1596f483aSJessica Paquette //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2596f483aSJessica Paquette // 3596f483aSJessica Paquette // The LLVM Compiler Infrastructure 4596f483aSJessica Paquette // 5596f483aSJessica Paquette // This file is distributed under the University of Illinois Open Source 6596f483aSJessica Paquette // License. See LICENSE.TXT for details. 7596f483aSJessica Paquette // 8596f483aSJessica Paquette //===----------------------------------------------------------------------===// 9596f483aSJessica Paquette /// 10596f483aSJessica Paquette /// \file 11596f483aSJessica Paquette /// Replaces repeated sequences of instructions with function calls. 12596f483aSJessica Paquette /// 13596f483aSJessica Paquette /// This works by placing every instruction from every basic block in a 14596f483aSJessica Paquette /// suffix tree, and repeatedly querying that tree for repeated sequences of 15596f483aSJessica Paquette /// instructions. If a sequence of instructions appears often, then it ought 16596f483aSJessica Paquette /// to be beneficial to pull out into a function. 17596f483aSJessica Paquette /// 18596f483aSJessica Paquette /// This was originally presented at the 2016 LLVM Developers' Meeting in the 19596f483aSJessica Paquette /// talk "Reducing Code Size Using Outlining". For a high-level overview of 20596f483aSJessica Paquette /// how this pass works, the talk is available on YouTube at 21596f483aSJessica Paquette /// 22596f483aSJessica Paquette /// https://www.youtube.com/watch?v=yorld-WSOeU 23596f483aSJessica Paquette /// 24596f483aSJessica Paquette /// The slides for the talk are available at 25596f483aSJessica Paquette /// 26596f483aSJessica Paquette /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 27596f483aSJessica Paquette /// 28596f483aSJessica Paquette /// The talk provides an overview of how the outliner finds candidates and 29596f483aSJessica Paquette /// ultimately outlines them. It describes how the main data structure for this 30596f483aSJessica Paquette /// pass, the suffix tree, is queried and purged for candidates. It also gives 31596f483aSJessica Paquette /// a simplified suffix tree construction algorithm for suffix trees based off 32596f483aSJessica Paquette /// of the algorithm actually used here, Ukkonen's algorithm. 33596f483aSJessica Paquette /// 34596f483aSJessica Paquette /// For the original RFC for this pass, please see 35596f483aSJessica Paquette /// 36596f483aSJessica Paquette /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 37596f483aSJessica Paquette /// 38596f483aSJessica Paquette /// For more information on the suffix tree data structure, please see 39596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 40596f483aSJessica Paquette /// 41596f483aSJessica Paquette //===----------------------------------------------------------------------===// 42596f483aSJessica Paquette #include "llvm/ADT/DenseMap.h" 43596f483aSJessica Paquette #include "llvm/ADT/Statistic.h" 44596f483aSJessica Paquette #include "llvm/ADT/Twine.h" 45596f483aSJessica Paquette #include "llvm/CodeGen/MachineFrameInfo.h" 46596f483aSJessica Paquette #include "llvm/CodeGen/MachineFunction.h" 47596f483aSJessica Paquette #include "llvm/CodeGen/MachineInstrBuilder.h" 48596f483aSJessica Paquette #include "llvm/CodeGen/MachineModuleInfo.h" 49596f483aSJessica Paquette #include "llvm/CodeGen/Passes.h" 50596f483aSJessica Paquette #include "llvm/IR/IRBuilder.h" 51596f483aSJessica Paquette #include "llvm/Support/Allocator.h" 52596f483aSJessica Paquette #include "llvm/Support/Debug.h" 53596f483aSJessica Paquette #include "llvm/Support/raw_ostream.h" 54596f483aSJessica Paquette #include "llvm/Target/TargetInstrInfo.h" 55596f483aSJessica Paquette #include "llvm/Target/TargetMachine.h" 56596f483aSJessica Paquette #include "llvm/Target/TargetRegisterInfo.h" 57596f483aSJessica Paquette #include "llvm/Target/TargetSubtargetInfo.h" 58596f483aSJessica Paquette #include <functional> 59596f483aSJessica Paquette #include <map> 60596f483aSJessica Paquette #include <sstream> 61596f483aSJessica Paquette #include <tuple> 62596f483aSJessica Paquette #include <vector> 63596f483aSJessica Paquette 64596f483aSJessica Paquette #define DEBUG_TYPE "machine-outliner" 65596f483aSJessica Paquette 66596f483aSJessica Paquette using namespace llvm; 67596f483aSJessica Paquette 68596f483aSJessica Paquette STATISTIC(NumOutlined, "Number of candidates outlined"); 69596f483aSJessica Paquette STATISTIC(FunctionsCreated, "Number of functions created"); 70596f483aSJessica Paquette 71596f483aSJessica Paquette namespace { 72596f483aSJessica Paquette 73596f483aSJessica Paquette /// Represents an undefined index in the suffix tree. 74596f483aSJessica Paquette const size_t EmptyIdx = -1; 75596f483aSJessica Paquette 76596f483aSJessica Paquette /// A node in a suffix tree which represents a substring or suffix. 77596f483aSJessica Paquette /// 78596f483aSJessica Paquette /// Each node has either no children or at least two children, with the root 79596f483aSJessica Paquette /// being a exception in the empty tree. 80596f483aSJessica Paquette /// 81596f483aSJessica Paquette /// Children are represented as a map between unsigned integers and nodes. If 82596f483aSJessica Paquette /// a node N has a child M on unsigned integer k, then the mapping represented 83596f483aSJessica Paquette /// by N is a proper prefix of the mapping represented by M. Note that this, 84596f483aSJessica Paquette /// although similar to a trie is somewhat different: each node stores a full 85596f483aSJessica Paquette /// substring of the full mapping rather than a single character state. 86596f483aSJessica Paquette /// 87596f483aSJessica Paquette /// Each internal node contains a pointer to the internal node representing 88596f483aSJessica Paquette /// the same string, but with the first character chopped off. This is stored 89596f483aSJessica Paquette /// in \p Link. Each leaf node stores the start index of its respective 90596f483aSJessica Paquette /// suffix in \p SuffixIdx. 91596f483aSJessica Paquette struct SuffixTreeNode { 92596f483aSJessica Paquette 93596f483aSJessica Paquette /// The children of this node. 94596f483aSJessica Paquette /// 95596f483aSJessica Paquette /// A child existing on an unsigned integer implies that from the mapping 96596f483aSJessica Paquette /// represented by the current node, there is a way to reach another 97596f483aSJessica Paquette /// mapping by tacking that character on the end of the current string. 98596f483aSJessica Paquette DenseMap<unsigned, SuffixTreeNode *> Children; 99596f483aSJessica Paquette 100596f483aSJessica Paquette /// A flag set to false if the node has been pruned from the tree. 101596f483aSJessica Paquette bool IsInTree = true; 102596f483aSJessica Paquette 103596f483aSJessica Paquette /// The start index of this node's substring in the main string. 104596f483aSJessica Paquette size_t StartIdx = EmptyIdx; 105596f483aSJessica Paquette 106596f483aSJessica Paquette /// The end index of this node's substring in the main string. 107596f483aSJessica Paquette /// 108596f483aSJessica Paquette /// Every leaf node must have its \p EndIdx incremented at the end of every 109596f483aSJessica Paquette /// step in the construction algorithm. To avoid having to update O(N) 110596f483aSJessica Paquette /// nodes individually at the end of every step, the end index is stored 111596f483aSJessica Paquette /// as a pointer. 112596f483aSJessica Paquette size_t *EndIdx = nullptr; 113596f483aSJessica Paquette 114596f483aSJessica Paquette /// For leaves, the start index of the suffix represented by this node. 115596f483aSJessica Paquette /// 116596f483aSJessica Paquette /// For all other nodes, this is ignored. 117596f483aSJessica Paquette size_t SuffixIdx = EmptyIdx; 118596f483aSJessica Paquette 119596f483aSJessica Paquette /// \brief For internal nodes, a pointer to the internal node representing 120596f483aSJessica Paquette /// the same sequence with the first character chopped off. 121596f483aSJessica Paquette /// 122596f483aSJessica Paquette /// This has two major purposes in the suffix tree. The first is as a 123596f483aSJessica Paquette /// shortcut in Ukkonen's construction algorithm. One of the things that 124596f483aSJessica Paquette /// Ukkonen's algorithm does to achieve linear-time construction is 125596f483aSJessica Paquette /// keep track of which node the next insert should be at. This makes each 126596f483aSJessica Paquette /// insert O(1), and there are a total of O(N) inserts. The suffix link 127596f483aSJessica Paquette /// helps with inserting children of internal nodes. 128596f483aSJessica Paquette /// 129596f483aSJessica Paquette /// Say we add a child to an internal node with associated mapping S. The 130596f483aSJessica Paquette /// next insertion must be at the node representing S - its first character. 131596f483aSJessica Paquette /// This is given by the way that we iteratively build the tree in Ukkonen's 132596f483aSJessica Paquette /// algorithm. The main idea is to look at the suffixes of each prefix in the 133596f483aSJessica Paquette /// string, starting with the longest suffix of the prefix, and ending with 134596f483aSJessica Paquette /// the shortest. Therefore, if we keep pointers between such nodes, we can 135596f483aSJessica Paquette /// move to the next insertion point in O(1) time. If we don't, then we'd 136596f483aSJessica Paquette /// have to query from the root, which takes O(N) time. This would make the 137596f483aSJessica Paquette /// construction algorithm O(N^2) rather than O(N). 138596f483aSJessica Paquette /// 139596f483aSJessica Paquette /// The suffix link is also used during the tree pruning process to let us 140596f483aSJessica Paquette /// quickly throw out a bunch of potential overlaps. Say we have a sequence 141596f483aSJessica Paquette /// S we want to outline. Then each of its suffixes contribute to at least 142596f483aSJessica Paquette /// one overlapping case. Therefore, we can follow the suffix links 143596f483aSJessica Paquette /// starting at the node associated with S to the root and "delete" those 144596f483aSJessica Paquette /// nodes, save for the root. For each candidate, this removes 145596f483aSJessica Paquette /// O(|candidate|) overlaps from the search space. We don't actually 146596f483aSJessica Paquette /// completely invalidate these nodes though; doing that is far too 147596f483aSJessica Paquette /// aggressive. Consider the following pathological string: 148596f483aSJessica Paquette /// 149596f483aSJessica Paquette /// 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 150596f483aSJessica Paquette /// 151596f483aSJessica Paquette /// If we, for the sake of example, outlined 1 2 3, then we would throw 152596f483aSJessica Paquette /// out all instances of 2 3. This isn't desirable. To get around this, 153596f483aSJessica Paquette /// when we visit a link node, we decrement its occurrence count by the 154596f483aSJessica Paquette /// number of sequences we outlined in the current step. In the pathological 155596f483aSJessica Paquette /// example, the 2 3 node would have an occurrence count of 8, while the 156596f483aSJessica Paquette /// 1 2 3 node would have an occurrence count of 2. Thus, the 2 3 node 157596f483aSJessica Paquette /// would survive to the next round allowing us to outline the extra 158596f483aSJessica Paquette /// instances of 2 3. 159596f483aSJessica Paquette SuffixTreeNode *Link = nullptr; 160596f483aSJessica Paquette 161596f483aSJessica Paquette /// The parent of this node. Every node except for the root has a parent. 162596f483aSJessica Paquette SuffixTreeNode *Parent = nullptr; 163596f483aSJessica Paquette 164596f483aSJessica Paquette /// The number of times this node's string appears in the tree. 165596f483aSJessica Paquette /// 166596f483aSJessica Paquette /// This is equal to the number of leaf children of the string. It represents 167596f483aSJessica Paquette /// the number of suffixes that the node's string is a prefix of. 168596f483aSJessica Paquette size_t OccurrenceCount = 0; 169596f483aSJessica Paquette 170596f483aSJessica Paquette /// Returns true if this node is a leaf. 171596f483aSJessica Paquette bool isLeaf() const { return SuffixIdx != EmptyIdx; } 172596f483aSJessica Paquette 173596f483aSJessica Paquette /// Returns true if this node is the root of its owning \p SuffixTree. 174596f483aSJessica Paquette bool isRoot() const { return StartIdx == EmptyIdx; } 175596f483aSJessica Paquette 176596f483aSJessica Paquette /// Return the number of elements in the substring associated with this node. 177596f483aSJessica Paquette size_t size() const { 178596f483aSJessica Paquette 179596f483aSJessica Paquette // Is it the root? If so, it's the empty string so return 0. 180596f483aSJessica Paquette if (isRoot()) 181596f483aSJessica Paquette return 0; 182596f483aSJessica Paquette 183596f483aSJessica Paquette assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 184596f483aSJessica Paquette 185596f483aSJessica Paquette // Size = the number of elements in the string. 186596f483aSJessica Paquette // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 187596f483aSJessica Paquette return *EndIdx - StartIdx + 1; 188596f483aSJessica Paquette } 189596f483aSJessica Paquette 190596f483aSJessica Paquette SuffixTreeNode(size_t StartIdx, size_t *EndIdx, SuffixTreeNode *Link, 191596f483aSJessica Paquette SuffixTreeNode *Parent) 192596f483aSJessica Paquette : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} 193596f483aSJessica Paquette 194596f483aSJessica Paquette SuffixTreeNode() {} 195596f483aSJessica Paquette }; 196596f483aSJessica Paquette 197596f483aSJessica Paquette /// A data structure for fast substring queries. 198596f483aSJessica Paquette /// 199596f483aSJessica Paquette /// Suffix trees represent the suffixes of their input strings in their leaves. 200596f483aSJessica Paquette /// A suffix tree is a type of compressed trie structure where each node 201596f483aSJessica Paquette /// represents an entire substring rather than a single character. Each leaf 202596f483aSJessica Paquette /// of the tree is a suffix. 203596f483aSJessica Paquette /// 204596f483aSJessica Paquette /// A suffix tree can be seen as a type of state machine where each state is a 205596f483aSJessica Paquette /// substring of the full string. The tree is structured so that, for a string 206596f483aSJessica Paquette /// of length N, there are exactly N leaves in the tree. This structure allows 207596f483aSJessica Paquette /// us to quickly find repeated substrings of the input string. 208596f483aSJessica Paquette /// 209596f483aSJessica Paquette /// In this implementation, a "string" is a vector of unsigned integers. 210596f483aSJessica Paquette /// These integers may result from hashing some data type. A suffix tree can 211596f483aSJessica Paquette /// contain 1 or many strings, which can then be queried as one large string. 212596f483aSJessica Paquette /// 213596f483aSJessica Paquette /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 214596f483aSJessica Paquette /// suffix tree construction. Ukkonen's algorithm is explained in more detail 215596f483aSJessica Paquette /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 216596f483aSJessica Paquette /// paper is available at 217596f483aSJessica Paquette /// 218596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 219596f483aSJessica Paquette class SuffixTree { 220596f483aSJessica Paquette private: 221596f483aSJessica Paquette /// Each element is an integer representing an instruction in the module. 222596f483aSJessica Paquette ArrayRef<unsigned> Str; 223596f483aSJessica Paquette 224596f483aSJessica Paquette /// Maintains each node in the tree. 225d4cb9c6dSJessica Paquette SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 226596f483aSJessica Paquette 227596f483aSJessica Paquette /// The root of the suffix tree. 228596f483aSJessica Paquette /// 229596f483aSJessica Paquette /// The root represents the empty string. It is maintained by the 230596f483aSJessica Paquette /// \p NodeAllocator like every other node in the tree. 231596f483aSJessica Paquette SuffixTreeNode *Root = nullptr; 232596f483aSJessica Paquette 233596f483aSJessica Paquette /// Stores each leaf in the tree for better pruning. 234596f483aSJessica Paquette std::vector<SuffixTreeNode *> LeafVector; 235596f483aSJessica Paquette 236596f483aSJessica Paquette /// Maintains the end indices of the internal nodes in the tree. 237596f483aSJessica Paquette /// 238596f483aSJessica Paquette /// Each internal node is guaranteed to never have its end index change 239596f483aSJessica Paquette /// during the construction algorithm; however, leaves must be updated at 240596f483aSJessica Paquette /// every step. Therefore, we need to store leaf end indices by reference 241596f483aSJessica Paquette /// to avoid updating O(N) leaves at every step of construction. Thus, 242596f483aSJessica Paquette /// every internal node must be allocated its own end index. 243596f483aSJessica Paquette BumpPtrAllocator InternalEndIdxAllocator; 244596f483aSJessica Paquette 245596f483aSJessica Paquette /// The end index of each leaf in the tree. 246596f483aSJessica Paquette size_t LeafEndIdx = -1; 247596f483aSJessica Paquette 248596f483aSJessica Paquette /// \brief Helper struct which keeps track of the next insertion point in 249596f483aSJessica Paquette /// Ukkonen's algorithm. 250596f483aSJessica Paquette struct ActiveState { 251596f483aSJessica Paquette /// The next node to insert at. 252596f483aSJessica Paquette SuffixTreeNode *Node; 253596f483aSJessica Paquette 254596f483aSJessica Paquette /// The index of the first character in the substring currently being added. 255596f483aSJessica Paquette size_t Idx = EmptyIdx; 256596f483aSJessica Paquette 257596f483aSJessica Paquette /// The length of the substring we have to add at the current step. 258596f483aSJessica Paquette size_t Len = 0; 259596f483aSJessica Paquette }; 260596f483aSJessica Paquette 261596f483aSJessica Paquette /// \brief The point the next insertion will take place at in the 262596f483aSJessica Paquette /// construction algorithm. 263596f483aSJessica Paquette ActiveState Active; 264596f483aSJessica Paquette 265596f483aSJessica Paquette /// Allocate a leaf node and add it to the tree. 266596f483aSJessica Paquette /// 267596f483aSJessica Paquette /// \param Parent The parent of this node. 268596f483aSJessica Paquette /// \param StartIdx The start index of this node's associated string. 269596f483aSJessica Paquette /// \param Edge The label on the edge leaving \p Parent to this node. 270596f483aSJessica Paquette /// 271596f483aSJessica Paquette /// \returns A pointer to the allocated leaf node. 272596f483aSJessica Paquette SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, size_t StartIdx, 273596f483aSJessica Paquette unsigned Edge) { 274596f483aSJessica Paquette 275596f483aSJessica Paquette assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 276596f483aSJessica Paquette 277d4cb9c6dSJessica Paquette SuffixTreeNode *N = new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx, 278596f483aSJessica Paquette &LeafEndIdx, 279596f483aSJessica Paquette nullptr, 280596f483aSJessica Paquette &Parent); 281596f483aSJessica Paquette Parent.Children[Edge] = N; 282596f483aSJessica Paquette 283596f483aSJessica Paquette return N; 284596f483aSJessica Paquette } 285596f483aSJessica Paquette 286596f483aSJessica Paquette /// Allocate an internal node and add it to the tree. 287596f483aSJessica Paquette /// 288596f483aSJessica Paquette /// \param Parent The parent of this node. Only null when allocating the root. 289596f483aSJessica Paquette /// \param StartIdx The start index of this node's associated string. 290596f483aSJessica Paquette /// \param EndIdx The end index of this node's associated string. 291596f483aSJessica Paquette /// \param Edge The label on the edge leaving \p Parent to this node. 292596f483aSJessica Paquette /// 293596f483aSJessica Paquette /// \returns A pointer to the allocated internal node. 294596f483aSJessica Paquette SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, size_t StartIdx, 295596f483aSJessica Paquette size_t EndIdx, unsigned Edge) { 296596f483aSJessica Paquette 297596f483aSJessica Paquette assert(StartIdx <= EndIdx && "String can't start after it ends!"); 298596f483aSJessica Paquette assert(!(!Parent && StartIdx != EmptyIdx) && 299596f483aSJessica Paquette "Non-root internal nodes must have parents!"); 300596f483aSJessica Paquette 301596f483aSJessica Paquette size_t *E = new (InternalEndIdxAllocator) size_t(EndIdx); 302d4cb9c6dSJessica Paquette SuffixTreeNode *N = new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx, 303596f483aSJessica Paquette E, 304596f483aSJessica Paquette Root, 305596f483aSJessica Paquette Parent); 306596f483aSJessica Paquette if (Parent) 307596f483aSJessica Paquette Parent->Children[Edge] = N; 308596f483aSJessica Paquette 309596f483aSJessica Paquette return N; 310596f483aSJessica Paquette } 311596f483aSJessica Paquette 312596f483aSJessica Paquette /// \brief Set the suffix indices of the leaves to the start indices of their 313596f483aSJessica Paquette /// respective suffixes. Also stores each leaf in \p LeafVector at its 314596f483aSJessica Paquette /// respective suffix index. 315596f483aSJessica Paquette /// 316596f483aSJessica Paquette /// \param[in] CurrNode The node currently being visited. 317596f483aSJessica Paquette /// \param CurrIdx The current index of the string being visited. 318596f483aSJessica Paquette void setSuffixIndices(SuffixTreeNode &CurrNode, size_t CurrIdx) { 319596f483aSJessica Paquette 320596f483aSJessica Paquette bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 321596f483aSJessica Paquette 322596f483aSJessica Paquette // Traverse the tree depth-first. 323596f483aSJessica Paquette for (auto &ChildPair : CurrNode.Children) { 324596f483aSJessica Paquette assert(ChildPair.second && "Node had a null child!"); 325596f483aSJessica Paquette setSuffixIndices(*ChildPair.second, 326596f483aSJessica Paquette CurrIdx + ChildPair.second->size()); 327596f483aSJessica Paquette } 328596f483aSJessica Paquette 329596f483aSJessica Paquette // Is this node a leaf? 330596f483aSJessica Paquette if (IsLeaf) { 331596f483aSJessica Paquette // If yes, give it a suffix index and bump its parent's occurrence count. 332596f483aSJessica Paquette CurrNode.SuffixIdx = Str.size() - CurrIdx; 333596f483aSJessica Paquette assert(CurrNode.Parent && "CurrNode had no parent!"); 334596f483aSJessica Paquette CurrNode.Parent->OccurrenceCount++; 335596f483aSJessica Paquette 336596f483aSJessica Paquette // Store the leaf in the leaf vector for pruning later. 337596f483aSJessica Paquette LeafVector[CurrNode.SuffixIdx] = &CurrNode; 338596f483aSJessica Paquette } 339596f483aSJessica Paquette } 340596f483aSJessica Paquette 341596f483aSJessica Paquette /// \brief Construct the suffix tree for the prefix of the input ending at 342596f483aSJessica Paquette /// \p EndIdx. 343596f483aSJessica Paquette /// 344596f483aSJessica Paquette /// Used to construct the full suffix tree iteratively. At the end of each 345596f483aSJessica Paquette /// step, the constructed suffix tree is either a valid suffix tree, or a 346596f483aSJessica Paquette /// suffix tree with implicit suffixes. At the end of the final step, the 347596f483aSJessica Paquette /// suffix tree is a valid tree. 348596f483aSJessica Paquette /// 349596f483aSJessica Paquette /// \param EndIdx The end index of the current prefix in the main string. 350596f483aSJessica Paquette /// \param SuffixesToAdd The number of suffixes that must be added 351596f483aSJessica Paquette /// to complete the suffix tree at the current phase. 352596f483aSJessica Paquette /// 353596f483aSJessica Paquette /// \returns The number of suffixes that have not been added at the end of 354596f483aSJessica Paquette /// this step. 355596f483aSJessica Paquette unsigned extend(size_t EndIdx, size_t SuffixesToAdd) { 356596f483aSJessica Paquette SuffixTreeNode *NeedsLink = nullptr; 357596f483aSJessica Paquette 358596f483aSJessica Paquette while (SuffixesToAdd > 0) { 359596f483aSJessica Paquette 360596f483aSJessica Paquette // Are we waiting to add anything other than just the last character? 361596f483aSJessica Paquette if (Active.Len == 0) { 362596f483aSJessica Paquette // If not, then say the active index is the end index. 363596f483aSJessica Paquette Active.Idx = EndIdx; 364596f483aSJessica Paquette } 365596f483aSJessica Paquette 366596f483aSJessica Paquette assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 367596f483aSJessica Paquette 368596f483aSJessica Paquette // The first character in the current substring we're looking at. 369596f483aSJessica Paquette unsigned FirstChar = Str[Active.Idx]; 370596f483aSJessica Paquette 371596f483aSJessica Paquette // Have we inserted anything starting with FirstChar at the current node? 372596f483aSJessica Paquette if (Active.Node->Children.count(FirstChar) == 0) { 373596f483aSJessica Paquette // If not, then we can just insert a leaf and move too the next step. 374596f483aSJessica Paquette insertLeaf(*Active.Node, EndIdx, FirstChar); 375596f483aSJessica Paquette 376596f483aSJessica Paquette // The active node is an internal node, and we visited it, so it must 377596f483aSJessica Paquette // need a link if it doesn't have one. 378596f483aSJessica Paquette if (NeedsLink) { 379596f483aSJessica Paquette NeedsLink->Link = Active.Node; 380596f483aSJessica Paquette NeedsLink = nullptr; 381596f483aSJessica Paquette } 382596f483aSJessica Paquette } else { 383596f483aSJessica Paquette // There's a match with FirstChar, so look for the point in the tree to 384596f483aSJessica Paquette // insert a new node. 385596f483aSJessica Paquette SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 386596f483aSJessica Paquette 387596f483aSJessica Paquette size_t SubstringLen = NextNode->size(); 388596f483aSJessica Paquette 389596f483aSJessica Paquette // Is the current suffix we're trying to insert longer than the size of 390596f483aSJessica Paquette // the child we want to move to? 391596f483aSJessica Paquette if (Active.Len >= SubstringLen) { 392596f483aSJessica Paquette // If yes, then consume the characters we've seen and move to the next 393596f483aSJessica Paquette // node. 394596f483aSJessica Paquette Active.Idx += SubstringLen; 395596f483aSJessica Paquette Active.Len -= SubstringLen; 396596f483aSJessica Paquette Active.Node = NextNode; 397596f483aSJessica Paquette continue; 398596f483aSJessica Paquette } 399596f483aSJessica Paquette 400596f483aSJessica Paquette // Otherwise, the suffix we're trying to insert must be contained in the 401596f483aSJessica Paquette // next node we want to move to. 402596f483aSJessica Paquette unsigned LastChar = Str[EndIdx]; 403596f483aSJessica Paquette 404596f483aSJessica Paquette // Is the string we're trying to insert a substring of the next node? 405596f483aSJessica Paquette if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 406596f483aSJessica Paquette // If yes, then we're done for this step. Remember our insertion point 407596f483aSJessica Paquette // and move to the next end index. At this point, we have an implicit 408596f483aSJessica Paquette // suffix tree. 409596f483aSJessica Paquette if (NeedsLink && !Active.Node->isRoot()) { 410596f483aSJessica Paquette NeedsLink->Link = Active.Node; 411596f483aSJessica Paquette NeedsLink = nullptr; 412596f483aSJessica Paquette } 413596f483aSJessica Paquette 414596f483aSJessica Paquette Active.Len++; 415596f483aSJessica Paquette break; 416596f483aSJessica Paquette } 417596f483aSJessica Paquette 418596f483aSJessica Paquette // The string we're trying to insert isn't a substring of the next node, 419596f483aSJessica Paquette // but matches up to a point. Split the node. 420596f483aSJessica Paquette // 421596f483aSJessica Paquette // For example, say we ended our search at a node n and we're trying to 422596f483aSJessica Paquette // insert ABD. Then we'll create a new node s for AB, reduce n to just 423596f483aSJessica Paquette // representing C, and insert a new leaf node l to represent d. This 424596f483aSJessica Paquette // allows us to ensure that if n was a leaf, it remains a leaf. 425596f483aSJessica Paquette // 426596f483aSJessica Paquette // | ABC ---split---> | AB 427596f483aSJessica Paquette // n s 428596f483aSJessica Paquette // C / \ D 429596f483aSJessica Paquette // n l 430596f483aSJessica Paquette 431596f483aSJessica Paquette // The node s from the diagram 432596f483aSJessica Paquette SuffixTreeNode *SplitNode = 433596f483aSJessica Paquette insertInternalNode(Active.Node, 434596f483aSJessica Paquette NextNode->StartIdx, 435596f483aSJessica Paquette NextNode->StartIdx + Active.Len - 1, 436596f483aSJessica Paquette FirstChar); 437596f483aSJessica Paquette 438596f483aSJessica Paquette // Insert the new node representing the new substring into the tree as 439596f483aSJessica Paquette // a child of the split node. This is the node l from the diagram. 440596f483aSJessica Paquette insertLeaf(*SplitNode, EndIdx, LastChar); 441596f483aSJessica Paquette 442596f483aSJessica Paquette // Make the old node a child of the split node and update its start 443596f483aSJessica Paquette // index. This is the node n from the diagram. 444596f483aSJessica Paquette NextNode->StartIdx += Active.Len; 445596f483aSJessica Paquette NextNode->Parent = SplitNode; 446596f483aSJessica Paquette SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 447596f483aSJessica Paquette 448596f483aSJessica Paquette // SplitNode is an internal node, update the suffix link. 449596f483aSJessica Paquette if (NeedsLink) 450596f483aSJessica Paquette NeedsLink->Link = SplitNode; 451596f483aSJessica Paquette 452596f483aSJessica Paquette NeedsLink = SplitNode; 453596f483aSJessica Paquette } 454596f483aSJessica Paquette 455596f483aSJessica Paquette // We've added something new to the tree, so there's one less suffix to 456596f483aSJessica Paquette // add. 457596f483aSJessica Paquette SuffixesToAdd--; 458596f483aSJessica Paquette 459596f483aSJessica Paquette if (Active.Node->isRoot()) { 460596f483aSJessica Paquette if (Active.Len > 0) { 461596f483aSJessica Paquette Active.Len--; 462596f483aSJessica Paquette Active.Idx = EndIdx - SuffixesToAdd + 1; 463596f483aSJessica Paquette } 464596f483aSJessica Paquette } else { 465596f483aSJessica Paquette // Start the next phase at the next smallest suffix. 466596f483aSJessica Paquette Active.Node = Active.Node->Link; 467596f483aSJessica Paquette } 468596f483aSJessica Paquette } 469596f483aSJessica Paquette 470596f483aSJessica Paquette return SuffixesToAdd; 471596f483aSJessica Paquette } 472596f483aSJessica Paquette 473596f483aSJessica Paquette /// \brief Return the start index and length of a string which maximizes a 474596f483aSJessica Paquette /// benefit function by traversing the tree depth-first. 475596f483aSJessica Paquette /// 476596f483aSJessica Paquette /// Helper function for \p bestRepeatedSubstring. 477596f483aSJessica Paquette /// 478596f483aSJessica Paquette /// \param CurrNode The node currently being visited. 479596f483aSJessica Paquette /// \param CurrLen Length of the current string. 480596f483aSJessica Paquette /// \param[out] BestLen Length of the most beneficial substring. 481596f483aSJessica Paquette /// \param[out] MaxBenefit Benefit of the most beneficial substring. 482596f483aSJessica Paquette /// \param[out] BestStartIdx Start index of the most beneficial substring. 483596f483aSJessica Paquette /// \param BenefitFn The function the query should return a maximum string 484596f483aSJessica Paquette /// for. 485596f483aSJessica Paquette void findBest(SuffixTreeNode &CurrNode, size_t CurrLen, size_t &BestLen, 486596f483aSJessica Paquette size_t &MaxBenefit, size_t &BestStartIdx, 487596f483aSJessica Paquette const std::function<unsigned(SuffixTreeNode &, size_t CurrLen)> 488596f483aSJessica Paquette &BenefitFn) { 489596f483aSJessica Paquette 490596f483aSJessica Paquette if (!CurrNode.IsInTree) 491596f483aSJessica Paquette return; 492596f483aSJessica Paquette 493596f483aSJessica Paquette // Can we traverse further down the tree? 494596f483aSJessica Paquette if (!CurrNode.isLeaf()) { 495596f483aSJessica Paquette // If yes, continue the traversal. 496596f483aSJessica Paquette for (auto &ChildPair : CurrNode.Children) { 497596f483aSJessica Paquette if (ChildPair.second && ChildPair.second->IsInTree) 498596f483aSJessica Paquette findBest(*ChildPair.second, CurrLen + ChildPair.second->size(), 499596f483aSJessica Paquette BestLen, MaxBenefit, BestStartIdx, BenefitFn); 500596f483aSJessica Paquette } 501596f483aSJessica Paquette } else { 502596f483aSJessica Paquette // We hit a leaf. 503596f483aSJessica Paquette size_t StringLen = CurrLen - CurrNode.size(); 504596f483aSJessica Paquette unsigned Benefit = BenefitFn(CurrNode, StringLen); 505596f483aSJessica Paquette 506596f483aSJessica Paquette // Did we do better than in the last step? 507596f483aSJessica Paquette if (Benefit <= MaxBenefit) 508596f483aSJessica Paquette return; 509596f483aSJessica Paquette 510596f483aSJessica Paquette // We did better, so update the best string. 511596f483aSJessica Paquette MaxBenefit = Benefit; 512596f483aSJessica Paquette BestStartIdx = CurrNode.SuffixIdx; 513596f483aSJessica Paquette BestLen = StringLen; 514596f483aSJessica Paquette } 515596f483aSJessica Paquette } 516596f483aSJessica Paquette 517596f483aSJessica Paquette public: 518596f483aSJessica Paquette 519*c984e213SJessica Paquette unsigned operator[](const size_t i) const { 520*c984e213SJessica Paquette return Str[i]; 521*c984e213SJessica Paquette } 522*c984e213SJessica Paquette 523596f483aSJessica Paquette /// \brief Return a substring of the tree with maximum benefit if such a 524596f483aSJessica Paquette /// substring exists. 525596f483aSJessica Paquette /// 526596f483aSJessica Paquette /// Clears the input vector and fills it with a maximum substring or empty. 527596f483aSJessica Paquette /// 528596f483aSJessica Paquette /// \param[in,out] Best The most beneficial substring in the tree. Empty 529596f483aSJessica Paquette /// if it does not exist. 530596f483aSJessica Paquette /// \param BenefitFn The function the query should return a maximum string 531596f483aSJessica Paquette /// for. 532596f483aSJessica Paquette void bestRepeatedSubstring(std::vector<unsigned> &Best, 533596f483aSJessica Paquette const std::function<unsigned(SuffixTreeNode &, size_t CurrLen)> 534596f483aSJessica Paquette &BenefitFn) { 535596f483aSJessica Paquette Best.clear(); 536596f483aSJessica Paquette size_t Length = 0; // Becomes the length of the best substring. 537596f483aSJessica Paquette size_t Benefit = 0; // Becomes the benefit of the best substring. 538596f483aSJessica Paquette size_t StartIdx = 0; // Becomes the start index of the best substring. 539596f483aSJessica Paquette findBest(*Root, 0, Length, Benefit, StartIdx, BenefitFn); 540596f483aSJessica Paquette 541596f483aSJessica Paquette for (size_t Idx = 0; Idx < Length; Idx++) 542596f483aSJessica Paquette Best.push_back(Str[Idx + StartIdx]); 543596f483aSJessica Paquette } 544596f483aSJessica Paquette 545596f483aSJessica Paquette /// Perform a depth-first search for \p QueryString on the suffix tree. 546596f483aSJessica Paquette /// 547596f483aSJessica Paquette /// \param QueryString The string to search for. 548596f483aSJessica Paquette /// \param CurrIdx The current index in \p QueryString that is being matched 549596f483aSJessica Paquette /// against. 550596f483aSJessica Paquette /// \param CurrNode The suffix tree node being searched in. 551596f483aSJessica Paquette /// 552596f483aSJessica Paquette /// \returns A \p SuffixTreeNode that \p QueryString appears in if such a 553596f483aSJessica Paquette /// node exists, and \p nullptr otherwise. 554596f483aSJessica Paquette SuffixTreeNode *findString(const std::vector<unsigned> &QueryString, 555596f483aSJessica Paquette size_t &CurrIdx, SuffixTreeNode *CurrNode) { 556596f483aSJessica Paquette 557596f483aSJessica Paquette // The search ended at a nonexistent or pruned node. Quit. 558596f483aSJessica Paquette if (!CurrNode || !CurrNode->IsInTree) 559596f483aSJessica Paquette return nullptr; 560596f483aSJessica Paquette 561596f483aSJessica Paquette unsigned Edge = QueryString[CurrIdx]; // The edge we want to move on. 562596f483aSJessica Paquette SuffixTreeNode *NextNode = CurrNode->Children[Edge]; // Next node in query. 563596f483aSJessica Paquette 564596f483aSJessica Paquette if (CurrNode->isRoot()) { 565596f483aSJessica Paquette // If we're at the root we have to check if there's a child, and move to 566596f483aSJessica Paquette // that child. Don't consume the character since \p Root represents the 567596f483aSJessica Paquette // empty string. 568596f483aSJessica Paquette if (NextNode && NextNode->IsInTree) 569596f483aSJessica Paquette return findString(QueryString, CurrIdx, NextNode); 570596f483aSJessica Paquette return nullptr; 571596f483aSJessica Paquette } 572596f483aSJessica Paquette 573596f483aSJessica Paquette size_t StrIdx = CurrNode->StartIdx; 574596f483aSJessica Paquette size_t MaxIdx = QueryString.size(); 575596f483aSJessica Paquette bool ContinueSearching = false; 576596f483aSJessica Paquette 577596f483aSJessica Paquette // Match as far as possible into the string. If there's a mismatch, quit. 578596f483aSJessica Paquette for (; CurrIdx < MaxIdx; CurrIdx++, StrIdx++) { 579596f483aSJessica Paquette Edge = QueryString[CurrIdx]; 580596f483aSJessica Paquette 581596f483aSJessica Paquette // We matched perfectly, but still have a remainder to search. 582596f483aSJessica Paquette if (StrIdx > *(CurrNode->EndIdx)) { 583596f483aSJessica Paquette ContinueSearching = true; 584596f483aSJessica Paquette break; 585596f483aSJessica Paquette } 586596f483aSJessica Paquette 587596f483aSJessica Paquette if (Edge != Str[StrIdx]) 588596f483aSJessica Paquette return nullptr; 589596f483aSJessica Paquette } 590596f483aSJessica Paquette 591596f483aSJessica Paquette NextNode = CurrNode->Children[Edge]; 592596f483aSJessica Paquette 593596f483aSJessica Paquette // Move to the node which matches what we're looking for and continue 594596f483aSJessica Paquette // searching. 595596f483aSJessica Paquette if (ContinueSearching) 596596f483aSJessica Paquette return findString(QueryString, CurrIdx, NextNode); 597596f483aSJessica Paquette 598596f483aSJessica Paquette // We matched perfectly so we're done. 599596f483aSJessica Paquette return CurrNode; 600596f483aSJessica Paquette } 601596f483aSJessica Paquette 602596f483aSJessica Paquette /// \brief Remove a node from a tree and all nodes representing proper 603596f483aSJessica Paquette /// suffixes of that node's string. 604596f483aSJessica Paquette /// 605596f483aSJessica Paquette /// This is used in the outlining algorithm to reduce the number of 606596f483aSJessica Paquette /// overlapping candidates 607596f483aSJessica Paquette /// 608596f483aSJessica Paquette /// \param N The suffix tree node to start pruning from. 609596f483aSJessica Paquette /// \param Len The length of the string to be pruned. 610596f483aSJessica Paquette /// 611596f483aSJessica Paquette /// \returns True if this candidate didn't overlap with a previously chosen 612596f483aSJessica Paquette /// candidate. 613596f483aSJessica Paquette bool prune(SuffixTreeNode *N, size_t Len) { 614596f483aSJessica Paquette 615596f483aSJessica Paquette bool NoOverlap = true; 616596f483aSJessica Paquette std::vector<unsigned> IndicesToPrune; 617596f483aSJessica Paquette 618596f483aSJessica Paquette // Look at each of N's children. 619596f483aSJessica Paquette for (auto &ChildPair : N->Children) { 620596f483aSJessica Paquette SuffixTreeNode *M = ChildPair.second; 621596f483aSJessica Paquette 622596f483aSJessica Paquette // Is this a leaf child? 623596f483aSJessica Paquette if (M && M->IsInTree && M->isLeaf()) { 624596f483aSJessica Paquette // Save each leaf child's suffix indices and remove them from the tree. 625596f483aSJessica Paquette IndicesToPrune.push_back(M->SuffixIdx); 626596f483aSJessica Paquette M->IsInTree = false; 627596f483aSJessica Paquette } 628596f483aSJessica Paquette } 629596f483aSJessica Paquette 630596f483aSJessica Paquette // Remove each suffix we have to prune from the tree. Each of these will be 631596f483aSJessica Paquette // I + some offset for I in IndicesToPrune and some offset < Len. 632596f483aSJessica Paquette unsigned Offset = 1; 633596f483aSJessica Paquette for (unsigned CurrentSuffix = 1; CurrentSuffix < Len; CurrentSuffix++) { 634596f483aSJessica Paquette for (unsigned I : IndicesToPrune) { 635596f483aSJessica Paquette 636596f483aSJessica Paquette unsigned PruneIdx = I + Offset; 637596f483aSJessica Paquette 638596f483aSJessica Paquette // Is this index actually in the string? 639596f483aSJessica Paquette if (PruneIdx < LeafVector.size()) { 640596f483aSJessica Paquette // If yes, we have to try and prune it. 641596f483aSJessica Paquette // Was the current leaf already pruned by another candidate? 642596f483aSJessica Paquette if (LeafVector[PruneIdx]->IsInTree) { 643596f483aSJessica Paquette // If not, prune it. 644596f483aSJessica Paquette LeafVector[PruneIdx]->IsInTree = false; 645596f483aSJessica Paquette } else { 646596f483aSJessica Paquette // If yes, signify that we've found an overlap, but keep pruning. 647596f483aSJessica Paquette NoOverlap = false; 648596f483aSJessica Paquette } 649596f483aSJessica Paquette 650596f483aSJessica Paquette // Update the parent of the current leaf's occurrence count. 651596f483aSJessica Paquette SuffixTreeNode *Parent = LeafVector[PruneIdx]->Parent; 652596f483aSJessica Paquette 653596f483aSJessica Paquette // Is the parent still in the tree? 654596f483aSJessica Paquette if (Parent->OccurrenceCount > 0) { 655596f483aSJessica Paquette Parent->OccurrenceCount--; 656596f483aSJessica Paquette Parent->IsInTree = (Parent->OccurrenceCount > 1); 657596f483aSJessica Paquette } 658596f483aSJessica Paquette } 659596f483aSJessica Paquette } 660596f483aSJessica Paquette 661596f483aSJessica Paquette // Move to the next character in the string. 662596f483aSJessica Paquette Offset++; 663596f483aSJessica Paquette } 664596f483aSJessica Paquette 665596f483aSJessica Paquette // We know we can never outline anything which starts one index back from 666596f483aSJessica Paquette // the indices we want to outline. This is because our minimum outlining 667596f483aSJessica Paquette // length is always 2. 668596f483aSJessica Paquette for (unsigned I : IndicesToPrune) { 669596f483aSJessica Paquette if (I > 0) { 670596f483aSJessica Paquette 671596f483aSJessica Paquette unsigned PruneIdx = I-1; 672596f483aSJessica Paquette SuffixTreeNode *Parent = LeafVector[PruneIdx]->Parent; 673596f483aSJessica Paquette 674596f483aSJessica Paquette // Was the leaf one index back from I already pruned? 675596f483aSJessica Paquette if (LeafVector[PruneIdx]->IsInTree) { 676596f483aSJessica Paquette // If not, prune it. 677596f483aSJessica Paquette LeafVector[PruneIdx]->IsInTree = false; 678596f483aSJessica Paquette } else { 679596f483aSJessica Paquette // If yes, signify that we've found an overlap, but keep pruning. 680596f483aSJessica Paquette NoOverlap = false; 681596f483aSJessica Paquette } 682596f483aSJessica Paquette 683596f483aSJessica Paquette // Update the parent of the current leaf's occurrence count. 684596f483aSJessica Paquette if (Parent->OccurrenceCount > 0) { 685596f483aSJessica Paquette Parent->OccurrenceCount--; 686596f483aSJessica Paquette Parent->IsInTree = (Parent->OccurrenceCount > 1); 687596f483aSJessica Paquette } 688596f483aSJessica Paquette } 689596f483aSJessica Paquette } 690596f483aSJessica Paquette 691596f483aSJessica Paquette // Finally, remove N from the tree and set its occurrence count to 0. 692596f483aSJessica Paquette N->IsInTree = false; 693596f483aSJessica Paquette N->OccurrenceCount = 0; 694596f483aSJessica Paquette 695596f483aSJessica Paquette return NoOverlap; 696596f483aSJessica Paquette } 697596f483aSJessica Paquette 698596f483aSJessica Paquette /// \brief Find each occurrence of of a string in \p QueryString and prune 699596f483aSJessica Paquette /// their nodes. 700596f483aSJessica Paquette /// 701596f483aSJessica Paquette /// \param QueryString The string to search for. 702596f483aSJessica Paquette /// \param[out] Occurrences The start indices of each occurrence. 703596f483aSJessica Paquette /// 704596f483aSJessica Paquette /// \returns Whether or not the occurrence overlaps with a previous candidate. 705596f483aSJessica Paquette bool findOccurrencesAndPrune(const std::vector<unsigned> &QueryString, 706596f483aSJessica Paquette std::vector<size_t> &Occurrences) { 707596f483aSJessica Paquette size_t Dummy = 0; 708596f483aSJessica Paquette SuffixTreeNode *N = findString(QueryString, Dummy, Root); 709596f483aSJessica Paquette 710596f483aSJessica Paquette if (!N || !N->IsInTree) 711596f483aSJessica Paquette return false; 712596f483aSJessica Paquette 713596f483aSJessica Paquette // If this is an internal node, occurrences are the number of leaf children 714596f483aSJessica Paquette // of the node. 715596f483aSJessica Paquette for (auto &ChildPair : N->Children) { 716596f483aSJessica Paquette SuffixTreeNode *M = ChildPair.second; 717596f483aSJessica Paquette 718596f483aSJessica Paquette // Is it a leaf? If so, we have an occurrence. 719596f483aSJessica Paquette if (M && M->IsInTree && M->isLeaf()) 720596f483aSJessica Paquette Occurrences.push_back(M->SuffixIdx); 721596f483aSJessica Paquette } 722596f483aSJessica Paquette 723596f483aSJessica Paquette // If we're in a leaf, then this node is the only occurrence. 724596f483aSJessica Paquette if (N->isLeaf()) 725596f483aSJessica Paquette Occurrences.push_back(N->SuffixIdx); 726596f483aSJessica Paquette 727596f483aSJessica Paquette return prune(N, QueryString.size()); 728596f483aSJessica Paquette } 729596f483aSJessica Paquette 730596f483aSJessica Paquette /// Construct a suffix tree from a sequence of unsigned integers. 731596f483aSJessica Paquette /// 732596f483aSJessica Paquette /// \param Str The string to construct the suffix tree for. 733596f483aSJessica Paquette SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 734596f483aSJessica Paquette Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 735596f483aSJessica Paquette Root->IsInTree = true; 736596f483aSJessica Paquette Active.Node = Root; 737596f483aSJessica Paquette LeafVector = std::vector<SuffixTreeNode*>(Str.size()); 738596f483aSJessica Paquette 739596f483aSJessica Paquette // Keep track of the number of suffixes we have to add of the current 740596f483aSJessica Paquette // prefix. 741596f483aSJessica Paquette size_t SuffixesToAdd = 0; 742596f483aSJessica Paquette Active.Node = Root; 743596f483aSJessica Paquette 744596f483aSJessica Paquette // Construct the suffix tree iteratively on each prefix of the string. 745596f483aSJessica Paquette // PfxEndIdx is the end index of the current prefix. 746596f483aSJessica Paquette // End is one past the last element in the string. 747596f483aSJessica Paquette for (size_t PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) { 748596f483aSJessica Paquette SuffixesToAdd++; 749596f483aSJessica Paquette LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 750596f483aSJessica Paquette SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 751596f483aSJessica Paquette } 752596f483aSJessica Paquette 753596f483aSJessica Paquette // Set the suffix indices of each leaf. 754596f483aSJessica Paquette assert(Root && "Root node can't be nullptr!"); 755596f483aSJessica Paquette setSuffixIndices(*Root, 0); 756596f483aSJessica Paquette } 757596f483aSJessica Paquette }; 758596f483aSJessica Paquette 759596f483aSJessica Paquette /// \brief An individual sequence of instructions to be replaced with a call to 760596f483aSJessica Paquette /// an outlined function. 761596f483aSJessica Paquette struct Candidate { 762596f483aSJessica Paquette 763596f483aSJessica Paquette /// Set to false if the candidate overlapped with another candidate. 764596f483aSJessica Paquette bool InCandidateList = true; 765596f483aSJessica Paquette 766596f483aSJessica Paquette /// The start index of this \p Candidate. 767596f483aSJessica Paquette size_t StartIdx; 768596f483aSJessica Paquette 769596f483aSJessica Paquette /// The number of instructions in this \p Candidate. 770596f483aSJessica Paquette size_t Len; 771596f483aSJessica Paquette 772596f483aSJessica Paquette /// The index of this \p Candidate's \p OutlinedFunction in the list of 773596f483aSJessica Paquette /// \p OutlinedFunctions. 774596f483aSJessica Paquette size_t FunctionIdx; 775596f483aSJessica Paquette 776596f483aSJessica Paquette Candidate(size_t StartIdx, size_t Len, size_t FunctionIdx) 777596f483aSJessica Paquette : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {} 778596f483aSJessica Paquette 779596f483aSJessica Paquette Candidate() {} 780596f483aSJessica Paquette 781596f483aSJessica Paquette /// \brief Used to ensure that \p Candidates are outlined in an order that 782596f483aSJessica Paquette /// preserves the start and end indices of other \p Candidates. 783596f483aSJessica Paquette bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; } 784596f483aSJessica Paquette }; 785596f483aSJessica Paquette 786596f483aSJessica Paquette /// \brief The information necessary to create an outlined function for some 787596f483aSJessica Paquette /// class of candidate. 788596f483aSJessica Paquette struct OutlinedFunction { 789596f483aSJessica Paquette 790596f483aSJessica Paquette /// The actual outlined function created. 791596f483aSJessica Paquette /// This is initialized after we go through and create the actual function. 792596f483aSJessica Paquette MachineFunction *MF = nullptr; 793596f483aSJessica Paquette 794596f483aSJessica Paquette /// A number assigned to this function which appears at the end of its name. 795596f483aSJessica Paquette size_t Name; 796596f483aSJessica Paquette 797596f483aSJessica Paquette /// The number of times that this function has appeared. 798596f483aSJessica Paquette size_t OccurrenceCount = 0; 799596f483aSJessica Paquette 800596f483aSJessica Paquette /// \brief The sequence of integers corresponding to the instructions in this 801596f483aSJessica Paquette /// function. 802596f483aSJessica Paquette std::vector<unsigned> Sequence; 803596f483aSJessica Paquette 804596f483aSJessica Paquette /// The number of instructions this function would save. 805596f483aSJessica Paquette unsigned Benefit = 0; 806596f483aSJessica Paquette 807*c984e213SJessica Paquette bool IsTailCall = false; 808*c984e213SJessica Paquette 809596f483aSJessica Paquette OutlinedFunction(size_t Name, size_t OccurrenceCount, 810596f483aSJessica Paquette const std::vector<unsigned> &Sequence, 811*c984e213SJessica Paquette unsigned Benefit, bool IsTailCall) 812596f483aSJessica Paquette : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence), 813*c984e213SJessica Paquette Benefit(Benefit), IsTailCall(IsTailCall) 814596f483aSJessica Paquette {} 815596f483aSJessica Paquette }; 816596f483aSJessica Paquette 817596f483aSJessica Paquette /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings. 818596f483aSJessica Paquette struct InstructionMapper { 819596f483aSJessica Paquette 820596f483aSJessica Paquette /// \brief The next available integer to assign to a \p MachineInstr that 821596f483aSJessica Paquette /// cannot be outlined. 822596f483aSJessica Paquette /// 823596f483aSJessica Paquette /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 824596f483aSJessica Paquette unsigned IllegalInstrNumber = -3; 825596f483aSJessica Paquette 826596f483aSJessica Paquette /// \brief The next available integer to assign to a \p MachineInstr that can 827596f483aSJessica Paquette /// be outlined. 828596f483aSJessica Paquette unsigned LegalInstrNumber = 0; 829596f483aSJessica Paquette 830596f483aSJessica Paquette /// Correspondence from \p MachineInstrs to unsigned integers. 831596f483aSJessica Paquette DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 832596f483aSJessica Paquette InstructionIntegerMap; 833596f483aSJessica Paquette 834596f483aSJessica Paquette /// Corresponcence from unsigned integers to \p MachineInstrs. 835596f483aSJessica Paquette /// Inverse of \p InstructionIntegerMap. 836596f483aSJessica Paquette DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; 837596f483aSJessica Paquette 838596f483aSJessica Paquette /// The vector of unsigned integers that the module is mapped to. 839596f483aSJessica Paquette std::vector<unsigned> UnsignedVec; 840596f483aSJessica Paquette 841596f483aSJessica Paquette /// \brief Stores the location of the instruction associated with the integer 842596f483aSJessica Paquette /// at index i in \p UnsignedVec for each index i. 843596f483aSJessica Paquette std::vector<MachineBasicBlock::iterator> InstrList; 844596f483aSJessica Paquette 845596f483aSJessica Paquette /// \brief Maps \p *It to a legal integer. 846596f483aSJessica Paquette /// 847596f483aSJessica Paquette /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, 848596f483aSJessica Paquette /// \p IntegerInstructionMap, and \p LegalInstrNumber. 849596f483aSJessica Paquette /// 850596f483aSJessica Paquette /// \returns The integer that \p *It was mapped to. 851596f483aSJessica Paquette unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { 852596f483aSJessica Paquette 853596f483aSJessica Paquette // Get the integer for this instruction or give it the current 854596f483aSJessica Paquette // LegalInstrNumber. 855596f483aSJessica Paquette InstrList.push_back(It); 856596f483aSJessica Paquette MachineInstr &MI = *It; 857596f483aSJessica Paquette bool WasInserted; 858596f483aSJessica Paquette DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 859596f483aSJessica Paquette ResultIt; 860596f483aSJessica Paquette std::tie(ResultIt, WasInserted) = 861596f483aSJessica Paquette InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 862596f483aSJessica Paquette unsigned MINumber = ResultIt->second; 863596f483aSJessica Paquette 864596f483aSJessica Paquette // There was an insertion. 865596f483aSJessica Paquette if (WasInserted) { 866596f483aSJessica Paquette LegalInstrNumber++; 867596f483aSJessica Paquette IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); 868596f483aSJessica Paquette } 869596f483aSJessica Paquette 870596f483aSJessica Paquette UnsignedVec.push_back(MINumber); 871596f483aSJessica Paquette 872596f483aSJessica Paquette // Make sure we don't overflow or use any integers reserved by the DenseMap. 873596f483aSJessica Paquette if (LegalInstrNumber >= IllegalInstrNumber) 874596f483aSJessica Paquette report_fatal_error("Instruction mapping overflow!"); 875596f483aSJessica Paquette 876596f483aSJessica Paquette assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() 877596f483aSJessica Paquette && "Tried to assign DenseMap tombstone or empty key to instruction."); 878596f483aSJessica Paquette assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() 879596f483aSJessica Paquette && "Tried to assign DenseMap tombstone or empty key to instruction."); 880596f483aSJessica Paquette 881596f483aSJessica Paquette return MINumber; 882596f483aSJessica Paquette } 883596f483aSJessica Paquette 884596f483aSJessica Paquette /// Maps \p *It to an illegal integer. 885596f483aSJessica Paquette /// 886596f483aSJessica Paquette /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. 887596f483aSJessica Paquette /// 888596f483aSJessica Paquette /// \returns The integer that \p *It was mapped to. 889596f483aSJessica Paquette unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { 890596f483aSJessica Paquette unsigned MINumber = IllegalInstrNumber; 891596f483aSJessica Paquette 892596f483aSJessica Paquette InstrList.push_back(It); 893596f483aSJessica Paquette UnsignedVec.push_back(IllegalInstrNumber); 894596f483aSJessica Paquette IllegalInstrNumber--; 895596f483aSJessica Paquette 896596f483aSJessica Paquette assert(LegalInstrNumber < IllegalInstrNumber && 897596f483aSJessica Paquette "Instruction mapping overflow!"); 898596f483aSJessica Paquette 899596f483aSJessica Paquette assert(IllegalInstrNumber != 900596f483aSJessica Paquette DenseMapInfo<unsigned>::getEmptyKey() && 901596f483aSJessica Paquette "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 902596f483aSJessica Paquette 903596f483aSJessica Paquette assert(IllegalInstrNumber != 904596f483aSJessica Paquette DenseMapInfo<unsigned>::getTombstoneKey() && 905596f483aSJessica Paquette "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 906596f483aSJessica Paquette 907596f483aSJessica Paquette return MINumber; 908596f483aSJessica Paquette } 909596f483aSJessica Paquette 910596f483aSJessica Paquette /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 911596f483aSJessica Paquette /// and appends it to \p UnsignedVec and \p InstrList. 912596f483aSJessica Paquette /// 913596f483aSJessica Paquette /// Two instructions are assigned the same integer if they are identical. 914596f483aSJessica Paquette /// If an instruction is deemed unsafe to outline, then it will be assigned an 915596f483aSJessica Paquette /// unique integer. The resulting mapping is placed into a suffix tree and 916596f483aSJessica Paquette /// queried for candidates. 917596f483aSJessica Paquette /// 918596f483aSJessica Paquette /// \param MBB The \p MachineBasicBlock to be translated into integers. 919596f483aSJessica Paquette /// \param TRI \p TargetRegisterInfo for the module. 920596f483aSJessica Paquette /// \param TII \p TargetInstrInfo for the module. 921596f483aSJessica Paquette void convertToUnsignedVec(MachineBasicBlock &MBB, 922596f483aSJessica Paquette const TargetRegisterInfo &TRI, 923596f483aSJessica Paquette const TargetInstrInfo &TII) { 924596f483aSJessica Paquette for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et; 925596f483aSJessica Paquette It++) { 926596f483aSJessica Paquette 927596f483aSJessica Paquette // Keep track of where this instruction is in the module. 928596f483aSJessica Paquette switch(TII.getOutliningType(*It)) { 929596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Illegal: 930596f483aSJessica Paquette mapToIllegalUnsigned(It); 931596f483aSJessica Paquette break; 932596f483aSJessica Paquette 933596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Legal: 934596f483aSJessica Paquette mapToLegalUnsigned(It); 935596f483aSJessica Paquette break; 936596f483aSJessica Paquette 937596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Invisible: 938596f483aSJessica Paquette break; 939596f483aSJessica Paquette } 940596f483aSJessica Paquette } 941596f483aSJessica Paquette 942596f483aSJessica Paquette // After we're done every insertion, uniquely terminate this part of the 943596f483aSJessica Paquette // "string". This makes sure we won't match across basic block or function 944596f483aSJessica Paquette // boundaries since the "end" is encoded uniquely and thus appears in no 945596f483aSJessica Paquette // repeated substring. 946596f483aSJessica Paquette InstrList.push_back(MBB.end()); 947596f483aSJessica Paquette UnsignedVec.push_back(IllegalInstrNumber); 948596f483aSJessica Paquette IllegalInstrNumber--; 949596f483aSJessica Paquette } 950596f483aSJessica Paquette 951596f483aSJessica Paquette InstructionMapper() { 952596f483aSJessica Paquette // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 953596f483aSJessica Paquette // changed. 954596f483aSJessica Paquette assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 955596f483aSJessica Paquette "DenseMapInfo<unsigned>'s empty key isn't -1!"); 956596f483aSJessica Paquette assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 957596f483aSJessica Paquette "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 958596f483aSJessica Paquette } 959596f483aSJessica Paquette }; 960596f483aSJessica Paquette 961596f483aSJessica Paquette /// \brief An interprocedural pass which finds repeated sequences of 962596f483aSJessica Paquette /// instructions and replaces them with calls to functions. 963596f483aSJessica Paquette /// 964596f483aSJessica Paquette /// Each instruction is mapped to an unsigned integer and placed in a string. 965596f483aSJessica Paquette /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 966596f483aSJessica Paquette /// is then repeatedly queried for repeated sequences of instructions. Each 967596f483aSJessica Paquette /// non-overlapping repeated sequence is then placed in its own 968596f483aSJessica Paquette /// \p MachineFunction and each instance is then replaced with a call to that 969596f483aSJessica Paquette /// function. 970596f483aSJessica Paquette struct MachineOutliner : public ModulePass { 971596f483aSJessica Paquette 972596f483aSJessica Paquette static char ID; 973596f483aSJessica Paquette 974596f483aSJessica Paquette StringRef getPassName() const override { return "Machine Outliner"; } 975596f483aSJessica Paquette 976596f483aSJessica Paquette void getAnalysisUsage(AnalysisUsage &AU) const override { 977596f483aSJessica Paquette AU.addRequired<MachineModuleInfo>(); 978596f483aSJessica Paquette AU.addPreserved<MachineModuleInfo>(); 979596f483aSJessica Paquette AU.setPreservesAll(); 980596f483aSJessica Paquette ModulePass::getAnalysisUsage(AU); 981596f483aSJessica Paquette } 982596f483aSJessica Paquette 983596f483aSJessica Paquette MachineOutliner() : ModulePass(ID) { 984596f483aSJessica Paquette initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 985596f483aSJessica Paquette } 986596f483aSJessica Paquette 987596f483aSJessica Paquette /// \brief Replace the sequences of instructions represented by the 988596f483aSJessica Paquette /// \p Candidates in \p CandidateList with calls to \p MachineFunctions 989596f483aSJessica Paquette /// described in \p FunctionList. 990596f483aSJessica Paquette /// 991596f483aSJessica Paquette /// \param M The module we are outlining from. 992596f483aSJessica Paquette /// \param CandidateList A list of candidates to be outlined. 993596f483aSJessica Paquette /// \param FunctionList A list of functions to be inserted into the module. 994596f483aSJessica Paquette /// \param Mapper Contains the instruction mappings for the module. 995596f483aSJessica Paquette bool outline(Module &M, const ArrayRef<Candidate> &CandidateList, 996596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 997596f483aSJessica Paquette InstructionMapper &Mapper); 998596f483aSJessica Paquette 999596f483aSJessica Paquette /// Creates a function for \p OF and inserts it into the module. 1000596f483aSJessica Paquette MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, 1001596f483aSJessica Paquette InstructionMapper &Mapper); 1002596f483aSJessica Paquette 1003596f483aSJessica Paquette /// Find potential outlining candidates and store them in \p CandidateList. 1004596f483aSJessica Paquette /// 1005596f483aSJessica Paquette /// For each type of potential candidate, also build an \p OutlinedFunction 1006596f483aSJessica Paquette /// struct containing the information to build the function for that 1007596f483aSJessica Paquette /// candidate. 1008596f483aSJessica Paquette /// 1009596f483aSJessica Paquette /// \param[out] CandidateList Filled with outlining candidates for the module. 1010596f483aSJessica Paquette /// \param[out] FunctionList Filled with functions corresponding to each type 1011596f483aSJessica Paquette /// of \p Candidate. 1012596f483aSJessica Paquette /// \param ST The suffix tree for the module. 1013596f483aSJessica Paquette /// \param TII TargetInstrInfo for the module. 1014596f483aSJessica Paquette /// 1015596f483aSJessica Paquette /// \returns The length of the longest candidate found. 0 if there are none. 1016596f483aSJessica Paquette unsigned buildCandidateList(std::vector<Candidate> &CandidateList, 1017596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 1018*c984e213SJessica Paquette SuffixTree &ST, 1019*c984e213SJessica Paquette InstructionMapper &Mapper, 1020*c984e213SJessica Paquette const TargetInstrInfo &TII); 1021596f483aSJessica Paquette 1022596f483aSJessica Paquette /// \brief Remove any overlapping candidates that weren't handled by the 1023596f483aSJessica Paquette /// suffix tree's pruning method. 1024596f483aSJessica Paquette /// 1025596f483aSJessica Paquette /// Pruning from the suffix tree doesn't necessarily remove all overlaps. 1026596f483aSJessica Paquette /// If a short candidate is chosen for outlining, then a longer candidate 1027596f483aSJessica Paquette /// which has that short candidate as a suffix is chosen, the tree's pruning 1028596f483aSJessica Paquette /// method will not find it. Thus, we need to prune before outlining as well. 1029596f483aSJessica Paquette /// 1030596f483aSJessica Paquette /// \param[in,out] CandidateList A list of outlining candidates. 1031596f483aSJessica Paquette /// \param[in,out] FunctionList A list of functions to be outlined. 1032596f483aSJessica Paquette /// \param MaxCandidateLen The length of the longest candidate. 1033596f483aSJessica Paquette /// \param TII TargetInstrInfo for the module. 1034596f483aSJessica Paquette void pruneOverlaps(std::vector<Candidate> &CandidateList, 1035596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 1036596f483aSJessica Paquette unsigned MaxCandidateLen, 1037596f483aSJessica Paquette const TargetInstrInfo &TII); 1038596f483aSJessica Paquette 1039596f483aSJessica Paquette /// Construct a suffix tree on the instructions in \p M and outline repeated 1040596f483aSJessica Paquette /// strings from that tree. 1041596f483aSJessica Paquette bool runOnModule(Module &M) override; 1042596f483aSJessica Paquette }; 1043596f483aSJessica Paquette 1044596f483aSJessica Paquette } // Anonymous namespace. 1045596f483aSJessica Paquette 1046596f483aSJessica Paquette char MachineOutliner::ID = 0; 1047596f483aSJessica Paquette 1048596f483aSJessica Paquette namespace llvm { 1049596f483aSJessica Paquette ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); } 1050596f483aSJessica Paquette } 1051596f483aSJessica Paquette 1052596f483aSJessica Paquette INITIALIZE_PASS(MachineOutliner, "machine-outliner", 1053596f483aSJessica Paquette "Machine Function Outliner", false, false) 1054596f483aSJessica Paquette 1055596f483aSJessica Paquette void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList, 1056596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 1057596f483aSJessica Paquette unsigned MaxCandidateLen, 1058596f483aSJessica Paquette const TargetInstrInfo &TII) { 1059596f483aSJessica Paquette 1060596f483aSJessica Paquette // Check for overlaps in the range. This is O(n^2) worst case, but we can 1061596f483aSJessica Paquette // alleviate that somewhat by bounding our search space using the start 1062596f483aSJessica Paquette // index of our first candidate and the maximum distance an overlapping 1063596f483aSJessica Paquette // candidate could have from the first candidate. 1064596f483aSJessica Paquette for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; 1065596f483aSJessica Paquette It++) { 1066596f483aSJessica Paquette Candidate &C1 = *It; 1067596f483aSJessica Paquette OutlinedFunction &F1 = FunctionList[C1.FunctionIdx]; 1068596f483aSJessica Paquette 1069596f483aSJessica Paquette // If we removed this candidate, skip it. 1070596f483aSJessica Paquette if (!C1.InCandidateList) 1071596f483aSJessica Paquette continue; 1072596f483aSJessica Paquette 1073596f483aSJessica Paquette // If the candidate's function isn't good to outline anymore, then 1074596f483aSJessica Paquette // remove the candidate and skip it. 1075596f483aSJessica Paquette if (F1.OccurrenceCount < 2 || F1.Benefit < 1) { 1076596f483aSJessica Paquette C1.InCandidateList = false; 1077596f483aSJessica Paquette continue; 1078596f483aSJessica Paquette } 1079596f483aSJessica Paquette 1080596f483aSJessica Paquette // The minimum start index of any candidate that could overlap with this 1081596f483aSJessica Paquette // one. 1082596f483aSJessica Paquette unsigned FarthestPossibleIdx = 0; 1083596f483aSJessica Paquette 1084596f483aSJessica Paquette // Either the index is 0, or it's at most MaxCandidateLen indices away. 1085596f483aSJessica Paquette if (C1.StartIdx > MaxCandidateLen) 1086596f483aSJessica Paquette FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen; 1087596f483aSJessica Paquette 1088596f483aSJessica Paquette // Compare against the other candidates in the list. 1089596f483aSJessica Paquette // This is at most MaxCandidateLen/2 other candidates. 1090596f483aSJessica Paquette // This is because each candidate has to be at least 2 indices away. 1091596f483aSJessica Paquette // = O(n * MaxCandidateLen/2) comparisons 1092596f483aSJessica Paquette // 1093596f483aSJessica Paquette // On average, the maximum length of a candidate is quite small; a fraction 1094596f483aSJessica Paquette // of the total module length in terms of instructions. If the maximum 1095596f483aSJessica Paquette // candidate length is large, then there are fewer possible candidates to 1096596f483aSJessica Paquette // compare against in the first place. 1097596f483aSJessica Paquette for (auto Sit = It + 1; Sit != Et; Sit++) { 1098596f483aSJessica Paquette Candidate &C2 = *Sit; 1099596f483aSJessica Paquette OutlinedFunction &F2 = FunctionList[C2.FunctionIdx]; 1100596f483aSJessica Paquette 1101596f483aSJessica Paquette // Is this candidate too far away to overlap? 1102596f483aSJessica Paquette // NOTE: This will be true in 1103596f483aSJessica Paquette // O(max(FarthestPossibleIdx/2, #Candidates remaining)) steps 1104596f483aSJessica Paquette // for every candidate. 1105596f483aSJessica Paquette if (C2.StartIdx < FarthestPossibleIdx) 1106596f483aSJessica Paquette break; 1107596f483aSJessica Paquette 1108596f483aSJessica Paquette // Did we already remove this candidate in a previous step? 1109596f483aSJessica Paquette if (!C2.InCandidateList) 1110596f483aSJessica Paquette continue; 1111596f483aSJessica Paquette 1112596f483aSJessica Paquette // Is the function beneficial to outline? 1113596f483aSJessica Paquette if (F2.OccurrenceCount < 2 || F2.Benefit < 1) { 1114596f483aSJessica Paquette // If not, remove this candidate and move to the next one. 1115596f483aSJessica Paquette C2.InCandidateList = false; 1116596f483aSJessica Paquette continue; 1117596f483aSJessica Paquette } 1118596f483aSJessica Paquette 1119596f483aSJessica Paquette size_t C2End = C2.StartIdx + C2.Len - 1; 1120596f483aSJessica Paquette 1121596f483aSJessica Paquette // Do C1 and C2 overlap? 1122596f483aSJessica Paquette // 1123596f483aSJessica Paquette // Not overlapping: 1124596f483aSJessica Paquette // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices 1125596f483aSJessica Paquette // 1126596f483aSJessica Paquette // We sorted our candidate list so C2Start <= C1Start. We know that 1127596f483aSJessica Paquette // C2End > C2Start since each candidate has length >= 2. Therefore, all we 1128596f483aSJessica Paquette // have to check is C2End < C2Start to see if we overlap. 1129596f483aSJessica Paquette if (C2End < C1.StartIdx) 1130596f483aSJessica Paquette continue; 1131596f483aSJessica Paquette 1132596f483aSJessica Paquette // C2 overlaps with C1. Because we pruned the tree already, the only way 1133596f483aSJessica Paquette // this can happen is if C1 is a proper suffix of C2. Thus, we must have 1134596f483aSJessica Paquette // found C1 first during our query, so it must have benefit greater or 1135596f483aSJessica Paquette // equal to C2. Greedily pick C1 as the candidate to keep and toss out C2. 1136596f483aSJessica Paquette DEBUG ( 1137596f483aSJessica Paquette size_t C1End = C1.StartIdx + C1.Len - 1; 1138596f483aSJessica Paquette dbgs() << "- Found an overlap to purge.\n"; 1139596f483aSJessica Paquette dbgs() << "--- C1 :[" << C1.StartIdx << ", " << C1End << "]\n"; 1140596f483aSJessica Paquette dbgs() << "--- C2 :[" << C2.StartIdx << ", " << C2End << "]\n"; 1141596f483aSJessica Paquette ); 1142596f483aSJessica Paquette 1143596f483aSJessica Paquette // Update the function's occurrence count and benefit to reflec that C2 1144596f483aSJessica Paquette // is being removed. 1145596f483aSJessica Paquette F2.OccurrenceCount--; 1146596f483aSJessica Paquette F2.Benefit = TII.getOutliningBenefit(F2.Sequence.size(), 1147*c984e213SJessica Paquette F2.OccurrenceCount, 1148*c984e213SJessica Paquette F2.IsTailCall 1149596f483aSJessica Paquette ); 1150596f483aSJessica Paquette 1151596f483aSJessica Paquette // Mark C2 as not in the list. 1152596f483aSJessica Paquette C2.InCandidateList = false; 1153596f483aSJessica Paquette 1154596f483aSJessica Paquette DEBUG ( 1155596f483aSJessica Paquette dbgs() << "- Removed C2. \n"; 1156596f483aSJessica Paquette dbgs() << "--- Num fns left for C2: " << F2.OccurrenceCount << "\n"; 1157596f483aSJessica Paquette dbgs() << "--- C2's benefit: " << F2.Benefit << "\n"; 1158596f483aSJessica Paquette ); 1159596f483aSJessica Paquette } 1160596f483aSJessica Paquette } 1161596f483aSJessica Paquette } 1162596f483aSJessica Paquette 1163596f483aSJessica Paquette unsigned 1164596f483aSJessica Paquette MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList, 1165596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 1166596f483aSJessica Paquette SuffixTree &ST, 1167*c984e213SJessica Paquette InstructionMapper &Mapper, 1168596f483aSJessica Paquette const TargetInstrInfo &TII) { 1169596f483aSJessica Paquette 1170596f483aSJessica Paquette std::vector<unsigned> CandidateSequence; // Current outlining candidate. 1171596f483aSJessica Paquette unsigned MaxCandidateLen = 0; // Length of the longest candidate. 1172596f483aSJessica Paquette 1173596f483aSJessica Paquette // Function for maximizing query in the suffix tree. 1174596f483aSJessica Paquette // This allows us to define more fine-grained types of things to outline in 1175596f483aSJessica Paquette // the target without putting target-specific info in the suffix tree. 1176*c984e213SJessica Paquette auto BenefitFn = [&TII, &ST, &Mapper](const SuffixTreeNode &Curr, 1177*c984e213SJessica Paquette size_t StringLen) { 1178596f483aSJessica Paquette 1179596f483aSJessica Paquette // Any leaf whose parent is the root only has one occurrence. 1180596f483aSJessica Paquette if (Curr.Parent->isRoot()) 1181596f483aSJessica Paquette return 0u; 1182596f483aSJessica Paquette 1183596f483aSJessica Paquette // Anything with length < 2 will never be beneficial on any target. 1184596f483aSJessica Paquette if (StringLen < 2) 1185596f483aSJessica Paquette return 0u; 1186596f483aSJessica Paquette 1187596f483aSJessica Paquette size_t Occurrences = Curr.Parent->OccurrenceCount; 1188596f483aSJessica Paquette 1189596f483aSJessica Paquette // Anything with fewer than 2 occurrences will never be beneficial on any 1190596f483aSJessica Paquette // target. 1191596f483aSJessica Paquette if (Occurrences < 2) 1192596f483aSJessica Paquette return 0u; 1193596f483aSJessica Paquette 1194*c984e213SJessica Paquette // Check if the last instruction in the sequence is a return. 1195*c984e213SJessica Paquette MachineInstr *LastInstr = 1196*c984e213SJessica Paquette Mapper.IntegerInstructionMap[ST[Curr.SuffixIdx + StringLen - 1]]; 1197*c984e213SJessica Paquette assert(LastInstr && "Last instruction in sequence was unmapped!"); 1198*c984e213SJessica Paquette 1199*c984e213SJessica Paquette // The only way a terminator could be mapped as legal is if it was safe to 1200*c984e213SJessica Paquette // tail call. 1201*c984e213SJessica Paquette bool IsTailCall = LastInstr->isTerminator(); 1202*c984e213SJessica Paquette 1203*c984e213SJessica Paquette return TII.getOutliningBenefit(StringLen, Occurrences, IsTailCall); 1204596f483aSJessica Paquette }; 1205596f483aSJessica Paquette 1206596f483aSJessica Paquette // Repeatedly query the suffix tree for the substring that maximizes 1207596f483aSJessica Paquette // BenefitFn. Find the occurrences of that string, prune the tree, and store 1208596f483aSJessica Paquette // each occurrence as a candidate. 1209596f483aSJessica Paquette for (ST.bestRepeatedSubstring(CandidateSequence, BenefitFn); 1210596f483aSJessica Paquette CandidateSequence.size() > 1; 1211596f483aSJessica Paquette ST.bestRepeatedSubstring(CandidateSequence, BenefitFn)) { 1212596f483aSJessica Paquette 1213596f483aSJessica Paquette std::vector<size_t> Occurrences; 1214596f483aSJessica Paquette 1215596f483aSJessica Paquette bool GotNonOverlappingCandidate = 1216596f483aSJessica Paquette ST.findOccurrencesAndPrune(CandidateSequence, Occurrences); 1217596f483aSJessica Paquette 1218596f483aSJessica Paquette // Is the candidate we found known to overlap with something we already 1219596f483aSJessica Paquette // outlined? 1220596f483aSJessica Paquette if (!GotNonOverlappingCandidate) 1221596f483aSJessica Paquette continue; 1222596f483aSJessica Paquette 1223596f483aSJessica Paquette // Is this candidate the longest so far? 1224596f483aSJessica Paquette if (CandidateSequence.size() > MaxCandidateLen) 1225596f483aSJessica Paquette MaxCandidateLen = CandidateSequence.size(); 1226596f483aSJessica Paquette 1227*c984e213SJessica Paquette MachineInstr *LastInstr = 1228*c984e213SJessica Paquette Mapper.IntegerInstructionMap[CandidateSequence.back()]; 1229*c984e213SJessica Paquette assert(LastInstr && "Last instruction in sequence was unmapped!"); 1230*c984e213SJessica Paquette 1231*c984e213SJessica Paquette // The only way a terminator could be mapped as legal is if it was safe to 1232*c984e213SJessica Paquette // tail call. 1233*c984e213SJessica Paquette bool IsTailCall = LastInstr->isTerminator(); 1234*c984e213SJessica Paquette 1235596f483aSJessica Paquette // Keep track of the benefit of outlining this candidate in its 1236596f483aSJessica Paquette // OutlinedFunction. 1237596f483aSJessica Paquette unsigned FnBenefit = TII.getOutliningBenefit(CandidateSequence.size(), 1238*c984e213SJessica Paquette Occurrences.size(), 1239*c984e213SJessica Paquette IsTailCall 1240596f483aSJessica Paquette ); 1241596f483aSJessica Paquette 1242596f483aSJessica Paquette assert(FnBenefit > 0 && "Function cannot be unbeneficial!"); 1243596f483aSJessica Paquette 1244596f483aSJessica Paquette // Save an OutlinedFunction for this candidate. 1245596f483aSJessica Paquette FunctionList.emplace_back( 1246596f483aSJessica Paquette FunctionList.size(), // Number of this function. 1247596f483aSJessica Paquette Occurrences.size(), // Number of occurrences. 1248596f483aSJessica Paquette CandidateSequence, // Sequence to outline. 1249*c984e213SJessica Paquette FnBenefit, // Instructions saved by outlining this function. 1250*c984e213SJessica Paquette IsTailCall // Flag set if this function is to be tail called. 1251596f483aSJessica Paquette ); 1252596f483aSJessica Paquette 1253596f483aSJessica Paquette // Save each of the occurrences of the candidate so we can outline them. 1254596f483aSJessica Paquette for (size_t &Occ : Occurrences) 1255596f483aSJessica Paquette CandidateList.emplace_back( 1256596f483aSJessica Paquette Occ, // Starting idx in that MBB. 1257596f483aSJessica Paquette CandidateSequence.size(), // Candidate length. 1258596f483aSJessica Paquette FunctionList.size() - 1 // Idx of the corresponding function. 1259596f483aSJessica Paquette ); 1260596f483aSJessica Paquette 1261596f483aSJessica Paquette FunctionsCreated++; 1262596f483aSJessica Paquette } 1263596f483aSJessica Paquette 1264596f483aSJessica Paquette // Sort the candidates in decending order. This will simplify the outlining 1265596f483aSJessica Paquette // process when we have to remove the candidates from the mapping by 1266596f483aSJessica Paquette // allowing us to cut them out without keeping track of an offset. 1267596f483aSJessica Paquette std::stable_sort(CandidateList.begin(), CandidateList.end()); 1268596f483aSJessica Paquette 1269596f483aSJessica Paquette return MaxCandidateLen; 1270596f483aSJessica Paquette } 1271596f483aSJessica Paquette 1272596f483aSJessica Paquette MachineFunction * 1273596f483aSJessica Paquette MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, 1274596f483aSJessica Paquette InstructionMapper &Mapper) { 1275596f483aSJessica Paquette 1276596f483aSJessica Paquette // Create the function name. This should be unique. For now, just hash the 1277596f483aSJessica Paquette // module name and include it in the function name plus the number of this 1278596f483aSJessica Paquette // function. 1279596f483aSJessica Paquette std::ostringstream NameStream; 1280596f483aSJessica Paquette NameStream << "OUTLINED_FUNCTION" << "_" << OF.Name; 1281596f483aSJessica Paquette 1282596f483aSJessica Paquette // Create the function using an IR-level function. 1283596f483aSJessica Paquette LLVMContext &C = M.getContext(); 1284596f483aSJessica Paquette Function *F = dyn_cast<Function>( 1285fa97699dSSimon Pilgrim M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C), nullptr)); 1286596f483aSJessica Paquette assert(F && "Function was null!"); 1287596f483aSJessica Paquette 1288596f483aSJessica Paquette // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1289596f483aSJessica Paquette // which gives us better results when we outline from linkonceodr functions. 1290596f483aSJessica Paquette F->setLinkage(GlobalValue::PrivateLinkage); 1291596f483aSJessica Paquette F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1292596f483aSJessica Paquette 1293596f483aSJessica Paquette BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1294596f483aSJessica Paquette IRBuilder<> Builder(EntryBB); 1295596f483aSJessica Paquette Builder.CreateRetVoid(); 1296596f483aSJessica Paquette 1297596f483aSJessica Paquette MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1298596f483aSJessica Paquette MachineFunction &MF = MMI.getMachineFunction(*F); 1299596f483aSJessica Paquette MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1300596f483aSJessica Paquette const TargetSubtargetInfo &STI = MF.getSubtarget(); 1301596f483aSJessica Paquette const TargetInstrInfo &TII = *STI.getInstrInfo(); 1302596f483aSJessica Paquette 1303596f483aSJessica Paquette // Insert the new function into the module. 1304596f483aSJessica Paquette MF.insert(MF.begin(), &MBB); 1305596f483aSJessica Paquette 1306*c984e213SJessica Paquette TII.insertOutlinerPrologue(MBB, MF, OF.IsTailCall); 1307596f483aSJessica Paquette 1308596f483aSJessica Paquette // Copy over the instructions for the function using the integer mappings in 1309596f483aSJessica Paquette // its sequence. 1310596f483aSJessica Paquette for (unsigned Str : OF.Sequence) { 1311596f483aSJessica Paquette MachineInstr *NewMI = 1312596f483aSJessica Paquette MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); 1313596f483aSJessica Paquette NewMI->dropMemRefs(); 1314596f483aSJessica Paquette 1315596f483aSJessica Paquette // Don't keep debug information for outlined instructions. 1316596f483aSJessica Paquette // FIXME: This means outlined functions are currently undebuggable. 1317596f483aSJessica Paquette NewMI->setDebugLoc(DebugLoc()); 1318596f483aSJessica Paquette MBB.insert(MBB.end(), NewMI); 1319596f483aSJessica Paquette } 1320596f483aSJessica Paquette 1321*c984e213SJessica Paquette TII.insertOutlinerEpilogue(MBB, MF, OF.IsTailCall); 1322596f483aSJessica Paquette 1323596f483aSJessica Paquette return &MF; 1324596f483aSJessica Paquette } 1325596f483aSJessica Paquette 1326596f483aSJessica Paquette bool MachineOutliner::outline(Module &M, 1327596f483aSJessica Paquette const ArrayRef<Candidate> &CandidateList, 1328596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 1329596f483aSJessica Paquette InstructionMapper &Mapper) { 1330596f483aSJessica Paquette 1331596f483aSJessica Paquette bool OutlinedSomething = false; 1332596f483aSJessica Paquette 1333596f483aSJessica Paquette // Replace the candidates with calls to their respective outlined functions. 1334596f483aSJessica Paquette for (const Candidate &C : CandidateList) { 1335596f483aSJessica Paquette 1336596f483aSJessica Paquette // Was the candidate removed during pruneOverlaps? 1337596f483aSJessica Paquette if (!C.InCandidateList) 1338596f483aSJessica Paquette continue; 1339596f483aSJessica Paquette 1340596f483aSJessica Paquette // If not, then look at its OutlinedFunction. 1341596f483aSJessica Paquette OutlinedFunction &OF = FunctionList[C.FunctionIdx]; 1342596f483aSJessica Paquette 1343596f483aSJessica Paquette // Was its OutlinedFunction made unbeneficial during pruneOverlaps? 1344596f483aSJessica Paquette if (OF.OccurrenceCount < 2 || OF.Benefit < 1) 1345596f483aSJessica Paquette continue; 1346596f483aSJessica Paquette 1347596f483aSJessica Paquette // If not, then outline it. 1348596f483aSJessica Paquette assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1349596f483aSJessica Paquette MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent(); 1350596f483aSJessica Paquette MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx]; 1351596f483aSJessica Paquette unsigned EndIdx = C.StartIdx + C.Len - 1; 1352596f483aSJessica Paquette 1353596f483aSJessica Paquette assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1354596f483aSJessica Paquette MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1355596f483aSJessica Paquette assert(EndIt != MBB->end() && "EndIt out of bounds!"); 1356596f483aSJessica Paquette 1357596f483aSJessica Paquette EndIt++; // Erase needs one past the end index. 1358596f483aSJessica Paquette 1359596f483aSJessica Paquette // Does this candidate have a function yet? 1360596f483aSJessica Paquette if (!OF.MF) 1361596f483aSJessica Paquette OF.MF = createOutlinedFunction(M, OF, Mapper); 1362596f483aSJessica Paquette 1363596f483aSJessica Paquette MachineFunction *MF = OF.MF; 1364596f483aSJessica Paquette const TargetSubtargetInfo &STI = MF->getSubtarget(); 1365596f483aSJessica Paquette const TargetInstrInfo &TII = *STI.getInstrInfo(); 1366596f483aSJessica Paquette 1367596f483aSJessica Paquette // Insert a call to the new function and erase the old sequence. 1368*c984e213SJessica Paquette TII.insertOutlinedCall(M, *MBB, StartIt, *MF, OF.IsTailCall); 1369596f483aSJessica Paquette StartIt = Mapper.InstrList[C.StartIdx]; 1370596f483aSJessica Paquette MBB->erase(StartIt, EndIt); 1371596f483aSJessica Paquette 1372596f483aSJessica Paquette OutlinedSomething = true; 1373596f483aSJessica Paquette 1374596f483aSJessica Paquette // Statistics. 1375596f483aSJessica Paquette NumOutlined++; 1376596f483aSJessica Paquette } 1377596f483aSJessica Paquette 1378596f483aSJessica Paquette DEBUG ( 1379596f483aSJessica Paquette dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n"; 1380596f483aSJessica Paquette ); 1381596f483aSJessica Paquette 1382596f483aSJessica Paquette return OutlinedSomething; 1383596f483aSJessica Paquette } 1384596f483aSJessica Paquette 1385596f483aSJessica Paquette bool MachineOutliner::runOnModule(Module &M) { 1386596f483aSJessica Paquette 1387596f483aSJessica Paquette // Is there anything in the module at all? 1388596f483aSJessica Paquette if (M.empty()) 1389596f483aSJessica Paquette return false; 1390596f483aSJessica Paquette 1391596f483aSJessica Paquette MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1392596f483aSJessica Paquette const TargetSubtargetInfo &STI = MMI.getMachineFunction(*M.begin()) 1393596f483aSJessica Paquette .getSubtarget(); 1394596f483aSJessica Paquette const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 1395596f483aSJessica Paquette const TargetInstrInfo *TII = STI.getInstrInfo(); 1396596f483aSJessica Paquette 1397596f483aSJessica Paquette InstructionMapper Mapper; 1398596f483aSJessica Paquette 1399596f483aSJessica Paquette // Build instruction mappings for each function in the module. 1400596f483aSJessica Paquette for (Function &F : M) { 1401596f483aSJessica Paquette MachineFunction &MF = MMI.getMachineFunction(F); 1402596f483aSJessica Paquette 1403596f483aSJessica Paquette // Is the function empty? Safe to outline from? 1404596f483aSJessica Paquette if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF)) 1405596f483aSJessica Paquette continue; 1406596f483aSJessica Paquette 1407596f483aSJessica Paquette // If it is, look at each MachineBasicBlock in the function. 1408596f483aSJessica Paquette for (MachineBasicBlock &MBB : MF) { 1409596f483aSJessica Paquette 1410596f483aSJessica Paquette // Is there anything in MBB? 1411596f483aSJessica Paquette if (MBB.empty()) 1412596f483aSJessica Paquette continue; 1413596f483aSJessica Paquette 1414596f483aSJessica Paquette // If yes, map it. 1415596f483aSJessica Paquette Mapper.convertToUnsignedVec(MBB, *TRI, *TII); 1416596f483aSJessica Paquette } 1417596f483aSJessica Paquette } 1418596f483aSJessica Paquette 1419596f483aSJessica Paquette // Construct a suffix tree, use it to find candidates, and then outline them. 1420596f483aSJessica Paquette SuffixTree ST(Mapper.UnsignedVec); 1421596f483aSJessica Paquette std::vector<Candidate> CandidateList; 1422596f483aSJessica Paquette std::vector<OutlinedFunction> FunctionList; 1423596f483aSJessica Paquette 1424596f483aSJessica Paquette unsigned MaxCandidateLen = 1425*c984e213SJessica Paquette buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII); 1426596f483aSJessica Paquette 1427596f483aSJessica Paquette pruneOverlaps(CandidateList, FunctionList, MaxCandidateLen, *TII); 1428596f483aSJessica Paquette return outline(M, CandidateList, FunctionList, Mapper); 1429596f483aSJessica Paquette } 1430