1596f483aSJessica Paquette //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2596f483aSJessica Paquette //
3596f483aSJessica Paquette //                     The LLVM Compiler Infrastructure
4596f483aSJessica Paquette //
5596f483aSJessica Paquette // This file is distributed under the University of Illinois Open Source
6596f483aSJessica Paquette // License. See LICENSE.TXT for details.
7596f483aSJessica Paquette //
8596f483aSJessica Paquette //===----------------------------------------------------------------------===//
9596f483aSJessica Paquette ///
10596f483aSJessica Paquette /// \file
11596f483aSJessica Paquette /// Replaces repeated sequences of instructions with function calls.
12596f483aSJessica Paquette ///
13596f483aSJessica Paquette /// This works by placing every instruction from every basic block in a
14596f483aSJessica Paquette /// suffix tree, and repeatedly querying that tree for repeated sequences of
15596f483aSJessica Paquette /// instructions. If a sequence of instructions appears often, then it ought
16596f483aSJessica Paquette /// to be beneficial to pull out into a function.
17596f483aSJessica Paquette ///
18596f483aSJessica Paquette /// This was originally presented at the 2016 LLVM Developers' Meeting in the
19596f483aSJessica Paquette /// talk "Reducing Code Size Using Outlining". For a high-level overview of
20596f483aSJessica Paquette /// how this pass works, the talk is available on YouTube at
21596f483aSJessica Paquette ///
22596f483aSJessica Paquette /// https://www.youtube.com/watch?v=yorld-WSOeU
23596f483aSJessica Paquette ///
24596f483aSJessica Paquette /// The slides for the talk are available at
25596f483aSJessica Paquette ///
26596f483aSJessica Paquette /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
27596f483aSJessica Paquette ///
28596f483aSJessica Paquette /// The talk provides an overview of how the outliner finds candidates and
29596f483aSJessica Paquette /// ultimately outlines them. It describes how the main data structure for this
30596f483aSJessica Paquette /// pass, the suffix tree, is queried and purged for candidates. It also gives
31596f483aSJessica Paquette /// a simplified suffix tree construction algorithm for suffix trees based off
32596f483aSJessica Paquette /// of the algorithm actually used here, Ukkonen's algorithm.
33596f483aSJessica Paquette ///
34596f483aSJessica Paquette /// For the original RFC for this pass, please see
35596f483aSJessica Paquette ///
36596f483aSJessica Paquette /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
37596f483aSJessica Paquette ///
38596f483aSJessica Paquette /// For more information on the suffix tree data structure, please see
39596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
40596f483aSJessica Paquette ///
41596f483aSJessica Paquette //===----------------------------------------------------------------------===//
42596f483aSJessica Paquette #include "llvm/ADT/DenseMap.h"
43596f483aSJessica Paquette #include "llvm/ADT/Statistic.h"
44596f483aSJessica Paquette #include "llvm/ADT/Twine.h"
45596f483aSJessica Paquette #include "llvm/CodeGen/MachineFrameInfo.h"
46596f483aSJessica Paquette #include "llvm/CodeGen/MachineFunction.h"
47596f483aSJessica Paquette #include "llvm/CodeGen/MachineInstrBuilder.h"
48596f483aSJessica Paquette #include "llvm/CodeGen/MachineModuleInfo.h"
49596f483aSJessica Paquette #include "llvm/CodeGen/Passes.h"
50596f483aSJessica Paquette #include "llvm/IR/IRBuilder.h"
51596f483aSJessica Paquette #include "llvm/Support/Allocator.h"
52596f483aSJessica Paquette #include "llvm/Support/Debug.h"
53596f483aSJessica Paquette #include "llvm/Support/raw_ostream.h"
54596f483aSJessica Paquette #include "llvm/Target/TargetInstrInfo.h"
55596f483aSJessica Paquette #include "llvm/Target/TargetMachine.h"
56596f483aSJessica Paquette #include "llvm/Target/TargetRegisterInfo.h"
57596f483aSJessica Paquette #include "llvm/Target/TargetSubtargetInfo.h"
58596f483aSJessica Paquette #include <functional>
59596f483aSJessica Paquette #include <map>
60596f483aSJessica Paquette #include <sstream>
61596f483aSJessica Paquette #include <tuple>
62596f483aSJessica Paquette #include <vector>
63596f483aSJessica Paquette 
64596f483aSJessica Paquette #define DEBUG_TYPE "machine-outliner"
65596f483aSJessica Paquette 
66596f483aSJessica Paquette using namespace llvm;
67596f483aSJessica Paquette 
68596f483aSJessica Paquette STATISTIC(NumOutlined, "Number of candidates outlined");
69596f483aSJessica Paquette STATISTIC(FunctionsCreated, "Number of functions created");
70596f483aSJessica Paquette 
71596f483aSJessica Paquette namespace {
72596f483aSJessica Paquette 
73596f483aSJessica Paquette /// Represents an undefined index in the suffix tree.
74596f483aSJessica Paquette const size_t EmptyIdx = -1;
75596f483aSJessica Paquette 
76596f483aSJessica Paquette /// A node in a suffix tree which represents a substring or suffix.
77596f483aSJessica Paquette ///
78596f483aSJessica Paquette /// Each node has either no children or at least two children, with the root
79596f483aSJessica Paquette /// being a exception in the empty tree.
80596f483aSJessica Paquette ///
81596f483aSJessica Paquette /// Children are represented as a map between unsigned integers and nodes. If
82596f483aSJessica Paquette /// a node N has a child M on unsigned integer k, then the mapping represented
83596f483aSJessica Paquette /// by N is a proper prefix of the mapping represented by M. Note that this,
84596f483aSJessica Paquette /// although similar to a trie is somewhat different: each node stores a full
85596f483aSJessica Paquette /// substring of the full mapping rather than a single character state.
86596f483aSJessica Paquette ///
87596f483aSJessica Paquette /// Each internal node contains a pointer to the internal node representing
88596f483aSJessica Paquette /// the same string, but with the first character chopped off. This is stored
89596f483aSJessica Paquette /// in \p Link. Each leaf node stores the start index of its respective
90596f483aSJessica Paquette /// suffix in \p SuffixIdx.
91596f483aSJessica Paquette struct SuffixTreeNode {
92596f483aSJessica Paquette 
93596f483aSJessica Paquette   /// The children of this node.
94596f483aSJessica Paquette   ///
95596f483aSJessica Paquette   /// A child existing on an unsigned integer implies that from the mapping
96596f483aSJessica Paquette   /// represented by the current node, there is a way to reach another
97596f483aSJessica Paquette   /// mapping by tacking that character on the end of the current string.
98596f483aSJessica Paquette   DenseMap<unsigned, SuffixTreeNode *> Children;
99596f483aSJessica Paquette 
100596f483aSJessica Paquette   /// A flag set to false if the node has been pruned from the tree.
101596f483aSJessica Paquette   bool IsInTree = true;
102596f483aSJessica Paquette 
103596f483aSJessica Paquette   /// The start index of this node's substring in the main string.
104596f483aSJessica Paquette   size_t StartIdx = EmptyIdx;
105596f483aSJessica Paquette 
106596f483aSJessica Paquette   /// The end index of this node's substring in the main string.
107596f483aSJessica Paquette   ///
108596f483aSJessica Paquette   /// Every leaf node must have its \p EndIdx incremented at the end of every
109596f483aSJessica Paquette   /// step in the construction algorithm. To avoid having to update O(N)
110596f483aSJessica Paquette   /// nodes individually at the end of every step, the end index is stored
111596f483aSJessica Paquette   /// as a pointer.
112596f483aSJessica Paquette   size_t *EndIdx = nullptr;
113596f483aSJessica Paquette 
114596f483aSJessica Paquette   /// For leaves, the start index of the suffix represented by this node.
115596f483aSJessica Paquette   ///
116596f483aSJessica Paquette   /// For all other nodes, this is ignored.
117596f483aSJessica Paquette   size_t SuffixIdx = EmptyIdx;
118596f483aSJessica Paquette 
119596f483aSJessica Paquette   /// \brief For internal nodes, a pointer to the internal node representing
120596f483aSJessica Paquette   /// the same sequence with the first character chopped off.
121596f483aSJessica Paquette   ///
122596f483aSJessica Paquette   /// This has two major purposes in the suffix tree. The first is as a
123596f483aSJessica Paquette   /// shortcut in Ukkonen's construction algorithm. One of the things that
124596f483aSJessica Paquette   /// Ukkonen's algorithm does to achieve linear-time construction is
125596f483aSJessica Paquette   /// keep track of which node the next insert should be at. This makes each
126596f483aSJessica Paquette   /// insert O(1), and there are a total of O(N) inserts. The suffix link
127596f483aSJessica Paquette   /// helps with inserting children of internal nodes.
128596f483aSJessica Paquette   ///
129596f483aSJessica Paquette   /// Say we add a child to an internal node with associated mapping S. The
130596f483aSJessica Paquette   /// next insertion must be at the node representing S - its first character.
131596f483aSJessica Paquette   /// This is given by the way that we iteratively build the tree in Ukkonen's
132596f483aSJessica Paquette   /// algorithm. The main idea is to look at the suffixes of each prefix in the
133596f483aSJessica Paquette   /// string, starting with the longest suffix of the prefix, and ending with
134596f483aSJessica Paquette   /// the shortest. Therefore, if we keep pointers between such nodes, we can
135596f483aSJessica Paquette   /// move to the next insertion point in O(1) time. If we don't, then we'd
136596f483aSJessica Paquette   /// have to query from the root, which takes O(N) time. This would make the
137596f483aSJessica Paquette   /// construction algorithm O(N^2) rather than O(N).
138596f483aSJessica Paquette   ///
139596f483aSJessica Paquette   /// The suffix link is also used during the tree pruning process to let us
140596f483aSJessica Paquette   /// quickly throw out a bunch of potential overlaps. Say we have a sequence
141596f483aSJessica Paquette   /// S we want to outline. Then each of its suffixes contribute to at least
142596f483aSJessica Paquette   /// one overlapping case. Therefore, we can follow the suffix links
143596f483aSJessica Paquette   /// starting at the node associated with S to the root and "delete" those
144596f483aSJessica Paquette   /// nodes, save for the root. For each candidate, this removes
145596f483aSJessica Paquette   /// O(|candidate|) overlaps from the search space. We don't actually
146596f483aSJessica Paquette   /// completely invalidate these nodes though; doing that is far too
147596f483aSJessica Paquette   /// aggressive. Consider the following pathological string:
148596f483aSJessica Paquette   ///
149596f483aSJessica Paquette   /// 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3
150596f483aSJessica Paquette   ///
151596f483aSJessica Paquette   /// If we, for the sake of example, outlined 1 2 3, then we would throw
152596f483aSJessica Paquette   /// out all instances of 2 3. This isn't desirable. To get around this,
153596f483aSJessica Paquette   /// when we visit a link node, we decrement its occurrence count by the
154596f483aSJessica Paquette   /// number of sequences we outlined in the current step. In the pathological
155596f483aSJessica Paquette   /// example, the 2 3 node would have an occurrence count of 8, while the
156596f483aSJessica Paquette   /// 1 2 3 node would have an occurrence count of 2. Thus, the 2 3 node
157596f483aSJessica Paquette   /// would survive to the next round allowing us to outline the extra
158596f483aSJessica Paquette   /// instances of 2 3.
159596f483aSJessica Paquette   SuffixTreeNode *Link = nullptr;
160596f483aSJessica Paquette 
161596f483aSJessica Paquette   /// The parent of this node. Every node except for the root has a parent.
162596f483aSJessica Paquette   SuffixTreeNode *Parent = nullptr;
163596f483aSJessica Paquette 
164596f483aSJessica Paquette   /// The number of times this node's string appears in the tree.
165596f483aSJessica Paquette   ///
166596f483aSJessica Paquette   /// This is equal to the number of leaf children of the string. It represents
167596f483aSJessica Paquette   /// the number of suffixes that the node's string is a prefix of.
168596f483aSJessica Paquette   size_t OccurrenceCount = 0;
169596f483aSJessica Paquette 
170596f483aSJessica Paquette   /// Returns true if this node is a leaf.
171596f483aSJessica Paquette   bool isLeaf() const { return SuffixIdx != EmptyIdx; }
172596f483aSJessica Paquette 
173596f483aSJessica Paquette   /// Returns true if this node is the root of its owning \p SuffixTree.
174596f483aSJessica Paquette   bool isRoot() const { return StartIdx == EmptyIdx; }
175596f483aSJessica Paquette 
176596f483aSJessica Paquette   /// Return the number of elements in the substring associated with this node.
177596f483aSJessica Paquette   size_t size() const {
178596f483aSJessica Paquette 
179596f483aSJessica Paquette     // Is it the root? If so, it's the empty string so return 0.
180596f483aSJessica Paquette     if (isRoot())
181596f483aSJessica Paquette       return 0;
182596f483aSJessica Paquette 
183596f483aSJessica Paquette     assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
184596f483aSJessica Paquette 
185596f483aSJessica Paquette     // Size = the number of elements in the string.
186596f483aSJessica Paquette     // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
187596f483aSJessica Paquette     return *EndIdx - StartIdx + 1;
188596f483aSJessica Paquette   }
189596f483aSJessica Paquette 
190596f483aSJessica Paquette   SuffixTreeNode(size_t StartIdx, size_t *EndIdx, SuffixTreeNode *Link,
191596f483aSJessica Paquette                  SuffixTreeNode *Parent)
192596f483aSJessica Paquette       : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
193596f483aSJessica Paquette 
194596f483aSJessica Paquette   SuffixTreeNode() {}
195596f483aSJessica Paquette };
196596f483aSJessica Paquette 
197596f483aSJessica Paquette /// A data structure for fast substring queries.
198596f483aSJessica Paquette ///
199596f483aSJessica Paquette /// Suffix trees represent the suffixes of their input strings in their leaves.
200596f483aSJessica Paquette /// A suffix tree is a type of compressed trie structure where each node
201596f483aSJessica Paquette /// represents an entire substring rather than a single character. Each leaf
202596f483aSJessica Paquette /// of the tree is a suffix.
203596f483aSJessica Paquette ///
204596f483aSJessica Paquette /// A suffix tree can be seen as a type of state machine where each state is a
205596f483aSJessica Paquette /// substring of the full string. The tree is structured so that, for a string
206596f483aSJessica Paquette /// of length N, there are exactly N leaves in the tree. This structure allows
207596f483aSJessica Paquette /// us to quickly find repeated substrings of the input string.
208596f483aSJessica Paquette ///
209596f483aSJessica Paquette /// In this implementation, a "string" is a vector of unsigned integers.
210596f483aSJessica Paquette /// These integers may result from hashing some data type. A suffix tree can
211596f483aSJessica Paquette /// contain 1 or many strings, which can then be queried as one large string.
212596f483aSJessica Paquette ///
213596f483aSJessica Paquette /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
214596f483aSJessica Paquette /// suffix tree construction. Ukkonen's algorithm is explained in more detail
215596f483aSJessica Paquette /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
216596f483aSJessica Paquette /// paper is available at
217596f483aSJessica Paquette ///
218596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
219596f483aSJessica Paquette class SuffixTree {
220596f483aSJessica Paquette private:
221596f483aSJessica Paquette   /// Each element is an integer representing an instruction in the module.
222596f483aSJessica Paquette   ArrayRef<unsigned> Str;
223596f483aSJessica Paquette 
224596f483aSJessica Paquette   /// Maintains each node in the tree.
225d4cb9c6dSJessica Paquette   SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
226596f483aSJessica Paquette 
227596f483aSJessica Paquette   /// The root of the suffix tree.
228596f483aSJessica Paquette   ///
229596f483aSJessica Paquette   /// The root represents the empty string. It is maintained by the
230596f483aSJessica Paquette   /// \p NodeAllocator like every other node in the tree.
231596f483aSJessica Paquette   SuffixTreeNode *Root = nullptr;
232596f483aSJessica Paquette 
233596f483aSJessica Paquette   /// Stores each leaf in the tree for better pruning.
234596f483aSJessica Paquette   std::vector<SuffixTreeNode *> LeafVector;
235596f483aSJessica Paquette 
236596f483aSJessica Paquette   /// Maintains the end indices of the internal nodes in the tree.
237596f483aSJessica Paquette   ///
238596f483aSJessica Paquette   /// Each internal node is guaranteed to never have its end index change
239596f483aSJessica Paquette   /// during the construction algorithm; however, leaves must be updated at
240596f483aSJessica Paquette   /// every step. Therefore, we need to store leaf end indices by reference
241596f483aSJessica Paquette   /// to avoid updating O(N) leaves at every step of construction. Thus,
242596f483aSJessica Paquette   /// every internal node must be allocated its own end index.
243596f483aSJessica Paquette   BumpPtrAllocator InternalEndIdxAllocator;
244596f483aSJessica Paquette 
245596f483aSJessica Paquette   /// The end index of each leaf in the tree.
246596f483aSJessica Paquette   size_t LeafEndIdx = -1;
247596f483aSJessica Paquette 
248596f483aSJessica Paquette   /// \brief Helper struct which keeps track of the next insertion point in
249596f483aSJessica Paquette   /// Ukkonen's algorithm.
250596f483aSJessica Paquette   struct ActiveState {
251596f483aSJessica Paquette     /// The next node to insert at.
252596f483aSJessica Paquette     SuffixTreeNode *Node;
253596f483aSJessica Paquette 
254596f483aSJessica Paquette     /// The index of the first character in the substring currently being added.
255596f483aSJessica Paquette     size_t Idx = EmptyIdx;
256596f483aSJessica Paquette 
257596f483aSJessica Paquette     /// The length of the substring we have to add at the current step.
258596f483aSJessica Paquette     size_t Len = 0;
259596f483aSJessica Paquette   };
260596f483aSJessica Paquette 
261596f483aSJessica Paquette   /// \brief The point the next insertion will take place at in the
262596f483aSJessica Paquette   /// construction algorithm.
263596f483aSJessica Paquette   ActiveState Active;
264596f483aSJessica Paquette 
265596f483aSJessica Paquette   /// Allocate a leaf node and add it to the tree.
266596f483aSJessica Paquette   ///
267596f483aSJessica Paquette   /// \param Parent The parent of this node.
268596f483aSJessica Paquette   /// \param StartIdx The start index of this node's associated string.
269596f483aSJessica Paquette   /// \param Edge The label on the edge leaving \p Parent to this node.
270596f483aSJessica Paquette   ///
271596f483aSJessica Paquette   /// \returns A pointer to the allocated leaf node.
272596f483aSJessica Paquette   SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, size_t StartIdx,
273596f483aSJessica Paquette                              unsigned Edge) {
274596f483aSJessica Paquette 
275596f483aSJessica Paquette     assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
276596f483aSJessica Paquette 
277d4cb9c6dSJessica Paquette     SuffixTreeNode *N = new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx,
278596f483aSJessica Paquette                                                                    &LeafEndIdx,
279596f483aSJessica Paquette                                                                        nullptr,
280596f483aSJessica Paquette                                                                       &Parent);
281596f483aSJessica Paquette     Parent.Children[Edge] = N;
282596f483aSJessica Paquette 
283596f483aSJessica Paquette     return N;
284596f483aSJessica Paquette   }
285596f483aSJessica Paquette 
286596f483aSJessica Paquette   /// Allocate an internal node and add it to the tree.
287596f483aSJessica Paquette   ///
288596f483aSJessica Paquette   /// \param Parent The parent of this node. Only null when allocating the root.
289596f483aSJessica Paquette   /// \param StartIdx The start index of this node's associated string.
290596f483aSJessica Paquette   /// \param EndIdx The end index of this node's associated string.
291596f483aSJessica Paquette   /// \param Edge The label on the edge leaving \p Parent to this node.
292596f483aSJessica Paquette   ///
293596f483aSJessica Paquette   /// \returns A pointer to the allocated internal node.
294596f483aSJessica Paquette   SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, size_t StartIdx,
295596f483aSJessica Paquette                                      size_t EndIdx, unsigned Edge) {
296596f483aSJessica Paquette 
297596f483aSJessica Paquette     assert(StartIdx <= EndIdx && "String can't start after it ends!");
298596f483aSJessica Paquette     assert(!(!Parent && StartIdx != EmptyIdx) &&
299596f483aSJessica Paquette     "Non-root internal nodes must have parents!");
300596f483aSJessica Paquette 
301596f483aSJessica Paquette     size_t *E = new (InternalEndIdxAllocator) size_t(EndIdx);
302d4cb9c6dSJessica Paquette     SuffixTreeNode *N = new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx,
303596f483aSJessica Paquette                                                                       E,
304596f483aSJessica Paquette                                                                       Root,
305596f483aSJessica Paquette                                                                       Parent);
306596f483aSJessica Paquette     if (Parent)
307596f483aSJessica Paquette       Parent->Children[Edge] = N;
308596f483aSJessica Paquette 
309596f483aSJessica Paquette     return N;
310596f483aSJessica Paquette   }
311596f483aSJessica Paquette 
312596f483aSJessica Paquette   /// \brief Set the suffix indices of the leaves to the start indices of their
313596f483aSJessica Paquette   /// respective suffixes. Also stores each leaf in \p LeafVector at its
314596f483aSJessica Paquette   /// respective suffix index.
315596f483aSJessica Paquette   ///
316596f483aSJessica Paquette   /// \param[in] CurrNode The node currently being visited.
317596f483aSJessica Paquette   /// \param CurrIdx The current index of the string being visited.
318596f483aSJessica Paquette   void setSuffixIndices(SuffixTreeNode &CurrNode, size_t CurrIdx) {
319596f483aSJessica Paquette 
320596f483aSJessica Paquette     bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
321596f483aSJessica Paquette 
322596f483aSJessica Paquette     // Traverse the tree depth-first.
323596f483aSJessica Paquette     for (auto &ChildPair : CurrNode.Children) {
324596f483aSJessica Paquette       assert(ChildPair.second && "Node had a null child!");
325596f483aSJessica Paquette       setSuffixIndices(*ChildPair.second,
326596f483aSJessica Paquette                        CurrIdx + ChildPair.second->size());
327596f483aSJessica Paquette     }
328596f483aSJessica Paquette 
329596f483aSJessica Paquette     // Is this node a leaf?
330596f483aSJessica Paquette     if (IsLeaf) {
331596f483aSJessica Paquette       // If yes, give it a suffix index and bump its parent's occurrence count.
332596f483aSJessica Paquette       CurrNode.SuffixIdx = Str.size() - CurrIdx;
333596f483aSJessica Paquette       assert(CurrNode.Parent && "CurrNode had no parent!");
334596f483aSJessica Paquette       CurrNode.Parent->OccurrenceCount++;
335596f483aSJessica Paquette 
336596f483aSJessica Paquette       // Store the leaf in the leaf vector for pruning later.
337596f483aSJessica Paquette       LeafVector[CurrNode.SuffixIdx] = &CurrNode;
338596f483aSJessica Paquette     }
339596f483aSJessica Paquette   }
340596f483aSJessica Paquette 
341596f483aSJessica Paquette   /// \brief Construct the suffix tree for the prefix of the input ending at
342596f483aSJessica Paquette   /// \p EndIdx.
343596f483aSJessica Paquette   ///
344596f483aSJessica Paquette   /// Used to construct the full suffix tree iteratively. At the end of each
345596f483aSJessica Paquette   /// step, the constructed suffix tree is either a valid suffix tree, or a
346596f483aSJessica Paquette   /// suffix tree with implicit suffixes. At the end of the final step, the
347596f483aSJessica Paquette   /// suffix tree is a valid tree.
348596f483aSJessica Paquette   ///
349596f483aSJessica Paquette   /// \param EndIdx The end index of the current prefix in the main string.
350596f483aSJessica Paquette   /// \param SuffixesToAdd The number of suffixes that must be added
351596f483aSJessica Paquette   /// to complete the suffix tree at the current phase.
352596f483aSJessica Paquette   ///
353596f483aSJessica Paquette   /// \returns The number of suffixes that have not been added at the end of
354596f483aSJessica Paquette   /// this step.
355596f483aSJessica Paquette   unsigned extend(size_t EndIdx, size_t SuffixesToAdd) {
356596f483aSJessica Paquette     SuffixTreeNode *NeedsLink = nullptr;
357596f483aSJessica Paquette 
358596f483aSJessica Paquette     while (SuffixesToAdd > 0) {
359596f483aSJessica Paquette 
360596f483aSJessica Paquette       // Are we waiting to add anything other than just the last character?
361596f483aSJessica Paquette       if (Active.Len == 0) {
362596f483aSJessica Paquette         // If not, then say the active index is the end index.
363596f483aSJessica Paquette         Active.Idx = EndIdx;
364596f483aSJessica Paquette       }
365596f483aSJessica Paquette 
366596f483aSJessica Paquette       assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
367596f483aSJessica Paquette 
368596f483aSJessica Paquette       // The first character in the current substring we're looking at.
369596f483aSJessica Paquette       unsigned FirstChar = Str[Active.Idx];
370596f483aSJessica Paquette 
371596f483aSJessica Paquette       // Have we inserted anything starting with FirstChar at the current node?
372596f483aSJessica Paquette       if (Active.Node->Children.count(FirstChar) == 0) {
373596f483aSJessica Paquette         // If not, then we can just insert a leaf and move too the next step.
374596f483aSJessica Paquette         insertLeaf(*Active.Node, EndIdx, FirstChar);
375596f483aSJessica Paquette 
376596f483aSJessica Paquette         // The active node is an internal node, and we visited it, so it must
377596f483aSJessica Paquette         // need a link if it doesn't have one.
378596f483aSJessica Paquette         if (NeedsLink) {
379596f483aSJessica Paquette           NeedsLink->Link = Active.Node;
380596f483aSJessica Paquette           NeedsLink = nullptr;
381596f483aSJessica Paquette         }
382596f483aSJessica Paquette       } else {
383596f483aSJessica Paquette         // There's a match with FirstChar, so look for the point in the tree to
384596f483aSJessica Paquette         // insert a new node.
385596f483aSJessica Paquette         SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
386596f483aSJessica Paquette 
387596f483aSJessica Paquette         size_t SubstringLen = NextNode->size();
388596f483aSJessica Paquette 
389596f483aSJessica Paquette         // Is the current suffix we're trying to insert longer than the size of
390596f483aSJessica Paquette         // the child we want to move to?
391596f483aSJessica Paquette         if (Active.Len >= SubstringLen) {
392596f483aSJessica Paquette           // If yes, then consume the characters we've seen and move to the next
393596f483aSJessica Paquette           // node.
394596f483aSJessica Paquette           Active.Idx += SubstringLen;
395596f483aSJessica Paquette           Active.Len -= SubstringLen;
396596f483aSJessica Paquette           Active.Node = NextNode;
397596f483aSJessica Paquette           continue;
398596f483aSJessica Paquette         }
399596f483aSJessica Paquette 
400596f483aSJessica Paquette         // Otherwise, the suffix we're trying to insert must be contained in the
401596f483aSJessica Paquette         // next node we want to move to.
402596f483aSJessica Paquette         unsigned LastChar = Str[EndIdx];
403596f483aSJessica Paquette 
404596f483aSJessica Paquette         // Is the string we're trying to insert a substring of the next node?
405596f483aSJessica Paquette         if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
406596f483aSJessica Paquette           // If yes, then we're done for this step. Remember our insertion point
407596f483aSJessica Paquette           // and move to the next end index. At this point, we have an implicit
408596f483aSJessica Paquette           // suffix tree.
409596f483aSJessica Paquette           if (NeedsLink && !Active.Node->isRoot()) {
410596f483aSJessica Paquette             NeedsLink->Link = Active.Node;
411596f483aSJessica Paquette             NeedsLink = nullptr;
412596f483aSJessica Paquette           }
413596f483aSJessica Paquette 
414596f483aSJessica Paquette           Active.Len++;
415596f483aSJessica Paquette           break;
416596f483aSJessica Paquette         }
417596f483aSJessica Paquette 
418596f483aSJessica Paquette         // The string we're trying to insert isn't a substring of the next node,
419596f483aSJessica Paquette         // but matches up to a point. Split the node.
420596f483aSJessica Paquette         //
421596f483aSJessica Paquette         // For example, say we ended our search at a node n and we're trying to
422596f483aSJessica Paquette         // insert ABD. Then we'll create a new node s for AB, reduce n to just
423596f483aSJessica Paquette         // representing C, and insert a new leaf node l to represent d. This
424596f483aSJessica Paquette         // allows us to ensure that if n was a leaf, it remains a leaf.
425596f483aSJessica Paquette         //
426596f483aSJessica Paquette         //   | ABC  ---split--->  | AB
427596f483aSJessica Paquette         //   n                    s
428596f483aSJessica Paquette         //                     C / \ D
429596f483aSJessica Paquette         //                      n   l
430596f483aSJessica Paquette 
431596f483aSJessica Paquette         // The node s from the diagram
432596f483aSJessica Paquette         SuffixTreeNode *SplitNode =
433596f483aSJessica Paquette             insertInternalNode(Active.Node,
434596f483aSJessica Paquette                                NextNode->StartIdx,
435596f483aSJessica Paquette                                NextNode->StartIdx + Active.Len - 1,
436596f483aSJessica Paquette                                FirstChar);
437596f483aSJessica Paquette 
438596f483aSJessica Paquette         // Insert the new node representing the new substring into the tree as
439596f483aSJessica Paquette         // a child of the split node. This is the node l from the diagram.
440596f483aSJessica Paquette         insertLeaf(*SplitNode, EndIdx, LastChar);
441596f483aSJessica Paquette 
442596f483aSJessica Paquette         // Make the old node a child of the split node and update its start
443596f483aSJessica Paquette         // index. This is the node n from the diagram.
444596f483aSJessica Paquette         NextNode->StartIdx += Active.Len;
445596f483aSJessica Paquette         NextNode->Parent = SplitNode;
446596f483aSJessica Paquette         SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
447596f483aSJessica Paquette 
448596f483aSJessica Paquette         // SplitNode is an internal node, update the suffix link.
449596f483aSJessica Paquette         if (NeedsLink)
450596f483aSJessica Paquette           NeedsLink->Link = SplitNode;
451596f483aSJessica Paquette 
452596f483aSJessica Paquette         NeedsLink = SplitNode;
453596f483aSJessica Paquette       }
454596f483aSJessica Paquette 
455596f483aSJessica Paquette       // We've added something new to the tree, so there's one less suffix to
456596f483aSJessica Paquette       // add.
457596f483aSJessica Paquette       SuffixesToAdd--;
458596f483aSJessica Paquette 
459596f483aSJessica Paquette       if (Active.Node->isRoot()) {
460596f483aSJessica Paquette         if (Active.Len > 0) {
461596f483aSJessica Paquette           Active.Len--;
462596f483aSJessica Paquette           Active.Idx = EndIdx - SuffixesToAdd + 1;
463596f483aSJessica Paquette         }
464596f483aSJessica Paquette       } else {
465596f483aSJessica Paquette         // Start the next phase at the next smallest suffix.
466596f483aSJessica Paquette         Active.Node = Active.Node->Link;
467596f483aSJessica Paquette       }
468596f483aSJessica Paquette     }
469596f483aSJessica Paquette 
470596f483aSJessica Paquette     return SuffixesToAdd;
471596f483aSJessica Paquette   }
472596f483aSJessica Paquette 
473596f483aSJessica Paquette   /// \brief Return the start index and length of a string which maximizes a
474596f483aSJessica Paquette   /// benefit function by traversing the tree depth-first.
475596f483aSJessica Paquette   ///
476596f483aSJessica Paquette   /// Helper function for \p bestRepeatedSubstring.
477596f483aSJessica Paquette   ///
478596f483aSJessica Paquette   /// \param CurrNode The node currently being visited.
479596f483aSJessica Paquette   /// \param CurrLen Length of the current string.
480596f483aSJessica Paquette   /// \param[out] BestLen Length of the most beneficial substring.
481596f483aSJessica Paquette   /// \param[out] MaxBenefit Benefit of the most beneficial substring.
482596f483aSJessica Paquette   /// \param[out] BestStartIdx Start index of the most beneficial substring.
483596f483aSJessica Paquette   /// \param BenefitFn The function the query should return a maximum string
484596f483aSJessica Paquette   /// for.
485596f483aSJessica Paquette   void findBest(SuffixTreeNode &CurrNode, size_t CurrLen, size_t &BestLen,
486596f483aSJessica Paquette                 size_t &MaxBenefit, size_t &BestStartIdx,
487596f483aSJessica Paquette                 const std::function<unsigned(SuffixTreeNode &, size_t CurrLen)>
488596f483aSJessica Paquette                 &BenefitFn) {
489596f483aSJessica Paquette 
490596f483aSJessica Paquette     if (!CurrNode.IsInTree)
491596f483aSJessica Paquette       return;
492596f483aSJessica Paquette 
493596f483aSJessica Paquette     // Can we traverse further down the tree?
494596f483aSJessica Paquette     if (!CurrNode.isLeaf()) {
495596f483aSJessica Paquette       // If yes, continue the traversal.
496596f483aSJessica Paquette       for (auto &ChildPair : CurrNode.Children) {
497596f483aSJessica Paquette         if (ChildPair.second && ChildPair.second->IsInTree)
498596f483aSJessica Paquette           findBest(*ChildPair.second, CurrLen + ChildPair.second->size(),
499596f483aSJessica Paquette                    BestLen, MaxBenefit, BestStartIdx, BenefitFn);
500596f483aSJessica Paquette       }
501596f483aSJessica Paquette     } else {
502596f483aSJessica Paquette       // We hit a leaf.
503596f483aSJessica Paquette       size_t StringLen = CurrLen - CurrNode.size();
504596f483aSJessica Paquette       unsigned Benefit = BenefitFn(CurrNode, StringLen);
505596f483aSJessica Paquette 
506596f483aSJessica Paquette       // Did we do better than in the last step?
507596f483aSJessica Paquette       if (Benefit <= MaxBenefit)
508596f483aSJessica Paquette         return;
509596f483aSJessica Paquette 
510596f483aSJessica Paquette       // We did better, so update the best string.
511596f483aSJessica Paquette       MaxBenefit = Benefit;
512596f483aSJessica Paquette       BestStartIdx = CurrNode.SuffixIdx;
513596f483aSJessica Paquette       BestLen = StringLen;
514596f483aSJessica Paquette     }
515596f483aSJessica Paquette   }
516596f483aSJessica Paquette 
517596f483aSJessica Paquette public:
518596f483aSJessica Paquette 
519596f483aSJessica Paquette   /// \brief Return a substring of the tree with maximum benefit if such a
520596f483aSJessica Paquette   /// substring exists.
521596f483aSJessica Paquette   ///
522596f483aSJessica Paquette   /// Clears the input vector and fills it with a maximum substring or empty.
523596f483aSJessica Paquette   ///
524596f483aSJessica Paquette   /// \param[in,out] Best The most beneficial substring in the tree. Empty
525596f483aSJessica Paquette   /// if it does not exist.
526596f483aSJessica Paquette   /// \param BenefitFn The function the query should return a maximum string
527596f483aSJessica Paquette   /// for.
528596f483aSJessica Paquette   void bestRepeatedSubstring(std::vector<unsigned> &Best,
529596f483aSJessica Paquette                  const std::function<unsigned(SuffixTreeNode &, size_t CurrLen)>
530596f483aSJessica Paquette                  &BenefitFn) {
531596f483aSJessica Paquette     Best.clear();
532596f483aSJessica Paquette     size_t Length = 0;   // Becomes the length of the best substring.
533596f483aSJessica Paquette     size_t Benefit = 0;  // Becomes the benefit of the best substring.
534596f483aSJessica Paquette     size_t StartIdx = 0; // Becomes the start index of the best substring.
535596f483aSJessica Paquette     findBest(*Root, 0, Length, Benefit, StartIdx, BenefitFn);
536596f483aSJessica Paquette 
537596f483aSJessica Paquette     for (size_t Idx = 0; Idx < Length; Idx++)
538596f483aSJessica Paquette       Best.push_back(Str[Idx + StartIdx]);
539596f483aSJessica Paquette   }
540596f483aSJessica Paquette 
541596f483aSJessica Paquette   /// Perform a depth-first search for \p QueryString on the suffix tree.
542596f483aSJessica Paquette   ///
543596f483aSJessica Paquette   /// \param QueryString The string to search for.
544596f483aSJessica Paquette   /// \param CurrIdx The current index in \p QueryString that is being matched
545596f483aSJessica Paquette   /// against.
546596f483aSJessica Paquette   /// \param CurrNode The suffix tree node being searched in.
547596f483aSJessica Paquette   ///
548596f483aSJessica Paquette   /// \returns A \p SuffixTreeNode that \p QueryString appears in if such a
549596f483aSJessica Paquette   /// node exists, and \p nullptr otherwise.
550596f483aSJessica Paquette   SuffixTreeNode *findString(const std::vector<unsigned> &QueryString,
551596f483aSJessica Paquette                              size_t &CurrIdx, SuffixTreeNode *CurrNode) {
552596f483aSJessica Paquette 
553596f483aSJessica Paquette     // The search ended at a nonexistent or pruned node. Quit.
554596f483aSJessica Paquette     if (!CurrNode || !CurrNode->IsInTree)
555596f483aSJessica Paquette       return nullptr;
556596f483aSJessica Paquette 
557596f483aSJessica Paquette     unsigned Edge = QueryString[CurrIdx]; // The edge we want to move on.
558596f483aSJessica Paquette     SuffixTreeNode *NextNode = CurrNode->Children[Edge]; // Next node in query.
559596f483aSJessica Paquette 
560596f483aSJessica Paquette     if (CurrNode->isRoot()) {
561596f483aSJessica Paquette       // If we're at the root we have to check if there's a child, and move to
562596f483aSJessica Paquette       // that child. Don't consume the character since \p Root represents the
563596f483aSJessica Paquette       // empty string.
564596f483aSJessica Paquette       if (NextNode && NextNode->IsInTree)
565596f483aSJessica Paquette         return findString(QueryString, CurrIdx, NextNode);
566596f483aSJessica Paquette       return nullptr;
567596f483aSJessica Paquette     }
568596f483aSJessica Paquette 
569596f483aSJessica Paquette     size_t StrIdx = CurrNode->StartIdx;
570596f483aSJessica Paquette     size_t MaxIdx = QueryString.size();
571596f483aSJessica Paquette     bool ContinueSearching = false;
572596f483aSJessica Paquette 
573596f483aSJessica Paquette     // Match as far as possible into the string. If there's a mismatch, quit.
574596f483aSJessica Paquette     for (; CurrIdx < MaxIdx; CurrIdx++, StrIdx++) {
575596f483aSJessica Paquette       Edge = QueryString[CurrIdx];
576596f483aSJessica Paquette 
577596f483aSJessica Paquette       // We matched perfectly, but still have a remainder to search.
578596f483aSJessica Paquette       if (StrIdx > *(CurrNode->EndIdx)) {
579596f483aSJessica Paquette         ContinueSearching = true;
580596f483aSJessica Paquette         break;
581596f483aSJessica Paquette       }
582596f483aSJessica Paquette 
583596f483aSJessica Paquette       if (Edge != Str[StrIdx])
584596f483aSJessica Paquette         return nullptr;
585596f483aSJessica Paquette     }
586596f483aSJessica Paquette 
587596f483aSJessica Paquette     NextNode = CurrNode->Children[Edge];
588596f483aSJessica Paquette 
589596f483aSJessica Paquette     // Move to the node which matches what we're looking for and continue
590596f483aSJessica Paquette     // searching.
591596f483aSJessica Paquette     if (ContinueSearching)
592596f483aSJessica Paquette       return findString(QueryString, CurrIdx, NextNode);
593596f483aSJessica Paquette 
594596f483aSJessica Paquette     // We matched perfectly so we're done.
595596f483aSJessica Paquette     return CurrNode;
596596f483aSJessica Paquette   }
597596f483aSJessica Paquette 
598596f483aSJessica Paquette   /// \brief Remove a node from a tree and all nodes representing proper
599596f483aSJessica Paquette   /// suffixes of that node's string.
600596f483aSJessica Paquette   ///
601596f483aSJessica Paquette   /// This is used in the outlining algorithm to reduce the number of
602596f483aSJessica Paquette   /// overlapping candidates
603596f483aSJessica Paquette   ///
604596f483aSJessica Paquette   /// \param N The suffix tree node to start pruning from.
605596f483aSJessica Paquette   /// \param Len The length of the string to be pruned.
606596f483aSJessica Paquette   ///
607596f483aSJessica Paquette   /// \returns True if this candidate didn't overlap with a previously chosen
608596f483aSJessica Paquette   /// candidate.
609596f483aSJessica Paquette   bool prune(SuffixTreeNode *N, size_t Len) {
610596f483aSJessica Paquette 
611596f483aSJessica Paquette     bool NoOverlap = true;
612596f483aSJessica Paquette     std::vector<unsigned> IndicesToPrune;
613596f483aSJessica Paquette 
614596f483aSJessica Paquette     // Look at each of N's children.
615596f483aSJessica Paquette     for (auto &ChildPair : N->Children) {
616596f483aSJessica Paquette       SuffixTreeNode *M = ChildPair.second;
617596f483aSJessica Paquette 
618596f483aSJessica Paquette       // Is this a leaf child?
619596f483aSJessica Paquette       if (M && M->IsInTree && M->isLeaf()) {
620596f483aSJessica Paquette         // Save each leaf child's suffix indices and remove them from the tree.
621596f483aSJessica Paquette         IndicesToPrune.push_back(M->SuffixIdx);
622596f483aSJessica Paquette         M->IsInTree = false;
623596f483aSJessica Paquette       }
624596f483aSJessica Paquette     }
625596f483aSJessica Paquette 
626596f483aSJessica Paquette     // Remove each suffix we have to prune from the tree. Each of these will be
627596f483aSJessica Paquette     // I + some offset for I in IndicesToPrune and some offset < Len.
628596f483aSJessica Paquette     unsigned Offset = 1;
629596f483aSJessica Paquette     for (unsigned CurrentSuffix = 1; CurrentSuffix < Len; CurrentSuffix++) {
630596f483aSJessica Paquette       for (unsigned I : IndicesToPrune) {
631596f483aSJessica Paquette 
632596f483aSJessica Paquette         unsigned PruneIdx = I + Offset;
633596f483aSJessica Paquette 
634596f483aSJessica Paquette         // Is this index actually in the string?
635596f483aSJessica Paquette         if (PruneIdx < LeafVector.size()) {
636596f483aSJessica Paquette           // If yes, we have to try and prune it.
637596f483aSJessica Paquette           // Was the current leaf already pruned by another candidate?
638596f483aSJessica Paquette           if (LeafVector[PruneIdx]->IsInTree) {
639596f483aSJessica Paquette             // If not, prune it.
640596f483aSJessica Paquette             LeafVector[PruneIdx]->IsInTree = false;
641596f483aSJessica Paquette           } else {
642596f483aSJessica Paquette             // If yes, signify that we've found an overlap, but keep pruning.
643596f483aSJessica Paquette             NoOverlap = false;
644596f483aSJessica Paquette           }
645596f483aSJessica Paquette 
646596f483aSJessica Paquette           // Update the parent of the current leaf's occurrence count.
647596f483aSJessica Paquette           SuffixTreeNode *Parent = LeafVector[PruneIdx]->Parent;
648596f483aSJessica Paquette 
649596f483aSJessica Paquette           // Is the parent still in the tree?
650596f483aSJessica Paquette           if (Parent->OccurrenceCount > 0) {
651596f483aSJessica Paquette             Parent->OccurrenceCount--;
652596f483aSJessica Paquette             Parent->IsInTree = (Parent->OccurrenceCount > 1);
653596f483aSJessica Paquette           }
654596f483aSJessica Paquette         }
655596f483aSJessica Paquette       }
656596f483aSJessica Paquette 
657596f483aSJessica Paquette       // Move to the next character in the string.
658596f483aSJessica Paquette       Offset++;
659596f483aSJessica Paquette     }
660596f483aSJessica Paquette 
661596f483aSJessica Paquette     // We know we can never outline anything which starts one index back from
662596f483aSJessica Paquette     // the indices we want to outline. This is because our minimum outlining
663596f483aSJessica Paquette     // length is always 2.
664596f483aSJessica Paquette     for (unsigned I : IndicesToPrune) {
665596f483aSJessica Paquette       if (I > 0) {
666596f483aSJessica Paquette 
667596f483aSJessica Paquette         unsigned PruneIdx = I-1;
668596f483aSJessica Paquette         SuffixTreeNode *Parent = LeafVector[PruneIdx]->Parent;
669596f483aSJessica Paquette 
670596f483aSJessica Paquette         // Was the leaf one index back from I already pruned?
671596f483aSJessica Paquette         if (LeafVector[PruneIdx]->IsInTree) {
672596f483aSJessica Paquette           // If not, prune it.
673596f483aSJessica Paquette           LeafVector[PruneIdx]->IsInTree = false;
674596f483aSJessica Paquette         } else {
675596f483aSJessica Paquette           // If yes, signify that we've found an overlap, but keep pruning.
676596f483aSJessica Paquette           NoOverlap = false;
677596f483aSJessica Paquette         }
678596f483aSJessica Paquette 
679596f483aSJessica Paquette         // Update the parent of the current leaf's occurrence count.
680596f483aSJessica Paquette         if (Parent->OccurrenceCount > 0) {
681596f483aSJessica Paquette           Parent->OccurrenceCount--;
682596f483aSJessica Paquette           Parent->IsInTree = (Parent->OccurrenceCount > 1);
683596f483aSJessica Paquette         }
684596f483aSJessica Paquette       }
685596f483aSJessica Paquette     }
686596f483aSJessica Paquette 
687596f483aSJessica Paquette     // Finally, remove N from the tree and set its occurrence count to 0.
688596f483aSJessica Paquette     N->IsInTree = false;
689596f483aSJessica Paquette     N->OccurrenceCount = 0;
690596f483aSJessica Paquette 
691596f483aSJessica Paquette     return NoOverlap;
692596f483aSJessica Paquette   }
693596f483aSJessica Paquette 
694596f483aSJessica Paquette   /// \brief Find each occurrence of of a string in \p QueryString and prune
695596f483aSJessica Paquette   /// their nodes.
696596f483aSJessica Paquette   ///
697596f483aSJessica Paquette   /// \param QueryString The string to search for.
698596f483aSJessica Paquette   /// \param[out] Occurrences The start indices of each occurrence.
699596f483aSJessica Paquette   ///
700596f483aSJessica Paquette   /// \returns Whether or not the occurrence overlaps with a previous candidate.
701596f483aSJessica Paquette   bool findOccurrencesAndPrune(const std::vector<unsigned> &QueryString,
702596f483aSJessica Paquette                                std::vector<size_t> &Occurrences) {
703596f483aSJessica Paquette     size_t Dummy = 0;
704596f483aSJessica Paquette     SuffixTreeNode *N = findString(QueryString, Dummy, Root);
705596f483aSJessica Paquette 
706596f483aSJessica Paquette     if (!N || !N->IsInTree)
707596f483aSJessica Paquette       return false;
708596f483aSJessica Paquette 
709596f483aSJessica Paquette     // If this is an internal node, occurrences are the number of leaf children
710596f483aSJessica Paquette     // of the node.
711596f483aSJessica Paquette     for (auto &ChildPair : N->Children) {
712596f483aSJessica Paquette       SuffixTreeNode *M = ChildPair.second;
713596f483aSJessica Paquette 
714596f483aSJessica Paquette       // Is it a leaf? If so, we have an occurrence.
715596f483aSJessica Paquette       if (M && M->IsInTree && M->isLeaf())
716596f483aSJessica Paquette         Occurrences.push_back(M->SuffixIdx);
717596f483aSJessica Paquette     }
718596f483aSJessica Paquette 
719596f483aSJessica Paquette     // If we're in a leaf, then this node is the only occurrence.
720596f483aSJessica Paquette     if (N->isLeaf())
721596f483aSJessica Paquette       Occurrences.push_back(N->SuffixIdx);
722596f483aSJessica Paquette 
723596f483aSJessica Paquette     return prune(N, QueryString.size());
724596f483aSJessica Paquette   }
725596f483aSJessica Paquette 
726596f483aSJessica Paquette   /// Construct a suffix tree from a sequence of unsigned integers.
727596f483aSJessica Paquette   ///
728596f483aSJessica Paquette   /// \param Str The string to construct the suffix tree for.
729596f483aSJessica Paquette   SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
730596f483aSJessica Paquette     Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
731596f483aSJessica Paquette     Root->IsInTree = true;
732596f483aSJessica Paquette     Active.Node = Root;
733596f483aSJessica Paquette     LeafVector = std::vector<SuffixTreeNode*>(Str.size());
734596f483aSJessica Paquette 
735596f483aSJessica Paquette     // Keep track of the number of suffixes we have to add of the current
736596f483aSJessica Paquette     // prefix.
737596f483aSJessica Paquette     size_t SuffixesToAdd = 0;
738596f483aSJessica Paquette     Active.Node = Root;
739596f483aSJessica Paquette 
740596f483aSJessica Paquette     // Construct the suffix tree iteratively on each prefix of the string.
741596f483aSJessica Paquette     // PfxEndIdx is the end index of the current prefix.
742596f483aSJessica Paquette     // End is one past the last element in the string.
743596f483aSJessica Paquette     for (size_t PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) {
744596f483aSJessica Paquette       SuffixesToAdd++;
745596f483aSJessica Paquette       LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
746596f483aSJessica Paquette       SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
747596f483aSJessica Paquette     }
748596f483aSJessica Paquette 
749596f483aSJessica Paquette     // Set the suffix indices of each leaf.
750596f483aSJessica Paquette     assert(Root && "Root node can't be nullptr!");
751596f483aSJessica Paquette     setSuffixIndices(*Root, 0);
752596f483aSJessica Paquette   }
753596f483aSJessica Paquette };
754596f483aSJessica Paquette 
755596f483aSJessica Paquette /// \brief An individual sequence of instructions to be replaced with a call to
756596f483aSJessica Paquette /// an outlined function.
757596f483aSJessica Paquette struct Candidate {
758596f483aSJessica Paquette 
759596f483aSJessica Paquette   /// Set to false if the candidate overlapped with another candidate.
760596f483aSJessica Paquette   bool InCandidateList = true;
761596f483aSJessica Paquette 
762596f483aSJessica Paquette   /// The start index of this \p Candidate.
763596f483aSJessica Paquette   size_t StartIdx;
764596f483aSJessica Paquette 
765596f483aSJessica Paquette   /// The number of instructions in this \p Candidate.
766596f483aSJessica Paquette   size_t Len;
767596f483aSJessica Paquette 
768596f483aSJessica Paquette   /// The index of this \p Candidate's \p OutlinedFunction in the list of
769596f483aSJessica Paquette   /// \p OutlinedFunctions.
770596f483aSJessica Paquette   size_t FunctionIdx;
771596f483aSJessica Paquette 
772596f483aSJessica Paquette   Candidate(size_t StartIdx, size_t Len, size_t FunctionIdx)
773596f483aSJessica Paquette       : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {}
774596f483aSJessica Paquette 
775596f483aSJessica Paquette   Candidate() {}
776596f483aSJessica Paquette 
777596f483aSJessica Paquette   /// \brief Used to ensure that \p Candidates are outlined in an order that
778596f483aSJessica Paquette   /// preserves the start and end indices of other \p Candidates.
779596f483aSJessica Paquette   bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; }
780596f483aSJessica Paquette };
781596f483aSJessica Paquette 
782596f483aSJessica Paquette /// \brief The information necessary to create an outlined function for some
783596f483aSJessica Paquette /// class of candidate.
784596f483aSJessica Paquette struct OutlinedFunction {
785596f483aSJessica Paquette 
786596f483aSJessica Paquette   /// The actual outlined function created.
787596f483aSJessica Paquette   /// This is initialized after we go through and create the actual function.
788596f483aSJessica Paquette   MachineFunction *MF = nullptr;
789596f483aSJessica Paquette 
790596f483aSJessica Paquette   /// A number assigned to this function which appears at the end of its name.
791596f483aSJessica Paquette   size_t Name;
792596f483aSJessica Paquette 
793596f483aSJessica Paquette   /// The number of times that this function has appeared.
794596f483aSJessica Paquette   size_t OccurrenceCount = 0;
795596f483aSJessica Paquette 
796596f483aSJessica Paquette   /// \brief The sequence of integers corresponding to the instructions in this
797596f483aSJessica Paquette   /// function.
798596f483aSJessica Paquette   std::vector<unsigned> Sequence;
799596f483aSJessica Paquette 
800596f483aSJessica Paquette   /// The number of instructions this function would save.
801596f483aSJessica Paquette   unsigned Benefit = 0;
802596f483aSJessica Paquette 
803596f483aSJessica Paquette   OutlinedFunction(size_t Name, size_t OccurrenceCount,
804596f483aSJessica Paquette                    const std::vector<unsigned> &Sequence,
805596f483aSJessica Paquette                    unsigned Benefit)
806596f483aSJessica Paquette       : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence),
807596f483aSJessica Paquette         Benefit(Benefit)
808596f483aSJessica Paquette         {}
809596f483aSJessica Paquette };
810596f483aSJessica Paquette 
811596f483aSJessica Paquette /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings.
812596f483aSJessica Paquette struct InstructionMapper {
813596f483aSJessica Paquette 
814596f483aSJessica Paquette   /// \brief The next available integer to assign to a \p MachineInstr that
815596f483aSJessica Paquette   /// cannot be outlined.
816596f483aSJessica Paquette   ///
817596f483aSJessica Paquette   /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
818596f483aSJessica Paquette   unsigned IllegalInstrNumber = -3;
819596f483aSJessica Paquette 
820596f483aSJessica Paquette   /// \brief The next available integer to assign to a \p MachineInstr that can
821596f483aSJessica Paquette   /// be outlined.
822596f483aSJessica Paquette   unsigned LegalInstrNumber = 0;
823596f483aSJessica Paquette 
824596f483aSJessica Paquette   /// Correspondence from \p MachineInstrs to unsigned integers.
825596f483aSJessica Paquette   DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
826596f483aSJessica Paquette       InstructionIntegerMap;
827596f483aSJessica Paquette 
828596f483aSJessica Paquette   /// Corresponcence from unsigned integers to \p MachineInstrs.
829596f483aSJessica Paquette   /// Inverse of \p InstructionIntegerMap.
830596f483aSJessica Paquette   DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
831596f483aSJessica Paquette 
832596f483aSJessica Paquette   /// The vector of unsigned integers that the module is mapped to.
833596f483aSJessica Paquette   std::vector<unsigned> UnsignedVec;
834596f483aSJessica Paquette 
835596f483aSJessica Paquette   /// \brief Stores the location of the instruction associated with the integer
836596f483aSJessica Paquette   /// at index i in \p UnsignedVec for each index i.
837596f483aSJessica Paquette   std::vector<MachineBasicBlock::iterator> InstrList;
838596f483aSJessica Paquette 
839596f483aSJessica Paquette   /// \brief Maps \p *It to a legal integer.
840596f483aSJessica Paquette   ///
841596f483aSJessica Paquette   /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
842596f483aSJessica Paquette   /// \p IntegerInstructionMap, and \p LegalInstrNumber.
843596f483aSJessica Paquette   ///
844596f483aSJessica Paquette   /// \returns The integer that \p *It was mapped to.
845596f483aSJessica Paquette   unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
846596f483aSJessica Paquette 
847596f483aSJessica Paquette     // Get the integer for this instruction or give it the current
848596f483aSJessica Paquette     // LegalInstrNumber.
849596f483aSJessica Paquette     InstrList.push_back(It);
850596f483aSJessica Paquette     MachineInstr &MI = *It;
851596f483aSJessica Paquette     bool WasInserted;
852596f483aSJessica Paquette     DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
853596f483aSJessica Paquette     ResultIt;
854596f483aSJessica Paquette     std::tie(ResultIt, WasInserted) =
855596f483aSJessica Paquette     InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
856596f483aSJessica Paquette     unsigned MINumber = ResultIt->second;
857596f483aSJessica Paquette 
858596f483aSJessica Paquette     // There was an insertion.
859596f483aSJessica Paquette     if (WasInserted) {
860596f483aSJessica Paquette       LegalInstrNumber++;
861596f483aSJessica Paquette       IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
862596f483aSJessica Paquette     }
863596f483aSJessica Paquette 
864596f483aSJessica Paquette     UnsignedVec.push_back(MINumber);
865596f483aSJessica Paquette 
866596f483aSJessica Paquette     // Make sure we don't overflow or use any integers reserved by the DenseMap.
867596f483aSJessica Paquette     if (LegalInstrNumber >= IllegalInstrNumber)
868596f483aSJessica Paquette       report_fatal_error("Instruction mapping overflow!");
869596f483aSJessica Paquette 
870596f483aSJessica Paquette     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey()
871596f483aSJessica Paquette           && "Tried to assign DenseMap tombstone or empty key to instruction.");
872596f483aSJessica Paquette     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey()
873596f483aSJessica Paquette           && "Tried to assign DenseMap tombstone or empty key to instruction.");
874596f483aSJessica Paquette 
875596f483aSJessica Paquette     return MINumber;
876596f483aSJessica Paquette   }
877596f483aSJessica Paquette 
878596f483aSJessica Paquette   /// Maps \p *It to an illegal integer.
879596f483aSJessica Paquette   ///
880596f483aSJessica Paquette   /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
881596f483aSJessica Paquette   ///
882596f483aSJessica Paquette   /// \returns The integer that \p *It was mapped to.
883596f483aSJessica Paquette   unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
884596f483aSJessica Paquette     unsigned MINumber = IllegalInstrNumber;
885596f483aSJessica Paquette 
886596f483aSJessica Paquette     InstrList.push_back(It);
887596f483aSJessica Paquette     UnsignedVec.push_back(IllegalInstrNumber);
888596f483aSJessica Paquette     IllegalInstrNumber--;
889596f483aSJessica Paquette 
890596f483aSJessica Paquette     assert(LegalInstrNumber < IllegalInstrNumber &&
891596f483aSJessica Paquette            "Instruction mapping overflow!");
892596f483aSJessica Paquette 
893596f483aSJessica Paquette     assert(IllegalInstrNumber !=
894596f483aSJessica Paquette       DenseMapInfo<unsigned>::getEmptyKey() &&
895596f483aSJessica Paquette       "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
896596f483aSJessica Paquette 
897596f483aSJessica Paquette     assert(IllegalInstrNumber !=
898596f483aSJessica Paquette       DenseMapInfo<unsigned>::getTombstoneKey() &&
899596f483aSJessica Paquette       "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
900596f483aSJessica Paquette 
901596f483aSJessica Paquette     return MINumber;
902596f483aSJessica Paquette   }
903596f483aSJessica Paquette 
904596f483aSJessica Paquette   /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
905596f483aSJessica Paquette   /// and appends it to \p UnsignedVec and \p InstrList.
906596f483aSJessica Paquette   ///
907596f483aSJessica Paquette   /// Two instructions are assigned the same integer if they are identical.
908596f483aSJessica Paquette   /// If an instruction is deemed unsafe to outline, then it will be assigned an
909596f483aSJessica Paquette   /// unique integer. The resulting mapping is placed into a suffix tree and
910596f483aSJessica Paquette   /// queried for candidates.
911596f483aSJessica Paquette   ///
912596f483aSJessica Paquette   /// \param MBB The \p MachineBasicBlock to be translated into integers.
913596f483aSJessica Paquette   /// \param TRI \p TargetRegisterInfo for the module.
914596f483aSJessica Paquette   /// \param TII \p TargetInstrInfo for the module.
915596f483aSJessica Paquette   void convertToUnsignedVec(MachineBasicBlock &MBB,
916596f483aSJessica Paquette                             const TargetRegisterInfo &TRI,
917596f483aSJessica Paquette                             const TargetInstrInfo &TII) {
918596f483aSJessica Paquette     for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et;
919596f483aSJessica Paquette          It++) {
920596f483aSJessica Paquette 
921596f483aSJessica Paquette       // Keep track of where this instruction is in the module.
922596f483aSJessica Paquette       switch(TII.getOutliningType(*It)) {
923596f483aSJessica Paquette         case TargetInstrInfo::MachineOutlinerInstrType::Illegal:
924596f483aSJessica Paquette           mapToIllegalUnsigned(It);
925596f483aSJessica Paquette           break;
926596f483aSJessica Paquette 
927596f483aSJessica Paquette         case TargetInstrInfo::MachineOutlinerInstrType::Legal:
928596f483aSJessica Paquette           mapToLegalUnsigned(It);
929596f483aSJessica Paquette           break;
930596f483aSJessica Paquette 
931596f483aSJessica Paquette         case TargetInstrInfo::MachineOutlinerInstrType::Invisible:
932596f483aSJessica Paquette           break;
933596f483aSJessica Paquette       }
934596f483aSJessica Paquette     }
935596f483aSJessica Paquette 
936596f483aSJessica Paquette     // After we're done every insertion, uniquely terminate this part of the
937596f483aSJessica Paquette     // "string". This makes sure we won't match across basic block or function
938596f483aSJessica Paquette     // boundaries since the "end" is encoded uniquely and thus appears in no
939596f483aSJessica Paquette     // repeated substring.
940596f483aSJessica Paquette     InstrList.push_back(MBB.end());
941596f483aSJessica Paquette     UnsignedVec.push_back(IllegalInstrNumber);
942596f483aSJessica Paquette     IllegalInstrNumber--;
943596f483aSJessica Paquette   }
944596f483aSJessica Paquette 
945596f483aSJessica Paquette   InstructionMapper() {
946596f483aSJessica Paquette     // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
947596f483aSJessica Paquette     // changed.
948596f483aSJessica Paquette     assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
949596f483aSJessica Paquette                 "DenseMapInfo<unsigned>'s empty key isn't -1!");
950596f483aSJessica Paquette     assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
951596f483aSJessica Paquette                 "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
952596f483aSJessica Paquette   }
953596f483aSJessica Paquette };
954596f483aSJessica Paquette 
955596f483aSJessica Paquette /// \brief An interprocedural pass which finds repeated sequences of
956596f483aSJessica Paquette /// instructions and replaces them with calls to functions.
957596f483aSJessica Paquette ///
958596f483aSJessica Paquette /// Each instruction is mapped to an unsigned integer and placed in a string.
959596f483aSJessica Paquette /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
960596f483aSJessica Paquette /// is then repeatedly queried for repeated sequences of instructions. Each
961596f483aSJessica Paquette /// non-overlapping repeated sequence is then placed in its own
962596f483aSJessica Paquette /// \p MachineFunction and each instance is then replaced with a call to that
963596f483aSJessica Paquette /// function.
964596f483aSJessica Paquette struct MachineOutliner : public ModulePass {
965596f483aSJessica Paquette 
966596f483aSJessica Paquette   static char ID;
967596f483aSJessica Paquette 
968596f483aSJessica Paquette   StringRef getPassName() const override { return "Machine Outliner"; }
969596f483aSJessica Paquette 
970596f483aSJessica Paquette   void getAnalysisUsage(AnalysisUsage &AU) const override {
971596f483aSJessica Paquette     AU.addRequired<MachineModuleInfo>();
972596f483aSJessica Paquette     AU.addPreserved<MachineModuleInfo>();
973596f483aSJessica Paquette     AU.setPreservesAll();
974596f483aSJessica Paquette     ModulePass::getAnalysisUsage(AU);
975596f483aSJessica Paquette   }
976596f483aSJessica Paquette 
977596f483aSJessica Paquette   MachineOutliner() : ModulePass(ID) {
978596f483aSJessica Paquette     initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
979596f483aSJessica Paquette   }
980596f483aSJessica Paquette 
981596f483aSJessica Paquette   /// \brief Replace the sequences of instructions represented by the
982596f483aSJessica Paquette   /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
983596f483aSJessica Paquette   /// described in \p FunctionList.
984596f483aSJessica Paquette   ///
985596f483aSJessica Paquette   /// \param M The module we are outlining from.
986596f483aSJessica Paquette   /// \param CandidateList A list of candidates to be outlined.
987596f483aSJessica Paquette   /// \param FunctionList A list of functions to be inserted into the module.
988596f483aSJessica Paquette   /// \param Mapper Contains the instruction mappings for the module.
989596f483aSJessica Paquette   bool outline(Module &M, const ArrayRef<Candidate> &CandidateList,
990596f483aSJessica Paquette                std::vector<OutlinedFunction> &FunctionList,
991596f483aSJessica Paquette                InstructionMapper &Mapper);
992596f483aSJessica Paquette 
993596f483aSJessica Paquette   /// Creates a function for \p OF and inserts it into the module.
994596f483aSJessica Paquette   MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
995596f483aSJessica Paquette                                           InstructionMapper &Mapper);
996596f483aSJessica Paquette 
997596f483aSJessica Paquette   /// Find potential outlining candidates and store them in \p CandidateList.
998596f483aSJessica Paquette   ///
999596f483aSJessica Paquette   /// For each type of potential candidate, also build an \p OutlinedFunction
1000596f483aSJessica Paquette   /// struct containing the information to build the function for that
1001596f483aSJessica Paquette   /// candidate.
1002596f483aSJessica Paquette   ///
1003596f483aSJessica Paquette   /// \param[out] CandidateList Filled with outlining candidates for the module.
1004596f483aSJessica Paquette   /// \param[out] FunctionList Filled with functions corresponding to each type
1005596f483aSJessica Paquette   /// of \p Candidate.
1006596f483aSJessica Paquette   /// \param ST The suffix tree for the module.
1007596f483aSJessica Paquette   /// \param TII TargetInstrInfo for the module.
1008596f483aSJessica Paquette   ///
1009596f483aSJessica Paquette   /// \returns The length of the longest candidate found. 0 if there are none.
1010596f483aSJessica Paquette   unsigned buildCandidateList(std::vector<Candidate> &CandidateList,
1011596f483aSJessica Paquette                               std::vector<OutlinedFunction> &FunctionList,
1012596f483aSJessica Paquette                               SuffixTree &ST, const TargetInstrInfo &TII);
1013596f483aSJessica Paquette 
1014596f483aSJessica Paquette   /// \brief Remove any overlapping candidates that weren't handled by the
1015596f483aSJessica Paquette   /// suffix tree's pruning method.
1016596f483aSJessica Paquette   ///
1017596f483aSJessica Paquette   /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
1018596f483aSJessica Paquette   /// If a short candidate is chosen for outlining, then a longer candidate
1019596f483aSJessica Paquette   /// which has that short candidate as a suffix is chosen, the tree's pruning
1020596f483aSJessica Paquette   /// method will not find it. Thus, we need to prune before outlining as well.
1021596f483aSJessica Paquette   ///
1022596f483aSJessica Paquette   /// \param[in,out] CandidateList A list of outlining candidates.
1023596f483aSJessica Paquette   /// \param[in,out] FunctionList A list of functions to be outlined.
1024596f483aSJessica Paquette   /// \param MaxCandidateLen The length of the longest candidate.
1025596f483aSJessica Paquette   /// \param TII TargetInstrInfo for the module.
1026596f483aSJessica Paquette   void pruneOverlaps(std::vector<Candidate> &CandidateList,
1027596f483aSJessica Paquette                      std::vector<OutlinedFunction> &FunctionList,
1028596f483aSJessica Paquette                      unsigned MaxCandidateLen,
1029596f483aSJessica Paquette                      const TargetInstrInfo &TII);
1030596f483aSJessica Paquette 
1031596f483aSJessica Paquette   /// Construct a suffix tree on the instructions in \p M and outline repeated
1032596f483aSJessica Paquette   /// strings from that tree.
1033596f483aSJessica Paquette   bool runOnModule(Module &M) override;
1034596f483aSJessica Paquette };
1035596f483aSJessica Paquette 
1036596f483aSJessica Paquette } // Anonymous namespace.
1037596f483aSJessica Paquette 
1038596f483aSJessica Paquette char MachineOutliner::ID = 0;
1039596f483aSJessica Paquette 
1040596f483aSJessica Paquette namespace llvm {
1041596f483aSJessica Paquette ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); }
1042596f483aSJessica Paquette }
1043596f483aSJessica Paquette 
1044596f483aSJessica Paquette INITIALIZE_PASS(MachineOutliner, "machine-outliner",
1045596f483aSJessica Paquette                 "Machine Function Outliner", false, false)
1046596f483aSJessica Paquette 
1047596f483aSJessica Paquette void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList,
1048596f483aSJessica Paquette                                     std::vector<OutlinedFunction> &FunctionList,
1049596f483aSJessica Paquette                                     unsigned MaxCandidateLen,
1050596f483aSJessica Paquette                                     const TargetInstrInfo &TII) {
1051596f483aSJessica Paquette 
1052596f483aSJessica Paquette   // Check for overlaps in the range. This is O(n^2) worst case, but we can
1053596f483aSJessica Paquette   // alleviate that somewhat by bounding our search space using the start
1054596f483aSJessica Paquette   // index of our first candidate and the maximum distance an overlapping
1055596f483aSJessica Paquette   // candidate could have from the first candidate.
1056596f483aSJessica Paquette   for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
1057596f483aSJessica Paquette        It++) {
1058596f483aSJessica Paquette     Candidate &C1 = *It;
1059596f483aSJessica Paquette     OutlinedFunction &F1 = FunctionList[C1.FunctionIdx];
1060596f483aSJessica Paquette 
1061596f483aSJessica Paquette     // If we removed this candidate, skip it.
1062596f483aSJessica Paquette     if (!C1.InCandidateList)
1063596f483aSJessica Paquette       continue;
1064596f483aSJessica Paquette 
1065596f483aSJessica Paquette     // If the candidate's function isn't good to outline anymore, then
1066596f483aSJessica Paquette     // remove the candidate and skip it.
1067596f483aSJessica Paquette     if (F1.OccurrenceCount < 2 || F1.Benefit < 1) {
1068596f483aSJessica Paquette       C1.InCandidateList = false;
1069596f483aSJessica Paquette       continue;
1070596f483aSJessica Paquette     }
1071596f483aSJessica Paquette 
1072596f483aSJessica Paquette     // The minimum start index of any candidate that could overlap with this
1073596f483aSJessica Paquette     // one.
1074596f483aSJessica Paquette     unsigned FarthestPossibleIdx = 0;
1075596f483aSJessica Paquette 
1076596f483aSJessica Paquette     // Either the index is 0, or it's at most MaxCandidateLen indices away.
1077596f483aSJessica Paquette     if (C1.StartIdx > MaxCandidateLen)
1078596f483aSJessica Paquette       FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen;
1079596f483aSJessica Paquette 
1080596f483aSJessica Paquette     // Compare against the other candidates in the list.
1081596f483aSJessica Paquette     // This is at most MaxCandidateLen/2 other candidates.
1082596f483aSJessica Paquette     // This is because each candidate has to be at least 2 indices away.
1083596f483aSJessica Paquette     // = O(n * MaxCandidateLen/2) comparisons
1084596f483aSJessica Paquette     //
1085596f483aSJessica Paquette     // On average, the maximum length of a candidate is quite small; a fraction
1086596f483aSJessica Paquette     // of the total module length in terms of instructions. If the maximum
1087596f483aSJessica Paquette     // candidate length is large, then there are fewer possible candidates to
1088596f483aSJessica Paquette     // compare against in the first place.
1089596f483aSJessica Paquette     for (auto Sit = It + 1; Sit != Et; Sit++) {
1090596f483aSJessica Paquette       Candidate &C2 = *Sit;
1091596f483aSJessica Paquette       OutlinedFunction &F2 = FunctionList[C2.FunctionIdx];
1092596f483aSJessica Paquette 
1093596f483aSJessica Paquette       // Is this candidate too far away to overlap?
1094596f483aSJessica Paquette       // NOTE: This will be true in
1095596f483aSJessica Paquette       //    O(max(FarthestPossibleIdx/2, #Candidates remaining)) steps
1096596f483aSJessica Paquette       // for every candidate.
1097596f483aSJessica Paquette       if (C2.StartIdx < FarthestPossibleIdx)
1098596f483aSJessica Paquette         break;
1099596f483aSJessica Paquette 
1100596f483aSJessica Paquette       // Did we already remove this candidate in a previous step?
1101596f483aSJessica Paquette       if (!C2.InCandidateList)
1102596f483aSJessica Paquette         continue;
1103596f483aSJessica Paquette 
1104596f483aSJessica Paquette       // Is the function beneficial to outline?
1105596f483aSJessica Paquette       if (F2.OccurrenceCount < 2 || F2.Benefit < 1) {
1106596f483aSJessica Paquette         // If not, remove this candidate and move to the next one.
1107596f483aSJessica Paquette         C2.InCandidateList = false;
1108596f483aSJessica Paquette         continue;
1109596f483aSJessica Paquette       }
1110596f483aSJessica Paquette 
1111596f483aSJessica Paquette       size_t C2End = C2.StartIdx + C2.Len - 1;
1112596f483aSJessica Paquette 
1113596f483aSJessica Paquette       // Do C1 and C2 overlap?
1114596f483aSJessica Paquette       //
1115596f483aSJessica Paquette       // Not overlapping:
1116596f483aSJessica Paquette       // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
1117596f483aSJessica Paquette       //
1118596f483aSJessica Paquette       // We sorted our candidate list so C2Start <= C1Start. We know that
1119596f483aSJessica Paquette       // C2End > C2Start since each candidate has length >= 2. Therefore, all we
1120596f483aSJessica Paquette       // have to check is C2End < C2Start to see if we overlap.
1121596f483aSJessica Paquette       if (C2End < C1.StartIdx)
1122596f483aSJessica Paquette         continue;
1123596f483aSJessica Paquette 
1124596f483aSJessica Paquette       // C2 overlaps with C1. Because we pruned the tree already, the only way
1125596f483aSJessica Paquette       // this can happen is if C1 is a proper suffix of C2. Thus, we must have
1126596f483aSJessica Paquette       // found C1 first during our query, so it must have benefit greater or
1127596f483aSJessica Paquette       // equal to C2. Greedily pick C1 as the candidate to keep and toss out C2.
1128596f483aSJessica Paquette       DEBUG (
1129596f483aSJessica Paquette             size_t C1End = C1.StartIdx + C1.Len - 1;
1130596f483aSJessica Paquette             dbgs() << "- Found an overlap to purge.\n";
1131596f483aSJessica Paquette             dbgs() << "--- C1 :[" << C1.StartIdx << ", " << C1End << "]\n";
1132596f483aSJessica Paquette             dbgs() << "--- C2 :[" << C2.StartIdx << ", " << C2End << "]\n";
1133596f483aSJessica Paquette             );
1134596f483aSJessica Paquette 
1135596f483aSJessica Paquette       // Update the function's occurrence count and benefit to reflec that C2
1136596f483aSJessica Paquette       // is being removed.
1137596f483aSJessica Paquette       F2.OccurrenceCount--;
1138596f483aSJessica Paquette       F2.Benefit = TII.getOutliningBenefit(F2.Sequence.size(),
1139596f483aSJessica Paquette                                            F2.OccurrenceCount
1140596f483aSJessica Paquette                                            );
1141596f483aSJessica Paquette 
1142596f483aSJessica Paquette       // Mark C2 as not in the list.
1143596f483aSJessica Paquette       C2.InCandidateList = false;
1144596f483aSJessica Paquette 
1145596f483aSJessica Paquette       DEBUG (
1146596f483aSJessica Paquette             dbgs() << "- Removed C2. \n";
1147596f483aSJessica Paquette             dbgs() << "--- Num fns left for C2: " << F2.OccurrenceCount << "\n";
1148596f483aSJessica Paquette             dbgs() << "--- C2's benefit: " << F2.Benefit << "\n";
1149596f483aSJessica Paquette             );
1150596f483aSJessica Paquette     }
1151596f483aSJessica Paquette   }
1152596f483aSJessica Paquette }
1153596f483aSJessica Paquette 
1154596f483aSJessica Paquette unsigned
1155596f483aSJessica Paquette MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList,
1156596f483aSJessica Paquette                                     std::vector<OutlinedFunction> &FunctionList,
1157596f483aSJessica Paquette                                     SuffixTree &ST,
1158596f483aSJessica Paquette                                     const TargetInstrInfo &TII) {
1159596f483aSJessica Paquette 
1160596f483aSJessica Paquette   std::vector<unsigned> CandidateSequence; // Current outlining candidate.
1161596f483aSJessica Paquette   unsigned MaxCandidateLen = 0; // Length of the longest candidate.
1162596f483aSJessica Paquette 
1163596f483aSJessica Paquette   // Function for maximizing query in the suffix tree.
1164596f483aSJessica Paquette   // This allows us to define more fine-grained types of things to outline in
1165596f483aSJessica Paquette   // the target without putting target-specific info in the suffix tree.
1166596f483aSJessica Paquette   auto BenefitFn = [&TII](const SuffixTreeNode &Curr, size_t StringLen) {
1167596f483aSJessica Paquette 
1168596f483aSJessica Paquette     // Any leaf whose parent is the root only has one occurrence.
1169596f483aSJessica Paquette     if (Curr.Parent->isRoot())
1170596f483aSJessica Paquette       return 0u;
1171596f483aSJessica Paquette 
1172596f483aSJessica Paquette     // Anything with length < 2 will never be beneficial on any target.
1173596f483aSJessica Paquette     if (StringLen < 2)
1174596f483aSJessica Paquette       return 0u;
1175596f483aSJessica Paquette 
1176596f483aSJessica Paquette     size_t Occurrences = Curr.Parent->OccurrenceCount;
1177596f483aSJessica Paquette 
1178596f483aSJessica Paquette     // Anything with fewer than 2 occurrences will never be beneficial on any
1179596f483aSJessica Paquette     // target.
1180596f483aSJessica Paquette     if (Occurrences < 2)
1181596f483aSJessica Paquette       return 0u;
1182596f483aSJessica Paquette 
1183596f483aSJessica Paquette     return TII.getOutliningBenefit(StringLen, Occurrences);
1184596f483aSJessica Paquette   };
1185596f483aSJessica Paquette 
1186596f483aSJessica Paquette   // Repeatedly query the suffix tree for the substring that maximizes
1187596f483aSJessica Paquette   // BenefitFn. Find the occurrences of that string, prune the tree, and store
1188596f483aSJessica Paquette   // each occurrence as a candidate.
1189596f483aSJessica Paquette   for (ST.bestRepeatedSubstring(CandidateSequence, BenefitFn);
1190596f483aSJessica Paquette        CandidateSequence.size() > 1;
1191596f483aSJessica Paquette        ST.bestRepeatedSubstring(CandidateSequence, BenefitFn)) {
1192596f483aSJessica Paquette 
1193596f483aSJessica Paquette     std::vector<size_t> Occurrences;
1194596f483aSJessica Paquette 
1195596f483aSJessica Paquette     bool GotNonOverlappingCandidate =
1196596f483aSJessica Paquette         ST.findOccurrencesAndPrune(CandidateSequence, Occurrences);
1197596f483aSJessica Paquette 
1198596f483aSJessica Paquette     // Is the candidate we found known to overlap with something we already
1199596f483aSJessica Paquette     // outlined?
1200596f483aSJessica Paquette     if (!GotNonOverlappingCandidate)
1201596f483aSJessica Paquette       continue;
1202596f483aSJessica Paquette 
1203596f483aSJessica Paquette     // Is this candidate the longest so far?
1204596f483aSJessica Paquette     if (CandidateSequence.size() > MaxCandidateLen)
1205596f483aSJessica Paquette       MaxCandidateLen = CandidateSequence.size();
1206596f483aSJessica Paquette 
1207596f483aSJessica Paquette     // Keep track of the benefit of outlining this candidate in its
1208596f483aSJessica Paquette     // OutlinedFunction.
1209596f483aSJessica Paquette     unsigned FnBenefit = TII.getOutliningBenefit(CandidateSequence.size(),
1210596f483aSJessica Paquette                                                  Occurrences.size()
1211596f483aSJessica Paquette                                                  );
1212596f483aSJessica Paquette 
1213596f483aSJessica Paquette     assert(FnBenefit > 0 && "Function cannot be unbeneficial!");
1214596f483aSJessica Paquette 
1215596f483aSJessica Paquette     // Save an OutlinedFunction for this candidate.
1216596f483aSJessica Paquette     FunctionList.emplace_back(
1217596f483aSJessica Paquette         FunctionList.size(), // Number of this function.
1218596f483aSJessica Paquette         Occurrences.size(),  // Number of occurrences.
1219596f483aSJessica Paquette         CandidateSequence,   // Sequence to outline.
1220596f483aSJessica Paquette         FnBenefit            // Instructions saved by outlining this function.
1221596f483aSJessica Paquette         );
1222596f483aSJessica Paquette 
1223596f483aSJessica Paquette     // Save each of the occurrences of the candidate so we can outline them.
1224596f483aSJessica Paquette     for (size_t &Occ : Occurrences)
1225596f483aSJessica Paquette       CandidateList.emplace_back(
1226596f483aSJessica Paquette           Occ,                      // Starting idx in that MBB.
1227596f483aSJessica Paquette           CandidateSequence.size(), // Candidate length.
1228596f483aSJessica Paquette           FunctionList.size() - 1   // Idx of the corresponding function.
1229596f483aSJessica Paquette           );
1230596f483aSJessica Paquette 
1231596f483aSJessica Paquette     FunctionsCreated++;
1232596f483aSJessica Paquette   }
1233596f483aSJessica Paquette 
1234596f483aSJessica Paquette   // Sort the candidates in decending order. This will simplify the outlining
1235596f483aSJessica Paquette   // process when we have to remove the candidates from the mapping by
1236596f483aSJessica Paquette   // allowing us to cut them out without keeping track of an offset.
1237596f483aSJessica Paquette   std::stable_sort(CandidateList.begin(), CandidateList.end());
1238596f483aSJessica Paquette 
1239596f483aSJessica Paquette   return MaxCandidateLen;
1240596f483aSJessica Paquette }
1241596f483aSJessica Paquette 
1242596f483aSJessica Paquette MachineFunction *
1243596f483aSJessica Paquette MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
1244596f483aSJessica Paquette   InstructionMapper &Mapper) {
1245596f483aSJessica Paquette 
1246596f483aSJessica Paquette   // Create the function name. This should be unique. For now, just hash the
1247596f483aSJessica Paquette   // module name and include it in the function name plus the number of this
1248596f483aSJessica Paquette   // function.
1249596f483aSJessica Paquette   std::ostringstream NameStream;
1250596f483aSJessica Paquette   NameStream << "OUTLINED_FUNCTION" << "_" << OF.Name;
1251596f483aSJessica Paquette 
1252596f483aSJessica Paquette   // Create the function using an IR-level function.
1253596f483aSJessica Paquette   LLVMContext &C = M.getContext();
1254596f483aSJessica Paquette   Function *F = dyn_cast<Function>(
1255*fa97699dSSimon Pilgrim       M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C), nullptr));
1256596f483aSJessica Paquette   assert(F && "Function was null!");
1257596f483aSJessica Paquette 
1258596f483aSJessica Paquette   // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1259596f483aSJessica Paquette   // which gives us better results when we outline from linkonceodr functions.
1260596f483aSJessica Paquette   F->setLinkage(GlobalValue::PrivateLinkage);
1261596f483aSJessica Paquette   F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1262596f483aSJessica Paquette 
1263596f483aSJessica Paquette   BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1264596f483aSJessica Paquette   IRBuilder<> Builder(EntryBB);
1265596f483aSJessica Paquette   Builder.CreateRetVoid();
1266596f483aSJessica Paquette 
1267596f483aSJessica Paquette   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1268596f483aSJessica Paquette   MachineFunction &MF = MMI.getMachineFunction(*F);
1269596f483aSJessica Paquette   MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1270596f483aSJessica Paquette   const TargetSubtargetInfo &STI = MF.getSubtarget();
1271596f483aSJessica Paquette   const TargetInstrInfo &TII = *STI.getInstrInfo();
1272596f483aSJessica Paquette 
1273596f483aSJessica Paquette   // Insert the new function into the module.
1274596f483aSJessica Paquette   MF.insert(MF.begin(), &MBB);
1275596f483aSJessica Paquette 
1276596f483aSJessica Paquette   TII.insertOutlinerPrologue(MBB, MF);
1277596f483aSJessica Paquette 
1278596f483aSJessica Paquette   // Copy over the instructions for the function using the integer mappings in
1279596f483aSJessica Paquette   // its sequence.
1280596f483aSJessica Paquette   for (unsigned Str : OF.Sequence) {
1281596f483aSJessica Paquette     MachineInstr *NewMI =
1282596f483aSJessica Paquette         MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
1283596f483aSJessica Paquette     NewMI->dropMemRefs();
1284596f483aSJessica Paquette 
1285596f483aSJessica Paquette     // Don't keep debug information for outlined instructions.
1286596f483aSJessica Paquette     // FIXME: This means outlined functions are currently undebuggable.
1287596f483aSJessica Paquette     NewMI->setDebugLoc(DebugLoc());
1288596f483aSJessica Paquette     MBB.insert(MBB.end(), NewMI);
1289596f483aSJessica Paquette   }
1290596f483aSJessica Paquette 
1291596f483aSJessica Paquette   TII.insertOutlinerEpilogue(MBB, MF);
1292596f483aSJessica Paquette 
1293596f483aSJessica Paquette   return &MF;
1294596f483aSJessica Paquette }
1295596f483aSJessica Paquette 
1296596f483aSJessica Paquette bool MachineOutliner::outline(Module &M,
1297596f483aSJessica Paquette                               const ArrayRef<Candidate> &CandidateList,
1298596f483aSJessica Paquette                               std::vector<OutlinedFunction> &FunctionList,
1299596f483aSJessica Paquette                               InstructionMapper &Mapper) {
1300596f483aSJessica Paquette 
1301596f483aSJessica Paquette   bool OutlinedSomething = false;
1302596f483aSJessica Paquette 
1303596f483aSJessica Paquette   // Replace the candidates with calls to their respective outlined functions.
1304596f483aSJessica Paquette   for (const Candidate &C : CandidateList) {
1305596f483aSJessica Paquette 
1306596f483aSJessica Paquette     // Was the candidate removed during pruneOverlaps?
1307596f483aSJessica Paquette     if (!C.InCandidateList)
1308596f483aSJessica Paquette       continue;
1309596f483aSJessica Paquette 
1310596f483aSJessica Paquette     // If not, then look at its OutlinedFunction.
1311596f483aSJessica Paquette     OutlinedFunction &OF = FunctionList[C.FunctionIdx];
1312596f483aSJessica Paquette 
1313596f483aSJessica Paquette     // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
1314596f483aSJessica Paquette     if (OF.OccurrenceCount < 2 || OF.Benefit < 1)
1315596f483aSJessica Paquette       continue;
1316596f483aSJessica Paquette 
1317596f483aSJessica Paquette     // If not, then outline it.
1318596f483aSJessica Paquette     assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
1319596f483aSJessica Paquette     MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent();
1320596f483aSJessica Paquette     MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx];
1321596f483aSJessica Paquette     unsigned EndIdx = C.StartIdx + C.Len - 1;
1322596f483aSJessica Paquette 
1323596f483aSJessica Paquette     assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
1324596f483aSJessica Paquette     MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1325596f483aSJessica Paquette     assert(EndIt != MBB->end() && "EndIt out of bounds!");
1326596f483aSJessica Paquette 
1327596f483aSJessica Paquette     EndIt++; // Erase needs one past the end index.
1328596f483aSJessica Paquette 
1329596f483aSJessica Paquette     // Does this candidate have a function yet?
1330596f483aSJessica Paquette     if (!OF.MF)
1331596f483aSJessica Paquette       OF.MF = createOutlinedFunction(M, OF, Mapper);
1332596f483aSJessica Paquette 
1333596f483aSJessica Paquette     MachineFunction *MF = OF.MF;
1334596f483aSJessica Paquette     const TargetSubtargetInfo &STI = MF->getSubtarget();
1335596f483aSJessica Paquette     const TargetInstrInfo &TII = *STI.getInstrInfo();
1336596f483aSJessica Paquette 
1337596f483aSJessica Paquette     // Insert a call to the new function and erase the old sequence.
1338596f483aSJessica Paquette     TII.insertOutlinedCall(M, *MBB, StartIt, *MF);
1339596f483aSJessica Paquette     StartIt = Mapper.InstrList[C.StartIdx];
1340596f483aSJessica Paquette     MBB->erase(StartIt, EndIt);
1341596f483aSJessica Paquette 
1342596f483aSJessica Paquette     OutlinedSomething = true;
1343596f483aSJessica Paquette 
1344596f483aSJessica Paquette     // Statistics.
1345596f483aSJessica Paquette     NumOutlined++;
1346596f483aSJessica Paquette   }
1347596f483aSJessica Paquette 
1348596f483aSJessica Paquette   DEBUG (
1349596f483aSJessica Paquette     dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";
1350596f483aSJessica Paquette   );
1351596f483aSJessica Paquette 
1352596f483aSJessica Paquette   return OutlinedSomething;
1353596f483aSJessica Paquette }
1354596f483aSJessica Paquette 
1355596f483aSJessica Paquette bool MachineOutliner::runOnModule(Module &M) {
1356596f483aSJessica Paquette 
1357596f483aSJessica Paquette   // Is there anything in the module at all?
1358596f483aSJessica Paquette   if (M.empty())
1359596f483aSJessica Paquette     return false;
1360596f483aSJessica Paquette 
1361596f483aSJessica Paquette   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1362596f483aSJessica Paquette   const TargetSubtargetInfo &STI = MMI.getMachineFunction(*M.begin())
1363596f483aSJessica Paquette                                       .getSubtarget();
1364596f483aSJessica Paquette   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
1365596f483aSJessica Paquette   const TargetInstrInfo *TII = STI.getInstrInfo();
1366596f483aSJessica Paquette 
1367596f483aSJessica Paquette   InstructionMapper Mapper;
1368596f483aSJessica Paquette 
1369596f483aSJessica Paquette   // Build instruction mappings for each function in the module.
1370596f483aSJessica Paquette   for (Function &F : M) {
1371596f483aSJessica Paquette     MachineFunction &MF = MMI.getMachineFunction(F);
1372596f483aSJessica Paquette 
1373596f483aSJessica Paquette     // Is the function empty? Safe to outline from?
1374596f483aSJessica Paquette     if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF))
1375596f483aSJessica Paquette       continue;
1376596f483aSJessica Paquette 
1377596f483aSJessica Paquette     // If it is, look at each MachineBasicBlock in the function.
1378596f483aSJessica Paquette     for (MachineBasicBlock &MBB : MF) {
1379596f483aSJessica Paquette 
1380596f483aSJessica Paquette       // Is there anything in MBB?
1381596f483aSJessica Paquette       if (MBB.empty())
1382596f483aSJessica Paquette         continue;
1383596f483aSJessica Paquette 
1384596f483aSJessica Paquette       // If yes, map it.
1385596f483aSJessica Paquette       Mapper.convertToUnsignedVec(MBB, *TRI, *TII);
1386596f483aSJessica Paquette     }
1387596f483aSJessica Paquette   }
1388596f483aSJessica Paquette 
1389596f483aSJessica Paquette   // Construct a suffix tree, use it to find candidates, and then outline them.
1390596f483aSJessica Paquette   SuffixTree ST(Mapper.UnsignedVec);
1391596f483aSJessica Paquette   std::vector<Candidate> CandidateList;
1392596f483aSJessica Paquette   std::vector<OutlinedFunction> FunctionList;
1393596f483aSJessica Paquette 
1394596f483aSJessica Paquette   unsigned MaxCandidateLen =
1395596f483aSJessica Paquette       buildCandidateList(CandidateList, FunctionList, ST, *TII);
1396596f483aSJessica Paquette 
1397596f483aSJessica Paquette   pruneOverlaps(CandidateList, FunctionList, MaxCandidateLen, *TII);
1398596f483aSJessica Paquette   return outline(M, CandidateList, FunctionList, Mapper);
1399596f483aSJessica Paquette }
1400