aSJessica Paquette 
807596f483aSJessica Paquette   /// Construct a suffix tree on the instructions in \p M and outline repeated
808596f483aSJessica Paquette   /// strings from that tree.
809596f483aSJessica Paquette   bool runOnModule(Module &M) override;
810596f483aSJessica Paquette };
811596f483aSJessica Paquette 
812596f483aSJessica Paquette } // Anonymous namespace.
813596f483aSJessica Paquette 
814596f483aSJessica Paquette char MachineOutliner::ID = 0;
815596f483aSJessica Paquette 
816596f483aSJessica Paquette namespace llvm {
817596f483aSJessica Paquette ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); }
81878681be2SJessica Paquette } // namespace llvm
81978681be2SJessica Paquette 
82078681be2SJessica Paquette INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
82178681be2SJessica Paquette                 false)
82278681be2SJessica Paquette 
82378681be2SJessica Paquette size_t
82478681be2SJessica Paquette MachineOutliner::findCandidates(SuffixTree &ST, const TargetInstrInfo &TII,
82578681be2SJessica Paquette                                 InstructionMapper &Mapper,
82678681be2SJessica Paquette                                 std::vector<Candidate> &CandidateList,
82778681be2SJessica Paquette                                 std::vector<OutlinedFunction> &FunctionList) {
82878681be2SJessica Paquette 
82978681be2SJessica Paquette   CandidateList.clear();
83078681be2SJessica Paquette   FunctionList.clear();
83178681be2SJessica Paquette   size_t FnIdx = 0;
83278681be2SJessica Paquette   size_t MaxLen = 0;
83378681be2SJessica Paquette 
83478681be2SJessica Paquette   // FIXME: Visit internal nodes instead of leaves.
83578681be2SJessica Paquette   for (SuffixTreeNode *Leaf : ST.LeafVector) {
83678681be2SJessica Paquette     assert(Leaf && "Leaves in LeafVector cannot be null!");
83778681be2SJessica Paquette     if (!Leaf->IsInTree)
83878681be2SJessica Paquette       continue;
83978681be2SJessica Paquette 
84078681be2SJessica Paquette     assert(Leaf->Parent && "All leaves must have parents!");
84178681be2SJessica Paquette     SuffixTreeNode &Parent = *(Leaf->Parent);
84278681be2SJessica Paquette 
84378681be2SJessica Paquette     // If it doesn't appear enough, or we already outlined from it, skip it.
84478681be2SJessica Paquette     if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree)
84578681be2SJessica Paquette       continue;
84678681be2SJessica Paquette 
847809d708bSJessica Paquette     // Figure out if this candidate is beneficial.
84878681be2SJessica Paquette     size_t StringLen = Leaf->ConcatLen - Leaf->size();
84995c1107fSJessica Paquette 
85095c1107fSJessica Paquette     // Too short to be beneficial; skip it.
85195c1107fSJessica Paquette     // FIXME: This isn't necessarily true for, say, X86. If we factor in
85295c1107fSJessica Paquette     // instruction lengths we need more information than this.
85395c1107fSJessica Paquette     if (StringLen < 2)
85495c1107fSJessica Paquette       continue;
85595c1107fSJessica Paquette 
856809d708bSJessica Paquette     size_t CallOverhead = 0;
857809d708bSJessica Paquette     size_t SequenceOverhead = StringLen;
85878681be2SJessica Paquette 
859d87f5449SJessica Paquette     // If this is a beneficial class of candidate, then every one is stored in
860d87f5449SJessica Paquette     // this vector.
861d87f5449SJessica Paquette     std::vector<Candidate> CandidatesForRepeatedSeq;
862d87f5449SJessica Paquette 
863d87f5449SJessica Paquette     // Used for getOutliningFrameOverhead.
864d87f5449SJessica Paquette     // FIXME: CandidatesForRepeatedSeq and this should be combined.
865d87f5449SJessica Paquette     std::vector<
866d87f5449SJessica Paquette         std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
867d87f5449SJessica Paquette         CandidateClass;
868d87f5449SJessica Paquette 
869809d708bSJessica Paquette     // Figure out the call overhead for each instance of the sequence.
870809d708bSJessica Paquette     for (auto &ChildPair : Parent.Children) {
871809d708bSJessica Paquette       SuffixTreeNode *M = ChildPair.second;
87278681be2SJessica Paquette 
873809d708bSJessica Paquette       if (M && M->IsInTree && M->isLeaf()) {
874809d708bSJessica Paquette         // Each sequence is over [StartIt, EndIt].
875809d708bSJessica Paquette         MachineBasicBlock::iterator StartIt = Mapper.InstrList[M->SuffixIdx];
876809d708bSJessica Paquette         MachineBasicBlock::iterator EndIt =
877809d708bSJessica Paquette             Mapper.InstrList[M->SuffixIdx + StringLen - 1];
878d87f5449SJessica Paquette 
879d87f5449SJessica Paquette         // Get the overhead for calling a function for this sequence and any
880d87f5449SJessica Paquette         // target-specified data for how to construct the call.
881d87f5449SJessica Paquette         std::pair<size_t, unsigned> CallOverheadPair =
882d87f5449SJessica Paquette             TII.getOutliningCallOverhead(StartIt, EndIt);
883d87f5449SJessica Paquette         CallOverhead += CallOverheadPair.first;
884d87f5449SJessica Paquette         CandidatesForRepeatedSeq.emplace_back(M->SuffixIdx, StringLen, FnIdx,
885d87f5449SJessica Paquette                                               CallOverheadPair.second);
886d87f5449SJessica Paquette         CandidateClass.emplace_back(std::make_pair(StartIt, EndIt));
887d87f5449SJessica Paquette 
888d87f5449SJessica Paquette         // Never visit this leaf again.
889d87f5449SJessica Paquette         M->IsInTree = false;
890809d708bSJessica Paquette       }
891809d708bSJessica Paquette     }
892809d708bSJessica Paquette 
893d87f5449SJessica Paquette     std::pair<size_t, unsigned> FrameOverheadPair =
894d87f5449SJessica Paquette         TII.getOutliningFrameOverhead(CandidateClass);
895d87f5449SJessica Paquette     size_t FrameOverhead = FrameOverheadPair.first;
896809d708bSJessica Paquette 
897809d708bSJessica Paquette     size_t OutliningCost = CallOverhead + FrameOverhead + SequenceOverhead;
898809d708bSJessica Paquette     size_t NotOutliningCost = SequenceOverhead * Parent.OccurrenceCount;
899809d708bSJessica Paquette 
900*ffe4abc5SJessica Paquette     // Is it better to outline this candidate than not?
901*ffe4abc5SJessica Paquette     if (NotOutliningCost <= OutliningCost) {
902*ffe4abc5SJessica Paquette       // Outlining this candidate would take more instructions than not
903*ffe4abc5SJessica Paquette       // outlining.
904*ffe4abc5SJessica Paquette       // Emit a remark explaining why we didn't outline this candidate.
905*ffe4abc5SJessica Paquette       std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator> C =
906*ffe4abc5SJessica Paquette           CandidateClass[0];
907*ffe4abc5SJessica Paquette       MachineOptimizationRemarkEmitter MORE(
908*ffe4abc5SJessica Paquette           *(C.first->getParent()->getParent()), nullptr);
909*ffe4abc5SJessica Paquette       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
910*ffe4abc5SJessica Paquette                                         C.first->getDebugLoc(),
911*ffe4abc5SJessica Paquette                                         C.first->getParent());
912*ffe4abc5SJessica Paquette       R << "Did not outline " << NV("Length", StringLen) << " instructions"
913*ffe4abc5SJessica Paquette         << " from " << NV("NumOccurrences", CandidateClass.size())
914*ffe4abc5SJessica Paquette         << " locations."
915*ffe4abc5SJessica Paquette         << " Instructions from outlining all occurrences ("
916*ffe4abc5SJessica Paquette         << NV("OutliningCost", OutliningCost) << ")"
917*ffe4abc5SJessica Paquette         << " >= Unoutlined instruction count ("
918*ffe4abc5SJessica Paquette         << NV("NotOutliningCost", NotOutliningCost) << ")"
919*ffe4abc5SJessica Paquette         << " (Also found at: ";
920*ffe4abc5SJessica Paquette 
921*ffe4abc5SJessica Paquette       // Tell the user the other places the candidate was found.
922*ffe4abc5SJessica Paquette       for (size_t i = 1, e = CandidateClass.size(); i < e; i++) {
923*ffe4abc5SJessica Paquette         R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
924*ffe4abc5SJessica Paquette                 CandidateClass[i].first->getDebugLoc());
925*ffe4abc5SJessica Paquette         if (i != e - 1)
926*ffe4abc5SJessica Paquette           R << ", ";
927*ffe4abc5SJessica Paquette       }
928*ffe4abc5SJessica Paquette 
929*ffe4abc5SJessica Paquette       R << ")";
930*ffe4abc5SJessica Paquette       MORE.emit(R);
931*ffe4abc5SJessica Paquette 
932*ffe4abc5SJessica Paquette       // Move to the next candidate.
93378681be2SJessica Paquette       continue;
934*ffe4abc5SJessica Paquette     }
93578681be2SJessica Paquette 
936809d708bSJessica Paquette     size_t Benefit = NotOutliningCost - OutliningCost;
937809d708bSJessica Paquette 
93878681be2SJessica Paquette     if (StringLen > MaxLen)
93978681be2SJessica Paquette       MaxLen = StringLen;
94078681be2SJessica Paquette 
941d87f5449SJessica Paquette     // At this point, the candidate class is seen as beneficial. Set their
942d87f5449SJessica Paquette     // benefit values and save them in the candidate list.
943d87f5449SJessica Paquette     for (Candidate &C : CandidatesForRepeatedSeq) {
944d87f5449SJessica Paquette       C.Benefit = Benefit;
945d87f5449SJessica Paquette       CandidateList.push_back(C);
946596f483aSJessica Paquette     }
947596f483aSJessica Paquette 
94878681be2SJessica Paquette     // Save the function for the new candidate sequence.
94978681be2SJessica Paquette     std::vector<unsigned> CandidateSequence;
95078681be2SJessica Paquette     for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++)
95178681be2SJessica Paquette       CandidateSequence.push_back(ST.Str[i]);
95278681be2SJessica Paquette 
953d87f5449SJessica Paquette     FunctionList.emplace_back(FnIdx, CandidatesForRepeatedSeq.size(),
954d87f5449SJessica Paquette                               CandidateSequence, Benefit,
955d87f5449SJessica Paquette                               FrameOverheadPair.second);
95678681be2SJessica Paquette 
95778681be2SJessica Paquette     // Move to the next function.
95878681be2SJessica Paquette     FnIdx++;
95978681be2SJessica Paquette     Parent.IsInTree = false;
96078681be2SJessica Paquette   }
96178681be2SJessica Paquette 
96278681be2SJessica Paquette   return MaxLen;
96378681be2SJessica Paquette }
964596f483aSJessica Paquette 
965596f483aSJessica Paquette void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList,
966596f483aSJessica Paquette                                     std::vector<OutlinedFunction> &FunctionList,
967809d708bSJessica Paquette                                     InstructionMapper &Mapper,
968596f483aSJessica Paquette                                     unsigned MaxCandidateLen,
969596f483aSJessica Paquette                                     const TargetInstrInfo &TII) {
970acffa28cSJessica Paquette   // TODO: Experiment with interval trees or other interval-checking structures
971acffa28cSJessica Paquette   // to lower the time complexity of this function.
972acffa28cSJessica Paquette   // TODO: Can we do better than the simple greedy choice?
973acffa28cSJessica Paquette   // Check for overlaps in the range.
974acffa28cSJessica Paquette   // This is O(MaxCandidateLen * CandidateList.size()).
975596f483aSJessica Paquette   for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
976596f483aSJessica Paquette        It++) {
977596f483aSJessica Paquette     Candidate &C1 = *It;
978596f483aSJessica Paquette     OutlinedFunction &F1 = FunctionList[C1.FunctionIdx];
979596f483aSJessica Paquette 
980596f483aSJessica Paquette     // If we removed this candidate, skip it.
981596f483aSJessica Paquette     if (!C1.InCandidateList)
982596f483aSJessica Paquette       continue;
983596f483aSJessica Paquette 
984acffa28cSJessica Paquette     // Is it still worth it to outline C1?
985acffa28cSJessica Paquette     if (F1.Benefit < 1 || F1.OccurrenceCount < 2) {
986acffa28cSJessica Paquette       assert(F1.OccurrenceCount > 0 &&
987acffa28cSJessica Paquette              "Can't remove OutlinedFunction with no occurrences!");
988acffa28cSJessica Paquette       F1.OccurrenceCount--;
989596f483aSJessica Paquette       C1.InCandidateList = false;
990596f483aSJessica Paquette       continue;
991596f483aSJessica Paquette     }
992596f483aSJessica Paquette 
993596f483aSJessica Paquette     // The minimum start index of any candidate that could overlap with this
994596f483aSJessica Paquette     // one.
995596f483aSJessica Paquette     unsigned FarthestPossibleIdx = 0;
996596f483aSJessica Paquette 
997596f483aSJessica Paquette     // Either the index is 0, or it's at most MaxCandidateLen indices away.
998596f483aSJessica Paquette     if (C1.StartIdx > MaxCandidateLen)
999596f483aSJessica Paquette       FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen;
1000596f483aSJessica Paquette 
1001acffa28cSJessica Paquette     // Compare against the candidates in the list that start at at most
1002acffa28cSJessica Paquette     // FarthestPossibleIdx indices away from C1. There are at most
1003acffa28cSJessica Paquette     // MaxCandidateLen of these.
1004596f483aSJessica Paquette     for (auto Sit = It + 1; Sit != Et; Sit++) {
1005596f483aSJessica Paquette       Candidate &C2 = *Sit;
1006596f483aSJessica Paquette       OutlinedFunction &F2 = FunctionList[C2.FunctionIdx];
1007596f483aSJessica Paquette 
1008596f483aSJessica Paquette       // Is this candidate too far away to overlap?
1009596f483aSJessica Paquette       if (C2.StartIdx < FarthestPossibleIdx)
1010596f483aSJessica Paquette         break;
1011596f483aSJessica Paquette 
1012596f483aSJessica Paquette       // Did we already remove this candidate in a previous step?
1013596f483aSJessica Paquette       if (!C2.InCandidateList)
1014596f483aSJessica Paquette         continue;
1015596f483aSJessica Paquette 
1016596f483aSJessica Paquette       // Is the function beneficial to outline?
1017596f483aSJessica Paquette       if (F2.OccurrenceCount < 2 || F2.Benefit < 1) {
1018596f483aSJessica Paquette         // If not, remove this candidate and move to the next one.
1019acffa28cSJessica Paquette         assert(F2.OccurrenceCount > 0 &&
1020acffa28cSJessica Paquette                "Can't remove OutlinedFunction with no occurrences!");
1021acffa28cSJessica Paquette         F2.OccurrenceCount--;
1022596f483aSJessica Paquette         C2.InCandidateList = false;
1023596f483aSJessica Paquette         continue;
1024596f483aSJessica Paquette       }
1025596f483aSJessica Paquette 
1026596f483aSJessica Paquette       size_t C2End = C2.StartIdx + C2.Len - 1;
1027596f483aSJessica Paquette 
1028596f483aSJessica Paquette       // Do C1 and C2 overlap?
1029596f483aSJessica Paquette       //
1030596f483aSJessica Paquette       // Not overlapping:
1031596f483aSJessica Paquette       // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
1032596f483aSJessica Paquette       //
1033596f483aSJessica Paquette       // We sorted our candidate list so C2Start <= C1Start. We know that
1034596f483aSJessica Paquette       // C2End > C2Start since each candidate has length >= 2. Therefore, all we
1035596f483aSJessica Paquette       // have to check is C2End < C2Start to see if we overlap.
1036596f483aSJessica Paquette       if (C2End < C1.StartIdx)
1037596f483aSJessica Paquette         continue;
1038596f483aSJessica Paquette 
1039acffa28cSJessica Paquette       // C1 and C2 overlap.
1040acffa28cSJessica Paquette       // We need to choose the better of the two.
1041acffa28cSJessica Paquette       //
1042acffa28cSJessica Paquette       // Approximate this by picking the one which would have saved us the
1043acffa28cSJessica Paquette       // most instructions before any pruning.
1044acffa28cSJessica Paquette       if (C1.Benefit >= C2.Benefit) {
1045596f483aSJessica Paquette 
1046acffa28cSJessica Paquette         // C1 is better, so remove C2 and update C2's OutlinedFunction to
1047acffa28cSJessica Paquette         // reflect the removal.
1048acffa28cSJessica Paquette         assert(F2.OccurrenceCount > 0 &&
1049acffa28cSJessica Paquette                "Can't remove OutlinedFunction with no occurrences!");
1050596f483aSJessica Paquette         F2.OccurrenceCount--;
1051809d708bSJessica Paquette 
1052809d708bSJessica Paquette         // Remove the call overhead from the removed sequence.
1053809d708bSJessica Paquette         MachineBasicBlock::iterator StartIt = Mapper.InstrList[C2.StartIdx];
1054809d708bSJessica Paquette         MachineBasicBlock::iterator EndIt =
1055809d708bSJessica Paquette             Mapper.InstrList[C2.StartIdx + C2.Len - 1];
1056d87f5449SJessica Paquette 
1057d87f5449SJessica Paquette         F2.Benefit += TII.getOutliningCallOverhead(StartIt, EndIt).first;
1058809d708bSJessica Paquette         // Add back one instance of the sequence.
1059809d708bSJessica Paquette 
1060809d708bSJessica Paquette         if (F2.Sequence.size() > F2.Benefit)
1061809d708bSJessica Paquette           F2.Benefit = 0;
1062809d708bSJessica Paquette         else
1063809d708bSJessica Paquette           F2.Benefit -= F2.Sequence.size();
1064596f483aSJessica Paquette 
1065596f483aSJessica Paquette         C2.InCandidateList = false;
1066596f483aSJessica Paquette 
106778681be2SJessica Paquette         DEBUG(dbgs() << "- Removed C2. \n";
106878681be2SJessica Paquette               dbgs() << "--- Num fns left for C2: " << F2.OccurrenceCount
106978681be2SJessica Paquette                      << "\n";
107078681be2SJessica Paquette               dbgs() << "--- C2's benefit: " << F2.Benefit << "\n";);
1071acffa28cSJessica Paquette 
1072acffa28cSJessica Paquette       } else {
1073acffa28cSJessica Paquette         // C2 is better, so remove C1 and update C1's OutlinedFunction to
1074acffa28cSJessica Paquette         // reflect the removal.
1075acffa28cSJessica Paquette         assert(F1.OccurrenceCount > 0 &&
1076acffa28cSJessica Paquette                "Can't remove OutlinedFunction with no occurrences!");
1077acffa28cSJessica Paquette         F1.OccurrenceCount--;
1078809d708bSJessica Paquette 
1079809d708bSJessica Paquette         // Remove the call overhead from the removed sequence.
1080809d708bSJessica Paquette         MachineBasicBlock::iterator StartIt = Mapper.InstrList[C1.StartIdx];
1081809d708bSJessica Paquette         MachineBasicBlock::iterator EndIt =
1082809d708bSJessica Paquette             Mapper.InstrList[C1.StartIdx + C1.Len - 1];
1083d87f5449SJessica Paquette 
1084d87f5449SJessica Paquette         F1.Benefit += TII.getOutliningCallOverhead(StartIt, EndIt).first;
1085809d708bSJessica Paquette 
1086809d708bSJessica Paquette         // Add back one instance of the sequence.
1087809d708bSJessica Paquette         if (F1.Sequence.size() > F1.Benefit)
1088809d708bSJessica Paquette           F1.Benefit = 0;
1089809d708bSJessica Paquette         else
1090809d708bSJessica Paquette           F1.Benefit -= F1.Sequence.size();
1091809d708bSJessica Paquette 
1092acffa28cSJessica Paquette         C1.InCandidateList = false;
1093acffa28cSJessica Paquette 
109478681be2SJessica Paquette         DEBUG(dbgs() << "- Removed C1. \n";
109578681be2SJessica Paquette               dbgs() << "--- Num fns left for C1: " << F1.OccurrenceCount
109678681be2SJessica Paquette                      << "\n";
109778681be2SJessica Paquette               dbgs() << "--- C1's benefit: " << F1.Benefit << "\n";);
1098acffa28cSJessica Paquette 
1099acffa28cSJessica Paquette         // C1 is out, so we don't have to compare it against anyone else.
1100acffa28cSJessica Paquette         break;
1101acffa28cSJessica Paquette       }
1102596f483aSJessica Paquette     }
1103596f483aSJessica Paquette   }
1104596f483aSJessica Paquette }
1105596f483aSJessica Paquette 
1106596f483aSJessica Paquette unsigned
1107596f483aSJessica Paquette MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList,
1108596f483aSJessica Paquette                                     std::vector<OutlinedFunction> &FunctionList,
110978681be2SJessica Paquette                                     SuffixTree &ST, InstructionMapper &Mapper,
1110596f483aSJessica Paquette                                     const TargetInstrInfo &TII) {
1111596f483aSJessica Paquette 
1112596f483aSJessica Paquette   std::vector<unsigned> CandidateSequence; // Current outlining candidate.
1113acffa28cSJessica Paquette   size_t MaxCandidateLen = 0;              // Length of the longest candidate.
1114596f483aSJessica Paquette 
111578681be2SJessica Paquette   MaxCandidateLen =
111678681be2SJessica Paquette       findCandidates(ST, TII, Mapper, CandidateList, FunctionList);
1117596f483aSJessica Paquette 
1118596f483aSJessica Paquette   // Sort the candidates in decending order. This will simplify the outlining
1119596f483aSJessica Paquette   // process when we have to remove the candidates from the mapping by
1120596f483aSJessica Paquette   // allowing us to cut them out without keeping track of an offset.
1121596f483aSJessica Paquette   std::stable_sort(CandidateList.begin(), CandidateList.end());
1122596f483aSJessica Paquette 
1123596f483aSJessica Paquette   return MaxCandidateLen;
1124596f483aSJessica Paquette }
1125596f483aSJessica Paquette 
1126596f483aSJessica Paquette MachineFunction *
1127596f483aSJessica Paquette MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
1128596f483aSJessica Paquette                                         InstructionMapper &Mapper) {
1129596f483aSJessica Paquette 
1130596f483aSJessica Paquette   // Create the function name. This should be unique. For now, just hash the
1131596f483aSJessica Paquette   // module name and include it in the function name plus the number of this
1132596f483aSJessica Paquette   // function.
1133596f483aSJessica Paquette   std::ostringstream NameStream;
113478681be2SJessica Paquette   NameStream << "OUTLINED_FUNCTION_" << OF.Name;
1135596f483aSJessica Paquette 
1136596f483aSJessica Paquette   // Create the function using an IR-level function.
1137596f483aSJessica Paquette   LLVMContext &C = M.getContext();
1138596f483aSJessica Paquette   Function *F = dyn_cast<Function>(
113959a2d7b9SSerge Guelton       M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C)));
1140596f483aSJessica Paquette   assert(F && "Function was null!");
1141596f483aSJessica Paquette 
1142596f483aSJessica Paquette   // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1143596f483aSJessica Paquette   // which gives us better results when we outline from linkonceodr functions.
1144596f483aSJessica Paquette   F->setLinkage(GlobalValue::PrivateLinkage);
1145596f483aSJessica Paquette   F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1146596f483aSJessica Paquette 
1147596f483aSJessica Paquette   BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1148596f483aSJessica Paquette   IRBuilder<> Builder(EntryBB);
1149596f483aSJessica Paquette   Builder.CreateRetVoid();
1150596f483aSJessica Paquette 
1151596f483aSJessica Paquette   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
11527bda1958SMatthias Braun   MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
1153596f483aSJessica Paquette   MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1154596f483aSJessica Paquette   const TargetSubtargetInfo &STI = MF.getSubtarget();
1155596f483aSJessica Paquette   const TargetInstrInfo &TII = *STI.getInstrInfo();
1156596f483aSJessica Paquette 
1157596f483aSJessica Paquette   // Insert the new function into the module.
1158596f483aSJessica Paquette   MF.insert(MF.begin(), &MBB);
1159596f483aSJessica Paquette 
1160d87f5449SJessica Paquette   TII.insertOutlinerPrologue(MBB, MF, OF.FrameClass);
1161596f483aSJessica Paquette 
1162596f483aSJessica Paquette   // Copy over the instructions for the function using the integer mappings in
1163596f483aSJessica Paquette   // its sequence.
1164596f483aSJessica Paquette   for (unsigned Str : OF.Sequence) {
1165596f483aSJessica Paquette     MachineInstr *NewMI =
1166596f483aSJessica Paquette         MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
1167596f483aSJessica Paquette     NewMI->dropMemRefs();
1168596f483aSJessica Paquette 
1169596f483aSJessica Paquette     // Don't keep debug information for outlined instructions.
1170596f483aSJessica Paquette     // FIXME: This means outlined functions are currently undebuggable.
1171596f483aSJessica Paquette     NewMI->setDebugLoc(DebugLoc());
1172596f483aSJessica Paquette     MBB.insert(MBB.end(), NewMI);
1173596f483aSJessica Paquette   }
1174596f483aSJessica Paquette 
1175d87f5449SJessica Paquette   TII.insertOutlinerEpilogue(MBB, MF, OF.FrameClass);
1176596f483aSJessica Paquette 
1177596f483aSJessica Paquette   return &MF;
1178596f483aSJessica Paquette }
1179596f483aSJessica Paquette 
1180596f483aSJessica Paquette bool MachineOutliner::outline(Module &M,
1181596f483aSJessica Paquette                               const ArrayRef<Candidate> &CandidateList,
1182596f483aSJessica Paquette                               std::vector<OutlinedFunction> &FunctionList,
1183596f483aSJessica Paquette                               InstructionMapper &Mapper) {
1184596f483aSJessica Paquette 
1185596f483aSJessica Paquette   bool OutlinedSomething = false;
1186596f483aSJessica Paquette 
1187596f483aSJessica Paquette   // Replace the candidates with calls to their respective outlined functions.
1188596f483aSJessica Paquette   for (const Candidate &C : CandidateList) {
1189596f483aSJessica Paquette 
1190596f483aSJessica Paquette     // Was the candidate removed during pruneOverlaps?
1191596f483aSJessica Paquette     if (!C.InCandidateList)
1192596f483aSJessica Paquette       continue;
1193596f483aSJessica Paquette 
1194596f483aSJessica Paquette     // If not, then look at its OutlinedFunction.
1195596f483aSJessica Paquette     OutlinedFunction &OF = FunctionList[C.FunctionIdx];
1196596f483aSJessica Paquette 
1197596f483aSJessica Paquette     // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
1198596f483aSJessica Paquette     if (OF.OccurrenceCount < 2 || OF.Benefit < 1)
1199596f483aSJessica Paquette       continue;
1200596f483aSJessica Paquette 
1201596f483aSJessica Paquette     // If not, then outline it.
1202596f483aSJessica Paquette     assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
1203596f483aSJessica Paquette     MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent();
1204596f483aSJessica Paquette     MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx];
1205596f483aSJessica Paquette     unsigned EndIdx = C.StartIdx + C.Len - 1;
1206596f483aSJessica Paquette 
1207596f483aSJessica Paquette     assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
1208596f483aSJessica Paquette     MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1209596f483aSJessica Paquette     assert(EndIt != MBB->end() && "EndIt out of bounds!");
1210596f483aSJessica Paquette 
1211596f483aSJessica Paquette     EndIt++; // Erase needs one past the end index.
1212596f483aSJessica Paquette 
1213596f483aSJessica Paquette     // Does this candidate have a function yet?
1214acffa28cSJessica Paquette     if (!OF.MF) {
1215596f483aSJessica Paquette       OF.MF = createOutlinedFunction(M, OF, Mapper);
1216acffa28cSJessica Paquette       FunctionsCreated++;
1217acffa28cSJessica Paquette     }
1218596f483aSJessica Paquette 
1219596f483aSJessica Paquette     MachineFunction *MF = OF.MF;
1220596f483aSJessica Paquette     const TargetSubtargetInfo &STI = MF->getSubtarget();
1221596f483aSJessica Paquette     const TargetInstrInfo &TII = *STI.getInstrInfo();
1222596f483aSJessica Paquette 
1223596f483aSJessica Paquette     // Insert a call to the new function and erase the old sequence.
1224d87f5449SJessica Paquette     TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.CallClass);
1225596f483aSJessica Paquette     StartIt = Mapper.InstrList[C.StartIdx];
1226596f483aSJessica Paquette     MBB->erase(StartIt, EndIt);
1227596f483aSJessica Paquette 
1228596f483aSJessica Paquette     OutlinedSomething = true;
1229596f483aSJessica Paquette 
1230596f483aSJessica Paquette     // Statistics.
1231596f483aSJessica Paquette     NumOutlined++;
1232596f483aSJessica Paquette   }
1233596f483aSJessica Paquette 
123478681be2SJessica Paquette   DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
1235596f483aSJessica Paquette 
1236596f483aSJessica Paquette   return OutlinedSomething;
1237596f483aSJessica Paquette }
1238596f483aSJessica Paquette 
1239596f483aSJessica Paquette bool MachineOutliner::runOnModule(Module &M) {
1240596f483aSJessica Paquette 
1241596f483aSJessica Paquette   // Is there anything in the module at all?
1242596f483aSJessica Paquette   if (M.empty())
1243596f483aSJessica Paquette     return false;
1244596f483aSJessica Paquette 
1245596f483aSJessica Paquette   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
124678681be2SJessica Paquette   const TargetSubtargetInfo &STI =
124778681be2SJessica Paquette       MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget();
1248596f483aSJessica Paquette   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
1249596f483aSJessica Paquette   const TargetInstrInfo *TII = STI.getInstrInfo();
1250596f483aSJessica Paquette 
1251596f483aSJessica Paquette   InstructionMapper Mapper;
1252596f483aSJessica Paquette 
1253596f483aSJessica Paquette   // Build instruction mappings for each function in the module.
1254596f483aSJessica Paquette   for (Function &F : M) {
12557bda1958SMatthias Braun     MachineFunction &MF = MMI.getOrCreateMachineFunction(F);
1256596f483aSJessica Paquette 
1257596f483aSJessica Paquette     // Is the function empty? Safe to outline from?
1258596f483aSJessica Paquette     if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF))
1259596f483aSJessica Paquette       continue;
1260596f483aSJessica Paquette 
1261596f483aSJessica Paquette     // If it is, look at each MachineBasicBlock in the function.
1262596f483aSJessica Paquette     for (MachineBasicBlock &MBB : MF) {
1263596f483aSJessica Paquette 
1264596f483aSJessica Paquette       // Is there anything in MBB?
1265596f483aSJessica Paquette       if (MBB.empty())
1266596f483aSJessica Paquette         continue;
1267596f483aSJessica Paquette 
1268596f483aSJessica Paquette       // If yes, map it.
1269596f483aSJessica Paquette       Mapper.convertToUnsignedVec(MBB, *TRI, *TII);
1270596f483aSJessica Paquette     }
1271596f483aSJessica Paquette   }
1272596f483aSJessica Paquette 
1273596f483aSJessica Paquette   // Construct a suffix tree, use it to find candidates, and then outline them.
1274596f483aSJessica Paquette   SuffixTree ST(Mapper.UnsignedVec);
1275596f483aSJessica Paquette   std::vector<Candidate> CandidateList;
1276596f483aSJessica Paquette   std::vector<OutlinedFunction> FunctionList;
1277596f483aSJessica Paquette 
1278acffa28cSJessica Paquette   // Find all of the outlining candidates.
1279596f483aSJessica Paquette   unsigned MaxCandidateLen =
1280c984e213SJessica Paquette       buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII);
1281596f483aSJessica Paquette 
1282acffa28cSJessica Paquette   // Remove candidates that overlap with other candidates.
1283809d708bSJessica Paquette   pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII);
1284acffa28cSJessica Paquette 
1285acffa28cSJessica Paquette   // Outline each of the candidates and return true if something was outlined.
1286596f483aSJessica Paquette   return outline(M, CandidateList, FunctionList, Mapper);
1287596f483aSJessica Paquette }
1288