1596f483aSJessica Paquette //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2596f483aSJessica Paquette //
3596f483aSJessica Paquette //                     The LLVM Compiler Infrastructure
4596f483aSJessica Paquette //
5596f483aSJessica Paquette // This file is distributed under the University of Illinois Open Source
6596f483aSJessica Paquette // License. See LICENSE.TXT for details.
7596f483aSJessica Paquette //
8596f483aSJessica Paquette //===----------------------------------------------------------------------===//
9596f483aSJessica Paquette ///
10596f483aSJessica Paquette /// \file
11596f483aSJessica Paquette /// Replaces repeated sequences of instructions with function calls.
12596f483aSJessica Paquette ///
13596f483aSJessica Paquette /// This works by placing every instruction from every basic block in a
14596f483aSJessica Paquette /// suffix tree, and repeatedly querying that tree for repeated sequences of
15596f483aSJessica Paquette /// instructions. If a sequence of instructions appears often, then it ought
16596f483aSJessica Paquette /// to be beneficial to pull out into a function.
17596f483aSJessica Paquette ///
184cf187b5SJessica Paquette /// The MachineOutliner communicates with a given target using hooks defined in
194cf187b5SJessica Paquette /// TargetInstrInfo.h. The target supplies the outliner with information on how
204cf187b5SJessica Paquette /// a specific sequence of instructions should be outlined. This information
214cf187b5SJessica Paquette /// is used to deduce the number of instructions necessary to
224cf187b5SJessica Paquette ///
234cf187b5SJessica Paquette /// * Create an outlined function
244cf187b5SJessica Paquette /// * Call that outlined function
254cf187b5SJessica Paquette ///
264cf187b5SJessica Paquette /// Targets must implement
274cf187b5SJessica Paquette ///   * getOutliningCandidateInfo
284cf187b5SJessica Paquette ///   * insertOutlinerEpilogue
294cf187b5SJessica Paquette ///   * insertOutlinedCall
304cf187b5SJessica Paquette ///   * insertOutlinerPrologue
314cf187b5SJessica Paquette ///   * isFunctionSafeToOutlineFrom
324cf187b5SJessica Paquette ///
334cf187b5SJessica Paquette /// in order to make use of the MachineOutliner.
344cf187b5SJessica Paquette ///
35596f483aSJessica Paquette /// This was originally presented at the 2016 LLVM Developers' Meeting in the
36596f483aSJessica Paquette /// talk "Reducing Code Size Using Outlining". For a high-level overview of
37596f483aSJessica Paquette /// how this pass works, the talk is available on YouTube at
38596f483aSJessica Paquette ///
39596f483aSJessica Paquette /// https://www.youtube.com/watch?v=yorld-WSOeU
40596f483aSJessica Paquette ///
41596f483aSJessica Paquette /// The slides for the talk are available at
42596f483aSJessica Paquette ///
43596f483aSJessica Paquette /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
44596f483aSJessica Paquette ///
45596f483aSJessica Paquette /// The talk provides an overview of how the outliner finds candidates and
46596f483aSJessica Paquette /// ultimately outlines them. It describes how the main data structure for this
47596f483aSJessica Paquette /// pass, the suffix tree, is queried and purged for candidates. It also gives
48596f483aSJessica Paquette /// a simplified suffix tree construction algorithm for suffix trees based off
49596f483aSJessica Paquette /// of the algorithm actually used here, Ukkonen's algorithm.
50596f483aSJessica Paquette ///
51596f483aSJessica Paquette /// For the original RFC for this pass, please see
52596f483aSJessica Paquette ///
53596f483aSJessica Paquette /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
54596f483aSJessica Paquette ///
55596f483aSJessica Paquette /// For more information on the suffix tree data structure, please see
56596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
57596f483aSJessica Paquette ///
58596f483aSJessica Paquette //===----------------------------------------------------------------------===//
59596f483aSJessica Paquette #include "llvm/ADT/DenseMap.h"
60596f483aSJessica Paquette #include "llvm/ADT/Statistic.h"
61596f483aSJessica Paquette #include "llvm/ADT/Twine.h"
62596f483aSJessica Paquette #include "llvm/CodeGen/MachineFrameInfo.h"
63596f483aSJessica Paquette #include "llvm/CodeGen/MachineFunction.h"
64596f483aSJessica Paquette #include "llvm/CodeGen/MachineInstrBuilder.h"
65596f483aSJessica Paquette #include "llvm/CodeGen/MachineModuleInfo.h"
66ffe4abc5SJessica Paquette #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
67596f483aSJessica Paquette #include "llvm/CodeGen/Passes.h"
68596f483aSJessica Paquette #include "llvm/IR/IRBuilder.h"
69596f483aSJessica Paquette #include "llvm/Support/Allocator.h"
70596f483aSJessica Paquette #include "llvm/Support/Debug.h"
71596f483aSJessica Paquette #include "llvm/Support/raw_ostream.h"
72596f483aSJessica Paquette #include "llvm/Target/TargetInstrInfo.h"
73596f483aSJessica Paquette #include "llvm/Target/TargetMachine.h"
74596f483aSJessica Paquette #include "llvm/Target/TargetRegisterInfo.h"
75596f483aSJessica Paquette #include "llvm/Target/TargetSubtargetInfo.h"
76596f483aSJessica Paquette #include <functional>
77596f483aSJessica Paquette #include <map>
78596f483aSJessica Paquette #include <sstream>
79596f483aSJessica Paquette #include <tuple>
80596f483aSJessica Paquette #include <vector>
81596f483aSJessica Paquette 
82596f483aSJessica Paquette #define DEBUG_TYPE "machine-outliner"
83596f483aSJessica Paquette 
84596f483aSJessica Paquette using namespace llvm;
85ffe4abc5SJessica Paquette using namespace ore;
86596f483aSJessica Paquette 
87596f483aSJessica Paquette STATISTIC(NumOutlined, "Number of candidates outlined");
88596f483aSJessica Paquette STATISTIC(FunctionsCreated, "Number of functions created");
89596f483aSJessica Paquette 
90596f483aSJessica Paquette namespace {
91596f483aSJessica Paquette 
92acffa28cSJessica Paquette /// \brief An individual sequence of instructions to be replaced with a call to
93acffa28cSJessica Paquette /// an outlined function.
94acffa28cSJessica Paquette struct Candidate {
95*c9ab4c26SJessica Paquette private:
96*c9ab4c26SJessica Paquette   /// The start index of this \p Candidate in the instruction list.
974cf187b5SJessica Paquette   unsigned StartIdx;
98acffa28cSJessica Paquette 
99acffa28cSJessica Paquette   /// The number of instructions in this \p Candidate.
1004cf187b5SJessica Paquette   unsigned Len;
101acffa28cSJessica Paquette 
102*c9ab4c26SJessica Paquette public:
103*c9ab4c26SJessica Paquette   /// Set to false if the candidate overlapped with another candidate.
104*c9ab4c26SJessica Paquette   bool InCandidateList = true;
105*c9ab4c26SJessica Paquette 
106*c9ab4c26SJessica Paquette   /// \brief The index of this \p Candidate's \p OutlinedFunction in the list of
107acffa28cSJessica Paquette   /// \p OutlinedFunctions.
1084cf187b5SJessica Paquette   unsigned FunctionIdx;
109acffa28cSJessica Paquette 
1104cf187b5SJessica Paquette   /// Contains all target-specific information for this \p Candidate.
1114cf187b5SJessica Paquette   TargetInstrInfo::MachineOutlinerInfo MInfo;
112d87f5449SJessica Paquette 
113*c9ab4c26SJessica Paquette   /// Return the number of instructions in this Candidate.
114*c9ab4c26SJessica Paquette   unsigned length() const { return Len; }
115*c9ab4c26SJessica Paquette 
116*c9ab4c26SJessica Paquette   /// Return the start index of this candidate.
117*c9ab4c26SJessica Paquette   unsigned startIdx() const { return StartIdx; }
118*c9ab4c26SJessica Paquette 
119*c9ab4c26SJessica Paquette   // Return the end index of this candidate.
120*c9ab4c26SJessica Paquette   unsigned endIdx() const { return StartIdx + Len - 1; }
121*c9ab4c26SJessica Paquette 
122acffa28cSJessica Paquette   /// \brief The number of instructions that would be saved by outlining every
123acffa28cSJessica Paquette   /// candidate of this type.
124acffa28cSJessica Paquette   ///
125acffa28cSJessica Paquette   /// This is a fixed value which is not updated during the candidate pruning
126acffa28cSJessica Paquette   /// process. It is only used for deciding which candidate to keep if two
127acffa28cSJessica Paquette   /// candidates overlap. The true benefit is stored in the OutlinedFunction
128acffa28cSJessica Paquette   /// for some given candidate.
129acffa28cSJessica Paquette   unsigned Benefit = 0;
130acffa28cSJessica Paquette 
1314cf187b5SJessica Paquette   Candidate(unsigned StartIdx, unsigned Len, unsigned FunctionIdx)
1324cf187b5SJessica Paquette       : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {}
133acffa28cSJessica Paquette 
134acffa28cSJessica Paquette   Candidate() {}
135acffa28cSJessica Paquette 
136acffa28cSJessica Paquette   /// \brief Used to ensure that \p Candidates are outlined in an order that
137acffa28cSJessica Paquette   /// preserves the start and end indices of other \p Candidates.
138*c9ab4c26SJessica Paquette   bool operator<(const Candidate &RHS) const {
139*c9ab4c26SJessica Paquette     return startIdx() > RHS.startIdx();
140*c9ab4c26SJessica Paquette   }
141acffa28cSJessica Paquette };
142acffa28cSJessica Paquette 
143acffa28cSJessica Paquette /// \brief The information necessary to create an outlined function for some
144acffa28cSJessica Paquette /// class of candidate.
145acffa28cSJessica Paquette struct OutlinedFunction {
146acffa28cSJessica Paquette 
147acffa28cSJessica Paquette   /// The actual outlined function created.
148acffa28cSJessica Paquette   /// This is initialized after we go through and create the actual function.
149acffa28cSJessica Paquette   MachineFunction *MF = nullptr;
150acffa28cSJessica Paquette 
1514cf187b5SJessica Paquette   /// A number assigned to this function which appears at the end of its name.
1524cf187b5SJessica Paquette   unsigned Name;
153acffa28cSJessica Paquette 
154acffa28cSJessica Paquette   /// The number of candidates for this OutlinedFunction.
1554cf187b5SJessica Paquette   unsigned OccurrenceCount = 0;
156acffa28cSJessica Paquette 
157acffa28cSJessica Paquette   /// \brief The sequence of integers corresponding to the instructions in this
158acffa28cSJessica Paquette   /// function.
159acffa28cSJessica Paquette   std::vector<unsigned> Sequence;
160acffa28cSJessica Paquette 
1614cf187b5SJessica Paquette   /// Contains all target-specific information for this \p OutlinedFunction.
1624cf187b5SJessica Paquette   TargetInstrInfo::MachineOutlinerInfo MInfo;
163acffa28cSJessica Paquette 
164acc15e12SJessica Paquette   /// \brief Return the number of instructions it would take to outline this
165acc15e12SJessica Paquette   /// function.
166acc15e12SJessica Paquette   unsigned getOutliningCost() {
167acc15e12SJessica Paquette     return (OccurrenceCount * MInfo.CallOverhead) + Sequence.size() +
168acc15e12SJessica Paquette            MInfo.FrameOverhead;
169acc15e12SJessica Paquette   }
170acc15e12SJessica Paquette 
171acc15e12SJessica Paquette   /// \brief Return the number of instructions that would be saved by outlining
172acc15e12SJessica Paquette   /// this function.
173acc15e12SJessica Paquette   unsigned getBenefit() {
174acc15e12SJessica Paquette     unsigned NotOutlinedCost = OccurrenceCount * Sequence.size();
175acc15e12SJessica Paquette     unsigned OutlinedCost = getOutliningCost();
176acc15e12SJessica Paquette     return (NotOutlinedCost < OutlinedCost) ? 0
177acc15e12SJessica Paquette                                             : NotOutlinedCost - OutlinedCost;
178acc15e12SJessica Paquette   }
179acc15e12SJessica Paquette 
1804cf187b5SJessica Paquette   OutlinedFunction(unsigned Name, unsigned OccurrenceCount,
181acc15e12SJessica Paquette                    const std::vector<unsigned> &Sequence,
1824cf187b5SJessica Paquette                    TargetInstrInfo::MachineOutlinerInfo &MInfo)
183acffa28cSJessica Paquette       : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence),
184acc15e12SJessica Paquette         MInfo(MInfo) {}
185acffa28cSJessica Paquette };
186acffa28cSJessica Paquette 
187596f483aSJessica Paquette /// Represents an undefined index in the suffix tree.
1884cf187b5SJessica Paquette const unsigned EmptyIdx = -1;
189596f483aSJessica Paquette 
190596f483aSJessica Paquette /// A node in a suffix tree which represents a substring or suffix.
191596f483aSJessica Paquette ///
192596f483aSJessica Paquette /// Each node has either no children or at least two children, with the root
193596f483aSJessica Paquette /// being a exception in the empty tree.
194596f483aSJessica Paquette ///
195596f483aSJessica Paquette /// Children are represented as a map between unsigned integers and nodes. If
196596f483aSJessica Paquette /// a node N has a child M on unsigned integer k, then the mapping represented
197596f483aSJessica Paquette /// by N is a proper prefix of the mapping represented by M. Note that this,
198596f483aSJessica Paquette /// although similar to a trie is somewhat different: each node stores a full
199596f483aSJessica Paquette /// substring of the full mapping rather than a single character state.
200596f483aSJessica Paquette ///
201596f483aSJessica Paquette /// Each internal node contains a pointer to the internal node representing
202596f483aSJessica Paquette /// the same string, but with the first character chopped off. This is stored
203596f483aSJessica Paquette /// in \p Link. Each leaf node stores the start index of its respective
204596f483aSJessica Paquette /// suffix in \p SuffixIdx.
205596f483aSJessica Paquette struct SuffixTreeNode {
206596f483aSJessica Paquette 
207596f483aSJessica Paquette   /// The children of this node.
208596f483aSJessica Paquette   ///
209596f483aSJessica Paquette   /// A child existing on an unsigned integer implies that from the mapping
210596f483aSJessica Paquette   /// represented by the current node, there is a way to reach another
211596f483aSJessica Paquette   /// mapping by tacking that character on the end of the current string.
212596f483aSJessica Paquette   DenseMap<unsigned, SuffixTreeNode *> Children;
213596f483aSJessica Paquette 
214596f483aSJessica Paquette   /// A flag set to false if the node has been pruned from the tree.
215596f483aSJessica Paquette   bool IsInTree = true;
216596f483aSJessica Paquette 
217596f483aSJessica Paquette   /// The start index of this node's substring in the main string.
2184cf187b5SJessica Paquette   unsigned StartIdx = EmptyIdx;
219596f483aSJessica Paquette 
220596f483aSJessica Paquette   /// The end index of this node's substring in the main string.
221596f483aSJessica Paquette   ///
222596f483aSJessica Paquette   /// Every leaf node must have its \p EndIdx incremented at the end of every
223596f483aSJessica Paquette   /// step in the construction algorithm. To avoid having to update O(N)
224596f483aSJessica Paquette   /// nodes individually at the end of every step, the end index is stored
225596f483aSJessica Paquette   /// as a pointer.
2264cf187b5SJessica Paquette   unsigned *EndIdx = nullptr;
227596f483aSJessica Paquette 
228596f483aSJessica Paquette   /// For leaves, the start index of the suffix represented by this node.
229596f483aSJessica Paquette   ///
230596f483aSJessica Paquette   /// For all other nodes, this is ignored.
2314cf187b5SJessica Paquette   unsigned SuffixIdx = EmptyIdx;
232596f483aSJessica Paquette 
233596f483aSJessica Paquette   /// \brief For internal nodes, a pointer to the internal node representing
234596f483aSJessica Paquette   /// the same sequence with the first character chopped off.
235596f483aSJessica Paquette   ///
2364602c343SJessica Paquette   /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
237596f483aSJessica Paquette   /// Ukkonen's algorithm does to achieve linear-time construction is
238596f483aSJessica Paquette   /// keep track of which node the next insert should be at. This makes each
239596f483aSJessica Paquette   /// insert O(1), and there are a total of O(N) inserts. The suffix link
240596f483aSJessica Paquette   /// helps with inserting children of internal nodes.
241596f483aSJessica Paquette   ///
242596f483aSJessica Paquette   /// Say we add a child to an internal node with associated mapping S. The
243596f483aSJessica Paquette   /// next insertion must be at the node representing S - its first character.
244596f483aSJessica Paquette   /// This is given by the way that we iteratively build the tree in Ukkonen's
245596f483aSJessica Paquette   /// algorithm. The main idea is to look at the suffixes of each prefix in the
246596f483aSJessica Paquette   /// string, starting with the longest suffix of the prefix, and ending with
247596f483aSJessica Paquette   /// the shortest. Therefore, if we keep pointers between such nodes, we can
248596f483aSJessica Paquette   /// move to the next insertion point in O(1) time. If we don't, then we'd
249596f483aSJessica Paquette   /// have to query from the root, which takes O(N) time. This would make the
250596f483aSJessica Paquette   /// construction algorithm O(N^2) rather than O(N).
251596f483aSJessica Paquette   SuffixTreeNode *Link = nullptr;
252596f483aSJessica Paquette 
253596f483aSJessica Paquette   /// The parent of this node. Every node except for the root has a parent.
254596f483aSJessica Paquette   SuffixTreeNode *Parent = nullptr;
255596f483aSJessica Paquette 
256596f483aSJessica Paquette   /// The number of times this node's string appears in the tree.
257596f483aSJessica Paquette   ///
258596f483aSJessica Paquette   /// This is equal to the number of leaf children of the string. It represents
259596f483aSJessica Paquette   /// the number of suffixes that the node's string is a prefix of.
2604cf187b5SJessica Paquette   unsigned OccurrenceCount = 0;
261596f483aSJessica Paquette 
262acffa28cSJessica Paquette   /// The length of the string formed by concatenating the edge labels from the
263acffa28cSJessica Paquette   /// root to this node.
2644cf187b5SJessica Paquette   unsigned ConcatLen = 0;
265acffa28cSJessica Paquette 
266596f483aSJessica Paquette   /// Returns true if this node is a leaf.
267596f483aSJessica Paquette   bool isLeaf() const { return SuffixIdx != EmptyIdx; }
268596f483aSJessica Paquette 
269596f483aSJessica Paquette   /// Returns true if this node is the root of its owning \p SuffixTree.
270596f483aSJessica Paquette   bool isRoot() const { return StartIdx == EmptyIdx; }
271596f483aSJessica Paquette 
272596f483aSJessica Paquette   /// Return the number of elements in the substring associated with this node.
273596f483aSJessica Paquette   size_t size() const {
274596f483aSJessica Paquette 
275596f483aSJessica Paquette     // Is it the root? If so, it's the empty string so return 0.
276596f483aSJessica Paquette     if (isRoot())
277596f483aSJessica Paquette       return 0;
278596f483aSJessica Paquette 
279596f483aSJessica Paquette     assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
280596f483aSJessica Paquette 
281596f483aSJessica Paquette     // Size = the number of elements in the string.
282596f483aSJessica Paquette     // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
283596f483aSJessica Paquette     return *EndIdx - StartIdx + 1;
284596f483aSJessica Paquette   }
285596f483aSJessica Paquette 
2864cf187b5SJessica Paquette   SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link,
287596f483aSJessica Paquette                  SuffixTreeNode *Parent)
288596f483aSJessica Paquette       : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
289596f483aSJessica Paquette 
290596f483aSJessica Paquette   SuffixTreeNode() {}
291596f483aSJessica Paquette };
292596f483aSJessica Paquette 
293596f483aSJessica Paquette /// A data structure for fast substring queries.
294596f483aSJessica Paquette ///
295596f483aSJessica Paquette /// Suffix trees represent the suffixes of their input strings in their leaves.
296596f483aSJessica Paquette /// A suffix tree is a type of compressed trie structure where each node
297596f483aSJessica Paquette /// represents an entire substring rather than a single character. Each leaf
298596f483aSJessica Paquette /// of the tree is a suffix.
299596f483aSJessica Paquette ///
300596f483aSJessica Paquette /// A suffix tree can be seen as a type of state machine where each state is a
301596f483aSJessica Paquette /// substring of the full string. The tree is structured so that, for a string
302596f483aSJessica Paquette /// of length N, there are exactly N leaves in the tree. This structure allows
303596f483aSJessica Paquette /// us to quickly find repeated substrings of the input string.
304596f483aSJessica Paquette ///
305596f483aSJessica Paquette /// In this implementation, a "string" is a vector of unsigned integers.
306596f483aSJessica Paquette /// These integers may result from hashing some data type. A suffix tree can
307596f483aSJessica Paquette /// contain 1 or many strings, which can then be queried as one large string.
308596f483aSJessica Paquette ///
309596f483aSJessica Paquette /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
310596f483aSJessica Paquette /// suffix tree construction. Ukkonen's algorithm is explained in more detail
311596f483aSJessica Paquette /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
312596f483aSJessica Paquette /// paper is available at
313596f483aSJessica Paquette ///
314596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
315596f483aSJessica Paquette class SuffixTree {
31678681be2SJessica Paquette public:
31778681be2SJessica Paquette   /// Stores each leaf node in the tree.
31878681be2SJessica Paquette   ///
31978681be2SJessica Paquette   /// This is used for finding outlining candidates.
32078681be2SJessica Paquette   std::vector<SuffixTreeNode *> LeafVector;
32178681be2SJessica Paquette 
322596f483aSJessica Paquette   /// Each element is an integer representing an instruction in the module.
323596f483aSJessica Paquette   ArrayRef<unsigned> Str;
324596f483aSJessica Paquette 
32578681be2SJessica Paquette private:
326596f483aSJessica Paquette   /// Maintains each node in the tree.
327d4cb9c6dSJessica Paquette   SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
328596f483aSJessica Paquette 
329596f483aSJessica Paquette   /// The root of the suffix tree.
330596f483aSJessica Paquette   ///
331596f483aSJessica Paquette   /// The root represents the empty string. It is maintained by the
332596f483aSJessica Paquette   /// \p NodeAllocator like every other node in the tree.
333596f483aSJessica Paquette   SuffixTreeNode *Root = nullptr;
334596f483aSJessica Paquette 
335596f483aSJessica Paquette   /// Maintains the end indices of the internal nodes in the tree.
336596f483aSJessica Paquette   ///
337596f483aSJessica Paquette   /// Each internal node is guaranteed to never have its end index change
338596f483aSJessica Paquette   /// during the construction algorithm; however, leaves must be updated at
339596f483aSJessica Paquette   /// every step. Therefore, we need to store leaf end indices by reference
340596f483aSJessica Paquette   /// to avoid updating O(N) leaves at every step of construction. Thus,
341596f483aSJessica Paquette   /// every internal node must be allocated its own end index.
342596f483aSJessica Paquette   BumpPtrAllocator InternalEndIdxAllocator;
343596f483aSJessica Paquette 
344596f483aSJessica Paquette   /// The end index of each leaf in the tree.
3454cf187b5SJessica Paquette   unsigned LeafEndIdx = -1;
346596f483aSJessica Paquette 
347596f483aSJessica Paquette   /// \brief Helper struct which keeps track of the next insertion point in
348596f483aSJessica Paquette   /// Ukkonen's algorithm.
349596f483aSJessica Paquette   struct ActiveState {
350596f483aSJessica Paquette     /// The next node to insert at.
351596f483aSJessica Paquette     SuffixTreeNode *Node;
352596f483aSJessica Paquette 
353596f483aSJessica Paquette     /// The index of the first character in the substring currently being added.
3544cf187b5SJessica Paquette     unsigned Idx = EmptyIdx;
355596f483aSJessica Paquette 
356596f483aSJessica Paquette     /// The length of the substring we have to add at the current step.
3574cf187b5SJessica Paquette     unsigned Len = 0;
358596f483aSJessica Paquette   };
359596f483aSJessica Paquette 
360596f483aSJessica Paquette   /// \brief The point the next insertion will take place at in the
361596f483aSJessica Paquette   /// construction algorithm.
362596f483aSJessica Paquette   ActiveState Active;
363596f483aSJessica Paquette 
364596f483aSJessica Paquette   /// Allocate a leaf node and add it to the tree.
365596f483aSJessica Paquette   ///
366596f483aSJessica Paquette   /// \param Parent The parent of this node.
367596f483aSJessica Paquette   /// \param StartIdx The start index of this node's associated string.
368596f483aSJessica Paquette   /// \param Edge The label on the edge leaving \p Parent to this node.
369596f483aSJessica Paquette   ///
370596f483aSJessica Paquette   /// \returns A pointer to the allocated leaf node.
3714cf187b5SJessica Paquette   SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx,
372596f483aSJessica Paquette                              unsigned Edge) {
373596f483aSJessica Paquette 
374596f483aSJessica Paquette     assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
375596f483aSJessica Paquette 
37678681be2SJessica Paquette     SuffixTreeNode *N = new (NodeAllocator.Allocate())
37778681be2SJessica Paquette         SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent);
378596f483aSJessica Paquette     Parent.Children[Edge] = N;
379596f483aSJessica Paquette 
380596f483aSJessica Paquette     return N;
381596f483aSJessica Paquette   }
382596f483aSJessica Paquette 
383596f483aSJessica Paquette   /// Allocate an internal node and add it to the tree.
384596f483aSJessica Paquette   ///
385596f483aSJessica Paquette   /// \param Parent The parent of this node. Only null when allocating the root.
386596f483aSJessica Paquette   /// \param StartIdx The start index of this node's associated string.
387596f483aSJessica Paquette   /// \param EndIdx The end index of this node's associated string.
388596f483aSJessica Paquette   /// \param Edge The label on the edge leaving \p Parent to this node.
389596f483aSJessica Paquette   ///
390596f483aSJessica Paquette   /// \returns A pointer to the allocated internal node.
3914cf187b5SJessica Paquette   SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx,
3924cf187b5SJessica Paquette                                      unsigned EndIdx, unsigned Edge) {
393596f483aSJessica Paquette 
394596f483aSJessica Paquette     assert(StartIdx <= EndIdx && "String can't start after it ends!");
395596f483aSJessica Paquette     assert(!(!Parent && StartIdx != EmptyIdx) &&
396596f483aSJessica Paquette            "Non-root internal nodes must have parents!");
397596f483aSJessica Paquette 
3984cf187b5SJessica Paquette     unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx);
39978681be2SJessica Paquette     SuffixTreeNode *N = new (NodeAllocator.Allocate())
40078681be2SJessica Paquette         SuffixTreeNode(StartIdx, E, Root, Parent);
401596f483aSJessica Paquette     if (Parent)
402596f483aSJessica Paquette       Parent->Children[Edge] = N;
403596f483aSJessica Paquette 
404596f483aSJessica Paquette     return N;
405596f483aSJessica Paquette   }
406596f483aSJessica Paquette 
407596f483aSJessica Paquette   /// \brief Set the suffix indices of the leaves to the start indices of their
408596f483aSJessica Paquette   /// respective suffixes. Also stores each leaf in \p LeafVector at its
409596f483aSJessica Paquette   /// respective suffix index.
410596f483aSJessica Paquette   ///
411596f483aSJessica Paquette   /// \param[in] CurrNode The node currently being visited.
412596f483aSJessica Paquette   /// \param CurrIdx The current index of the string being visited.
4134cf187b5SJessica Paquette   void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) {
414596f483aSJessica Paquette 
415596f483aSJessica Paquette     bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
416596f483aSJessica Paquette 
417acffa28cSJessica Paquette     // Store the length of the concatenation of all strings from the root to
418acffa28cSJessica Paquette     // this node.
419acffa28cSJessica Paquette     if (!CurrNode.isRoot()) {
420acffa28cSJessica Paquette       if (CurrNode.ConcatLen == 0)
421acffa28cSJessica Paquette         CurrNode.ConcatLen = CurrNode.size();
422acffa28cSJessica Paquette 
423acffa28cSJessica Paquette       if (CurrNode.Parent)
424acffa28cSJessica Paquette         CurrNode.ConcatLen += CurrNode.Parent->ConcatLen;
425acffa28cSJessica Paquette     }
426acffa28cSJessica Paquette 
427596f483aSJessica Paquette     // Traverse the tree depth-first.
428596f483aSJessica Paquette     for (auto &ChildPair : CurrNode.Children) {
429596f483aSJessica Paquette       assert(ChildPair.second && "Node had a null child!");
43078681be2SJessica Paquette       setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size());
431596f483aSJessica Paquette     }
432596f483aSJessica Paquette 
433596f483aSJessica Paquette     // Is this node a leaf?
434596f483aSJessica Paquette     if (IsLeaf) {
435596f483aSJessica Paquette       // If yes, give it a suffix index and bump its parent's occurrence count.
436596f483aSJessica Paquette       CurrNode.SuffixIdx = Str.size() - CurrIdx;
437596f483aSJessica Paquette       assert(CurrNode.Parent && "CurrNode had no parent!");
438596f483aSJessica Paquette       CurrNode.Parent->OccurrenceCount++;
439596f483aSJessica Paquette 
440596f483aSJessica Paquette       // Store the leaf in the leaf vector for pruning later.
441596f483aSJessica Paquette       LeafVector[CurrNode.SuffixIdx] = &CurrNode;
442596f483aSJessica Paquette     }
443596f483aSJessica Paquette   }
444596f483aSJessica Paquette 
445596f483aSJessica Paquette   /// \brief Construct the suffix tree for the prefix of the input ending at
446596f483aSJessica Paquette   /// \p EndIdx.
447596f483aSJessica Paquette   ///
448596f483aSJessica Paquette   /// Used to construct the full suffix tree iteratively. At the end of each
449596f483aSJessica Paquette   /// step, the constructed suffix tree is either a valid suffix tree, or a
450596f483aSJessica Paquette   /// suffix tree with implicit suffixes. At the end of the final step, the
451596f483aSJessica Paquette   /// suffix tree is a valid tree.
452596f483aSJessica Paquette   ///
453596f483aSJessica Paquette   /// \param EndIdx The end index of the current prefix in the main string.
454596f483aSJessica Paquette   /// \param SuffixesToAdd The number of suffixes that must be added
455596f483aSJessica Paquette   /// to complete the suffix tree at the current phase.
456596f483aSJessica Paquette   ///
457596f483aSJessica Paquette   /// \returns The number of suffixes that have not been added at the end of
458596f483aSJessica Paquette   /// this step.
4594cf187b5SJessica Paquette   unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) {
460596f483aSJessica Paquette     SuffixTreeNode *NeedsLink = nullptr;
461596f483aSJessica Paquette 
462596f483aSJessica Paquette     while (SuffixesToAdd > 0) {
463596f483aSJessica Paquette 
464596f483aSJessica Paquette       // Are we waiting to add anything other than just the last character?
465596f483aSJessica Paquette       if (Active.Len == 0) {
466596f483aSJessica Paquette         // If not, then say the active index is the end index.
467596f483aSJessica Paquette         Active.Idx = EndIdx;
468596f483aSJessica Paquette       }
469596f483aSJessica Paquette 
470596f483aSJessica Paquette       assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
471596f483aSJessica Paquette 
472596f483aSJessica Paquette       // The first character in the current substring we're looking at.
473596f483aSJessica Paquette       unsigned FirstChar = Str[Active.Idx];
474596f483aSJessica Paquette 
475596f483aSJessica Paquette       // Have we inserted anything starting with FirstChar at the current node?
476596f483aSJessica Paquette       if (Active.Node->Children.count(FirstChar) == 0) {
477596f483aSJessica Paquette         // If not, then we can just insert a leaf and move too the next step.
478596f483aSJessica Paquette         insertLeaf(*Active.Node, EndIdx, FirstChar);
479596f483aSJessica Paquette 
480596f483aSJessica Paquette         // The active node is an internal node, and we visited it, so it must
481596f483aSJessica Paquette         // need a link if it doesn't have one.
482596f483aSJessica Paquette         if (NeedsLink) {
483596f483aSJessica Paquette           NeedsLink->Link = Active.Node;
484596f483aSJessica Paquette           NeedsLink = nullptr;
485596f483aSJessica Paquette         }
486596f483aSJessica Paquette       } else {
487596f483aSJessica Paquette         // There's a match with FirstChar, so look for the point in the tree to
488596f483aSJessica Paquette         // insert a new node.
489596f483aSJessica Paquette         SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
490596f483aSJessica Paquette 
4914cf187b5SJessica Paquette         unsigned SubstringLen = NextNode->size();
492596f483aSJessica Paquette 
493596f483aSJessica Paquette         // Is the current suffix we're trying to insert longer than the size of
494596f483aSJessica Paquette         // the child we want to move to?
495596f483aSJessica Paquette         if (Active.Len >= SubstringLen) {
496596f483aSJessica Paquette           // If yes, then consume the characters we've seen and move to the next
497596f483aSJessica Paquette           // node.
498596f483aSJessica Paquette           Active.Idx += SubstringLen;
499596f483aSJessica Paquette           Active.Len -= SubstringLen;
500596f483aSJessica Paquette           Active.Node = NextNode;
501596f483aSJessica Paquette           continue;
502596f483aSJessica Paquette         }
503596f483aSJessica Paquette 
504596f483aSJessica Paquette         // Otherwise, the suffix we're trying to insert must be contained in the
505596f483aSJessica Paquette         // next node we want to move to.
506596f483aSJessica Paquette         unsigned LastChar = Str[EndIdx];
507596f483aSJessica Paquette 
508596f483aSJessica Paquette         // Is the string we're trying to insert a substring of the next node?
509596f483aSJessica Paquette         if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
510596f483aSJessica Paquette           // If yes, then we're done for this step. Remember our insertion point
511596f483aSJessica Paquette           // and move to the next end index. At this point, we have an implicit
512596f483aSJessica Paquette           // suffix tree.
513596f483aSJessica Paquette           if (NeedsLink && !Active.Node->isRoot()) {
514596f483aSJessica Paquette             NeedsLink->Link = Active.Node;
515596f483aSJessica Paquette             NeedsLink = nullptr;
516596f483aSJessica Paquette           }
517596f483aSJessica Paquette 
518596f483aSJessica Paquette           Active.Len++;
519596f483aSJessica Paquette           break;
520596f483aSJessica Paquette         }
521596f483aSJessica Paquette 
522596f483aSJessica Paquette         // The string we're trying to insert isn't a substring of the next node,
523596f483aSJessica Paquette         // but matches up to a point. Split the node.
524596f483aSJessica Paquette         //
525596f483aSJessica Paquette         // For example, say we ended our search at a node n and we're trying to
526596f483aSJessica Paquette         // insert ABD. Then we'll create a new node s for AB, reduce n to just
527596f483aSJessica Paquette         // representing C, and insert a new leaf node l to represent d. This
528596f483aSJessica Paquette         // allows us to ensure that if n was a leaf, it remains a leaf.
529596f483aSJessica Paquette         //
530596f483aSJessica Paquette         //   | ABC  ---split--->  | AB
531596f483aSJessica Paquette         //   n                    s
532596f483aSJessica Paquette         //                     C / \ D
533596f483aSJessica Paquette         //                      n   l
534596f483aSJessica Paquette 
535596f483aSJessica Paquette         // The node s from the diagram
536596f483aSJessica Paquette         SuffixTreeNode *SplitNode =
53778681be2SJessica Paquette             insertInternalNode(Active.Node, NextNode->StartIdx,
53878681be2SJessica Paquette                                NextNode->StartIdx + Active.Len - 1, FirstChar);
539596f483aSJessica Paquette 
540596f483aSJessica Paquette         // Insert the new node representing the new substring into the tree as
541596f483aSJessica Paquette         // a child of the split node. This is the node l from the diagram.
542596f483aSJessica Paquette         insertLeaf(*SplitNode, EndIdx, LastChar);
543596f483aSJessica Paquette 
544596f483aSJessica Paquette         // Make the old node a child of the split node and update its start
545596f483aSJessica Paquette         // index. This is the node n from the diagram.
546596f483aSJessica Paquette         NextNode->StartIdx += Active.Len;
547596f483aSJessica Paquette         NextNode->Parent = SplitNode;
548596f483aSJessica Paquette         SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
549596f483aSJessica Paquette 
550596f483aSJessica Paquette         // SplitNode is an internal node, update the suffix link.
551596f483aSJessica Paquette         if (NeedsLink)
552596f483aSJessica Paquette           NeedsLink->Link = SplitNode;
553596f483aSJessica Paquette 
554596f483aSJessica Paquette         NeedsLink = SplitNode;
555596f483aSJessica Paquette       }
556596f483aSJessica Paquette 
557596f483aSJessica Paquette       // We've added something new to the tree, so there's one less suffix to
558596f483aSJessica Paquette       // add.
559596f483aSJessica Paquette       SuffixesToAdd--;
560596f483aSJessica Paquette 
561596f483aSJessica Paquette       if (Active.Node->isRoot()) {
562596f483aSJessica Paquette         if (Active.Len > 0) {
563596f483aSJessica Paquette           Active.Len--;
564596f483aSJessica Paquette           Active.Idx = EndIdx - SuffixesToAdd + 1;
565596f483aSJessica Paquette         }
566596f483aSJessica Paquette       } else {
567596f483aSJessica Paquette         // Start the next phase at the next smallest suffix.
568596f483aSJessica Paquette         Active.Node = Active.Node->Link;
569596f483aSJessica Paquette       }
570596f483aSJessica Paquette     }
571596f483aSJessica Paquette 
572596f483aSJessica Paquette     return SuffixesToAdd;
573596f483aSJessica Paquette   }
574596f483aSJessica Paquette 
575596f483aSJessica Paquette public:
576596f483aSJessica Paquette   /// Construct a suffix tree from a sequence of unsigned integers.
577596f483aSJessica Paquette   ///
578596f483aSJessica Paquette   /// \param Str The string to construct the suffix tree for.
579596f483aSJessica Paquette   SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
580596f483aSJessica Paquette     Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
581596f483aSJessica Paquette     Root->IsInTree = true;
582596f483aSJessica Paquette     Active.Node = Root;
583596f483aSJessica Paquette     LeafVector = std::vector<SuffixTreeNode *>(Str.size());
584596f483aSJessica Paquette 
585596f483aSJessica Paquette     // Keep track of the number of suffixes we have to add of the current
586596f483aSJessica Paquette     // prefix.
5874cf187b5SJessica Paquette     unsigned SuffixesToAdd = 0;
588596f483aSJessica Paquette     Active.Node = Root;
589596f483aSJessica Paquette 
590596f483aSJessica Paquette     // Construct the suffix tree iteratively on each prefix of the string.
591596f483aSJessica Paquette     // PfxEndIdx is the end index of the current prefix.
592596f483aSJessica Paquette     // End is one past the last element in the string.
5934cf187b5SJessica Paquette     for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End;
5944cf187b5SJessica Paquette          PfxEndIdx++) {
595596f483aSJessica Paquette       SuffixesToAdd++;
596596f483aSJessica Paquette       LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
597596f483aSJessica Paquette       SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
598596f483aSJessica Paquette     }
599596f483aSJessica Paquette 
600596f483aSJessica Paquette     // Set the suffix indices of each leaf.
601596f483aSJessica Paquette     assert(Root && "Root node can't be nullptr!");
602596f483aSJessica Paquette     setSuffixIndices(*Root, 0);
603596f483aSJessica Paquette   }
604596f483aSJessica Paquette };
605596f483aSJessica Paquette 
606596f483aSJessica Paquette /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings.
607596f483aSJessica Paquette struct InstructionMapper {
608596f483aSJessica Paquette 
609596f483aSJessica Paquette   /// \brief The next available integer to assign to a \p MachineInstr that
610596f483aSJessica Paquette   /// cannot be outlined.
611596f483aSJessica Paquette   ///
612596f483aSJessica Paquette   /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
613596f483aSJessica Paquette   unsigned IllegalInstrNumber = -3;
614596f483aSJessica Paquette 
615596f483aSJessica Paquette   /// \brief The next available integer to assign to a \p MachineInstr that can
616596f483aSJessica Paquette   /// be outlined.
617596f483aSJessica Paquette   unsigned LegalInstrNumber = 0;
618596f483aSJessica Paquette 
619596f483aSJessica Paquette   /// Correspondence from \p MachineInstrs to unsigned integers.
620596f483aSJessica Paquette   DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
621596f483aSJessica Paquette       InstructionIntegerMap;
622596f483aSJessica Paquette 
623596f483aSJessica Paquette   /// Corresponcence from unsigned integers to \p MachineInstrs.
624596f483aSJessica Paquette   /// Inverse of \p InstructionIntegerMap.
625596f483aSJessica Paquette   DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
626596f483aSJessica Paquette 
627596f483aSJessica Paquette   /// The vector of unsigned integers that the module is mapped to.
628596f483aSJessica Paquette   std::vector<unsigned> UnsignedVec;
629596f483aSJessica Paquette 
630596f483aSJessica Paquette   /// \brief Stores the location of the instruction associated with the integer
631596f483aSJessica Paquette   /// at index i in \p UnsignedVec for each index i.
632596f483aSJessica Paquette   std::vector<MachineBasicBlock::iterator> InstrList;
633596f483aSJessica Paquette 
634596f483aSJessica Paquette   /// \brief Maps \p *It to a legal integer.
635596f483aSJessica Paquette   ///
636596f483aSJessica Paquette   /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
637596f483aSJessica Paquette   /// \p IntegerInstructionMap, and \p LegalInstrNumber.
638596f483aSJessica Paquette   ///
639596f483aSJessica Paquette   /// \returns The integer that \p *It was mapped to.
640596f483aSJessica Paquette   unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
641596f483aSJessica Paquette 
642596f483aSJessica Paquette     // Get the integer for this instruction or give it the current
643596f483aSJessica Paquette     // LegalInstrNumber.
644596f483aSJessica Paquette     InstrList.push_back(It);
645596f483aSJessica Paquette     MachineInstr &MI = *It;
646596f483aSJessica Paquette     bool WasInserted;
647596f483aSJessica Paquette     DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
648596f483aSJessica Paquette         ResultIt;
649596f483aSJessica Paquette     std::tie(ResultIt, WasInserted) =
650596f483aSJessica Paquette         InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
651596f483aSJessica Paquette     unsigned MINumber = ResultIt->second;
652596f483aSJessica Paquette 
653596f483aSJessica Paquette     // There was an insertion.
654596f483aSJessica Paquette     if (WasInserted) {
655596f483aSJessica Paquette       LegalInstrNumber++;
656596f483aSJessica Paquette       IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
657596f483aSJessica Paquette     }
658596f483aSJessica Paquette 
659596f483aSJessica Paquette     UnsignedVec.push_back(MINumber);
660596f483aSJessica Paquette 
661596f483aSJessica Paquette     // Make sure we don't overflow or use any integers reserved by the DenseMap.
662596f483aSJessica Paquette     if (LegalInstrNumber >= IllegalInstrNumber)
663596f483aSJessica Paquette       report_fatal_error("Instruction mapping overflow!");
664596f483aSJessica Paquette 
66578681be2SJessica Paquette     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
66678681be2SJessica Paquette            "Tried to assign DenseMap tombstone or empty key to instruction.");
66778681be2SJessica Paquette     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
66878681be2SJessica Paquette            "Tried to assign DenseMap tombstone or empty key to instruction.");
669596f483aSJessica Paquette 
670596f483aSJessica Paquette     return MINumber;
671596f483aSJessica Paquette   }
672596f483aSJessica Paquette 
673596f483aSJessica Paquette   /// Maps \p *It to an illegal integer.
674596f483aSJessica Paquette   ///
675596f483aSJessica Paquette   /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
676596f483aSJessica Paquette   ///
677596f483aSJessica Paquette   /// \returns The integer that \p *It was mapped to.
678596f483aSJessica Paquette   unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
679596f483aSJessica Paquette     unsigned MINumber = IllegalInstrNumber;
680596f483aSJessica Paquette 
681596f483aSJessica Paquette     InstrList.push_back(It);
682596f483aSJessica Paquette     UnsignedVec.push_back(IllegalInstrNumber);
683596f483aSJessica Paquette     IllegalInstrNumber--;
684596f483aSJessica Paquette 
685596f483aSJessica Paquette     assert(LegalInstrNumber < IllegalInstrNumber &&
686596f483aSJessica Paquette            "Instruction mapping overflow!");
687596f483aSJessica Paquette 
68878681be2SJessica Paquette     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
689596f483aSJessica Paquette            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
690596f483aSJessica Paquette 
69178681be2SJessica Paquette     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
692596f483aSJessica Paquette            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
693596f483aSJessica Paquette 
694596f483aSJessica Paquette     return MINumber;
695596f483aSJessica Paquette   }
696596f483aSJessica Paquette 
697596f483aSJessica Paquette   /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
698596f483aSJessica Paquette   /// and appends it to \p UnsignedVec and \p InstrList.
699596f483aSJessica Paquette   ///
700596f483aSJessica Paquette   /// Two instructions are assigned the same integer if they are identical.
701596f483aSJessica Paquette   /// If an instruction is deemed unsafe to outline, then it will be assigned an
702596f483aSJessica Paquette   /// unique integer. The resulting mapping is placed into a suffix tree and
703596f483aSJessica Paquette   /// queried for candidates.
704596f483aSJessica Paquette   ///
705596f483aSJessica Paquette   /// \param MBB The \p MachineBasicBlock to be translated into integers.
706596f483aSJessica Paquette   /// \param TRI \p TargetRegisterInfo for the module.
707596f483aSJessica Paquette   /// \param TII \p TargetInstrInfo for the module.
708596f483aSJessica Paquette   void convertToUnsignedVec(MachineBasicBlock &MBB,
709596f483aSJessica Paquette                             const TargetRegisterInfo &TRI,
710596f483aSJessica Paquette                             const TargetInstrInfo &TII) {
711596f483aSJessica Paquette     for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et;
712596f483aSJessica Paquette          It++) {
713596f483aSJessica Paquette 
714596f483aSJessica Paquette       // Keep track of where this instruction is in the module.
715596f483aSJessica Paquette       switch (TII.getOutliningType(*It)) {
716596f483aSJessica Paquette       case TargetInstrInfo::MachineOutlinerInstrType::Illegal:
717596f483aSJessica Paquette         mapToIllegalUnsigned(It);
718596f483aSJessica Paquette         break;
719596f483aSJessica Paquette 
720596f483aSJessica Paquette       case TargetInstrInfo::MachineOutlinerInstrType::Legal:
721596f483aSJessica Paquette         mapToLegalUnsigned(It);
722596f483aSJessica Paquette         break;
723596f483aSJessica Paquette 
724596f483aSJessica Paquette       case TargetInstrInfo::MachineOutlinerInstrType::Invisible:
725596f483aSJessica Paquette         break;
726596f483aSJessica Paquette       }
727596f483aSJessica Paquette     }
728596f483aSJessica Paquette 
729596f483aSJessica Paquette     // After we're done every insertion, uniquely terminate this part of the
730596f483aSJessica Paquette     // "string". This makes sure we won't match across basic block or function
731596f483aSJessica Paquette     // boundaries since the "end" is encoded uniquely and thus appears in no
732596f483aSJessica Paquette     // repeated substring.
733596f483aSJessica Paquette     InstrList.push_back(MBB.end());
734596f483aSJessica Paquette     UnsignedVec.push_back(IllegalInstrNumber);
735596f483aSJessica Paquette     IllegalInstrNumber--;
736596f483aSJessica Paquette   }
737596f483aSJessica Paquette 
738596f483aSJessica Paquette   InstructionMapper() {
739596f483aSJessica Paquette     // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
740596f483aSJessica Paquette     // changed.
741596f483aSJessica Paquette     assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
742596f483aSJessica Paquette            "DenseMapInfo<unsigned>'s empty key isn't -1!");
743596f483aSJessica Paquette     assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
744596f483aSJessica Paquette            "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
745596f483aSJessica Paquette   }
746596f483aSJessica Paquette };
747596f483aSJessica Paquette 
748596f483aSJessica Paquette /// \brief An interprocedural pass which finds repeated sequences of
749596f483aSJessica Paquette /// instructions and replaces them with calls to functions.
750596f483aSJessica Paquette ///
751596f483aSJessica Paquette /// Each instruction is mapped to an unsigned integer and placed in a string.
752596f483aSJessica Paquette /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
753596f483aSJessica Paquette /// is then repeatedly queried for repeated sequences of instructions. Each
754596f483aSJessica Paquette /// non-overlapping repeated sequence is then placed in its own
755596f483aSJessica Paquette /// \p MachineFunction and each instance is then replaced with a call to that
756596f483aSJessica Paquette /// function.
757596f483aSJessica Paquette struct MachineOutliner : public ModulePass {
758596f483aSJessica Paquette 
759596f483aSJessica Paquette   static char ID;
760596f483aSJessica Paquette 
76113593843SJessica Paquette   /// \brief Set to true if the outliner should consider functions with
76213593843SJessica Paquette   /// linkonceodr linkage.
76313593843SJessica Paquette   bool OutlineFromLinkOnceODRs = false;
76413593843SJessica Paquette 
765596f483aSJessica Paquette   StringRef getPassName() const override { return "Machine Outliner"; }
766596f483aSJessica Paquette 
767596f483aSJessica Paquette   void getAnalysisUsage(AnalysisUsage &AU) const override {
768596f483aSJessica Paquette     AU.addRequired<MachineModuleInfo>();
769596f483aSJessica Paquette     AU.addPreserved<MachineModuleInfo>();
770596f483aSJessica Paquette     AU.setPreservesAll();
771596f483aSJessica Paquette     ModulePass::getAnalysisUsage(AU);
772596f483aSJessica Paquette   }
773596f483aSJessica Paquette 
774*c9ab4c26SJessica Paquette   MachineOutliner(bool OutlineFromLinkOnceODRs = false)
775*c9ab4c26SJessica Paquette       : ModulePass(ID), OutlineFromLinkOnceODRs(OutlineFromLinkOnceODRs) {
776596f483aSJessica Paquette     initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
777596f483aSJessica Paquette   }
778596f483aSJessica Paquette 
77978681be2SJessica Paquette   /// Find all repeated substrings that satisfy the outlining cost model.
78078681be2SJessica Paquette   ///
78178681be2SJessica Paquette   /// If a substring appears at least twice, then it must be represented by
78278681be2SJessica Paquette   /// an internal node which appears in at least two suffixes. Each suffix is
78378681be2SJessica Paquette   /// represented by a leaf node. To do this, we visit each internal node in
78478681be2SJessica Paquette   /// the tree, using the leaf children of each internal node. If an internal
78578681be2SJessica Paquette   /// node represents a beneficial substring, then we use each of its leaf
78678681be2SJessica Paquette   /// children to find the locations of its substring.
78778681be2SJessica Paquette   ///
78878681be2SJessica Paquette   /// \param ST A suffix tree to query.
78978681be2SJessica Paquette   /// \param TII TargetInstrInfo for the target.
79078681be2SJessica Paquette   /// \param Mapper Contains outlining mapping information.
79178681be2SJessica Paquette   /// \param[out] CandidateList Filled with candidates representing each
79278681be2SJessica Paquette   /// beneficial substring.
79378681be2SJessica Paquette   /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each
79478681be2SJessica Paquette   /// type of candidate.
79578681be2SJessica Paquette   ///
79678681be2SJessica Paquette   /// \returns The length of the longest candidate found.
7974cf187b5SJessica Paquette   unsigned findCandidates(SuffixTree &ST, const TargetInstrInfo &TII,
79878681be2SJessica Paquette                           InstructionMapper &Mapper,
79978681be2SJessica Paquette                           std::vector<Candidate> &CandidateList,
80078681be2SJessica Paquette                           std::vector<OutlinedFunction> &FunctionList);
80178681be2SJessica Paquette 
802596f483aSJessica Paquette   /// \brief Replace the sequences of instructions represented by the
803596f483aSJessica Paquette   /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
804596f483aSJessica Paquette   /// described in \p FunctionList.
805596f483aSJessica Paquette   ///
806596f483aSJessica Paquette   /// \param M The module we are outlining from.
807596f483aSJessica Paquette   /// \param CandidateList A list of candidates to be outlined.
808596f483aSJessica Paquette   /// \param FunctionList A list of functions to be inserted into the module.
809596f483aSJessica Paquette   /// \param Mapper Contains the instruction mappings for the module.
810596f483aSJessica Paquette   bool outline(Module &M, const ArrayRef<Candidate> &CandidateList,
811596f483aSJessica Paquette                std::vector<OutlinedFunction> &FunctionList,
812596f483aSJessica Paquette                InstructionMapper &Mapper);
813596f483aSJessica Paquette 
814596f483aSJessica Paquette   /// Creates a function for \p OF and inserts it into the module.
815596f483aSJessica Paquette   MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
816596f483aSJessica Paquette                                           InstructionMapper &Mapper);
817596f483aSJessica Paquette 
818596f483aSJessica Paquette   /// Find potential outlining candidates and store them in \p CandidateList.
819596f483aSJessica Paquette   ///
820596f483aSJessica Paquette   /// For each type of potential candidate, also build an \p OutlinedFunction
821596f483aSJessica Paquette   /// struct containing the information to build the function for that
822596f483aSJessica Paquette   /// candidate.
823596f483aSJessica Paquette   ///
824596f483aSJessica Paquette   /// \param[out] CandidateList Filled with outlining candidates for the module.
825596f483aSJessica Paquette   /// \param[out] FunctionList Filled with functions corresponding to each type
826596f483aSJessica Paquette   /// of \p Candidate.
827596f483aSJessica Paquette   /// \param ST The suffix tree for the module.
828596f483aSJessica Paquette   /// \param TII TargetInstrInfo for the module.
829596f483aSJessica Paquette   ///
830596f483aSJessica Paquette   /// \returns The length of the longest candidate found. 0 if there are none.
831596f483aSJessica Paquette   unsigned buildCandidateList(std::vector<Candidate> &CandidateList,
832596f483aSJessica Paquette                               std::vector<OutlinedFunction> &FunctionList,
83378681be2SJessica Paquette                               SuffixTree &ST, InstructionMapper &Mapper,
834c984e213SJessica Paquette                               const TargetInstrInfo &TII);
835596f483aSJessica Paquette 
836596f483aSJessica Paquette   /// \brief Remove any overlapping candidates that weren't handled by the
837596f483aSJessica Paquette   /// suffix tree's pruning method.
838596f483aSJessica Paquette   ///
839596f483aSJessica Paquette   /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
840596f483aSJessica Paquette   /// If a short candidate is chosen for outlining, then a longer candidate
841596f483aSJessica Paquette   /// which has that short candidate as a suffix is chosen, the tree's pruning
842596f483aSJessica Paquette   /// method will not find it. Thus, we need to prune before outlining as well.
843596f483aSJessica Paquette   ///
844596f483aSJessica Paquette   /// \param[in,out] CandidateList A list of outlining candidates.
845596f483aSJessica Paquette   /// \param[in,out] FunctionList A list of functions to be outlined.
846809d708bSJessica Paquette   /// \param Mapper Contains instruction mapping info for outlining.
847596f483aSJessica Paquette   /// \param MaxCandidateLen The length of the longest candidate.
848596f483aSJessica Paquette   /// \param TII TargetInstrInfo for the module.
849596f483aSJessica Paquette   void pruneOverlaps(std::vector<Candidate> &CandidateList,
850596f483aSJessica Paquette                      std::vector<OutlinedFunction> &FunctionList,
851809d708bSJessica Paquette                      InstructionMapper &Mapper, unsigned MaxCandidateLen,
852809d708bSJessica Paquette                      const TargetInstrInfo &TII);
853596f483aSJessica Paquette 
854596f483aSJessica Paquette   /// Construct a suffix tree on the instructions in \p M and outline repeated
855596f483aSJessica Paquette   /// strings from that tree.
856596f483aSJessica Paquette   bool runOnModule(Module &M) override;
857596f483aSJessica Paquette };
858596f483aSJessica Paquette 
859596f483aSJessica Paquette } // Anonymous namespace.
860596f483aSJessica Paquette 
861596f483aSJessica Paquette char MachineOutliner::ID = 0;
862596f483aSJessica Paquette 
863596f483aSJessica Paquette namespace llvm {
86413593843SJessica Paquette ModulePass *createMachineOutlinerPass(bool OutlineFromLinkOnceODRs) {
86513593843SJessica Paquette   return new MachineOutliner(OutlineFromLinkOnceODRs);
86613593843SJessica Paquette }
86713593843SJessica Paquette 
86878681be2SJessica Paquette } // namespace llvm
86978681be2SJessica Paquette 
87078681be2SJessica Paquette INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
87178681be2SJessica Paquette                 false)
87278681be2SJessica Paquette 
8734cf187b5SJessica Paquette unsigned
87478681be2SJessica Paquette MachineOutliner::findCandidates(SuffixTree &ST, const TargetInstrInfo &TII,
87578681be2SJessica Paquette                                 InstructionMapper &Mapper,
87678681be2SJessica Paquette                                 std::vector<Candidate> &CandidateList,
87778681be2SJessica Paquette                                 std::vector<OutlinedFunction> &FunctionList) {
87878681be2SJessica Paquette   CandidateList.clear();
87978681be2SJessica Paquette   FunctionList.clear();
8804cf187b5SJessica Paquette   unsigned MaxLen = 0;
88178681be2SJessica Paquette 
88278681be2SJessica Paquette   // FIXME: Visit internal nodes instead of leaves.
88378681be2SJessica Paquette   for (SuffixTreeNode *Leaf : ST.LeafVector) {
88478681be2SJessica Paquette     assert(Leaf && "Leaves in LeafVector cannot be null!");
88578681be2SJessica Paquette     if (!Leaf->IsInTree)
88678681be2SJessica Paquette       continue;
88778681be2SJessica Paquette 
88878681be2SJessica Paquette     assert(Leaf->Parent && "All leaves must have parents!");
88978681be2SJessica Paquette     SuffixTreeNode &Parent = *(Leaf->Parent);
89078681be2SJessica Paquette 
89178681be2SJessica Paquette     // If it doesn't appear enough, or we already outlined from it, skip it.
89278681be2SJessica Paquette     if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree)
89378681be2SJessica Paquette       continue;
89478681be2SJessica Paquette 
895809d708bSJessica Paquette     // Figure out if this candidate is beneficial.
8964cf187b5SJessica Paquette     unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size();
89795c1107fSJessica Paquette 
89895c1107fSJessica Paquette     // Too short to be beneficial; skip it.
89995c1107fSJessica Paquette     // FIXME: This isn't necessarily true for, say, X86. If we factor in
90095c1107fSJessica Paquette     // instruction lengths we need more information than this.
90195c1107fSJessica Paquette     if (StringLen < 2)
90295c1107fSJessica Paquette       continue;
90395c1107fSJessica Paquette 
904d87f5449SJessica Paquette     // If this is a beneficial class of candidate, then every one is stored in
905d87f5449SJessica Paquette     // this vector.
906d87f5449SJessica Paquette     std::vector<Candidate> CandidatesForRepeatedSeq;
907d87f5449SJessica Paquette 
9084cf187b5SJessica Paquette     // Describes the start and end point of each candidate. This allows the
9094cf187b5SJessica Paquette     // target to infer some information about each occurrence of each repeated
9104cf187b5SJessica Paquette     // sequence.
911d87f5449SJessica Paquette     // FIXME: CandidatesForRepeatedSeq and this should be combined.
912d87f5449SJessica Paquette     std::vector<
913d87f5449SJessica Paquette         std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
9144cf187b5SJessica Paquette         RepeatedSequenceLocs;
915d87f5449SJessica Paquette 
916809d708bSJessica Paquette     // Figure out the call overhead for each instance of the sequence.
917809d708bSJessica Paquette     for (auto &ChildPair : Parent.Children) {
918809d708bSJessica Paquette       SuffixTreeNode *M = ChildPair.second;
91978681be2SJessica Paquette 
920809d708bSJessica Paquette       if (M && M->IsInTree && M->isLeaf()) {
921809d708bSJessica Paquette         // Each sequence is over [StartIt, EndIt].
922809d708bSJessica Paquette         MachineBasicBlock::iterator StartIt = Mapper.InstrList[M->SuffixIdx];
923809d708bSJessica Paquette         MachineBasicBlock::iterator EndIt =
924809d708bSJessica Paquette             Mapper.InstrList[M->SuffixIdx + StringLen - 1];
925d87f5449SJessica Paquette 
926acc15e12SJessica Paquette         CandidatesForRepeatedSeq.emplace_back(M->SuffixIdx, StringLen,
927acc15e12SJessica Paquette                                               FunctionList.size());
9284cf187b5SJessica Paquette         RepeatedSequenceLocs.emplace_back(std::make_pair(StartIt, EndIt));
929d87f5449SJessica Paquette 
930d87f5449SJessica Paquette         // Never visit this leaf again.
931d87f5449SJessica Paquette         M->IsInTree = false;
932809d708bSJessica Paquette       }
933809d708bSJessica Paquette     }
934809d708bSJessica Paquette 
935acc15e12SJessica Paquette     // We've found something we might want to outline.
936acc15e12SJessica Paquette     // Create an OutlinedFunction to store it and check if it'd be beneficial
937acc15e12SJessica Paquette     // to outline.
9384cf187b5SJessica Paquette     TargetInstrInfo::MachineOutlinerInfo MInfo =
9394cf187b5SJessica Paquette         TII.getOutlininingCandidateInfo(RepeatedSequenceLocs);
940acc15e12SJessica Paquette     std::vector<unsigned> Seq;
941acc15e12SJessica Paquette     for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++)
942acc15e12SJessica Paquette       Seq.push_back(ST.Str[i]);
943acc15e12SJessica Paquette     OutlinedFunction OF(FunctionList.size(), Parent.OccurrenceCount, Seq,
944acc15e12SJessica Paquette                         MInfo);
945acc15e12SJessica Paquette     unsigned Benefit = OF.getBenefit();
946809d708bSJessica Paquette 
947ffe4abc5SJessica Paquette     // Is it better to outline this candidate than not?
948acc15e12SJessica Paquette     if (Benefit < 1) {
949ffe4abc5SJessica Paquette       // Outlining this candidate would take more instructions than not
950ffe4abc5SJessica Paquette       // outlining.
951ffe4abc5SJessica Paquette       // Emit a remark explaining why we didn't outline this candidate.
952ffe4abc5SJessica Paquette       std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator> C =
9534cf187b5SJessica Paquette           RepeatedSequenceLocs[0];
9549590658fSVivek Pandya       MachineOptimizationRemarkEmitter MORE(
9559590658fSVivek Pandya           *(C.first->getParent()->getParent()), nullptr);
9569590658fSVivek Pandya       MORE.emit([&]() {
957ffe4abc5SJessica Paquette         MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
958ffe4abc5SJessica Paquette                                           C.first->getDebugLoc(),
959ffe4abc5SJessica Paquette                                           C.first->getParent());
960ffe4abc5SJessica Paquette         R << "Did not outline " << NV("Length", StringLen) << " instructions"
9614cf187b5SJessica Paquette           << " from " << NV("NumOccurrences", RepeatedSequenceLocs.size())
962ffe4abc5SJessica Paquette           << " locations."
963ffe4abc5SJessica Paquette           << " Instructions from outlining all occurrences ("
964acc15e12SJessica Paquette           << NV("OutliningCost", OF.getOutliningCost()) << ")"
965ffe4abc5SJessica Paquette           << " >= Unoutlined instruction count ("
966acc15e12SJessica Paquette           << NV("NotOutliningCost", StringLen * OF.OccurrenceCount) << ")"
967ffe4abc5SJessica Paquette           << " (Also found at: ";
968ffe4abc5SJessica Paquette 
969ffe4abc5SJessica Paquette         // Tell the user the other places the candidate was found.
9704cf187b5SJessica Paquette         for (unsigned i = 1, e = RepeatedSequenceLocs.size(); i < e; i++) {
971ffe4abc5SJessica Paquette           R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
9724cf187b5SJessica Paquette                   RepeatedSequenceLocs[i].first->getDebugLoc());
973ffe4abc5SJessica Paquette           if (i != e - 1)
974ffe4abc5SJessica Paquette             R << ", ";
975ffe4abc5SJessica Paquette         }
976ffe4abc5SJessica Paquette 
977ffe4abc5SJessica Paquette         R << ")";
9789590658fSVivek Pandya         return R;
9799590658fSVivek Pandya       });
980ffe4abc5SJessica Paquette 
981ffe4abc5SJessica Paquette       // Move to the next candidate.
98278681be2SJessica Paquette       continue;
983ffe4abc5SJessica Paquette     }
98478681be2SJessica Paquette 
98578681be2SJessica Paquette     if (StringLen > MaxLen)
98678681be2SJessica Paquette       MaxLen = StringLen;
98778681be2SJessica Paquette 
988d87f5449SJessica Paquette     // At this point, the candidate class is seen as beneficial. Set their
989d87f5449SJessica Paquette     // benefit values and save them in the candidate list.
990d87f5449SJessica Paquette     for (Candidate &C : CandidatesForRepeatedSeq) {
991d87f5449SJessica Paquette       C.Benefit = Benefit;
9924cf187b5SJessica Paquette       C.MInfo = MInfo;
993d87f5449SJessica Paquette       CandidateList.push_back(C);
994596f483aSJessica Paquette     }
995596f483aSJessica Paquette 
996acc15e12SJessica Paquette     FunctionList.push_back(OF);
99778681be2SJessica Paquette 
99878681be2SJessica Paquette     // Move to the next function.
99978681be2SJessica Paquette     Parent.IsInTree = false;
100078681be2SJessica Paquette   }
100178681be2SJessica Paquette 
100278681be2SJessica Paquette   return MaxLen;
100378681be2SJessica Paquette }
1004596f483aSJessica Paquette 
1005596f483aSJessica Paquette void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList,
1006596f483aSJessica Paquette                                     std::vector<OutlinedFunction> &FunctionList,
1007809d708bSJessica Paquette                                     InstructionMapper &Mapper,
1008596f483aSJessica Paquette                                     unsigned MaxCandidateLen,
1009596f483aSJessica Paquette                                     const TargetInstrInfo &TII) {
101091999169SJessica Paquette 
101191999169SJessica Paquette   // Return true if this candidate became unbeneficial for outlining in a
101291999169SJessica Paquette   // previous step.
101391999169SJessica Paquette   auto ShouldSkipCandidate = [&FunctionList](Candidate &C) {
101491999169SJessica Paquette 
101591999169SJessica Paquette     // Check if the candidate was removed in a previous step.
101691999169SJessica Paquette     if (!C.InCandidateList)
101791999169SJessica Paquette       return true;
101891999169SJessica Paquette 
101991999169SJessica Paquette     // Check if C's associated function is still beneficial after previous
102091999169SJessica Paquette     // pruning steps.
102191999169SJessica Paquette     OutlinedFunction &F = FunctionList[C.FunctionIdx];
102291999169SJessica Paquette 
1023acc15e12SJessica Paquette     if (F.OccurrenceCount < 2 || F.getBenefit() < 1) {
102491999169SJessica Paquette       assert(F.OccurrenceCount > 0 &&
102591999169SJessica Paquette              "Can't remove OutlinedFunction with no occurrences!");
102691999169SJessica Paquette       F.OccurrenceCount--;
102791999169SJessica Paquette       C.InCandidateList = false;
102891999169SJessica Paquette       return true;
102991999169SJessica Paquette     }
103091999169SJessica Paquette 
103191999169SJessica Paquette     // C is in the list, and F is still beneficial.
103291999169SJessica Paquette     return false;
103391999169SJessica Paquette   };
103491999169SJessica Paquette 
103591999169SJessica Paquette   // Remove C from the candidate space, and update its OutlinedFunction.
103691999169SJessica Paquette   auto Prune = [&FunctionList](Candidate &C) {
103791999169SJessica Paquette 
103891999169SJessica Paquette     // Get the OutlinedFunction associated with this Candidate.
103991999169SJessica Paquette     OutlinedFunction &F = FunctionList[C.FunctionIdx];
104091999169SJessica Paquette 
104191999169SJessica Paquette     // Update C's associated function's occurrence count.
104291999169SJessica Paquette     assert(F.OccurrenceCount > 0 &&
104391999169SJessica Paquette            "Can't remove OutlinedFunction with no occurrences!");
104491999169SJessica Paquette     F.OccurrenceCount--;
104591999169SJessica Paquette 
104691999169SJessica Paquette     // Remove C from the CandidateList.
104791999169SJessica Paquette     C.InCandidateList = false;
104891999169SJessica Paquette 
104991999169SJessica Paquette     DEBUG(dbgs() << "- Removed a Candidate \n";
105091999169SJessica Paquette           dbgs() << "--- Num fns left for candidate: " << F.OccurrenceCount
105191999169SJessica Paquette                  << "\n";
1052acc15e12SJessica Paquette           dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit()
105391999169SJessica Paquette                  << "\n";);
105491999169SJessica Paquette   };
105591999169SJessica Paquette 
1056acffa28cSJessica Paquette   // TODO: Experiment with interval trees or other interval-checking structures
1057acffa28cSJessica Paquette   // to lower the time complexity of this function.
1058acffa28cSJessica Paquette   // TODO: Can we do better than the simple greedy choice?
1059acffa28cSJessica Paquette   // Check for overlaps in the range.
1060acffa28cSJessica Paquette   // This is O(MaxCandidateLen * CandidateList.size()).
1061596f483aSJessica Paquette   for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
1062596f483aSJessica Paquette        It++) {
1063596f483aSJessica Paquette     Candidate &C1 = *It;
1064596f483aSJessica Paquette 
106591999169SJessica Paquette     // If C1 was already pruned, or its function is no longer beneficial for
106691999169SJessica Paquette     // outlining, move to the next candidate.
106791999169SJessica Paquette     if (ShouldSkipCandidate(C1))
1068596f483aSJessica Paquette       continue;
1069596f483aSJessica Paquette 
1070596f483aSJessica Paquette     // The minimum start index of any candidate that could overlap with this
1071596f483aSJessica Paquette     // one.
1072596f483aSJessica Paquette     unsigned FarthestPossibleIdx = 0;
1073596f483aSJessica Paquette 
1074596f483aSJessica Paquette     // Either the index is 0, or it's at most MaxCandidateLen indices away.
1075*c9ab4c26SJessica Paquette     if (C1.startIdx() > MaxCandidateLen)
1076*c9ab4c26SJessica Paquette       FarthestPossibleIdx = C1.startIdx() - MaxCandidateLen;
1077596f483aSJessica Paquette 
1078acffa28cSJessica Paquette     // Compare against the candidates in the list that start at at most
1079acffa28cSJessica Paquette     // FarthestPossibleIdx indices away from C1. There are at most
1080acffa28cSJessica Paquette     // MaxCandidateLen of these.
1081596f483aSJessica Paquette     for (auto Sit = It + 1; Sit != Et; Sit++) {
1082596f483aSJessica Paquette       Candidate &C2 = *Sit;
1083596f483aSJessica Paquette 
1084596f483aSJessica Paquette       // Is this candidate too far away to overlap?
1085*c9ab4c26SJessica Paquette       if (C2.startIdx() < FarthestPossibleIdx)
1086596f483aSJessica Paquette         break;
1087596f483aSJessica Paquette 
108891999169SJessica Paquette       // If C2 was already pruned, or its function is no longer beneficial for
108991999169SJessica Paquette       // outlining, move to the next candidate.
109091999169SJessica Paquette       if (ShouldSkipCandidate(C2))
1091596f483aSJessica Paquette         continue;
1092596f483aSJessica Paquette 
1093596f483aSJessica Paquette       // Do C1 and C2 overlap?
1094596f483aSJessica Paquette       //
1095596f483aSJessica Paquette       // Not overlapping:
1096596f483aSJessica Paquette       // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
1097596f483aSJessica Paquette       //
1098596f483aSJessica Paquette       // We sorted our candidate list so C2Start <= C1Start. We know that
1099596f483aSJessica Paquette       // C2End > C2Start since each candidate has length >= 2. Therefore, all we
1100596f483aSJessica Paquette       // have to check is C2End < C2Start to see if we overlap.
1101*c9ab4c26SJessica Paquette       if (C2.endIdx() < C1.startIdx())
1102596f483aSJessica Paquette         continue;
1103596f483aSJessica Paquette 
1104acffa28cSJessica Paquette       // C1 and C2 overlap.
1105acffa28cSJessica Paquette       // We need to choose the better of the two.
1106acffa28cSJessica Paquette       //
1107acffa28cSJessica Paquette       // Approximate this by picking the one which would have saved us the
1108acffa28cSJessica Paquette       // most instructions before any pruning.
1109acffa28cSJessica Paquette       if (C1.Benefit >= C2.Benefit) {
111091999169SJessica Paquette         Prune(C2);
1111acffa28cSJessica Paquette       } else {
111291999169SJessica Paquette         Prune(C1);
1113acffa28cSJessica Paquette         // C1 is out, so we don't have to compare it against anyone else.
1114acffa28cSJessica Paquette         break;
1115acffa28cSJessica Paquette       }
1116596f483aSJessica Paquette     }
1117596f483aSJessica Paquette   }
1118596f483aSJessica Paquette }
1119596f483aSJessica Paquette 
1120596f483aSJessica Paquette unsigned
1121596f483aSJessica Paquette MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList,
1122596f483aSJessica Paquette                                     std::vector<OutlinedFunction> &FunctionList,
112378681be2SJessica Paquette                                     SuffixTree &ST, InstructionMapper &Mapper,
1124596f483aSJessica Paquette                                     const TargetInstrInfo &TII) {
1125596f483aSJessica Paquette 
1126596f483aSJessica Paquette   std::vector<unsigned> CandidateSequence; // Current outlining candidate.
11274cf187b5SJessica Paquette   unsigned MaxCandidateLen = 0;            // Length of the longest candidate.
1128596f483aSJessica Paquette 
112978681be2SJessica Paquette   MaxCandidateLen =
113078681be2SJessica Paquette       findCandidates(ST, TII, Mapper, CandidateList, FunctionList);
1131596f483aSJessica Paquette 
1132596f483aSJessica Paquette   // Sort the candidates in decending order. This will simplify the outlining
1133596f483aSJessica Paquette   // process when we have to remove the candidates from the mapping by
1134596f483aSJessica Paquette   // allowing us to cut them out without keeping track of an offset.
1135596f483aSJessica Paquette   std::stable_sort(CandidateList.begin(), CandidateList.end());
1136596f483aSJessica Paquette 
1137596f483aSJessica Paquette   return MaxCandidateLen;
1138596f483aSJessica Paquette }
1139596f483aSJessica Paquette 
1140596f483aSJessica Paquette MachineFunction *
1141596f483aSJessica Paquette MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
1142596f483aSJessica Paquette                                         InstructionMapper &Mapper) {
1143596f483aSJessica Paquette 
1144596f483aSJessica Paquette   // Create the function name. This should be unique. For now, just hash the
1145596f483aSJessica Paquette   // module name and include it in the function name plus the number of this
1146596f483aSJessica Paquette   // function.
1147596f483aSJessica Paquette   std::ostringstream NameStream;
114878681be2SJessica Paquette   NameStream << "OUTLINED_FUNCTION_" << OF.Name;
1149596f483aSJessica Paquette 
1150596f483aSJessica Paquette   // Create the function using an IR-level function.
1151596f483aSJessica Paquette   LLVMContext &C = M.getContext();
1152596f483aSJessica Paquette   Function *F = dyn_cast<Function>(
115359a2d7b9SSerge Guelton       M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C)));
1154596f483aSJessica Paquette   assert(F && "Function was null!");
1155596f483aSJessica Paquette 
1156596f483aSJessica Paquette   // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1157596f483aSJessica Paquette   // which gives us better results when we outline from linkonceodr functions.
1158596f483aSJessica Paquette   F->setLinkage(GlobalValue::PrivateLinkage);
1159596f483aSJessica Paquette   F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1160596f483aSJessica Paquette 
1161596f483aSJessica Paquette   BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1162596f483aSJessica Paquette   IRBuilder<> Builder(EntryBB);
1163596f483aSJessica Paquette   Builder.CreateRetVoid();
1164596f483aSJessica Paquette 
1165596f483aSJessica Paquette   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
11667bda1958SMatthias Braun   MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
1167596f483aSJessica Paquette   MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1168596f483aSJessica Paquette   const TargetSubtargetInfo &STI = MF.getSubtarget();
1169596f483aSJessica Paquette   const TargetInstrInfo &TII = *STI.getInstrInfo();
1170596f483aSJessica Paquette 
1171596f483aSJessica Paquette   // Insert the new function into the module.
1172596f483aSJessica Paquette   MF.insert(MF.begin(), &MBB);
1173596f483aSJessica Paquette 
11744cf187b5SJessica Paquette   TII.insertOutlinerPrologue(MBB, MF, OF.MInfo);
1175596f483aSJessica Paquette 
1176596f483aSJessica Paquette   // Copy over the instructions for the function using the integer mappings in
1177596f483aSJessica Paquette   // its sequence.
1178596f483aSJessica Paquette   for (unsigned Str : OF.Sequence) {
1179596f483aSJessica Paquette     MachineInstr *NewMI =
1180596f483aSJessica Paquette         MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
1181596f483aSJessica Paquette     NewMI->dropMemRefs();
1182596f483aSJessica Paquette 
1183596f483aSJessica Paquette     // Don't keep debug information for outlined instructions.
1184596f483aSJessica Paquette     // FIXME: This means outlined functions are currently undebuggable.
1185596f483aSJessica Paquette     NewMI->setDebugLoc(DebugLoc());
1186596f483aSJessica Paquette     MBB.insert(MBB.end(), NewMI);
1187596f483aSJessica Paquette   }
1188596f483aSJessica Paquette 
11894cf187b5SJessica Paquette   TII.insertOutlinerEpilogue(MBB, MF, OF.MInfo);
1190596f483aSJessica Paquette 
1191596f483aSJessica Paquette   return &MF;
1192596f483aSJessica Paquette }
1193596f483aSJessica Paquette 
1194596f483aSJessica Paquette bool MachineOutliner::outline(Module &M,
1195596f483aSJessica Paquette                               const ArrayRef<Candidate> &CandidateList,
1196596f483aSJessica Paquette                               std::vector<OutlinedFunction> &FunctionList,
1197596f483aSJessica Paquette                               InstructionMapper &Mapper) {
1198596f483aSJessica Paquette 
1199596f483aSJessica Paquette   bool OutlinedSomething = false;
1200596f483aSJessica Paquette   // Replace the candidates with calls to their respective outlined functions.
1201596f483aSJessica Paquette   for (const Candidate &C : CandidateList) {
1202596f483aSJessica Paquette 
1203596f483aSJessica Paquette     // Was the candidate removed during pruneOverlaps?
1204596f483aSJessica Paquette     if (!C.InCandidateList)
1205596f483aSJessica Paquette       continue;
1206596f483aSJessica Paquette 
1207596f483aSJessica Paquette     // If not, then look at its OutlinedFunction.
1208596f483aSJessica Paquette     OutlinedFunction &OF = FunctionList[C.FunctionIdx];
1209596f483aSJessica Paquette 
1210596f483aSJessica Paquette     // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
1211acc15e12SJessica Paquette     if (OF.OccurrenceCount < 2 || OF.getBenefit() < 1)
1212596f483aSJessica Paquette       continue;
1213596f483aSJessica Paquette 
1214596f483aSJessica Paquette     // If not, then outline it.
1215*c9ab4c26SJessica Paquette     assert(C.startIdx() < Mapper.InstrList.size() &&
1216*c9ab4c26SJessica Paquette            "Candidate out of bounds!");
1217*c9ab4c26SJessica Paquette     MachineBasicBlock *MBB = (*Mapper.InstrList[C.startIdx()]).getParent();
1218*c9ab4c26SJessica Paquette     MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.startIdx()];
1219*c9ab4c26SJessica Paquette     unsigned EndIdx = C.endIdx();
1220596f483aSJessica Paquette 
1221596f483aSJessica Paquette     assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
1222596f483aSJessica Paquette     MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1223596f483aSJessica Paquette     assert(EndIt != MBB->end() && "EndIt out of bounds!");
1224596f483aSJessica Paquette 
1225596f483aSJessica Paquette     EndIt++; // Erase needs one past the end index.
1226596f483aSJessica Paquette 
1227596f483aSJessica Paquette     // Does this candidate have a function yet?
1228acffa28cSJessica Paquette     if (!OF.MF) {
1229596f483aSJessica Paquette       OF.MF = createOutlinedFunction(M, OF, Mapper);
1230acffa28cSJessica Paquette       FunctionsCreated++;
1231acffa28cSJessica Paquette     }
1232596f483aSJessica Paquette 
1233596f483aSJessica Paquette     MachineFunction *MF = OF.MF;
1234596f483aSJessica Paquette     const TargetSubtargetInfo &STI = MF->getSubtarget();
1235596f483aSJessica Paquette     const TargetInstrInfo &TII = *STI.getInstrInfo();
1236596f483aSJessica Paquette 
1237596f483aSJessica Paquette     // Insert a call to the new function and erase the old sequence.
12384cf187b5SJessica Paquette     TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.MInfo);
1239*c9ab4c26SJessica Paquette     StartIt = Mapper.InstrList[C.startIdx()];
1240596f483aSJessica Paquette     MBB->erase(StartIt, EndIt);
1241596f483aSJessica Paquette 
1242596f483aSJessica Paquette     OutlinedSomething = true;
1243596f483aSJessica Paquette 
1244596f483aSJessica Paquette     // Statistics.
1245596f483aSJessica Paquette     NumOutlined++;
1246596f483aSJessica Paquette   }
1247596f483aSJessica Paquette 
124878681be2SJessica Paquette   DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
1249596f483aSJessica Paquette 
1250596f483aSJessica Paquette   return OutlinedSomething;
1251596f483aSJessica Paquette }
1252596f483aSJessica Paquette 
1253596f483aSJessica Paquette bool MachineOutliner::runOnModule(Module &M) {
1254596f483aSJessica Paquette 
1255596f483aSJessica Paquette   // Is there anything in the module at all?
1256596f483aSJessica Paquette   if (M.empty())
1257596f483aSJessica Paquette     return false;
1258596f483aSJessica Paquette 
1259596f483aSJessica Paquette   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
126078681be2SJessica Paquette   const TargetSubtargetInfo &STI =
126178681be2SJessica Paquette       MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget();
1262596f483aSJessica Paquette   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
1263596f483aSJessica Paquette   const TargetInstrInfo *TII = STI.getInstrInfo();
1264596f483aSJessica Paquette 
1265596f483aSJessica Paquette   InstructionMapper Mapper;
1266596f483aSJessica Paquette 
1267596f483aSJessica Paquette   // Build instruction mappings for each function in the module.
1268596f483aSJessica Paquette   for (Function &F : M) {
12697bda1958SMatthias Braun     MachineFunction &MF = MMI.getOrCreateMachineFunction(F);
1270596f483aSJessica Paquette 
1271596f483aSJessica Paquette     // Is the function empty? Safe to outline from?
127213593843SJessica Paquette     if (F.empty() ||
127313593843SJessica Paquette         !TII->isFunctionSafeToOutlineFrom(MF, OutlineFromLinkOnceODRs))
1274596f483aSJessica Paquette       continue;
1275596f483aSJessica Paquette 
1276596f483aSJessica Paquette     // If it is, look at each MachineBasicBlock in the function.
1277596f483aSJessica Paquette     for (MachineBasicBlock &MBB : MF) {
1278596f483aSJessica Paquette 
1279596f483aSJessica Paquette       // Is there anything in MBB?
1280596f483aSJessica Paquette       if (MBB.empty())
1281596f483aSJessica Paquette         continue;
1282596f483aSJessica Paquette 
1283596f483aSJessica Paquette       // If yes, map it.
1284596f483aSJessica Paquette       Mapper.convertToUnsignedVec(MBB, *TRI, *TII);
1285596f483aSJessica Paquette     }
1286596f483aSJessica Paquette   }
1287596f483aSJessica Paquette 
1288596f483aSJessica Paquette   // Construct a suffix tree, use it to find candidates, and then outline them.
1289596f483aSJessica Paquette   SuffixTree ST(Mapper.UnsignedVec);
1290596f483aSJessica Paquette   std::vector<Candidate> CandidateList;
1291596f483aSJessica Paquette   std::vector<OutlinedFunction> FunctionList;
1292596f483aSJessica Paquette 
1293acffa28cSJessica Paquette   // Find all of the outlining candidates.
1294596f483aSJessica Paquette   unsigned MaxCandidateLen =
1295c984e213SJessica Paquette       buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII);
1296596f483aSJessica Paquette 
1297acffa28cSJessica Paquette   // Remove candidates that overlap with other candidates.
1298809d708bSJessica Paquette   pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII);
1299acffa28cSJessica Paquette 
1300acffa28cSJessica Paquette   // Outline each of the candidates and return true if something was outlined.
1301596f483aSJessica Paquette   return outline(M, CandidateList, FunctionList, Mapper);
1302596f483aSJessica Paquette }
1303