1596f483aSJessica Paquette //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2596f483aSJessica Paquette // 3596f483aSJessica Paquette // The LLVM Compiler Infrastructure 4596f483aSJessica Paquette // 5596f483aSJessica Paquette // This file is distributed under the University of Illinois Open Source 6596f483aSJessica Paquette // License. See LICENSE.TXT for details. 7596f483aSJessica Paquette // 8596f483aSJessica Paquette //===----------------------------------------------------------------------===// 9596f483aSJessica Paquette /// 10596f483aSJessica Paquette /// \file 11596f483aSJessica Paquette /// Replaces repeated sequences of instructions with function calls. 12596f483aSJessica Paquette /// 13596f483aSJessica Paquette /// This works by placing every instruction from every basic block in a 14596f483aSJessica Paquette /// suffix tree, and repeatedly querying that tree for repeated sequences of 15596f483aSJessica Paquette /// instructions. If a sequence of instructions appears often, then it ought 16596f483aSJessica Paquette /// to be beneficial to pull out into a function. 17596f483aSJessica Paquette /// 184cf187b5SJessica Paquette /// The MachineOutliner communicates with a given target using hooks defined in 194cf187b5SJessica Paquette /// TargetInstrInfo.h. The target supplies the outliner with information on how 204cf187b5SJessica Paquette /// a specific sequence of instructions should be outlined. This information 214cf187b5SJessica Paquette /// is used to deduce the number of instructions necessary to 224cf187b5SJessica Paquette /// 234cf187b5SJessica Paquette /// * Create an outlined function 244cf187b5SJessica Paquette /// * Call that outlined function 254cf187b5SJessica Paquette /// 264cf187b5SJessica Paquette /// Targets must implement 274cf187b5SJessica Paquette /// * getOutliningCandidateInfo 284cf187b5SJessica Paquette /// * insertOutlinerEpilogue 294cf187b5SJessica Paquette /// * insertOutlinedCall 304cf187b5SJessica Paquette /// * insertOutlinerPrologue 314cf187b5SJessica Paquette /// * isFunctionSafeToOutlineFrom 324cf187b5SJessica Paquette /// 334cf187b5SJessica Paquette /// in order to make use of the MachineOutliner. 344cf187b5SJessica Paquette /// 35596f483aSJessica Paquette /// This was originally presented at the 2016 LLVM Developers' Meeting in the 36596f483aSJessica Paquette /// talk "Reducing Code Size Using Outlining". For a high-level overview of 37596f483aSJessica Paquette /// how this pass works, the talk is available on YouTube at 38596f483aSJessica Paquette /// 39596f483aSJessica Paquette /// https://www.youtube.com/watch?v=yorld-WSOeU 40596f483aSJessica Paquette /// 41596f483aSJessica Paquette /// The slides for the talk are available at 42596f483aSJessica Paquette /// 43596f483aSJessica Paquette /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 44596f483aSJessica Paquette /// 45596f483aSJessica Paquette /// The talk provides an overview of how the outliner finds candidates and 46596f483aSJessica Paquette /// ultimately outlines them. It describes how the main data structure for this 47596f483aSJessica Paquette /// pass, the suffix tree, is queried and purged for candidates. It also gives 48596f483aSJessica Paquette /// a simplified suffix tree construction algorithm for suffix trees based off 49596f483aSJessica Paquette /// of the algorithm actually used here, Ukkonen's algorithm. 50596f483aSJessica Paquette /// 51596f483aSJessica Paquette /// For the original RFC for this pass, please see 52596f483aSJessica Paquette /// 53596f483aSJessica Paquette /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 54596f483aSJessica Paquette /// 55596f483aSJessica Paquette /// For more information on the suffix tree data structure, please see 56596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 57596f483aSJessica Paquette /// 58596f483aSJessica Paquette //===----------------------------------------------------------------------===// 59596f483aSJessica Paquette #include "llvm/ADT/DenseMap.h" 60596f483aSJessica Paquette #include "llvm/ADT/Statistic.h" 61596f483aSJessica Paquette #include "llvm/ADT/Twine.h" 62596f483aSJessica Paquette #include "llvm/CodeGen/MachineFunction.h" 63596f483aSJessica Paquette #include "llvm/CodeGen/MachineModuleInfo.h" 64ffe4abc5SJessica Paquette #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 6582203c41SGeoff Berry #include "llvm/CodeGen/MachineRegisterInfo.h" 66596f483aSJessica Paquette #include "llvm/CodeGen/Passes.h" 673f833edcSDavid Blaikie #include "llvm/CodeGen/TargetInstrInfo.h" 68b3bde2eaSDavid Blaikie #include "llvm/CodeGen/TargetRegisterInfo.h" 69b3bde2eaSDavid Blaikie #include "llvm/CodeGen/TargetSubtargetInfo.h" 70729e6869SJessica Paquette #include "llvm/IR/DIBuilder.h" 71596f483aSJessica Paquette #include "llvm/IR/IRBuilder.h" 72a499c3c2SJessica Paquette #include "llvm/IR/Mangler.h" 73596f483aSJessica Paquette #include "llvm/Support/Allocator.h" 74596f483aSJessica Paquette #include "llvm/Support/Debug.h" 75596f483aSJessica Paquette #include "llvm/Support/raw_ostream.h" 76596f483aSJessica Paquette #include <functional> 77596f483aSJessica Paquette #include <map> 78596f483aSJessica Paquette #include <sstream> 79596f483aSJessica Paquette #include <tuple> 80596f483aSJessica Paquette #include <vector> 81596f483aSJessica Paquette 82596f483aSJessica Paquette #define DEBUG_TYPE "machine-outliner" 83596f483aSJessica Paquette 84596f483aSJessica Paquette using namespace llvm; 85ffe4abc5SJessica Paquette using namespace ore; 86596f483aSJessica Paquette 87596f483aSJessica Paquette STATISTIC(NumOutlined, "Number of candidates outlined"); 88596f483aSJessica Paquette STATISTIC(FunctionsCreated, "Number of functions created"); 89596f483aSJessica Paquette 90596f483aSJessica Paquette namespace { 91596f483aSJessica Paquette 92acffa28cSJessica Paquette /// \brief An individual sequence of instructions to be replaced with a call to 93acffa28cSJessica Paquette /// an outlined function. 94acffa28cSJessica Paquette struct Candidate { 95c9ab4c26SJessica Paquette private: 96c9ab4c26SJessica Paquette /// The start index of this \p Candidate in the instruction list. 974cf187b5SJessica Paquette unsigned StartIdx; 98acffa28cSJessica Paquette 99acffa28cSJessica Paquette /// The number of instructions in this \p Candidate. 1004cf187b5SJessica Paquette unsigned Len; 101acffa28cSJessica Paquette 102a499c3c2SJessica Paquette /// The MachineFunction containing this \p Candidate. 103a499c3c2SJessica Paquette MachineFunction *MF = nullptr; 104a499c3c2SJessica Paquette 105c9ab4c26SJessica Paquette public: 106c9ab4c26SJessica Paquette /// Set to false if the candidate overlapped with another candidate. 107c9ab4c26SJessica Paquette bool InCandidateList = true; 108c9ab4c26SJessica Paquette 109c9ab4c26SJessica Paquette /// \brief The index of this \p Candidate's \p OutlinedFunction in the list of 110acffa28cSJessica Paquette /// \p OutlinedFunctions. 1114cf187b5SJessica Paquette unsigned FunctionIdx; 112acffa28cSJessica Paquette 1134cf187b5SJessica Paquette /// Contains all target-specific information for this \p Candidate. 1144cf187b5SJessica Paquette TargetInstrInfo::MachineOutlinerInfo MInfo; 115d87f5449SJessica Paquette 116a499c3c2SJessica Paquette /// If there is a DISubprogram associated with the function that this 117a499c3c2SJessica Paquette /// Candidate lives in, return it. 118a499c3c2SJessica Paquette DISubprogram *getSubprogramOrNull() const { 119a499c3c2SJessica Paquette assert(MF && "Candidate has no MF!"); 120a499c3c2SJessica Paquette if (DISubprogram *SP = MF->getFunction().getSubprogram()) 121a499c3c2SJessica Paquette return SP; 122a499c3c2SJessica Paquette return nullptr; 123a499c3c2SJessica Paquette } 124a499c3c2SJessica Paquette 125c9ab4c26SJessica Paquette /// Return the number of instructions in this Candidate. 1261934fd2cSJessica Paquette unsigned getLength() const { return Len; } 127c9ab4c26SJessica Paquette 128c9ab4c26SJessica Paquette /// Return the start index of this candidate. 1291934fd2cSJessica Paquette unsigned getStartIdx() const { return StartIdx; } 130c9ab4c26SJessica Paquette 131c9ab4c26SJessica Paquette // Return the end index of this candidate. 1321934fd2cSJessica Paquette unsigned getEndIdx() const { return StartIdx + Len - 1; } 133c9ab4c26SJessica Paquette 134acffa28cSJessica Paquette /// \brief The number of instructions that would be saved by outlining every 135acffa28cSJessica Paquette /// candidate of this type. 136acffa28cSJessica Paquette /// 137acffa28cSJessica Paquette /// This is a fixed value which is not updated during the candidate pruning 138acffa28cSJessica Paquette /// process. It is only used for deciding which candidate to keep if two 139acffa28cSJessica Paquette /// candidates overlap. The true benefit is stored in the OutlinedFunction 140acffa28cSJessica Paquette /// for some given candidate. 141acffa28cSJessica Paquette unsigned Benefit = 0; 142acffa28cSJessica Paquette 143a499c3c2SJessica Paquette Candidate(unsigned StartIdx, unsigned Len, unsigned FunctionIdx, 144a499c3c2SJessica Paquette MachineFunction *MF) 145a499c3c2SJessica Paquette : StartIdx(StartIdx), Len(Len), MF(MF), FunctionIdx(FunctionIdx) {} 146acffa28cSJessica Paquette 147acffa28cSJessica Paquette Candidate() {} 148acffa28cSJessica Paquette 149acffa28cSJessica Paquette /// \brief Used to ensure that \p Candidates are outlined in an order that 150acffa28cSJessica Paquette /// preserves the start and end indices of other \p Candidates. 151c9ab4c26SJessica Paquette bool operator<(const Candidate &RHS) const { 1521934fd2cSJessica Paquette return getStartIdx() > RHS.getStartIdx(); 153c9ab4c26SJessica Paquette } 154acffa28cSJessica Paquette }; 155acffa28cSJessica Paquette 156acffa28cSJessica Paquette /// \brief The information necessary to create an outlined function for some 157acffa28cSJessica Paquette /// class of candidate. 158acffa28cSJessica Paquette struct OutlinedFunction { 159acffa28cSJessica Paquette 16085af63d0SJessica Paquette private: 16185af63d0SJessica Paquette /// The number of candidates for this \p OutlinedFunction. 16285af63d0SJessica Paquette unsigned OccurrenceCount = 0; 16385af63d0SJessica Paquette 16485af63d0SJessica Paquette public: 1659df7fde2SJessica Paquette std::vector<std::shared_ptr<Candidate>> Candidates; 1669df7fde2SJessica Paquette 167acffa28cSJessica Paquette /// The actual outlined function created. 168acffa28cSJessica Paquette /// This is initialized after we go through and create the actual function. 169acffa28cSJessica Paquette MachineFunction *MF = nullptr; 170acffa28cSJessica Paquette 1714cf187b5SJessica Paquette /// A number assigned to this function which appears at the end of its name. 1724cf187b5SJessica Paquette unsigned Name; 173acffa28cSJessica Paquette 174acffa28cSJessica Paquette /// \brief The sequence of integers corresponding to the instructions in this 175acffa28cSJessica Paquette /// function. 176acffa28cSJessica Paquette std::vector<unsigned> Sequence; 177acffa28cSJessica Paquette 1784cf187b5SJessica Paquette /// Contains all target-specific information for this \p OutlinedFunction. 1794cf187b5SJessica Paquette TargetInstrInfo::MachineOutlinerInfo MInfo; 180acffa28cSJessica Paquette 181a499c3c2SJessica Paquette /// If there is a DISubprogram for any Candidate for this outlined function, 182a499c3c2SJessica Paquette /// then return it. Otherwise, return nullptr. 183a499c3c2SJessica Paquette DISubprogram *getSubprogramOrNull() const { 184a499c3c2SJessica Paquette for (const auto &C : Candidates) 185a499c3c2SJessica Paquette if (DISubprogram *SP = C->getSubprogramOrNull()) 186a499c3c2SJessica Paquette return SP; 187a499c3c2SJessica Paquette return nullptr; 188a499c3c2SJessica Paquette } 189a499c3c2SJessica Paquette 19085af63d0SJessica Paquette /// Return the number of candidates for this \p OutlinedFunction. 19160d31fc3SJessica Paquette unsigned getOccurrenceCount() { return OccurrenceCount; } 19285af63d0SJessica Paquette 19385af63d0SJessica Paquette /// Decrement the occurrence count of this OutlinedFunction and return the 19485af63d0SJessica Paquette /// new count. 19585af63d0SJessica Paquette unsigned decrement() { 19685af63d0SJessica Paquette assert(OccurrenceCount > 0 && "Can't decrement an empty function!"); 19785af63d0SJessica Paquette OccurrenceCount--; 19885af63d0SJessica Paquette return getOccurrenceCount(); 19985af63d0SJessica Paquette } 20085af63d0SJessica Paquette 201acc15e12SJessica Paquette /// \brief Return the number of instructions it would take to outline this 202acc15e12SJessica Paquette /// function. 203acc15e12SJessica Paquette unsigned getOutliningCost() { 204acc15e12SJessica Paquette return (OccurrenceCount * MInfo.CallOverhead) + Sequence.size() + 205acc15e12SJessica Paquette MInfo.FrameOverhead; 206acc15e12SJessica Paquette } 207acc15e12SJessica Paquette 208acc15e12SJessica Paquette /// \brief Return the number of instructions that would be saved by outlining 209acc15e12SJessica Paquette /// this function. 210acc15e12SJessica Paquette unsigned getBenefit() { 211acc15e12SJessica Paquette unsigned NotOutlinedCost = OccurrenceCount * Sequence.size(); 212acc15e12SJessica Paquette unsigned OutlinedCost = getOutliningCost(); 213acc15e12SJessica Paquette return (NotOutlinedCost < OutlinedCost) ? 0 214acc15e12SJessica Paquette : NotOutlinedCost - OutlinedCost; 215acc15e12SJessica Paquette } 216acc15e12SJessica Paquette 2174cf187b5SJessica Paquette OutlinedFunction(unsigned Name, unsigned OccurrenceCount, 218acc15e12SJessica Paquette const std::vector<unsigned> &Sequence, 2194cf187b5SJessica Paquette TargetInstrInfo::MachineOutlinerInfo &MInfo) 22085af63d0SJessica Paquette : OccurrenceCount(OccurrenceCount), Name(Name), Sequence(Sequence), 221acc15e12SJessica Paquette MInfo(MInfo) {} 222acffa28cSJessica Paquette }; 223acffa28cSJessica Paquette 224596f483aSJessica Paquette /// Represents an undefined index in the suffix tree. 2254cf187b5SJessica Paquette const unsigned EmptyIdx = -1; 226596f483aSJessica Paquette 227596f483aSJessica Paquette /// A node in a suffix tree which represents a substring or suffix. 228596f483aSJessica Paquette /// 229596f483aSJessica Paquette /// Each node has either no children or at least two children, with the root 230596f483aSJessica Paquette /// being a exception in the empty tree. 231596f483aSJessica Paquette /// 232596f483aSJessica Paquette /// Children are represented as a map between unsigned integers and nodes. If 233596f483aSJessica Paquette /// a node N has a child M on unsigned integer k, then the mapping represented 234596f483aSJessica Paquette /// by N is a proper prefix of the mapping represented by M. Note that this, 235596f483aSJessica Paquette /// although similar to a trie is somewhat different: each node stores a full 236596f483aSJessica Paquette /// substring of the full mapping rather than a single character state. 237596f483aSJessica Paquette /// 238596f483aSJessica Paquette /// Each internal node contains a pointer to the internal node representing 239596f483aSJessica Paquette /// the same string, but with the first character chopped off. This is stored 240596f483aSJessica Paquette /// in \p Link. Each leaf node stores the start index of its respective 241596f483aSJessica Paquette /// suffix in \p SuffixIdx. 242596f483aSJessica Paquette struct SuffixTreeNode { 243596f483aSJessica Paquette 244596f483aSJessica Paquette /// The children of this node. 245596f483aSJessica Paquette /// 246596f483aSJessica Paquette /// A child existing on an unsigned integer implies that from the mapping 247596f483aSJessica Paquette /// represented by the current node, there is a way to reach another 248596f483aSJessica Paquette /// mapping by tacking that character on the end of the current string. 249596f483aSJessica Paquette DenseMap<unsigned, SuffixTreeNode *> Children; 250596f483aSJessica Paquette 251596f483aSJessica Paquette /// A flag set to false if the node has been pruned from the tree. 252596f483aSJessica Paquette bool IsInTree = true; 253596f483aSJessica Paquette 254596f483aSJessica Paquette /// The start index of this node's substring in the main string. 2554cf187b5SJessica Paquette unsigned StartIdx = EmptyIdx; 256596f483aSJessica Paquette 257596f483aSJessica Paquette /// The end index of this node's substring in the main string. 258596f483aSJessica Paquette /// 259596f483aSJessica Paquette /// Every leaf node must have its \p EndIdx incremented at the end of every 260596f483aSJessica Paquette /// step in the construction algorithm. To avoid having to update O(N) 261596f483aSJessica Paquette /// nodes individually at the end of every step, the end index is stored 262596f483aSJessica Paquette /// as a pointer. 2634cf187b5SJessica Paquette unsigned *EndIdx = nullptr; 264596f483aSJessica Paquette 265596f483aSJessica Paquette /// For leaves, the start index of the suffix represented by this node. 266596f483aSJessica Paquette /// 267596f483aSJessica Paquette /// For all other nodes, this is ignored. 2684cf187b5SJessica Paquette unsigned SuffixIdx = EmptyIdx; 269596f483aSJessica Paquette 270596f483aSJessica Paquette /// \brief For internal nodes, a pointer to the internal node representing 271596f483aSJessica Paquette /// the same sequence with the first character chopped off. 272596f483aSJessica Paquette /// 2734602c343SJessica Paquette /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 274596f483aSJessica Paquette /// Ukkonen's algorithm does to achieve linear-time construction is 275596f483aSJessica Paquette /// keep track of which node the next insert should be at. This makes each 276596f483aSJessica Paquette /// insert O(1), and there are a total of O(N) inserts. The suffix link 277596f483aSJessica Paquette /// helps with inserting children of internal nodes. 278596f483aSJessica Paquette /// 279596f483aSJessica Paquette /// Say we add a child to an internal node with associated mapping S. The 280596f483aSJessica Paquette /// next insertion must be at the node representing S - its first character. 281596f483aSJessica Paquette /// This is given by the way that we iteratively build the tree in Ukkonen's 282596f483aSJessica Paquette /// algorithm. The main idea is to look at the suffixes of each prefix in the 283596f483aSJessica Paquette /// string, starting with the longest suffix of the prefix, and ending with 284596f483aSJessica Paquette /// the shortest. Therefore, if we keep pointers between such nodes, we can 285596f483aSJessica Paquette /// move to the next insertion point in O(1) time. If we don't, then we'd 286596f483aSJessica Paquette /// have to query from the root, which takes O(N) time. This would make the 287596f483aSJessica Paquette /// construction algorithm O(N^2) rather than O(N). 288596f483aSJessica Paquette SuffixTreeNode *Link = nullptr; 289596f483aSJessica Paquette 290596f483aSJessica Paquette /// The parent of this node. Every node except for the root has a parent. 291596f483aSJessica Paquette SuffixTreeNode *Parent = nullptr; 292596f483aSJessica Paquette 293596f483aSJessica Paquette /// The number of times this node's string appears in the tree. 294596f483aSJessica Paquette /// 295596f483aSJessica Paquette /// This is equal to the number of leaf children of the string. It represents 296596f483aSJessica Paquette /// the number of suffixes that the node's string is a prefix of. 2974cf187b5SJessica Paquette unsigned OccurrenceCount = 0; 298596f483aSJessica Paquette 299acffa28cSJessica Paquette /// The length of the string formed by concatenating the edge labels from the 300acffa28cSJessica Paquette /// root to this node. 3014cf187b5SJessica Paquette unsigned ConcatLen = 0; 302acffa28cSJessica Paquette 303596f483aSJessica Paquette /// Returns true if this node is a leaf. 304596f483aSJessica Paquette bool isLeaf() const { return SuffixIdx != EmptyIdx; } 305596f483aSJessica Paquette 306596f483aSJessica Paquette /// Returns true if this node is the root of its owning \p SuffixTree. 307596f483aSJessica Paquette bool isRoot() const { return StartIdx == EmptyIdx; } 308596f483aSJessica Paquette 309596f483aSJessica Paquette /// Return the number of elements in the substring associated with this node. 310596f483aSJessica Paquette size_t size() const { 311596f483aSJessica Paquette 312596f483aSJessica Paquette // Is it the root? If so, it's the empty string so return 0. 313596f483aSJessica Paquette if (isRoot()) 314596f483aSJessica Paquette return 0; 315596f483aSJessica Paquette 316596f483aSJessica Paquette assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 317596f483aSJessica Paquette 318596f483aSJessica Paquette // Size = the number of elements in the string. 319596f483aSJessica Paquette // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 320596f483aSJessica Paquette return *EndIdx - StartIdx + 1; 321596f483aSJessica Paquette } 322596f483aSJessica Paquette 3234cf187b5SJessica Paquette SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link, 324596f483aSJessica Paquette SuffixTreeNode *Parent) 325596f483aSJessica Paquette : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} 326596f483aSJessica Paquette 327596f483aSJessica Paquette SuffixTreeNode() {} 328596f483aSJessica Paquette }; 329596f483aSJessica Paquette 330596f483aSJessica Paquette /// A data structure for fast substring queries. 331596f483aSJessica Paquette /// 332596f483aSJessica Paquette /// Suffix trees represent the suffixes of their input strings in their leaves. 333596f483aSJessica Paquette /// A suffix tree is a type of compressed trie structure where each node 334596f483aSJessica Paquette /// represents an entire substring rather than a single character. Each leaf 335596f483aSJessica Paquette /// of the tree is a suffix. 336596f483aSJessica Paquette /// 337596f483aSJessica Paquette /// A suffix tree can be seen as a type of state machine where each state is a 338596f483aSJessica Paquette /// substring of the full string. The tree is structured so that, for a string 339596f483aSJessica Paquette /// of length N, there are exactly N leaves in the tree. This structure allows 340596f483aSJessica Paquette /// us to quickly find repeated substrings of the input string. 341596f483aSJessica Paquette /// 342596f483aSJessica Paquette /// In this implementation, a "string" is a vector of unsigned integers. 343596f483aSJessica Paquette /// These integers may result from hashing some data type. A suffix tree can 344596f483aSJessica Paquette /// contain 1 or many strings, which can then be queried as one large string. 345596f483aSJessica Paquette /// 346596f483aSJessica Paquette /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 347596f483aSJessica Paquette /// suffix tree construction. Ukkonen's algorithm is explained in more detail 348596f483aSJessica Paquette /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 349596f483aSJessica Paquette /// paper is available at 350596f483aSJessica Paquette /// 351596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 352596f483aSJessica Paquette class SuffixTree { 35378681be2SJessica Paquette public: 35478681be2SJessica Paquette /// Stores each leaf node in the tree. 35578681be2SJessica Paquette /// 35678681be2SJessica Paquette /// This is used for finding outlining candidates. 35778681be2SJessica Paquette std::vector<SuffixTreeNode *> LeafVector; 35878681be2SJessica Paquette 359596f483aSJessica Paquette /// Each element is an integer representing an instruction in the module. 360596f483aSJessica Paquette ArrayRef<unsigned> Str; 361596f483aSJessica Paquette 36278681be2SJessica Paquette private: 363596f483aSJessica Paquette /// Maintains each node in the tree. 364d4cb9c6dSJessica Paquette SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 365596f483aSJessica Paquette 366596f483aSJessica Paquette /// The root of the suffix tree. 367596f483aSJessica Paquette /// 368596f483aSJessica Paquette /// The root represents the empty string. It is maintained by the 369596f483aSJessica Paquette /// \p NodeAllocator like every other node in the tree. 370596f483aSJessica Paquette SuffixTreeNode *Root = nullptr; 371596f483aSJessica Paquette 372596f483aSJessica Paquette /// Maintains the end indices of the internal nodes in the tree. 373596f483aSJessica Paquette /// 374596f483aSJessica Paquette /// Each internal node is guaranteed to never have its end index change 375596f483aSJessica Paquette /// during the construction algorithm; however, leaves must be updated at 376596f483aSJessica Paquette /// every step. Therefore, we need to store leaf end indices by reference 377596f483aSJessica Paquette /// to avoid updating O(N) leaves at every step of construction. Thus, 378596f483aSJessica Paquette /// every internal node must be allocated its own end index. 379596f483aSJessica Paquette BumpPtrAllocator InternalEndIdxAllocator; 380596f483aSJessica Paquette 381596f483aSJessica Paquette /// The end index of each leaf in the tree. 3824cf187b5SJessica Paquette unsigned LeafEndIdx = -1; 383596f483aSJessica Paquette 384596f483aSJessica Paquette /// \brief Helper struct which keeps track of the next insertion point in 385596f483aSJessica Paquette /// Ukkonen's algorithm. 386596f483aSJessica Paquette struct ActiveState { 387596f483aSJessica Paquette /// The next node to insert at. 388596f483aSJessica Paquette SuffixTreeNode *Node; 389596f483aSJessica Paquette 390596f483aSJessica Paquette /// The index of the first character in the substring currently being added. 3914cf187b5SJessica Paquette unsigned Idx = EmptyIdx; 392596f483aSJessica Paquette 393596f483aSJessica Paquette /// The length of the substring we have to add at the current step. 3944cf187b5SJessica Paquette unsigned Len = 0; 395596f483aSJessica Paquette }; 396596f483aSJessica Paquette 397596f483aSJessica Paquette /// \brief The point the next insertion will take place at in the 398596f483aSJessica Paquette /// construction algorithm. 399596f483aSJessica Paquette ActiveState Active; 400596f483aSJessica Paquette 401596f483aSJessica Paquette /// Allocate a leaf node and add it to the tree. 402596f483aSJessica Paquette /// 403596f483aSJessica Paquette /// \param Parent The parent of this node. 404596f483aSJessica Paquette /// \param StartIdx The start index of this node's associated string. 405596f483aSJessica Paquette /// \param Edge The label on the edge leaving \p Parent to this node. 406596f483aSJessica Paquette /// 407596f483aSJessica Paquette /// \returns A pointer to the allocated leaf node. 4084cf187b5SJessica Paquette SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, 409596f483aSJessica Paquette unsigned Edge) { 410596f483aSJessica Paquette 411596f483aSJessica Paquette assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 412596f483aSJessica Paquette 41378681be2SJessica Paquette SuffixTreeNode *N = new (NodeAllocator.Allocate()) 41478681be2SJessica Paquette SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent); 415596f483aSJessica Paquette Parent.Children[Edge] = N; 416596f483aSJessica Paquette 417596f483aSJessica Paquette return N; 418596f483aSJessica Paquette } 419596f483aSJessica Paquette 420596f483aSJessica Paquette /// Allocate an internal node and add it to the tree. 421596f483aSJessica Paquette /// 422596f483aSJessica Paquette /// \param Parent The parent of this node. Only null when allocating the root. 423596f483aSJessica Paquette /// \param StartIdx The start index of this node's associated string. 424596f483aSJessica Paquette /// \param EndIdx The end index of this node's associated string. 425596f483aSJessica Paquette /// \param Edge The label on the edge leaving \p Parent to this node. 426596f483aSJessica Paquette /// 427596f483aSJessica Paquette /// \returns A pointer to the allocated internal node. 4284cf187b5SJessica Paquette SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, 4294cf187b5SJessica Paquette unsigned EndIdx, unsigned Edge) { 430596f483aSJessica Paquette 431596f483aSJessica Paquette assert(StartIdx <= EndIdx && "String can't start after it ends!"); 432596f483aSJessica Paquette assert(!(!Parent && StartIdx != EmptyIdx) && 433596f483aSJessica Paquette "Non-root internal nodes must have parents!"); 434596f483aSJessica Paquette 4354cf187b5SJessica Paquette unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); 43678681be2SJessica Paquette SuffixTreeNode *N = new (NodeAllocator.Allocate()) 43778681be2SJessica Paquette SuffixTreeNode(StartIdx, E, Root, Parent); 438596f483aSJessica Paquette if (Parent) 439596f483aSJessica Paquette Parent->Children[Edge] = N; 440596f483aSJessica Paquette 441596f483aSJessica Paquette return N; 442596f483aSJessica Paquette } 443596f483aSJessica Paquette 444596f483aSJessica Paquette /// \brief Set the suffix indices of the leaves to the start indices of their 445596f483aSJessica Paquette /// respective suffixes. Also stores each leaf in \p LeafVector at its 446596f483aSJessica Paquette /// respective suffix index. 447596f483aSJessica Paquette /// 448596f483aSJessica Paquette /// \param[in] CurrNode The node currently being visited. 449596f483aSJessica Paquette /// \param CurrIdx The current index of the string being visited. 4504cf187b5SJessica Paquette void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) { 451596f483aSJessica Paquette 452596f483aSJessica Paquette bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 453596f483aSJessica Paquette 454acffa28cSJessica Paquette // Store the length of the concatenation of all strings from the root to 455acffa28cSJessica Paquette // this node. 456acffa28cSJessica Paquette if (!CurrNode.isRoot()) { 457acffa28cSJessica Paquette if (CurrNode.ConcatLen == 0) 458acffa28cSJessica Paquette CurrNode.ConcatLen = CurrNode.size(); 459acffa28cSJessica Paquette 460acffa28cSJessica Paquette if (CurrNode.Parent) 461acffa28cSJessica Paquette CurrNode.ConcatLen += CurrNode.Parent->ConcatLen; 462acffa28cSJessica Paquette } 463acffa28cSJessica Paquette 464596f483aSJessica Paquette // Traverse the tree depth-first. 465596f483aSJessica Paquette for (auto &ChildPair : CurrNode.Children) { 466596f483aSJessica Paquette assert(ChildPair.second && "Node had a null child!"); 46778681be2SJessica Paquette setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size()); 468596f483aSJessica Paquette } 469596f483aSJessica Paquette 470596f483aSJessica Paquette // Is this node a leaf? 471596f483aSJessica Paquette if (IsLeaf) { 472596f483aSJessica Paquette // If yes, give it a suffix index and bump its parent's occurrence count. 473596f483aSJessica Paquette CurrNode.SuffixIdx = Str.size() - CurrIdx; 474596f483aSJessica Paquette assert(CurrNode.Parent && "CurrNode had no parent!"); 475596f483aSJessica Paquette CurrNode.Parent->OccurrenceCount++; 476596f483aSJessica Paquette 477596f483aSJessica Paquette // Store the leaf in the leaf vector for pruning later. 478596f483aSJessica Paquette LeafVector[CurrNode.SuffixIdx] = &CurrNode; 479596f483aSJessica Paquette } 480596f483aSJessica Paquette } 481596f483aSJessica Paquette 482596f483aSJessica Paquette /// \brief Construct the suffix tree for the prefix of the input ending at 483596f483aSJessica Paquette /// \p EndIdx. 484596f483aSJessica Paquette /// 485596f483aSJessica Paquette /// Used to construct the full suffix tree iteratively. At the end of each 486596f483aSJessica Paquette /// step, the constructed suffix tree is either a valid suffix tree, or a 487596f483aSJessica Paquette /// suffix tree with implicit suffixes. At the end of the final step, the 488596f483aSJessica Paquette /// suffix tree is a valid tree. 489596f483aSJessica Paquette /// 490596f483aSJessica Paquette /// \param EndIdx The end index of the current prefix in the main string. 491596f483aSJessica Paquette /// \param SuffixesToAdd The number of suffixes that must be added 492596f483aSJessica Paquette /// to complete the suffix tree at the current phase. 493596f483aSJessica Paquette /// 494596f483aSJessica Paquette /// \returns The number of suffixes that have not been added at the end of 495596f483aSJessica Paquette /// this step. 4964cf187b5SJessica Paquette unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { 497596f483aSJessica Paquette SuffixTreeNode *NeedsLink = nullptr; 498596f483aSJessica Paquette 499596f483aSJessica Paquette while (SuffixesToAdd > 0) { 500596f483aSJessica Paquette 501596f483aSJessica Paquette // Are we waiting to add anything other than just the last character? 502596f483aSJessica Paquette if (Active.Len == 0) { 503596f483aSJessica Paquette // If not, then say the active index is the end index. 504596f483aSJessica Paquette Active.Idx = EndIdx; 505596f483aSJessica Paquette } 506596f483aSJessica Paquette 507596f483aSJessica Paquette assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 508596f483aSJessica Paquette 509596f483aSJessica Paquette // The first character in the current substring we're looking at. 510596f483aSJessica Paquette unsigned FirstChar = Str[Active.Idx]; 511596f483aSJessica Paquette 512596f483aSJessica Paquette // Have we inserted anything starting with FirstChar at the current node? 513596f483aSJessica Paquette if (Active.Node->Children.count(FirstChar) == 0) { 514596f483aSJessica Paquette // If not, then we can just insert a leaf and move too the next step. 515596f483aSJessica Paquette insertLeaf(*Active.Node, EndIdx, FirstChar); 516596f483aSJessica Paquette 517596f483aSJessica Paquette // The active node is an internal node, and we visited it, so it must 518596f483aSJessica Paquette // need a link if it doesn't have one. 519596f483aSJessica Paquette if (NeedsLink) { 520596f483aSJessica Paquette NeedsLink->Link = Active.Node; 521596f483aSJessica Paquette NeedsLink = nullptr; 522596f483aSJessica Paquette } 523596f483aSJessica Paquette } else { 524596f483aSJessica Paquette // There's a match with FirstChar, so look for the point in the tree to 525596f483aSJessica Paquette // insert a new node. 526596f483aSJessica Paquette SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 527596f483aSJessica Paquette 5284cf187b5SJessica Paquette unsigned SubstringLen = NextNode->size(); 529596f483aSJessica Paquette 530596f483aSJessica Paquette // Is the current suffix we're trying to insert longer than the size of 531596f483aSJessica Paquette // the child we want to move to? 532596f483aSJessica Paquette if (Active.Len >= SubstringLen) { 533596f483aSJessica Paquette // If yes, then consume the characters we've seen and move to the next 534596f483aSJessica Paquette // node. 535596f483aSJessica Paquette Active.Idx += SubstringLen; 536596f483aSJessica Paquette Active.Len -= SubstringLen; 537596f483aSJessica Paquette Active.Node = NextNode; 538596f483aSJessica Paquette continue; 539596f483aSJessica Paquette } 540596f483aSJessica Paquette 541596f483aSJessica Paquette // Otherwise, the suffix we're trying to insert must be contained in the 542596f483aSJessica Paquette // next node we want to move to. 543596f483aSJessica Paquette unsigned LastChar = Str[EndIdx]; 544596f483aSJessica Paquette 545596f483aSJessica Paquette // Is the string we're trying to insert a substring of the next node? 546596f483aSJessica Paquette if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 547596f483aSJessica Paquette // If yes, then we're done for this step. Remember our insertion point 548596f483aSJessica Paquette // and move to the next end index. At this point, we have an implicit 549596f483aSJessica Paquette // suffix tree. 550596f483aSJessica Paquette if (NeedsLink && !Active.Node->isRoot()) { 551596f483aSJessica Paquette NeedsLink->Link = Active.Node; 552596f483aSJessica Paquette NeedsLink = nullptr; 553596f483aSJessica Paquette } 554596f483aSJessica Paquette 555596f483aSJessica Paquette Active.Len++; 556596f483aSJessica Paquette break; 557596f483aSJessica Paquette } 558596f483aSJessica Paquette 559596f483aSJessica Paquette // The string we're trying to insert isn't a substring of the next node, 560596f483aSJessica Paquette // but matches up to a point. Split the node. 561596f483aSJessica Paquette // 562596f483aSJessica Paquette // For example, say we ended our search at a node n and we're trying to 563596f483aSJessica Paquette // insert ABD. Then we'll create a new node s for AB, reduce n to just 564596f483aSJessica Paquette // representing C, and insert a new leaf node l to represent d. This 565596f483aSJessica Paquette // allows us to ensure that if n was a leaf, it remains a leaf. 566596f483aSJessica Paquette // 567596f483aSJessica Paquette // | ABC ---split---> | AB 568596f483aSJessica Paquette // n s 569596f483aSJessica Paquette // C / \ D 570596f483aSJessica Paquette // n l 571596f483aSJessica Paquette 572596f483aSJessica Paquette // The node s from the diagram 573596f483aSJessica Paquette SuffixTreeNode *SplitNode = 57478681be2SJessica Paquette insertInternalNode(Active.Node, NextNode->StartIdx, 57578681be2SJessica Paquette NextNode->StartIdx + Active.Len - 1, FirstChar); 576596f483aSJessica Paquette 577596f483aSJessica Paquette // Insert the new node representing the new substring into the tree as 578596f483aSJessica Paquette // a child of the split node. This is the node l from the diagram. 579596f483aSJessica Paquette insertLeaf(*SplitNode, EndIdx, LastChar); 580596f483aSJessica Paquette 581596f483aSJessica Paquette // Make the old node a child of the split node and update its start 582596f483aSJessica Paquette // index. This is the node n from the diagram. 583596f483aSJessica Paquette NextNode->StartIdx += Active.Len; 584596f483aSJessica Paquette NextNode->Parent = SplitNode; 585596f483aSJessica Paquette SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 586596f483aSJessica Paquette 587596f483aSJessica Paquette // SplitNode is an internal node, update the suffix link. 588596f483aSJessica Paquette if (NeedsLink) 589596f483aSJessica Paquette NeedsLink->Link = SplitNode; 590596f483aSJessica Paquette 591596f483aSJessica Paquette NeedsLink = SplitNode; 592596f483aSJessica Paquette } 593596f483aSJessica Paquette 594596f483aSJessica Paquette // We've added something new to the tree, so there's one less suffix to 595596f483aSJessica Paquette // add. 596596f483aSJessica Paquette SuffixesToAdd--; 597596f483aSJessica Paquette 598596f483aSJessica Paquette if (Active.Node->isRoot()) { 599596f483aSJessica Paquette if (Active.Len > 0) { 600596f483aSJessica Paquette Active.Len--; 601596f483aSJessica Paquette Active.Idx = EndIdx - SuffixesToAdd + 1; 602596f483aSJessica Paquette } 603596f483aSJessica Paquette } else { 604596f483aSJessica Paquette // Start the next phase at the next smallest suffix. 605596f483aSJessica Paquette Active.Node = Active.Node->Link; 606596f483aSJessica Paquette } 607596f483aSJessica Paquette } 608596f483aSJessica Paquette 609596f483aSJessica Paquette return SuffixesToAdd; 610596f483aSJessica Paquette } 611596f483aSJessica Paquette 612596f483aSJessica Paquette public: 613596f483aSJessica Paquette /// Construct a suffix tree from a sequence of unsigned integers. 614596f483aSJessica Paquette /// 615596f483aSJessica Paquette /// \param Str The string to construct the suffix tree for. 616596f483aSJessica Paquette SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 617596f483aSJessica Paquette Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 618596f483aSJessica Paquette Root->IsInTree = true; 619596f483aSJessica Paquette Active.Node = Root; 620596f483aSJessica Paquette LeafVector = std::vector<SuffixTreeNode *>(Str.size()); 621596f483aSJessica Paquette 622596f483aSJessica Paquette // Keep track of the number of suffixes we have to add of the current 623596f483aSJessica Paquette // prefix. 6244cf187b5SJessica Paquette unsigned SuffixesToAdd = 0; 625596f483aSJessica Paquette Active.Node = Root; 626596f483aSJessica Paquette 627596f483aSJessica Paquette // Construct the suffix tree iteratively on each prefix of the string. 628596f483aSJessica Paquette // PfxEndIdx is the end index of the current prefix. 629596f483aSJessica Paquette // End is one past the last element in the string. 6304cf187b5SJessica Paquette for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; 6314cf187b5SJessica Paquette PfxEndIdx++) { 632596f483aSJessica Paquette SuffixesToAdd++; 633596f483aSJessica Paquette LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 634596f483aSJessica Paquette SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 635596f483aSJessica Paquette } 636596f483aSJessica Paquette 637596f483aSJessica Paquette // Set the suffix indices of each leaf. 638596f483aSJessica Paquette assert(Root && "Root node can't be nullptr!"); 639596f483aSJessica Paquette setSuffixIndices(*Root, 0); 640596f483aSJessica Paquette } 641596f483aSJessica Paquette }; 642596f483aSJessica Paquette 643596f483aSJessica Paquette /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings. 644596f483aSJessica Paquette struct InstructionMapper { 645596f483aSJessica Paquette 646596f483aSJessica Paquette /// \brief The next available integer to assign to a \p MachineInstr that 647596f483aSJessica Paquette /// cannot be outlined. 648596f483aSJessica Paquette /// 649596f483aSJessica Paquette /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 650596f483aSJessica Paquette unsigned IllegalInstrNumber = -3; 651596f483aSJessica Paquette 652596f483aSJessica Paquette /// \brief The next available integer to assign to a \p MachineInstr that can 653596f483aSJessica Paquette /// be outlined. 654596f483aSJessica Paquette unsigned LegalInstrNumber = 0; 655596f483aSJessica Paquette 656596f483aSJessica Paquette /// Correspondence from \p MachineInstrs to unsigned integers. 657596f483aSJessica Paquette DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 658596f483aSJessica Paquette InstructionIntegerMap; 659596f483aSJessica Paquette 660596f483aSJessica Paquette /// Corresponcence from unsigned integers to \p MachineInstrs. 661596f483aSJessica Paquette /// Inverse of \p InstructionIntegerMap. 662596f483aSJessica Paquette DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; 663596f483aSJessica Paquette 664596f483aSJessica Paquette /// The vector of unsigned integers that the module is mapped to. 665596f483aSJessica Paquette std::vector<unsigned> UnsignedVec; 666596f483aSJessica Paquette 667596f483aSJessica Paquette /// \brief Stores the location of the instruction associated with the integer 668596f483aSJessica Paquette /// at index i in \p UnsignedVec for each index i. 669596f483aSJessica Paquette std::vector<MachineBasicBlock::iterator> InstrList; 670596f483aSJessica Paquette 671596f483aSJessica Paquette /// \brief Maps \p *It to a legal integer. 672596f483aSJessica Paquette /// 673596f483aSJessica Paquette /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, 674596f483aSJessica Paquette /// \p IntegerInstructionMap, and \p LegalInstrNumber. 675596f483aSJessica Paquette /// 676596f483aSJessica Paquette /// \returns The integer that \p *It was mapped to. 677596f483aSJessica Paquette unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { 678596f483aSJessica Paquette 679596f483aSJessica Paquette // Get the integer for this instruction or give it the current 680596f483aSJessica Paquette // LegalInstrNumber. 681596f483aSJessica Paquette InstrList.push_back(It); 682596f483aSJessica Paquette MachineInstr &MI = *It; 683596f483aSJessica Paquette bool WasInserted; 684596f483aSJessica Paquette DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 685596f483aSJessica Paquette ResultIt; 686596f483aSJessica Paquette std::tie(ResultIt, WasInserted) = 687596f483aSJessica Paquette InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 688596f483aSJessica Paquette unsigned MINumber = ResultIt->second; 689596f483aSJessica Paquette 690596f483aSJessica Paquette // There was an insertion. 691596f483aSJessica Paquette if (WasInserted) { 692596f483aSJessica Paquette LegalInstrNumber++; 693596f483aSJessica Paquette IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); 694596f483aSJessica Paquette } 695596f483aSJessica Paquette 696596f483aSJessica Paquette UnsignedVec.push_back(MINumber); 697596f483aSJessica Paquette 698596f483aSJessica Paquette // Make sure we don't overflow or use any integers reserved by the DenseMap. 699596f483aSJessica Paquette if (LegalInstrNumber >= IllegalInstrNumber) 700596f483aSJessica Paquette report_fatal_error("Instruction mapping overflow!"); 701596f483aSJessica Paquette 70278681be2SJessica Paquette assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 70378681be2SJessica Paquette "Tried to assign DenseMap tombstone or empty key to instruction."); 70478681be2SJessica Paquette assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 70578681be2SJessica Paquette "Tried to assign DenseMap tombstone or empty key to instruction."); 706596f483aSJessica Paquette 707596f483aSJessica Paquette return MINumber; 708596f483aSJessica Paquette } 709596f483aSJessica Paquette 710596f483aSJessica Paquette /// Maps \p *It to an illegal integer. 711596f483aSJessica Paquette /// 712596f483aSJessica Paquette /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. 713596f483aSJessica Paquette /// 714596f483aSJessica Paquette /// \returns The integer that \p *It was mapped to. 715596f483aSJessica Paquette unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { 716596f483aSJessica Paquette unsigned MINumber = IllegalInstrNumber; 717596f483aSJessica Paquette 718596f483aSJessica Paquette InstrList.push_back(It); 719596f483aSJessica Paquette UnsignedVec.push_back(IllegalInstrNumber); 720596f483aSJessica Paquette IllegalInstrNumber--; 721596f483aSJessica Paquette 722596f483aSJessica Paquette assert(LegalInstrNumber < IllegalInstrNumber && 723596f483aSJessica Paquette "Instruction mapping overflow!"); 724596f483aSJessica Paquette 72578681be2SJessica Paquette assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 726596f483aSJessica Paquette "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 727596f483aSJessica Paquette 72878681be2SJessica Paquette assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 729596f483aSJessica Paquette "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 730596f483aSJessica Paquette 731596f483aSJessica Paquette return MINumber; 732596f483aSJessica Paquette } 733596f483aSJessica Paquette 734596f483aSJessica Paquette /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 735596f483aSJessica Paquette /// and appends it to \p UnsignedVec and \p InstrList. 736596f483aSJessica Paquette /// 737596f483aSJessica Paquette /// Two instructions are assigned the same integer if they are identical. 738596f483aSJessica Paquette /// If an instruction is deemed unsafe to outline, then it will be assigned an 739596f483aSJessica Paquette /// unique integer. The resulting mapping is placed into a suffix tree and 740596f483aSJessica Paquette /// queried for candidates. 741596f483aSJessica Paquette /// 742596f483aSJessica Paquette /// \param MBB The \p MachineBasicBlock to be translated into integers. 743596f483aSJessica Paquette /// \param TRI \p TargetRegisterInfo for the module. 744596f483aSJessica Paquette /// \param TII \p TargetInstrInfo for the module. 745596f483aSJessica Paquette void convertToUnsignedVec(MachineBasicBlock &MBB, 746596f483aSJessica Paquette const TargetRegisterInfo &TRI, 747596f483aSJessica Paquette const TargetInstrInfo &TII) { 7483291e735SJessica Paquette unsigned Flags = TII.getMachineOutlinerMBBFlags(MBB); 7493291e735SJessica Paquette 750596f483aSJessica Paquette for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et; 751596f483aSJessica Paquette It++) { 752596f483aSJessica Paquette 753596f483aSJessica Paquette // Keep track of where this instruction is in the module. 7543291e735SJessica Paquette switch (TII.getOutliningType(It, Flags)) { 755596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Illegal: 756596f483aSJessica Paquette mapToIllegalUnsigned(It); 757596f483aSJessica Paquette break; 758596f483aSJessica Paquette 759596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Legal: 760596f483aSJessica Paquette mapToLegalUnsigned(It); 761596f483aSJessica Paquette break; 762596f483aSJessica Paquette 763596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Invisible: 764596f483aSJessica Paquette break; 765596f483aSJessica Paquette } 766596f483aSJessica Paquette } 767596f483aSJessica Paquette 768596f483aSJessica Paquette // After we're done every insertion, uniquely terminate this part of the 769596f483aSJessica Paquette // "string". This makes sure we won't match across basic block or function 770596f483aSJessica Paquette // boundaries since the "end" is encoded uniquely and thus appears in no 771596f483aSJessica Paquette // repeated substring. 772596f483aSJessica Paquette InstrList.push_back(MBB.end()); 773596f483aSJessica Paquette UnsignedVec.push_back(IllegalInstrNumber); 774596f483aSJessica Paquette IllegalInstrNumber--; 775596f483aSJessica Paquette } 776596f483aSJessica Paquette 777596f483aSJessica Paquette InstructionMapper() { 778596f483aSJessica Paquette // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 779596f483aSJessica Paquette // changed. 780596f483aSJessica Paquette assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 781596f483aSJessica Paquette "DenseMapInfo<unsigned>'s empty key isn't -1!"); 782596f483aSJessica Paquette assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 783596f483aSJessica Paquette "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 784596f483aSJessica Paquette } 785596f483aSJessica Paquette }; 786596f483aSJessica Paquette 787596f483aSJessica Paquette /// \brief An interprocedural pass which finds repeated sequences of 788596f483aSJessica Paquette /// instructions and replaces them with calls to functions. 789596f483aSJessica Paquette /// 790596f483aSJessica Paquette /// Each instruction is mapped to an unsigned integer and placed in a string. 791596f483aSJessica Paquette /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 792596f483aSJessica Paquette /// is then repeatedly queried for repeated sequences of instructions. Each 793596f483aSJessica Paquette /// non-overlapping repeated sequence is then placed in its own 794596f483aSJessica Paquette /// \p MachineFunction and each instance is then replaced with a call to that 795596f483aSJessica Paquette /// function. 796596f483aSJessica Paquette struct MachineOutliner : public ModulePass { 797596f483aSJessica Paquette 798596f483aSJessica Paquette static char ID; 799596f483aSJessica Paquette 80013593843SJessica Paquette /// \brief Set to true if the outliner should consider functions with 80113593843SJessica Paquette /// linkonceodr linkage. 80213593843SJessica Paquette bool OutlineFromLinkOnceODRs = false; 80313593843SJessica Paquette 804729e6869SJessica Paquette // Collection of IR functions created by the outliner. 805729e6869SJessica Paquette std::vector<Function *> CreatedIRFunctions; 806729e6869SJessica Paquette 807596f483aSJessica Paquette StringRef getPassName() const override { return "Machine Outliner"; } 808596f483aSJessica Paquette 809596f483aSJessica Paquette void getAnalysisUsage(AnalysisUsage &AU) const override { 810596f483aSJessica Paquette AU.addRequired<MachineModuleInfo>(); 811596f483aSJessica Paquette AU.addPreserved<MachineModuleInfo>(); 812596f483aSJessica Paquette AU.setPreservesAll(); 813596f483aSJessica Paquette ModulePass::getAnalysisUsage(AU); 814596f483aSJessica Paquette } 815596f483aSJessica Paquette 816c9ab4c26SJessica Paquette MachineOutliner(bool OutlineFromLinkOnceODRs = false) 817c9ab4c26SJessica Paquette : ModulePass(ID), OutlineFromLinkOnceODRs(OutlineFromLinkOnceODRs) { 818596f483aSJessica Paquette initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 819596f483aSJessica Paquette } 820596f483aSJessica Paquette 82178681be2SJessica Paquette /// Find all repeated substrings that satisfy the outlining cost model. 82278681be2SJessica Paquette /// 82378681be2SJessica Paquette /// If a substring appears at least twice, then it must be represented by 82478681be2SJessica Paquette /// an internal node which appears in at least two suffixes. Each suffix is 82578681be2SJessica Paquette /// represented by a leaf node. To do this, we visit each internal node in 82678681be2SJessica Paquette /// the tree, using the leaf children of each internal node. If an internal 82778681be2SJessica Paquette /// node represents a beneficial substring, then we use each of its leaf 82878681be2SJessica Paquette /// children to find the locations of its substring. 82978681be2SJessica Paquette /// 83078681be2SJessica Paquette /// \param ST A suffix tree to query. 83178681be2SJessica Paquette /// \param TII TargetInstrInfo for the target. 83278681be2SJessica Paquette /// \param Mapper Contains outlining mapping information. 83378681be2SJessica Paquette /// \param[out] CandidateList Filled with candidates representing each 83478681be2SJessica Paquette /// beneficial substring. 83578681be2SJessica Paquette /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each 83678681be2SJessica Paquette /// type of candidate. 83778681be2SJessica Paquette /// 83878681be2SJessica Paquette /// \returns The length of the longest candidate found. 8399df7fde2SJessica Paquette unsigned 8409df7fde2SJessica Paquette findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 84178681be2SJessica Paquette InstructionMapper &Mapper, 8429df7fde2SJessica Paquette std::vector<std::shared_ptr<Candidate>> &CandidateList, 84378681be2SJessica Paquette std::vector<OutlinedFunction> &FunctionList); 84478681be2SJessica Paquette 845596f483aSJessica Paquette /// \brief Replace the sequences of instructions represented by the 846596f483aSJessica Paquette /// \p Candidates in \p CandidateList with calls to \p MachineFunctions 847596f483aSJessica Paquette /// described in \p FunctionList. 848596f483aSJessica Paquette /// 849596f483aSJessica Paquette /// \param M The module we are outlining from. 850596f483aSJessica Paquette /// \param CandidateList A list of candidates to be outlined. 851596f483aSJessica Paquette /// \param FunctionList A list of functions to be inserted into the module. 852596f483aSJessica Paquette /// \param Mapper Contains the instruction mappings for the module. 8539df7fde2SJessica Paquette bool outline(Module &M, 8549df7fde2SJessica Paquette const ArrayRef<std::shared_ptr<Candidate>> &CandidateList, 855596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 856596f483aSJessica Paquette InstructionMapper &Mapper); 857596f483aSJessica Paquette 858596f483aSJessica Paquette /// Creates a function for \p OF and inserts it into the module. 859596f483aSJessica Paquette MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, 860596f483aSJessica Paquette InstructionMapper &Mapper); 861596f483aSJessica Paquette 862596f483aSJessica Paquette /// Find potential outlining candidates and store them in \p CandidateList. 863596f483aSJessica Paquette /// 864596f483aSJessica Paquette /// For each type of potential candidate, also build an \p OutlinedFunction 865596f483aSJessica Paquette /// struct containing the information to build the function for that 866596f483aSJessica Paquette /// candidate. 867596f483aSJessica Paquette /// 868596f483aSJessica Paquette /// \param[out] CandidateList Filled with outlining candidates for the module. 869596f483aSJessica Paquette /// \param[out] FunctionList Filled with functions corresponding to each type 870596f483aSJessica Paquette /// of \p Candidate. 871596f483aSJessica Paquette /// \param ST The suffix tree for the module. 872596f483aSJessica Paquette /// \param TII TargetInstrInfo for the module. 873596f483aSJessica Paquette /// 874596f483aSJessica Paquette /// \returns The length of the longest candidate found. 0 if there are none. 8759df7fde2SJessica Paquette unsigned 8769df7fde2SJessica Paquette buildCandidateList(std::vector<std::shared_ptr<Candidate>> &CandidateList, 877596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 87878681be2SJessica Paquette SuffixTree &ST, InstructionMapper &Mapper, 879c984e213SJessica Paquette const TargetInstrInfo &TII); 880596f483aSJessica Paquette 88160d31fc3SJessica Paquette /// Helper function for pruneOverlaps. 88260d31fc3SJessica Paquette /// Removes \p C from the candidate list, and updates its \p OutlinedFunction. 88360d31fc3SJessica Paquette void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList); 88460d31fc3SJessica Paquette 885596f483aSJessica Paquette /// \brief Remove any overlapping candidates that weren't handled by the 886596f483aSJessica Paquette /// suffix tree's pruning method. 887596f483aSJessica Paquette /// 888596f483aSJessica Paquette /// Pruning from the suffix tree doesn't necessarily remove all overlaps. 889596f483aSJessica Paquette /// If a short candidate is chosen for outlining, then a longer candidate 890596f483aSJessica Paquette /// which has that short candidate as a suffix is chosen, the tree's pruning 891596f483aSJessica Paquette /// method will not find it. Thus, we need to prune before outlining as well. 892596f483aSJessica Paquette /// 893596f483aSJessica Paquette /// \param[in,out] CandidateList A list of outlining candidates. 894596f483aSJessica Paquette /// \param[in,out] FunctionList A list of functions to be outlined. 895809d708bSJessica Paquette /// \param Mapper Contains instruction mapping info for outlining. 896596f483aSJessica Paquette /// \param MaxCandidateLen The length of the longest candidate. 897596f483aSJessica Paquette /// \param TII TargetInstrInfo for the module. 8989df7fde2SJessica Paquette void pruneOverlaps(std::vector<std::shared_ptr<Candidate>> &CandidateList, 899596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 900809d708bSJessica Paquette InstructionMapper &Mapper, unsigned MaxCandidateLen, 901809d708bSJessica Paquette const TargetInstrInfo &TII); 902596f483aSJessica Paquette 903596f483aSJessica Paquette /// Construct a suffix tree on the instructions in \p M and outline repeated 904596f483aSJessica Paquette /// strings from that tree. 905596f483aSJessica Paquette bool runOnModule(Module &M) override; 906596f483aSJessica Paquette }; 907596f483aSJessica Paquette 908596f483aSJessica Paquette } // Anonymous namespace. 909596f483aSJessica Paquette 910596f483aSJessica Paquette char MachineOutliner::ID = 0; 911596f483aSJessica Paquette 912596f483aSJessica Paquette namespace llvm { 91313593843SJessica Paquette ModulePass *createMachineOutlinerPass(bool OutlineFromLinkOnceODRs) { 91413593843SJessica Paquette return new MachineOutliner(OutlineFromLinkOnceODRs); 91513593843SJessica Paquette } 91613593843SJessica Paquette 91778681be2SJessica Paquette } // namespace llvm 91878681be2SJessica Paquette 91978681be2SJessica Paquette INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 92078681be2SJessica Paquette false) 92178681be2SJessica Paquette 9229df7fde2SJessica Paquette unsigned MachineOutliner::findCandidates( 9239df7fde2SJessica Paquette SuffixTree &ST, const TargetInstrInfo &TII, InstructionMapper &Mapper, 9249df7fde2SJessica Paquette std::vector<std::shared_ptr<Candidate>> &CandidateList, 92578681be2SJessica Paquette std::vector<OutlinedFunction> &FunctionList) { 92678681be2SJessica Paquette CandidateList.clear(); 92778681be2SJessica Paquette FunctionList.clear(); 9284cf187b5SJessica Paquette unsigned MaxLen = 0; 92978681be2SJessica Paquette 93078681be2SJessica Paquette // FIXME: Visit internal nodes instead of leaves. 93178681be2SJessica Paquette for (SuffixTreeNode *Leaf : ST.LeafVector) { 93278681be2SJessica Paquette assert(Leaf && "Leaves in LeafVector cannot be null!"); 93378681be2SJessica Paquette if (!Leaf->IsInTree) 93478681be2SJessica Paquette continue; 93578681be2SJessica Paquette 93678681be2SJessica Paquette assert(Leaf->Parent && "All leaves must have parents!"); 93778681be2SJessica Paquette SuffixTreeNode &Parent = *(Leaf->Parent); 93878681be2SJessica Paquette 93978681be2SJessica Paquette // If it doesn't appear enough, or we already outlined from it, skip it. 94078681be2SJessica Paquette if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree) 94178681be2SJessica Paquette continue; 94278681be2SJessica Paquette 943809d708bSJessica Paquette // Figure out if this candidate is beneficial. 9444cf187b5SJessica Paquette unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size(); 94595c1107fSJessica Paquette 94695c1107fSJessica Paquette // Too short to be beneficial; skip it. 94795c1107fSJessica Paquette // FIXME: This isn't necessarily true for, say, X86. If we factor in 94895c1107fSJessica Paquette // instruction lengths we need more information than this. 94995c1107fSJessica Paquette if (StringLen < 2) 95095c1107fSJessica Paquette continue; 95195c1107fSJessica Paquette 952d87f5449SJessica Paquette // If this is a beneficial class of candidate, then every one is stored in 953d87f5449SJessica Paquette // this vector. 954d87f5449SJessica Paquette std::vector<Candidate> CandidatesForRepeatedSeq; 955d87f5449SJessica Paquette 9564cf187b5SJessica Paquette // Describes the start and end point of each candidate. This allows the 9574cf187b5SJessica Paquette // target to infer some information about each occurrence of each repeated 9584cf187b5SJessica Paquette // sequence. 959d87f5449SJessica Paquette // FIXME: CandidatesForRepeatedSeq and this should be combined. 960d87f5449SJessica Paquette std::vector< 961d87f5449SJessica Paquette std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>> 9624cf187b5SJessica Paquette RepeatedSequenceLocs; 963d87f5449SJessica Paquette 964809d708bSJessica Paquette // Figure out the call overhead for each instance of the sequence. 965809d708bSJessica Paquette for (auto &ChildPair : Parent.Children) { 966809d708bSJessica Paquette SuffixTreeNode *M = ChildPair.second; 96778681be2SJessica Paquette 968809d708bSJessica Paquette if (M && M->IsInTree && M->isLeaf()) { 969d87f5449SJessica Paquette // Never visit this leaf again. 970d87f5449SJessica Paquette M->IsInTree = false; 97152df8015SJessica Paquette unsigned StartIdx = M->SuffixIdx; 97252df8015SJessica Paquette unsigned EndIdx = StartIdx + StringLen - 1; 97352df8015SJessica Paquette 97452df8015SJessica Paquette // Trick: Discard some candidates that would be incompatible with the 97552df8015SJessica Paquette // ones we've already found for this sequence. This will save us some 97652df8015SJessica Paquette // work in candidate selection. 97752df8015SJessica Paquette // 97852df8015SJessica Paquette // If two candidates overlap, then we can't outline them both. This 97952df8015SJessica Paquette // happens when we have candidates that look like, say 98052df8015SJessica Paquette // 98152df8015SJessica Paquette // AA (where each "A" is an instruction). 98252df8015SJessica Paquette // 98352df8015SJessica Paquette // We might have some portion of the module that looks like this: 98452df8015SJessica Paquette // AAAAAA (6 A's) 98552df8015SJessica Paquette // 98652df8015SJessica Paquette // In this case, there are 5 different copies of "AA" in this range, but 98752df8015SJessica Paquette // at most 3 can be outlined. If only outlining 3 of these is going to 98852df8015SJessica Paquette // be unbeneficial, then we ought to not bother. 98952df8015SJessica Paquette // 99052df8015SJessica Paquette // Note that two things DON'T overlap when they look like this: 99152df8015SJessica Paquette // start1...end1 .... start2...end2 99252df8015SJessica Paquette // That is, one must either 99352df8015SJessica Paquette // * End before the other starts 99452df8015SJessica Paquette // * Start after the other ends 99552df8015SJessica Paquette if (std::all_of(CandidatesForRepeatedSeq.begin(), 99652df8015SJessica Paquette CandidatesForRepeatedSeq.end(), 99752df8015SJessica Paquette [&StartIdx, &EndIdx](const Candidate &C) { 99852df8015SJessica Paquette return (EndIdx < C.getStartIdx() || 99952df8015SJessica Paquette StartIdx > C.getEndIdx()); 100052df8015SJessica Paquette })) { 100152df8015SJessica Paquette // It doesn't overlap with anything, so we can outline it. 100252df8015SJessica Paquette // Each sequence is over [StartIt, EndIt]. 100352df8015SJessica Paquette MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx]; 100452df8015SJessica Paquette MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 100552df8015SJessica Paquette 1006a499c3c2SJessica Paquette // Save the MachineFunction containing the Candidate. 1007a499c3c2SJessica Paquette MachineFunction *MF = StartIt->getParent()->getParent(); 1008a499c3c2SJessica Paquette assert(MF && "Candidate doesn't have a MF?"); 1009a499c3c2SJessica Paquette 101052df8015SJessica Paquette // Save the candidate and its location. 101152df8015SJessica Paquette CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, 1012a499c3c2SJessica Paquette FunctionList.size(), MF); 101352df8015SJessica Paquette RepeatedSequenceLocs.emplace_back(std::make_pair(StartIt, EndIt)); 101452df8015SJessica Paquette } 1015809d708bSJessica Paquette } 1016809d708bSJessica Paquette } 1017809d708bSJessica Paquette 1018acc15e12SJessica Paquette // We've found something we might want to outline. 1019acc15e12SJessica Paquette // Create an OutlinedFunction to store it and check if it'd be beneficial 1020acc15e12SJessica Paquette // to outline. 10214cf187b5SJessica Paquette TargetInstrInfo::MachineOutlinerInfo MInfo = 10224cf187b5SJessica Paquette TII.getOutlininingCandidateInfo(RepeatedSequenceLocs); 1023acc15e12SJessica Paquette std::vector<unsigned> Seq; 1024acc15e12SJessica Paquette for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++) 1025acc15e12SJessica Paquette Seq.push_back(ST.Str[i]); 102652df8015SJessica Paquette OutlinedFunction OF(FunctionList.size(), CandidatesForRepeatedSeq.size(), 102752df8015SJessica Paquette Seq, MInfo); 1028acc15e12SJessica Paquette unsigned Benefit = OF.getBenefit(); 1029809d708bSJessica Paquette 1030ffe4abc5SJessica Paquette // Is it better to outline this candidate than not? 1031acc15e12SJessica Paquette if (Benefit < 1) { 1032ffe4abc5SJessica Paquette // Outlining this candidate would take more instructions than not 1033ffe4abc5SJessica Paquette // outlining. 1034ffe4abc5SJessica Paquette // Emit a remark explaining why we didn't outline this candidate. 1035ffe4abc5SJessica Paquette std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator> C = 10364cf187b5SJessica Paquette RepeatedSequenceLocs[0]; 10379590658fSVivek Pandya MachineOptimizationRemarkEmitter MORE( 10389590658fSVivek Pandya *(C.first->getParent()->getParent()), nullptr); 10399590658fSVivek Pandya MORE.emit([&]() { 1040ffe4abc5SJessica Paquette MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", 1041ffe4abc5SJessica Paquette C.first->getDebugLoc(), 1042ffe4abc5SJessica Paquette C.first->getParent()); 1043ffe4abc5SJessica Paquette R << "Did not outline " << NV("Length", StringLen) << " instructions" 10444cf187b5SJessica Paquette << " from " << NV("NumOccurrences", RepeatedSequenceLocs.size()) 1045ffe4abc5SJessica Paquette << " locations." 1046ffe4abc5SJessica Paquette << " Instructions from outlining all occurrences (" 1047acc15e12SJessica Paquette << NV("OutliningCost", OF.getOutliningCost()) << ")" 1048ffe4abc5SJessica Paquette << " >= Unoutlined instruction count (" 104985af63d0SJessica Paquette << NV("NotOutliningCost", StringLen * OF.getOccurrenceCount()) << ")" 1050ffe4abc5SJessica Paquette << " (Also found at: "; 1051ffe4abc5SJessica Paquette 1052ffe4abc5SJessica Paquette // Tell the user the other places the candidate was found. 10534cf187b5SJessica Paquette for (unsigned i = 1, e = RepeatedSequenceLocs.size(); i < e; i++) { 1054ffe4abc5SJessica Paquette R << NV((Twine("OtherStartLoc") + Twine(i)).str(), 10554cf187b5SJessica Paquette RepeatedSequenceLocs[i].first->getDebugLoc()); 1056ffe4abc5SJessica Paquette if (i != e - 1) 1057ffe4abc5SJessica Paquette R << ", "; 1058ffe4abc5SJessica Paquette } 1059ffe4abc5SJessica Paquette 1060ffe4abc5SJessica Paquette R << ")"; 10619590658fSVivek Pandya return R; 10629590658fSVivek Pandya }); 1063ffe4abc5SJessica Paquette 1064ffe4abc5SJessica Paquette // Move to the next candidate. 106578681be2SJessica Paquette continue; 1066ffe4abc5SJessica Paquette } 106778681be2SJessica Paquette 106878681be2SJessica Paquette if (StringLen > MaxLen) 106978681be2SJessica Paquette MaxLen = StringLen; 107078681be2SJessica Paquette 1071d87f5449SJessica Paquette // At this point, the candidate class is seen as beneficial. Set their 1072d87f5449SJessica Paquette // benefit values and save them in the candidate list. 10739df7fde2SJessica Paquette std::vector<std::shared_ptr<Candidate>> CandidatesForFn; 1074d87f5449SJessica Paquette for (Candidate &C : CandidatesForRepeatedSeq) { 1075d87f5449SJessica Paquette C.Benefit = Benefit; 10764cf187b5SJessica Paquette C.MInfo = MInfo; 10779df7fde2SJessica Paquette std::shared_ptr<Candidate> Cptr = std::make_shared<Candidate>(C); 10789df7fde2SJessica Paquette CandidateList.push_back(Cptr); 10799df7fde2SJessica Paquette CandidatesForFn.push_back(Cptr); 1080596f483aSJessica Paquette } 1081596f483aSJessica Paquette 1082acc15e12SJessica Paquette FunctionList.push_back(OF); 10839df7fde2SJessica Paquette FunctionList.back().Candidates = CandidatesForFn; 108478681be2SJessica Paquette 108578681be2SJessica Paquette // Move to the next function. 108678681be2SJessica Paquette Parent.IsInTree = false; 108778681be2SJessica Paquette } 108878681be2SJessica Paquette 108978681be2SJessica Paquette return MaxLen; 109078681be2SJessica Paquette } 1091596f483aSJessica Paquette 109291999169SJessica Paquette // Remove C from the candidate space, and update its OutlinedFunction. 109360d31fc3SJessica Paquette void MachineOutliner::prune(Candidate &C, 109460d31fc3SJessica Paquette std::vector<OutlinedFunction> &FunctionList) { 109591999169SJessica Paquette // Get the OutlinedFunction associated with this Candidate. 109691999169SJessica Paquette OutlinedFunction &F = FunctionList[C.FunctionIdx]; 109791999169SJessica Paquette 109891999169SJessica Paquette // Update C's associated function's occurrence count. 109985af63d0SJessica Paquette F.decrement(); 110091999169SJessica Paquette 110191999169SJessica Paquette // Remove C from the CandidateList. 110291999169SJessica Paquette C.InCandidateList = false; 110391999169SJessica Paquette 110491999169SJessica Paquette DEBUG(dbgs() << "- Removed a Candidate \n"; 110585af63d0SJessica Paquette dbgs() << "--- Num fns left for candidate: " << F.getOccurrenceCount() 110691999169SJessica Paquette << "\n"; 1107acc15e12SJessica Paquette dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit() 110891999169SJessica Paquette << "\n";); 110960d31fc3SJessica Paquette } 111060d31fc3SJessica Paquette 11119df7fde2SJessica Paquette void MachineOutliner::pruneOverlaps( 11129df7fde2SJessica Paquette std::vector<std::shared_ptr<Candidate>> &CandidateList, 11139df7fde2SJessica Paquette std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper, 11149df7fde2SJessica Paquette unsigned MaxCandidateLen, const TargetInstrInfo &TII) { 111560d31fc3SJessica Paquette 111660d31fc3SJessica Paquette // Return true if this candidate became unbeneficial for outlining in a 111760d31fc3SJessica Paquette // previous step. 111860d31fc3SJessica Paquette auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) { 111960d31fc3SJessica Paquette 112060d31fc3SJessica Paquette // Check if the candidate was removed in a previous step. 112160d31fc3SJessica Paquette if (!C.InCandidateList) 112260d31fc3SJessica Paquette return true; 112360d31fc3SJessica Paquette 112460d31fc3SJessica Paquette // C must be alive. Check if we should remove it. 112560d31fc3SJessica Paquette if (FunctionList[C.FunctionIdx].getBenefit() < 1) { 112660d31fc3SJessica Paquette prune(C, FunctionList); 112760d31fc3SJessica Paquette return true; 112860d31fc3SJessica Paquette } 112960d31fc3SJessica Paquette 113060d31fc3SJessica Paquette // C is in the list, and F is still beneficial. 113160d31fc3SJessica Paquette return false; 113291999169SJessica Paquette }; 113391999169SJessica Paquette 1134acffa28cSJessica Paquette // TODO: Experiment with interval trees or other interval-checking structures 1135acffa28cSJessica Paquette // to lower the time complexity of this function. 1136acffa28cSJessica Paquette // TODO: Can we do better than the simple greedy choice? 1137acffa28cSJessica Paquette // Check for overlaps in the range. 1138acffa28cSJessica Paquette // This is O(MaxCandidateLen * CandidateList.size()). 1139596f483aSJessica Paquette for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; 1140596f483aSJessica Paquette It++) { 11419df7fde2SJessica Paquette Candidate &C1 = **It; 1142596f483aSJessica Paquette 114391999169SJessica Paquette // If C1 was already pruned, or its function is no longer beneficial for 114491999169SJessica Paquette // outlining, move to the next candidate. 114591999169SJessica Paquette if (ShouldSkipCandidate(C1)) 1146596f483aSJessica Paquette continue; 1147596f483aSJessica Paquette 1148596f483aSJessica Paquette // The minimum start index of any candidate that could overlap with this 1149596f483aSJessica Paquette // one. 1150596f483aSJessica Paquette unsigned FarthestPossibleIdx = 0; 1151596f483aSJessica Paquette 1152596f483aSJessica Paquette // Either the index is 0, or it's at most MaxCandidateLen indices away. 11531934fd2cSJessica Paquette if (C1.getStartIdx() > MaxCandidateLen) 11541934fd2cSJessica Paquette FarthestPossibleIdx = C1.getStartIdx() - MaxCandidateLen; 1155596f483aSJessica Paquette 11560909ca13SHiroshi Inoue // Compare against the candidates in the list that start at most 1157acffa28cSJessica Paquette // FarthestPossibleIdx indices away from C1. There are at most 1158acffa28cSJessica Paquette // MaxCandidateLen of these. 1159596f483aSJessica Paquette for (auto Sit = It + 1; Sit != Et; Sit++) { 11609df7fde2SJessica Paquette Candidate &C2 = **Sit; 1161596f483aSJessica Paquette 1162596f483aSJessica Paquette // Is this candidate too far away to overlap? 11631934fd2cSJessica Paquette if (C2.getStartIdx() < FarthestPossibleIdx) 1164596f483aSJessica Paquette break; 1165596f483aSJessica Paquette 116691999169SJessica Paquette // If C2 was already pruned, or its function is no longer beneficial for 116791999169SJessica Paquette // outlining, move to the next candidate. 116891999169SJessica Paquette if (ShouldSkipCandidate(C2)) 1169596f483aSJessica Paquette continue; 1170596f483aSJessica Paquette 1171596f483aSJessica Paquette // Do C1 and C2 overlap? 1172596f483aSJessica Paquette // 1173596f483aSJessica Paquette // Not overlapping: 1174596f483aSJessica Paquette // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices 1175596f483aSJessica Paquette // 1176596f483aSJessica Paquette // We sorted our candidate list so C2Start <= C1Start. We know that 1177596f483aSJessica Paquette // C2End > C2Start since each candidate has length >= 2. Therefore, all we 1178596f483aSJessica Paquette // have to check is C2End < C2Start to see if we overlap. 11791934fd2cSJessica Paquette if (C2.getEndIdx() < C1.getStartIdx()) 1180596f483aSJessica Paquette continue; 1181596f483aSJessica Paquette 1182acffa28cSJessica Paquette // C1 and C2 overlap. 1183acffa28cSJessica Paquette // We need to choose the better of the two. 1184acffa28cSJessica Paquette // 1185acffa28cSJessica Paquette // Approximate this by picking the one which would have saved us the 1186acffa28cSJessica Paquette // most instructions before any pruning. 118760d31fc3SJessica Paquette 118860d31fc3SJessica Paquette // Is C2 a better candidate? 118960d31fc3SJessica Paquette if (C2.Benefit > C1.Benefit) { 119060d31fc3SJessica Paquette // Yes, so prune C1. Since C1 is dead, we don't have to compare it 119160d31fc3SJessica Paquette // against anything anymore, so break. 119260d31fc3SJessica Paquette prune(C1, FunctionList); 1193acffa28cSJessica Paquette break; 1194acffa28cSJessica Paquette } 119560d31fc3SJessica Paquette 119660d31fc3SJessica Paquette // Prune C2 and move on to the next candidate. 119760d31fc3SJessica Paquette prune(C2, FunctionList); 1198596f483aSJessica Paquette } 1199596f483aSJessica Paquette } 1200596f483aSJessica Paquette } 1201596f483aSJessica Paquette 12029df7fde2SJessica Paquette unsigned MachineOutliner::buildCandidateList( 12039df7fde2SJessica Paquette std::vector<std::shared_ptr<Candidate>> &CandidateList, 12049df7fde2SJessica Paquette std::vector<OutlinedFunction> &FunctionList, SuffixTree &ST, 12059df7fde2SJessica Paquette InstructionMapper &Mapper, const TargetInstrInfo &TII) { 1206596f483aSJessica Paquette 1207596f483aSJessica Paquette std::vector<unsigned> CandidateSequence; // Current outlining candidate. 12084cf187b5SJessica Paquette unsigned MaxCandidateLen = 0; // Length of the longest candidate. 1209596f483aSJessica Paquette 121078681be2SJessica Paquette MaxCandidateLen = 121178681be2SJessica Paquette findCandidates(ST, TII, Mapper, CandidateList, FunctionList); 1212596f483aSJessica Paquette 1213596f483aSJessica Paquette // Sort the candidates in decending order. This will simplify the outlining 1214596f483aSJessica Paquette // process when we have to remove the candidates from the mapping by 1215596f483aSJessica Paquette // allowing us to cut them out without keeping track of an offset. 12169df7fde2SJessica Paquette std::stable_sort( 12179df7fde2SJessica Paquette CandidateList.begin(), CandidateList.end(), 12189df7fde2SJessica Paquette [](const std::shared_ptr<Candidate> &LHS, 12199df7fde2SJessica Paquette const std::shared_ptr<Candidate> &RHS) { return *LHS < *RHS; }); 1220596f483aSJessica Paquette 1221596f483aSJessica Paquette return MaxCandidateLen; 1222596f483aSJessica Paquette } 1223596f483aSJessica Paquette 1224596f483aSJessica Paquette MachineFunction * 1225596f483aSJessica Paquette MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, 1226596f483aSJessica Paquette InstructionMapper &Mapper) { 1227596f483aSJessica Paquette 1228596f483aSJessica Paquette // Create the function name. This should be unique. For now, just hash the 1229596f483aSJessica Paquette // module name and include it in the function name plus the number of this 1230596f483aSJessica Paquette // function. 1231596f483aSJessica Paquette std::ostringstream NameStream; 123278681be2SJessica Paquette NameStream << "OUTLINED_FUNCTION_" << OF.Name; 1233596f483aSJessica Paquette 1234596f483aSJessica Paquette // Create the function using an IR-level function. 1235596f483aSJessica Paquette LLVMContext &C = M.getContext(); 1236596f483aSJessica Paquette Function *F = dyn_cast<Function>( 123759a2d7b9SSerge Guelton M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C))); 1238596f483aSJessica Paquette assert(F && "Function was null!"); 1239596f483aSJessica Paquette 1240596f483aSJessica Paquette // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1241596f483aSJessica Paquette // which gives us better results when we outline from linkonceodr functions. 1242d506bf8eSJessica Paquette F->setLinkage(GlobalValue::InternalLinkage); 1243596f483aSJessica Paquette F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1244596f483aSJessica Paquette 1245729e6869SJessica Paquette // Save F so that we can add debug info later if we need to. 1246729e6869SJessica Paquette CreatedIRFunctions.push_back(F); 1247729e6869SJessica Paquette 1248596f483aSJessica Paquette BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1249596f483aSJessica Paquette IRBuilder<> Builder(EntryBB); 1250596f483aSJessica Paquette Builder.CreateRetVoid(); 1251596f483aSJessica Paquette 1252596f483aSJessica Paquette MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 12537bda1958SMatthias Braun MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1254596f483aSJessica Paquette MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1255596f483aSJessica Paquette const TargetSubtargetInfo &STI = MF.getSubtarget(); 1256596f483aSJessica Paquette const TargetInstrInfo &TII = *STI.getInstrInfo(); 1257596f483aSJessica Paquette 1258596f483aSJessica Paquette // Insert the new function into the module. 1259596f483aSJessica Paquette MF.insert(MF.begin(), &MBB); 1260596f483aSJessica Paquette 12614cf187b5SJessica Paquette TII.insertOutlinerPrologue(MBB, MF, OF.MInfo); 1262596f483aSJessica Paquette 1263596f483aSJessica Paquette // Copy over the instructions for the function using the integer mappings in 1264596f483aSJessica Paquette // its sequence. 1265596f483aSJessica Paquette for (unsigned Str : OF.Sequence) { 1266596f483aSJessica Paquette MachineInstr *NewMI = 1267596f483aSJessica Paquette MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); 1268596f483aSJessica Paquette NewMI->dropMemRefs(); 1269596f483aSJessica Paquette 1270596f483aSJessica Paquette // Don't keep debug information for outlined instructions. 1271596f483aSJessica Paquette NewMI->setDebugLoc(DebugLoc()); 1272596f483aSJessica Paquette MBB.insert(MBB.end(), NewMI); 1273596f483aSJessica Paquette } 1274596f483aSJessica Paquette 12754cf187b5SJessica Paquette TII.insertOutlinerEpilogue(MBB, MF, OF.MInfo); 1276729e6869SJessica Paquette 1277a499c3c2SJessica Paquette // If there's a DISubprogram associated with this outlined function, then 1278a499c3c2SJessica Paquette // emit debug info for the outlined function. 1279a499c3c2SJessica Paquette if (DISubprogram *SP = OF.getSubprogramOrNull()) { 1280a499c3c2SJessica Paquette // We have a DISubprogram. Get its DICompileUnit. 1281a499c3c2SJessica Paquette DICompileUnit *CU = SP->getUnit(); 1282a499c3c2SJessica Paquette DIBuilder DB(M, true, CU); 1283a499c3c2SJessica Paquette DIFile *Unit = SP->getFile(); 1284a499c3c2SJessica Paquette Mangler Mg; 1285a499c3c2SJessica Paquette 1286a499c3c2SJessica Paquette // Walk over each IR function we created in the outliner and create 1287a499c3c2SJessica Paquette // DISubprograms for each function. 1288a499c3c2SJessica Paquette for (Function *F : CreatedIRFunctions) { 1289a499c3c2SJessica Paquette // Get the mangled name of the function for the linkage name. 1290a499c3c2SJessica Paquette std::string Dummy; 1291a499c3c2SJessica Paquette llvm::raw_string_ostream MangledNameStream(Dummy); 1292a499c3c2SJessica Paquette Mg.getNameWithPrefix(MangledNameStream, F, false); 1293a499c3c2SJessica Paquette 1294a499c3c2SJessica Paquette DISubprogram *SP = DB.createFunction( 1295a499c3c2SJessica Paquette Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()), 1296a499c3c2SJessica Paquette Unit /* File */, 1297a499c3c2SJessica Paquette 0 /* Line 0 is reserved for compiler-generated code. */, 1298a499c3c2SJessica Paquette DB.createSubroutineType( 1299a499c3c2SJessica Paquette DB.getOrCreateTypeArray(None)), /* void type */ 1300a499c3c2SJessica Paquette false, true, 0, /* Line 0 is reserved for compiler-generated code. */ 1301a499c3c2SJessica Paquette DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 1302a499c3c2SJessica Paquette true /* Outlined code is optimized code by definition. */); 1303a499c3c2SJessica Paquette 1304a499c3c2SJessica Paquette // Don't add any new variables to the subprogram. 1305a499c3c2SJessica Paquette DB.finalizeSubprogram(SP); 1306a499c3c2SJessica Paquette 1307a499c3c2SJessica Paquette // Attach subprogram to the function. 1308a499c3c2SJessica Paquette F->setSubprogram(SP); 1309a499c3c2SJessica Paquette } 1310a499c3c2SJessica Paquette 1311a499c3c2SJessica Paquette // We're done with the DIBuilder. 1312a499c3c2SJessica Paquette DB.finalize(); 1313a499c3c2SJessica Paquette } 1314a499c3c2SJessica Paquette 131582203c41SGeoff Berry MF.getRegInfo().freezeReservedRegs(MF); 1316596f483aSJessica Paquette return &MF; 1317596f483aSJessica Paquette } 1318596f483aSJessica Paquette 13199df7fde2SJessica Paquette bool MachineOutliner::outline( 13209df7fde2SJessica Paquette Module &M, const ArrayRef<std::shared_ptr<Candidate>> &CandidateList, 13219df7fde2SJessica Paquette std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper) { 1322596f483aSJessica Paquette 1323596f483aSJessica Paquette bool OutlinedSomething = false; 1324596f483aSJessica Paquette // Replace the candidates with calls to their respective outlined functions. 13259df7fde2SJessica Paquette for (const std::shared_ptr<Candidate> &Cptr : CandidateList) { 13269df7fde2SJessica Paquette Candidate &C = *Cptr; 1327596f483aSJessica Paquette // Was the candidate removed during pruneOverlaps? 1328596f483aSJessica Paquette if (!C.InCandidateList) 1329596f483aSJessica Paquette continue; 1330596f483aSJessica Paquette 1331596f483aSJessica Paquette // If not, then look at its OutlinedFunction. 1332596f483aSJessica Paquette OutlinedFunction &OF = FunctionList[C.FunctionIdx]; 1333596f483aSJessica Paquette 1334596f483aSJessica Paquette // Was its OutlinedFunction made unbeneficial during pruneOverlaps? 133585af63d0SJessica Paquette if (OF.getBenefit() < 1) 1336596f483aSJessica Paquette continue; 1337596f483aSJessica Paquette 1338596f483aSJessica Paquette // If not, then outline it. 13391934fd2cSJessica Paquette assert(C.getStartIdx() < Mapper.InstrList.size() && 1340c9ab4c26SJessica Paquette "Candidate out of bounds!"); 13411934fd2cSJessica Paquette MachineBasicBlock *MBB = (*Mapper.InstrList[C.getStartIdx()]).getParent(); 13421934fd2cSJessica Paquette MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.getStartIdx()]; 13431934fd2cSJessica Paquette unsigned EndIdx = C.getEndIdx(); 1344596f483aSJessica Paquette 1345596f483aSJessica Paquette assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1346596f483aSJessica Paquette MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1347596f483aSJessica Paquette assert(EndIt != MBB->end() && "EndIt out of bounds!"); 1348596f483aSJessica Paquette 1349596f483aSJessica Paquette EndIt++; // Erase needs one past the end index. 1350596f483aSJessica Paquette 1351596f483aSJessica Paquette // Does this candidate have a function yet? 1352acffa28cSJessica Paquette if (!OF.MF) { 1353596f483aSJessica Paquette OF.MF = createOutlinedFunction(M, OF, Mapper); 13549df7fde2SJessica Paquette MachineBasicBlock *MBB = &*OF.MF->begin(); 13559df7fde2SJessica Paquette 13569df7fde2SJessica Paquette // Output a remark telling the user that an outlined function was created, 13579df7fde2SJessica Paquette // and explaining where it came from. 13589df7fde2SJessica Paquette MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr); 13599df7fde2SJessica Paquette MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction", 13609df7fde2SJessica Paquette MBB->findDebugLoc(MBB->begin()), MBB); 13619df7fde2SJessica Paquette R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) 13629df7fde2SJessica Paquette << " instructions by " 13639df7fde2SJessica Paquette << "outlining " << NV("Length", OF.Sequence.size()) << " instructions " 13649df7fde2SJessica Paquette << "from " << NV("NumOccurrences", OF.getOccurrenceCount()) 13659df7fde2SJessica Paquette << " locations. " 13669df7fde2SJessica Paquette << "(Found at: "; 13679df7fde2SJessica Paquette 13689df7fde2SJessica Paquette // Tell the user the other places the candidate was found. 13699df7fde2SJessica Paquette for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) { 13709df7fde2SJessica Paquette 13719df7fde2SJessica Paquette // Skip over things that were pruned. 13729df7fde2SJessica Paquette if (!OF.Candidates[i]->InCandidateList) 13739df7fde2SJessica Paquette continue; 13749df7fde2SJessica Paquette 13759df7fde2SJessica Paquette R << NV( 13769df7fde2SJessica Paquette (Twine("StartLoc") + Twine(i)).str(), 13779df7fde2SJessica Paquette Mapper.InstrList[OF.Candidates[i]->getStartIdx()]->getDebugLoc()); 13789df7fde2SJessica Paquette if (i != e - 1) 13799df7fde2SJessica Paquette R << ", "; 13809df7fde2SJessica Paquette } 13819df7fde2SJessica Paquette 13829df7fde2SJessica Paquette R << ")"; 13839df7fde2SJessica Paquette 13849df7fde2SJessica Paquette MORE.emit(R); 1385acffa28cSJessica Paquette FunctionsCreated++; 1386acffa28cSJessica Paquette } 1387596f483aSJessica Paquette 1388596f483aSJessica Paquette MachineFunction *MF = OF.MF; 1389596f483aSJessica Paquette const TargetSubtargetInfo &STI = MF->getSubtarget(); 1390596f483aSJessica Paquette const TargetInstrInfo &TII = *STI.getInstrInfo(); 1391596f483aSJessica Paquette 1392596f483aSJessica Paquette // Insert a call to the new function and erase the old sequence. 13934cf187b5SJessica Paquette TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.MInfo); 13941934fd2cSJessica Paquette StartIt = Mapper.InstrList[C.getStartIdx()]; 1395596f483aSJessica Paquette MBB->erase(StartIt, EndIt); 1396596f483aSJessica Paquette 1397596f483aSJessica Paquette OutlinedSomething = true; 1398596f483aSJessica Paquette 1399596f483aSJessica Paquette // Statistics. 1400596f483aSJessica Paquette NumOutlined++; 1401596f483aSJessica Paquette } 1402596f483aSJessica Paquette 140378681be2SJessica Paquette DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1404596f483aSJessica Paquette 1405596f483aSJessica Paquette return OutlinedSomething; 1406596f483aSJessica Paquette } 1407596f483aSJessica Paquette 1408596f483aSJessica Paquette bool MachineOutliner::runOnModule(Module &M) { 1409df82274fSJessica Paquette // Check if there's anything in the module. If it's empty, then there's 1410df82274fSJessica Paquette // nothing to outline. 1411596f483aSJessica Paquette if (M.empty()) 1412596f483aSJessica Paquette return false; 1413596f483aSJessica Paquette 1414596f483aSJessica Paquette MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 141578681be2SJessica Paquette const TargetSubtargetInfo &STI = 141678681be2SJessica Paquette MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget(); 1417596f483aSJessica Paquette const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 1418596f483aSJessica Paquette const TargetInstrInfo *TII = STI.getInstrInfo(); 1419596f483aSJessica Paquette 1420*bccd18b8SJessica Paquette // Does the target implement the MachineOutliner? If it doesn't, quit here. 1421*bccd18b8SJessica Paquette if (!TII->useMachineOutliner()) { 1422*bccd18b8SJessica Paquette // No. So we're done. 1423*bccd18b8SJessica Paquette DEBUG(dbgs() 1424*bccd18b8SJessica Paquette << "Skipping pass: Target does not support the MachineOutliner.\n"); 1425*bccd18b8SJessica Paquette return false; 1426*bccd18b8SJessica Paquette } 1427*bccd18b8SJessica Paquette 1428596f483aSJessica Paquette InstructionMapper Mapper; 1429596f483aSJessica Paquette 1430df82274fSJessica Paquette // Build instruction mappings for each function in the module. Start by 1431df82274fSJessica Paquette // iterating over each Function in M. 1432596f483aSJessica Paquette for (Function &F : M) { 1433596f483aSJessica Paquette 1434df82274fSJessica Paquette // If there's nothing in F, then there's no reason to try and outline from 1435df82274fSJessica Paquette // it. 1436df82274fSJessica Paquette if (F.empty()) 1437596f483aSJessica Paquette continue; 1438596f483aSJessica Paquette 1439df82274fSJessica Paquette // There's something in F. Check if it has a MachineFunction associated with 1440df82274fSJessica Paquette // it. 1441df82274fSJessica Paquette MachineFunction *MF = MMI.getMachineFunction(F); 1442596f483aSJessica Paquette 1443df82274fSJessica Paquette // If it doesn't, then there's nothing to outline from. Move to the next 1444df82274fSJessica Paquette // Function. 1445df82274fSJessica Paquette if (!MF) 1446596f483aSJessica Paquette continue; 1447596f483aSJessica Paquette 1448df82274fSJessica Paquette // We have a MachineFunction. Ask the target if it's suitable for outlining. 1449df82274fSJessica Paquette // If it isn't, then move on to the next Function in the module. 1450df82274fSJessica Paquette if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs)) 1451df82274fSJessica Paquette continue; 1452df82274fSJessica Paquette 1453df82274fSJessica Paquette // We have a function suitable for outlining. Iterate over every 1454df82274fSJessica Paquette // MachineBasicBlock in MF and try to map its instructions to a list of 1455df82274fSJessica Paquette // unsigned integers. 1456df82274fSJessica Paquette for (MachineBasicBlock &MBB : *MF) { 1457df82274fSJessica Paquette // If there isn't anything in MBB, then there's no point in outlining from 1458df82274fSJessica Paquette // it. 1459df82274fSJessica Paquette if (MBB.empty()) 1460df82274fSJessica Paquette continue; 1461df82274fSJessica Paquette 1462df82274fSJessica Paquette // Check if MBB could be the target of an indirect branch. If it is, then 1463df82274fSJessica Paquette // we don't want to outline from it. 1464df82274fSJessica Paquette if (MBB.hasAddressTaken()) 1465df82274fSJessica Paquette continue; 1466df82274fSJessica Paquette 1467df82274fSJessica Paquette // MBB is suitable for outlining. Map it to a list of unsigneds. 1468596f483aSJessica Paquette Mapper.convertToUnsignedVec(MBB, *TRI, *TII); 1469596f483aSJessica Paquette } 1470596f483aSJessica Paquette } 1471596f483aSJessica Paquette 1472596f483aSJessica Paquette // Construct a suffix tree, use it to find candidates, and then outline them. 1473596f483aSJessica Paquette SuffixTree ST(Mapper.UnsignedVec); 14749df7fde2SJessica Paquette std::vector<std::shared_ptr<Candidate>> CandidateList; 1475596f483aSJessica Paquette std::vector<OutlinedFunction> FunctionList; 1476596f483aSJessica Paquette 1477acffa28cSJessica Paquette // Find all of the outlining candidates. 1478596f483aSJessica Paquette unsigned MaxCandidateLen = 1479c984e213SJessica Paquette buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII); 1480596f483aSJessica Paquette 1481acffa28cSJessica Paquette // Remove candidates that overlap with other candidates. 1482809d708bSJessica Paquette pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII); 1483acffa28cSJessica Paquette 1484acffa28cSJessica Paquette // Outline each of the candidates and return true if something was outlined. 1485729e6869SJessica Paquette bool OutlinedSomething = outline(M, CandidateList, FunctionList, Mapper); 1486729e6869SJessica Paquette 1487729e6869SJessica Paquette return OutlinedSomething; 1488596f483aSJessica Paquette } 1489