1596f483aSJessica Paquette //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2596f483aSJessica Paquette // 3596f483aSJessica Paquette // The LLVM Compiler Infrastructure 4596f483aSJessica Paquette // 5596f483aSJessica Paquette // This file is distributed under the University of Illinois Open Source 6596f483aSJessica Paquette // License. See LICENSE.TXT for details. 7596f483aSJessica Paquette // 8596f483aSJessica Paquette //===----------------------------------------------------------------------===// 9596f483aSJessica Paquette /// 10596f483aSJessica Paquette /// \file 11596f483aSJessica Paquette /// Replaces repeated sequences of instructions with function calls. 12596f483aSJessica Paquette /// 13596f483aSJessica Paquette /// This works by placing every instruction from every basic block in a 14596f483aSJessica Paquette /// suffix tree, and repeatedly querying that tree for repeated sequences of 15596f483aSJessica Paquette /// instructions. If a sequence of instructions appears often, then it ought 16596f483aSJessica Paquette /// to be beneficial to pull out into a function. 17596f483aSJessica Paquette /// 18596f483aSJessica Paquette /// This was originally presented at the 2016 LLVM Developers' Meeting in the 19596f483aSJessica Paquette /// talk "Reducing Code Size Using Outlining". For a high-level overview of 20596f483aSJessica Paquette /// how this pass works, the talk is available on YouTube at 21596f483aSJessica Paquette /// 22596f483aSJessica Paquette /// https://www.youtube.com/watch?v=yorld-WSOeU 23596f483aSJessica Paquette /// 24596f483aSJessica Paquette /// The slides for the talk are available at 25596f483aSJessica Paquette /// 26596f483aSJessica Paquette /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 27596f483aSJessica Paquette /// 28596f483aSJessica Paquette /// The talk provides an overview of how the outliner finds candidates and 29596f483aSJessica Paquette /// ultimately outlines them. It describes how the main data structure for this 30596f483aSJessica Paquette /// pass, the suffix tree, is queried and purged for candidates. It also gives 31596f483aSJessica Paquette /// a simplified suffix tree construction algorithm for suffix trees based off 32596f483aSJessica Paquette /// of the algorithm actually used here, Ukkonen's algorithm. 33596f483aSJessica Paquette /// 34596f483aSJessica Paquette /// For the original RFC for this pass, please see 35596f483aSJessica Paquette /// 36596f483aSJessica Paquette /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 37596f483aSJessica Paquette /// 38596f483aSJessica Paquette /// For more information on the suffix tree data structure, please see 39596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 40596f483aSJessica Paquette /// 41596f483aSJessica Paquette //===----------------------------------------------------------------------===// 42596f483aSJessica Paquette #include "llvm/ADT/DenseMap.h" 43596f483aSJessica Paquette #include "llvm/ADT/Statistic.h" 44596f483aSJessica Paquette #include "llvm/ADT/Twine.h" 45596f483aSJessica Paquette #include "llvm/CodeGen/MachineFrameInfo.h" 46596f483aSJessica Paquette #include "llvm/CodeGen/MachineFunction.h" 47596f483aSJessica Paquette #include "llvm/CodeGen/MachineInstrBuilder.h" 48596f483aSJessica Paquette #include "llvm/CodeGen/MachineModuleInfo.h" 49596f483aSJessica Paquette #include "llvm/CodeGen/Passes.h" 50596f483aSJessica Paquette #include "llvm/IR/IRBuilder.h" 51596f483aSJessica Paquette #include "llvm/Support/Allocator.h" 52596f483aSJessica Paquette #include "llvm/Support/Debug.h" 53596f483aSJessica Paquette #include "llvm/Support/raw_ostream.h" 54596f483aSJessica Paquette #include "llvm/Target/TargetInstrInfo.h" 55596f483aSJessica Paquette #include "llvm/Target/TargetMachine.h" 56596f483aSJessica Paquette #include "llvm/Target/TargetRegisterInfo.h" 57596f483aSJessica Paquette #include "llvm/Target/TargetSubtargetInfo.h" 58596f483aSJessica Paquette #include <functional> 59596f483aSJessica Paquette #include <map> 60596f483aSJessica Paquette #include <sstream> 61596f483aSJessica Paquette #include <tuple> 62596f483aSJessica Paquette #include <vector> 63596f483aSJessica Paquette 64596f483aSJessica Paquette #define DEBUG_TYPE "machine-outliner" 65596f483aSJessica Paquette 66596f483aSJessica Paquette using namespace llvm; 67596f483aSJessica Paquette 68596f483aSJessica Paquette STATISTIC(NumOutlined, "Number of candidates outlined"); 69596f483aSJessica Paquette STATISTIC(FunctionsCreated, "Number of functions created"); 70596f483aSJessica Paquette 71596f483aSJessica Paquette namespace { 72596f483aSJessica Paquette 73*acffa28cSJessica Paquette /// \brief An individual sequence of instructions to be replaced with a call to 74*acffa28cSJessica Paquette /// an outlined function. 75*acffa28cSJessica Paquette struct Candidate { 76*acffa28cSJessica Paquette 77*acffa28cSJessica Paquette /// Set to false if the candidate overlapped with another candidate. 78*acffa28cSJessica Paquette bool InCandidateList = true; 79*acffa28cSJessica Paquette 80*acffa28cSJessica Paquette /// The start index of this \p Candidate. 81*acffa28cSJessica Paquette size_t StartIdx; 82*acffa28cSJessica Paquette 83*acffa28cSJessica Paquette /// The number of instructions in this \p Candidate. 84*acffa28cSJessica Paquette size_t Len; 85*acffa28cSJessica Paquette 86*acffa28cSJessica Paquette /// The index of this \p Candidate's \p OutlinedFunction in the list of 87*acffa28cSJessica Paquette /// \p OutlinedFunctions. 88*acffa28cSJessica Paquette size_t FunctionIdx; 89*acffa28cSJessica Paquette 90*acffa28cSJessica Paquette /// \brief The number of instructions that would be saved by outlining every 91*acffa28cSJessica Paquette /// candidate of this type. 92*acffa28cSJessica Paquette /// 93*acffa28cSJessica Paquette /// This is a fixed value which is not updated during the candidate pruning 94*acffa28cSJessica Paquette /// process. It is only used for deciding which candidate to keep if two 95*acffa28cSJessica Paquette /// candidates overlap. The true benefit is stored in the OutlinedFunction 96*acffa28cSJessica Paquette /// for some given candidate. 97*acffa28cSJessica Paquette unsigned Benefit = 0; 98*acffa28cSJessica Paquette 99*acffa28cSJessica Paquette Candidate(size_t StartIdx, size_t Len, size_t FunctionIdx) 100*acffa28cSJessica Paquette : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {} 101*acffa28cSJessica Paquette 102*acffa28cSJessica Paquette Candidate() {} 103*acffa28cSJessica Paquette 104*acffa28cSJessica Paquette /// \brief Used to ensure that \p Candidates are outlined in an order that 105*acffa28cSJessica Paquette /// preserves the start and end indices of other \p Candidates. 106*acffa28cSJessica Paquette bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; } 107*acffa28cSJessica Paquette }; 108*acffa28cSJessica Paquette 109*acffa28cSJessica Paquette /// \brief The information necessary to create an outlined function for some 110*acffa28cSJessica Paquette /// class of candidate. 111*acffa28cSJessica Paquette struct OutlinedFunction { 112*acffa28cSJessica Paquette 113*acffa28cSJessica Paquette /// The actual outlined function created. 114*acffa28cSJessica Paquette /// This is initialized after we go through and create the actual function. 115*acffa28cSJessica Paquette MachineFunction *MF = nullptr; 116*acffa28cSJessica Paquette 117*acffa28cSJessica Paquette /// A number assigned to this function which appears at the end of its name. 118*acffa28cSJessica Paquette size_t Name; 119*acffa28cSJessica Paquette 120*acffa28cSJessica Paquette /// The number of candidates for this OutlinedFunction. 121*acffa28cSJessica Paquette size_t OccurrenceCount = 0; 122*acffa28cSJessica Paquette 123*acffa28cSJessica Paquette /// \brief The sequence of integers corresponding to the instructions in this 124*acffa28cSJessica Paquette /// function. 125*acffa28cSJessica Paquette std::vector<unsigned> Sequence; 126*acffa28cSJessica Paquette 127*acffa28cSJessica Paquette /// The number of instructions this function would save. 128*acffa28cSJessica Paquette unsigned Benefit = 0; 129*acffa28cSJessica Paquette 130*acffa28cSJessica Paquette /// \brief Set to true if candidates for this outlined function should be 131*acffa28cSJessica Paquette /// replaced with tail calls to this OutlinedFunction. 132*acffa28cSJessica Paquette bool IsTailCall = false; 133*acffa28cSJessica Paquette 134*acffa28cSJessica Paquette OutlinedFunction(size_t Name, size_t OccurrenceCount, 135*acffa28cSJessica Paquette const std::vector<unsigned> &Sequence, 136*acffa28cSJessica Paquette unsigned Benefit, bool IsTailCall) 137*acffa28cSJessica Paquette : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence), 138*acffa28cSJessica Paquette Benefit(Benefit), IsTailCall(IsTailCall) 139*acffa28cSJessica Paquette {} 140*acffa28cSJessica Paquette }; 141*acffa28cSJessica Paquette 142596f483aSJessica Paquette /// Represents an undefined index in the suffix tree. 143596f483aSJessica Paquette const size_t EmptyIdx = -1; 144596f483aSJessica Paquette 145596f483aSJessica Paquette /// A node in a suffix tree which represents a substring or suffix. 146596f483aSJessica Paquette /// 147596f483aSJessica Paquette /// Each node has either no children or at least two children, with the root 148596f483aSJessica Paquette /// being a exception in the empty tree. 149596f483aSJessica Paquette /// 150596f483aSJessica Paquette /// Children are represented as a map between unsigned integers and nodes. If 151596f483aSJessica Paquette /// a node N has a child M on unsigned integer k, then the mapping represented 152596f483aSJessica Paquette /// by N is a proper prefix of the mapping represented by M. Note that this, 153596f483aSJessica Paquette /// although similar to a trie is somewhat different: each node stores a full 154596f483aSJessica Paquette /// substring of the full mapping rather than a single character state. 155596f483aSJessica Paquette /// 156596f483aSJessica Paquette /// Each internal node contains a pointer to the internal node representing 157596f483aSJessica Paquette /// the same string, but with the first character chopped off. This is stored 158596f483aSJessica Paquette /// in \p Link. Each leaf node stores the start index of its respective 159596f483aSJessica Paquette /// suffix in \p SuffixIdx. 160596f483aSJessica Paquette struct SuffixTreeNode { 161596f483aSJessica Paquette 162596f483aSJessica Paquette /// The children of this node. 163596f483aSJessica Paquette /// 164596f483aSJessica Paquette /// A child existing on an unsigned integer implies that from the mapping 165596f483aSJessica Paquette /// represented by the current node, there is a way to reach another 166596f483aSJessica Paquette /// mapping by tacking that character on the end of the current string. 167596f483aSJessica Paquette DenseMap<unsigned, SuffixTreeNode *> Children; 168596f483aSJessica Paquette 169596f483aSJessica Paquette /// A flag set to false if the node has been pruned from the tree. 170596f483aSJessica Paquette bool IsInTree = true; 171596f483aSJessica Paquette 172596f483aSJessica Paquette /// The start index of this node's substring in the main string. 173596f483aSJessica Paquette size_t StartIdx = EmptyIdx; 174596f483aSJessica Paquette 175596f483aSJessica Paquette /// The end index of this node's substring in the main string. 176596f483aSJessica Paquette /// 177596f483aSJessica Paquette /// Every leaf node must have its \p EndIdx incremented at the end of every 178596f483aSJessica Paquette /// step in the construction algorithm. To avoid having to update O(N) 179596f483aSJessica Paquette /// nodes individually at the end of every step, the end index is stored 180596f483aSJessica Paquette /// as a pointer. 181596f483aSJessica Paquette size_t *EndIdx = nullptr; 182596f483aSJessica Paquette 183596f483aSJessica Paquette /// For leaves, the start index of the suffix represented by this node. 184596f483aSJessica Paquette /// 185596f483aSJessica Paquette /// For all other nodes, this is ignored. 186596f483aSJessica Paquette size_t SuffixIdx = EmptyIdx; 187596f483aSJessica Paquette 188596f483aSJessica Paquette /// \brief For internal nodes, a pointer to the internal node representing 189596f483aSJessica Paquette /// the same sequence with the first character chopped off. 190596f483aSJessica Paquette /// 191596f483aSJessica Paquette /// This has two major purposes in the suffix tree. The first is as a 192596f483aSJessica Paquette /// shortcut in Ukkonen's construction algorithm. One of the things that 193596f483aSJessica Paquette /// Ukkonen's algorithm does to achieve linear-time construction is 194596f483aSJessica Paquette /// keep track of which node the next insert should be at. This makes each 195596f483aSJessica Paquette /// insert O(1), and there are a total of O(N) inserts. The suffix link 196596f483aSJessica Paquette /// helps with inserting children of internal nodes. 197596f483aSJessica Paquette /// 198596f483aSJessica Paquette /// Say we add a child to an internal node with associated mapping S. The 199596f483aSJessica Paquette /// next insertion must be at the node representing S - its first character. 200596f483aSJessica Paquette /// This is given by the way that we iteratively build the tree in Ukkonen's 201596f483aSJessica Paquette /// algorithm. The main idea is to look at the suffixes of each prefix in the 202596f483aSJessica Paquette /// string, starting with the longest suffix of the prefix, and ending with 203596f483aSJessica Paquette /// the shortest. Therefore, if we keep pointers between such nodes, we can 204596f483aSJessica Paquette /// move to the next insertion point in O(1) time. If we don't, then we'd 205596f483aSJessica Paquette /// have to query from the root, which takes O(N) time. This would make the 206596f483aSJessica Paquette /// construction algorithm O(N^2) rather than O(N). 207596f483aSJessica Paquette /// 208596f483aSJessica Paquette /// The suffix link is also used during the tree pruning process to let us 209596f483aSJessica Paquette /// quickly throw out a bunch of potential overlaps. Say we have a sequence 210596f483aSJessica Paquette /// S we want to outline. Then each of its suffixes contribute to at least 211596f483aSJessica Paquette /// one overlapping case. Therefore, we can follow the suffix links 212596f483aSJessica Paquette /// starting at the node associated with S to the root and "delete" those 213596f483aSJessica Paquette /// nodes, save for the root. For each candidate, this removes 214596f483aSJessica Paquette /// O(|candidate|) overlaps from the search space. We don't actually 215596f483aSJessica Paquette /// completely invalidate these nodes though; doing that is far too 216596f483aSJessica Paquette /// aggressive. Consider the following pathological string: 217596f483aSJessica Paquette /// 218596f483aSJessica Paquette /// 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 219596f483aSJessica Paquette /// 220596f483aSJessica Paquette /// If we, for the sake of example, outlined 1 2 3, then we would throw 221596f483aSJessica Paquette /// out all instances of 2 3. This isn't desirable. To get around this, 222596f483aSJessica Paquette /// when we visit a link node, we decrement its occurrence count by the 223596f483aSJessica Paquette /// number of sequences we outlined in the current step. In the pathological 224596f483aSJessica Paquette /// example, the 2 3 node would have an occurrence count of 8, while the 225596f483aSJessica Paquette /// 1 2 3 node would have an occurrence count of 2. Thus, the 2 3 node 226596f483aSJessica Paquette /// would survive to the next round allowing us to outline the extra 227596f483aSJessica Paquette /// instances of 2 3. 228596f483aSJessica Paquette SuffixTreeNode *Link = nullptr; 229596f483aSJessica Paquette 230596f483aSJessica Paquette /// The parent of this node. Every node except for the root has a parent. 231596f483aSJessica Paquette SuffixTreeNode *Parent = nullptr; 232596f483aSJessica Paquette 233596f483aSJessica Paquette /// The number of times this node's string appears in the tree. 234596f483aSJessica Paquette /// 235596f483aSJessica Paquette /// This is equal to the number of leaf children of the string. It represents 236596f483aSJessica Paquette /// the number of suffixes that the node's string is a prefix of. 237596f483aSJessica Paquette size_t OccurrenceCount = 0; 238596f483aSJessica Paquette 239*acffa28cSJessica Paquette /// The length of the string formed by concatenating the edge labels from the 240*acffa28cSJessica Paquette /// root to this node. 241*acffa28cSJessica Paquette size_t ConcatLen = 0; 242*acffa28cSJessica Paquette 243596f483aSJessica Paquette /// Returns true if this node is a leaf. 244596f483aSJessica Paquette bool isLeaf() const { return SuffixIdx != EmptyIdx; } 245596f483aSJessica Paquette 246596f483aSJessica Paquette /// Returns true if this node is the root of its owning \p SuffixTree. 247596f483aSJessica Paquette bool isRoot() const { return StartIdx == EmptyIdx; } 248596f483aSJessica Paquette 249596f483aSJessica Paquette /// Return the number of elements in the substring associated with this node. 250596f483aSJessica Paquette size_t size() const { 251596f483aSJessica Paquette 252596f483aSJessica Paquette // Is it the root? If so, it's the empty string so return 0. 253596f483aSJessica Paquette if (isRoot()) 254596f483aSJessica Paquette return 0; 255596f483aSJessica Paquette 256596f483aSJessica Paquette assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 257596f483aSJessica Paquette 258596f483aSJessica Paquette // Size = the number of elements in the string. 259596f483aSJessica Paquette // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 260596f483aSJessica Paquette return *EndIdx - StartIdx + 1; 261596f483aSJessica Paquette } 262596f483aSJessica Paquette 263596f483aSJessica Paquette SuffixTreeNode(size_t StartIdx, size_t *EndIdx, SuffixTreeNode *Link, 264596f483aSJessica Paquette SuffixTreeNode *Parent) 265596f483aSJessica Paquette : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} 266596f483aSJessica Paquette 267596f483aSJessica Paquette SuffixTreeNode() {} 268596f483aSJessica Paquette }; 269596f483aSJessica Paquette 270596f483aSJessica Paquette /// A data structure for fast substring queries. 271596f483aSJessica Paquette /// 272596f483aSJessica Paquette /// Suffix trees represent the suffixes of their input strings in their leaves. 273596f483aSJessica Paquette /// A suffix tree is a type of compressed trie structure where each node 274596f483aSJessica Paquette /// represents an entire substring rather than a single character. Each leaf 275596f483aSJessica Paquette /// of the tree is a suffix. 276596f483aSJessica Paquette /// 277596f483aSJessica Paquette /// A suffix tree can be seen as a type of state machine where each state is a 278596f483aSJessica Paquette /// substring of the full string. The tree is structured so that, for a string 279596f483aSJessica Paquette /// of length N, there are exactly N leaves in the tree. This structure allows 280596f483aSJessica Paquette /// us to quickly find repeated substrings of the input string. 281596f483aSJessica Paquette /// 282596f483aSJessica Paquette /// In this implementation, a "string" is a vector of unsigned integers. 283596f483aSJessica Paquette /// These integers may result from hashing some data type. A suffix tree can 284596f483aSJessica Paquette /// contain 1 or many strings, which can then be queried as one large string. 285596f483aSJessica Paquette /// 286596f483aSJessica Paquette /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 287596f483aSJessica Paquette /// suffix tree construction. Ukkonen's algorithm is explained in more detail 288596f483aSJessica Paquette /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 289596f483aSJessica Paquette /// paper is available at 290596f483aSJessica Paquette /// 291596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 292596f483aSJessica Paquette class SuffixTree { 293596f483aSJessica Paquette private: 294596f483aSJessica Paquette /// Each element is an integer representing an instruction in the module. 295596f483aSJessica Paquette ArrayRef<unsigned> Str; 296596f483aSJessica Paquette 297596f483aSJessica Paquette /// Maintains each node in the tree. 298d4cb9c6dSJessica Paquette SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 299596f483aSJessica Paquette 300596f483aSJessica Paquette /// The root of the suffix tree. 301596f483aSJessica Paquette /// 302596f483aSJessica Paquette /// The root represents the empty string. It is maintained by the 303596f483aSJessica Paquette /// \p NodeAllocator like every other node in the tree. 304596f483aSJessica Paquette SuffixTreeNode *Root = nullptr; 305596f483aSJessica Paquette 306*acffa28cSJessica Paquette /// Stores each leaf node in the tree. 307*acffa28cSJessica Paquette /// 308*acffa28cSJessica Paquette /// This is used for finding outlining candidates. 309596f483aSJessica Paquette std::vector<SuffixTreeNode *> LeafVector; 310596f483aSJessica Paquette 311596f483aSJessica Paquette /// Maintains the end indices of the internal nodes in the tree. 312596f483aSJessica Paquette /// 313596f483aSJessica Paquette /// Each internal node is guaranteed to never have its end index change 314596f483aSJessica Paquette /// during the construction algorithm; however, leaves must be updated at 315596f483aSJessica Paquette /// every step. Therefore, we need to store leaf end indices by reference 316596f483aSJessica Paquette /// to avoid updating O(N) leaves at every step of construction. Thus, 317596f483aSJessica Paquette /// every internal node must be allocated its own end index. 318596f483aSJessica Paquette BumpPtrAllocator InternalEndIdxAllocator; 319596f483aSJessica Paquette 320596f483aSJessica Paquette /// The end index of each leaf in the tree. 321596f483aSJessica Paquette size_t LeafEndIdx = -1; 322596f483aSJessica Paquette 323596f483aSJessica Paquette /// \brief Helper struct which keeps track of the next insertion point in 324596f483aSJessica Paquette /// Ukkonen's algorithm. 325596f483aSJessica Paquette struct ActiveState { 326596f483aSJessica Paquette /// The next node to insert at. 327596f483aSJessica Paquette SuffixTreeNode *Node; 328596f483aSJessica Paquette 329596f483aSJessica Paquette /// The index of the first character in the substring currently being added. 330596f483aSJessica Paquette size_t Idx = EmptyIdx; 331596f483aSJessica Paquette 332596f483aSJessica Paquette /// The length of the substring we have to add at the current step. 333596f483aSJessica Paquette size_t Len = 0; 334596f483aSJessica Paquette }; 335596f483aSJessica Paquette 336596f483aSJessica Paquette /// \brief The point the next insertion will take place at in the 337596f483aSJessica Paquette /// construction algorithm. 338596f483aSJessica Paquette ActiveState Active; 339596f483aSJessica Paquette 340596f483aSJessica Paquette /// Allocate a leaf node and add it to the tree. 341596f483aSJessica Paquette /// 342596f483aSJessica Paquette /// \param Parent The parent of this node. 343596f483aSJessica Paquette /// \param StartIdx The start index of this node's associated string. 344596f483aSJessica Paquette /// \param Edge The label on the edge leaving \p Parent to this node. 345596f483aSJessica Paquette /// 346596f483aSJessica Paquette /// \returns A pointer to the allocated leaf node. 347596f483aSJessica Paquette SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, size_t StartIdx, 348596f483aSJessica Paquette unsigned Edge) { 349596f483aSJessica Paquette 350596f483aSJessica Paquette assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 351596f483aSJessica Paquette 352d4cb9c6dSJessica Paquette SuffixTreeNode *N = new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx, 353596f483aSJessica Paquette &LeafEndIdx, 354596f483aSJessica Paquette nullptr, 355596f483aSJessica Paquette &Parent); 356596f483aSJessica Paquette Parent.Children[Edge] = N; 357596f483aSJessica Paquette 358596f483aSJessica Paquette return N; 359596f483aSJessica Paquette } 360596f483aSJessica Paquette 361596f483aSJessica Paquette /// Allocate an internal node and add it to the tree. 362596f483aSJessica Paquette /// 363596f483aSJessica Paquette /// \param Parent The parent of this node. Only null when allocating the root. 364596f483aSJessica Paquette /// \param StartIdx The start index of this node's associated string. 365596f483aSJessica Paquette /// \param EndIdx The end index of this node's associated string. 366596f483aSJessica Paquette /// \param Edge The label on the edge leaving \p Parent to this node. 367596f483aSJessica Paquette /// 368596f483aSJessica Paquette /// \returns A pointer to the allocated internal node. 369596f483aSJessica Paquette SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, size_t StartIdx, 370596f483aSJessica Paquette size_t EndIdx, unsigned Edge) { 371596f483aSJessica Paquette 372596f483aSJessica Paquette assert(StartIdx <= EndIdx && "String can't start after it ends!"); 373596f483aSJessica Paquette assert(!(!Parent && StartIdx != EmptyIdx) && 374596f483aSJessica Paquette "Non-root internal nodes must have parents!"); 375596f483aSJessica Paquette 376596f483aSJessica Paquette size_t *E = new (InternalEndIdxAllocator) size_t(EndIdx); 377d4cb9c6dSJessica Paquette SuffixTreeNode *N = new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx, 378596f483aSJessica Paquette E, 379596f483aSJessica Paquette Root, 380596f483aSJessica Paquette Parent); 381596f483aSJessica Paquette if (Parent) 382596f483aSJessica Paquette Parent->Children[Edge] = N; 383596f483aSJessica Paquette 384596f483aSJessica Paquette return N; 385596f483aSJessica Paquette } 386596f483aSJessica Paquette 387596f483aSJessica Paquette /// \brief Set the suffix indices of the leaves to the start indices of their 388596f483aSJessica Paquette /// respective suffixes. Also stores each leaf in \p LeafVector at its 389596f483aSJessica Paquette /// respective suffix index. 390596f483aSJessica Paquette /// 391596f483aSJessica Paquette /// \param[in] CurrNode The node currently being visited. 392596f483aSJessica Paquette /// \param CurrIdx The current index of the string being visited. 393596f483aSJessica Paquette void setSuffixIndices(SuffixTreeNode &CurrNode, size_t CurrIdx) { 394596f483aSJessica Paquette 395596f483aSJessica Paquette bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 396596f483aSJessica Paquette 397*acffa28cSJessica Paquette // Store the length of the concatenation of all strings from the root to 398*acffa28cSJessica Paquette // this node. 399*acffa28cSJessica Paquette if (!CurrNode.isRoot()) { 400*acffa28cSJessica Paquette if (CurrNode.ConcatLen == 0) 401*acffa28cSJessica Paquette CurrNode.ConcatLen = CurrNode.size(); 402*acffa28cSJessica Paquette 403*acffa28cSJessica Paquette if (CurrNode.Parent) 404*acffa28cSJessica Paquette CurrNode.ConcatLen += CurrNode.Parent->ConcatLen; 405*acffa28cSJessica Paquette } 406*acffa28cSJessica Paquette 407596f483aSJessica Paquette // Traverse the tree depth-first. 408596f483aSJessica Paquette for (auto &ChildPair : CurrNode.Children) { 409596f483aSJessica Paquette assert(ChildPair.second && "Node had a null child!"); 410596f483aSJessica Paquette setSuffixIndices(*ChildPair.second, 411596f483aSJessica Paquette CurrIdx + ChildPair.second->size()); 412596f483aSJessica Paquette } 413596f483aSJessica Paquette 414596f483aSJessica Paquette // Is this node a leaf? 415596f483aSJessica Paquette if (IsLeaf) { 416596f483aSJessica Paquette // If yes, give it a suffix index and bump its parent's occurrence count. 417596f483aSJessica Paquette CurrNode.SuffixIdx = Str.size() - CurrIdx; 418596f483aSJessica Paquette assert(CurrNode.Parent && "CurrNode had no parent!"); 419596f483aSJessica Paquette CurrNode.Parent->OccurrenceCount++; 420596f483aSJessica Paquette 421596f483aSJessica Paquette // Store the leaf in the leaf vector for pruning later. 422596f483aSJessica Paquette LeafVector[CurrNode.SuffixIdx] = &CurrNode; 423596f483aSJessica Paquette } 424596f483aSJessica Paquette } 425596f483aSJessica Paquette 426596f483aSJessica Paquette /// \brief Construct the suffix tree for the prefix of the input ending at 427596f483aSJessica Paquette /// \p EndIdx. 428596f483aSJessica Paquette /// 429596f483aSJessica Paquette /// Used to construct the full suffix tree iteratively. At the end of each 430596f483aSJessica Paquette /// step, the constructed suffix tree is either a valid suffix tree, or a 431596f483aSJessica Paquette /// suffix tree with implicit suffixes. At the end of the final step, the 432596f483aSJessica Paquette /// suffix tree is a valid tree. 433596f483aSJessica Paquette /// 434596f483aSJessica Paquette /// \param EndIdx The end index of the current prefix in the main string. 435596f483aSJessica Paquette /// \param SuffixesToAdd The number of suffixes that must be added 436596f483aSJessica Paquette /// to complete the suffix tree at the current phase. 437596f483aSJessica Paquette /// 438596f483aSJessica Paquette /// \returns The number of suffixes that have not been added at the end of 439596f483aSJessica Paquette /// this step. 440596f483aSJessica Paquette unsigned extend(size_t EndIdx, size_t SuffixesToAdd) { 441596f483aSJessica Paquette SuffixTreeNode *NeedsLink = nullptr; 442596f483aSJessica Paquette 443596f483aSJessica Paquette while (SuffixesToAdd > 0) { 444596f483aSJessica Paquette 445596f483aSJessica Paquette // Are we waiting to add anything other than just the last character? 446596f483aSJessica Paquette if (Active.Len == 0) { 447596f483aSJessica Paquette // If not, then say the active index is the end index. 448596f483aSJessica Paquette Active.Idx = EndIdx; 449596f483aSJessica Paquette } 450596f483aSJessica Paquette 451596f483aSJessica Paquette assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 452596f483aSJessica Paquette 453596f483aSJessica Paquette // The first character in the current substring we're looking at. 454596f483aSJessica Paquette unsigned FirstChar = Str[Active.Idx]; 455596f483aSJessica Paquette 456596f483aSJessica Paquette // Have we inserted anything starting with FirstChar at the current node? 457596f483aSJessica Paquette if (Active.Node->Children.count(FirstChar) == 0) { 458596f483aSJessica Paquette // If not, then we can just insert a leaf and move too the next step. 459596f483aSJessica Paquette insertLeaf(*Active.Node, EndIdx, FirstChar); 460596f483aSJessica Paquette 461596f483aSJessica Paquette // The active node is an internal node, and we visited it, so it must 462596f483aSJessica Paquette // need a link if it doesn't have one. 463596f483aSJessica Paquette if (NeedsLink) { 464596f483aSJessica Paquette NeedsLink->Link = Active.Node; 465596f483aSJessica Paquette NeedsLink = nullptr; 466596f483aSJessica Paquette } 467596f483aSJessica Paquette } else { 468596f483aSJessica Paquette // There's a match with FirstChar, so look for the point in the tree to 469596f483aSJessica Paquette // insert a new node. 470596f483aSJessica Paquette SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 471596f483aSJessica Paquette 472596f483aSJessica Paquette size_t SubstringLen = NextNode->size(); 473596f483aSJessica Paquette 474596f483aSJessica Paquette // Is the current suffix we're trying to insert longer than the size of 475596f483aSJessica Paquette // the child we want to move to? 476596f483aSJessica Paquette if (Active.Len >= SubstringLen) { 477596f483aSJessica Paquette // If yes, then consume the characters we've seen and move to the next 478596f483aSJessica Paquette // node. 479596f483aSJessica Paquette Active.Idx += SubstringLen; 480596f483aSJessica Paquette Active.Len -= SubstringLen; 481596f483aSJessica Paquette Active.Node = NextNode; 482596f483aSJessica Paquette continue; 483596f483aSJessica Paquette } 484596f483aSJessica Paquette 485596f483aSJessica Paquette // Otherwise, the suffix we're trying to insert must be contained in the 486596f483aSJessica Paquette // next node we want to move to. 487596f483aSJessica Paquette unsigned LastChar = Str[EndIdx]; 488596f483aSJessica Paquette 489596f483aSJessica Paquette // Is the string we're trying to insert a substring of the next node? 490596f483aSJessica Paquette if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 491596f483aSJessica Paquette // If yes, then we're done for this step. Remember our insertion point 492596f483aSJessica Paquette // and move to the next end index. At this point, we have an implicit 493596f483aSJessica Paquette // suffix tree. 494596f483aSJessica Paquette if (NeedsLink && !Active.Node->isRoot()) { 495596f483aSJessica Paquette NeedsLink->Link = Active.Node; 496596f483aSJessica Paquette NeedsLink = nullptr; 497596f483aSJessica Paquette } 498596f483aSJessica Paquette 499596f483aSJessica Paquette Active.Len++; 500596f483aSJessica Paquette break; 501596f483aSJessica Paquette } 502596f483aSJessica Paquette 503596f483aSJessica Paquette // The string we're trying to insert isn't a substring of the next node, 504596f483aSJessica Paquette // but matches up to a point. Split the node. 505596f483aSJessica Paquette // 506596f483aSJessica Paquette // For example, say we ended our search at a node n and we're trying to 507596f483aSJessica Paquette // insert ABD. Then we'll create a new node s for AB, reduce n to just 508596f483aSJessica Paquette // representing C, and insert a new leaf node l to represent d. This 509596f483aSJessica Paquette // allows us to ensure that if n was a leaf, it remains a leaf. 510596f483aSJessica Paquette // 511596f483aSJessica Paquette // | ABC ---split---> | AB 512596f483aSJessica Paquette // n s 513596f483aSJessica Paquette // C / \ D 514596f483aSJessica Paquette // n l 515596f483aSJessica Paquette 516596f483aSJessica Paquette // The node s from the diagram 517596f483aSJessica Paquette SuffixTreeNode *SplitNode = 518596f483aSJessica Paquette insertInternalNode(Active.Node, 519596f483aSJessica Paquette NextNode->StartIdx, 520596f483aSJessica Paquette NextNode->StartIdx + Active.Len - 1, 521596f483aSJessica Paquette FirstChar); 522596f483aSJessica Paquette 523596f483aSJessica Paquette // Insert the new node representing the new substring into the tree as 524596f483aSJessica Paquette // a child of the split node. This is the node l from the diagram. 525596f483aSJessica Paquette insertLeaf(*SplitNode, EndIdx, LastChar); 526596f483aSJessica Paquette 527596f483aSJessica Paquette // Make the old node a child of the split node and update its start 528596f483aSJessica Paquette // index. This is the node n from the diagram. 529596f483aSJessica Paquette NextNode->StartIdx += Active.Len; 530596f483aSJessica Paquette NextNode->Parent = SplitNode; 531596f483aSJessica Paquette SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 532596f483aSJessica Paquette 533596f483aSJessica Paquette // SplitNode is an internal node, update the suffix link. 534596f483aSJessica Paquette if (NeedsLink) 535596f483aSJessica Paquette NeedsLink->Link = SplitNode; 536596f483aSJessica Paquette 537596f483aSJessica Paquette NeedsLink = SplitNode; 538596f483aSJessica Paquette } 539596f483aSJessica Paquette 540596f483aSJessica Paquette // We've added something new to the tree, so there's one less suffix to 541596f483aSJessica Paquette // add. 542596f483aSJessica Paquette SuffixesToAdd--; 543596f483aSJessica Paquette 544596f483aSJessica Paquette if (Active.Node->isRoot()) { 545596f483aSJessica Paquette if (Active.Len > 0) { 546596f483aSJessica Paquette Active.Len--; 547596f483aSJessica Paquette Active.Idx = EndIdx - SuffixesToAdd + 1; 548596f483aSJessica Paquette } 549596f483aSJessica Paquette } else { 550596f483aSJessica Paquette // Start the next phase at the next smallest suffix. 551596f483aSJessica Paquette Active.Node = Active.Node->Link; 552596f483aSJessica Paquette } 553596f483aSJessica Paquette } 554596f483aSJessica Paquette 555596f483aSJessica Paquette return SuffixesToAdd; 556596f483aSJessica Paquette } 557596f483aSJessica Paquette 558596f483aSJessica Paquette public: 559596f483aSJessica Paquette 560*acffa28cSJessica Paquette /// Find all repeated substrings that satisfy \p BenefitFn. 561596f483aSJessica Paquette /// 562*acffa28cSJessica Paquette /// If a substring appears at least twice, then it must be represented by 563*acffa28cSJessica Paquette /// an internal node which appears in at least two suffixes. Each suffix is 564*acffa28cSJessica Paquette /// represented by a leaf node. To do this, we visit each internal node in 565*acffa28cSJessica Paquette /// the tree, using the leaf children of each internal node. If an internal 566*acffa28cSJessica Paquette /// node represents a beneficial substring, then we use each of its leaf 567*acffa28cSJessica Paquette /// children to find the locations of its substring. 568596f483aSJessica Paquette /// 569*acffa28cSJessica Paquette /// \param[out] CandidateList Filled with candidates representing each 570*acffa28cSJessica Paquette /// beneficial substring. 571*acffa28cSJessica Paquette /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each 572*acffa28cSJessica Paquette /// type of candidate. 573*acffa28cSJessica Paquette /// \param BenefitFn The function to satisfy. 574*acffa28cSJessica Paquette /// 575*acffa28cSJessica Paquette /// \returns The length of the longest candidate found. 576*acffa28cSJessica Paquette size_t findCandidates(std::vector<Candidate> &CandidateList, 577*acffa28cSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 578*acffa28cSJessica Paquette const std::function<unsigned(SuffixTreeNode &, size_t, unsigned)> 579596f483aSJessica Paquette &BenefitFn) { 580596f483aSJessica Paquette 581*acffa28cSJessica Paquette CandidateList.clear(); 582*acffa28cSJessica Paquette FunctionList.clear(); 583*acffa28cSJessica Paquette size_t FnIdx = 0; 584*acffa28cSJessica Paquette size_t MaxLen = 0; 585596f483aSJessica Paquette 586*acffa28cSJessica Paquette for (SuffixTreeNode* Leaf : LeafVector) { 587*acffa28cSJessica Paquette assert(Leaf && "Leaves in LeafVector cannot be null!"); 588*acffa28cSJessica Paquette if (!Leaf->IsInTree) 589*acffa28cSJessica Paquette continue; 590596f483aSJessica Paquette 591*acffa28cSJessica Paquette assert(Leaf->Parent && "All leaves must have parents!"); 592*acffa28cSJessica Paquette SuffixTreeNode &Parent = *(Leaf->Parent); 593596f483aSJessica Paquette 594*acffa28cSJessica Paquette // If it doesn't appear enough, or we already outlined from it, skip it. 595*acffa28cSJessica Paquette if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree) 596*acffa28cSJessica Paquette continue; 597596f483aSJessica Paquette 598*acffa28cSJessica Paquette size_t StringLen = Leaf->ConcatLen - Leaf->size(); 599596f483aSJessica Paquette 600*acffa28cSJessica Paquette // How many instructions would outlining this string save? 601*acffa28cSJessica Paquette unsigned Benefit = BenefitFn(Parent, 602*acffa28cSJessica Paquette StringLen, Str[Leaf->SuffixIdx + StringLen - 1]); 603596f483aSJessica Paquette 604*acffa28cSJessica Paquette // If it's not beneficial, skip it. 605*acffa28cSJessica Paquette if (Benefit < 1) 606*acffa28cSJessica Paquette continue; 607596f483aSJessica Paquette 608*acffa28cSJessica Paquette if (StringLen > MaxLen) 609*acffa28cSJessica Paquette MaxLen = StringLen; 610596f483aSJessica Paquette 611*acffa28cSJessica Paquette unsigned OccurrenceCount = 0; 612*acffa28cSJessica Paquette for (auto &ChildPair : Parent.Children) { 613596f483aSJessica Paquette SuffixTreeNode *M = ChildPair.second; 614596f483aSJessica Paquette 615*acffa28cSJessica Paquette // Is it a leaf? If so, we have an occurrence of this candidate. 616596f483aSJessica Paquette if (M && M->IsInTree && M->isLeaf()) { 617*acffa28cSJessica Paquette OccurrenceCount++; 618*acffa28cSJessica Paquette CandidateList.emplace_back(M->SuffixIdx, StringLen, FnIdx); 619*acffa28cSJessica Paquette CandidateList.back().Benefit = Benefit; 620596f483aSJessica Paquette M->IsInTree = false; 621596f483aSJessica Paquette } 622596f483aSJessica Paquette } 623596f483aSJessica Paquette 624*acffa28cSJessica Paquette // Save the function for the new candidate sequence. 625*acffa28cSJessica Paquette std::vector<unsigned> CandidateSequence; 626*acffa28cSJessica Paquette for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++) 627*acffa28cSJessica Paquette CandidateSequence.push_back(Str[i]); 628596f483aSJessica Paquette 629*acffa28cSJessica Paquette FunctionList.emplace_back(FnIdx, OccurrenceCount, CandidateSequence, 630*acffa28cSJessica Paquette Benefit, false); 631596f483aSJessica Paquette 632*acffa28cSJessica Paquette // Move to the next function. 633*acffa28cSJessica Paquette FnIdx++; 634*acffa28cSJessica Paquette Parent.IsInTree = false; 635596f483aSJessica Paquette } 636596f483aSJessica Paquette 637*acffa28cSJessica Paquette return MaxLen; 638596f483aSJessica Paquette } 639596f483aSJessica Paquette 640596f483aSJessica Paquette /// Construct a suffix tree from a sequence of unsigned integers. 641596f483aSJessica Paquette /// 642596f483aSJessica Paquette /// \param Str The string to construct the suffix tree for. 643596f483aSJessica Paquette SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 644596f483aSJessica Paquette Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 645596f483aSJessica Paquette Root->IsInTree = true; 646596f483aSJessica Paquette Active.Node = Root; 647596f483aSJessica Paquette LeafVector = std::vector<SuffixTreeNode*>(Str.size()); 648596f483aSJessica Paquette 649596f483aSJessica Paquette // Keep track of the number of suffixes we have to add of the current 650596f483aSJessica Paquette // prefix. 651596f483aSJessica Paquette size_t SuffixesToAdd = 0; 652596f483aSJessica Paquette Active.Node = Root; 653596f483aSJessica Paquette 654596f483aSJessica Paquette // Construct the suffix tree iteratively on each prefix of the string. 655596f483aSJessica Paquette // PfxEndIdx is the end index of the current prefix. 656596f483aSJessica Paquette // End is one past the last element in the string. 657596f483aSJessica Paquette for (size_t PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) { 658596f483aSJessica Paquette SuffixesToAdd++; 659596f483aSJessica Paquette LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 660596f483aSJessica Paquette SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 661596f483aSJessica Paquette } 662596f483aSJessica Paquette 663596f483aSJessica Paquette // Set the suffix indices of each leaf. 664596f483aSJessica Paquette assert(Root && "Root node can't be nullptr!"); 665596f483aSJessica Paquette setSuffixIndices(*Root, 0); 666596f483aSJessica Paquette } 667596f483aSJessica Paquette }; 668596f483aSJessica Paquette 669596f483aSJessica Paquette /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings. 670596f483aSJessica Paquette struct InstructionMapper { 671596f483aSJessica Paquette 672596f483aSJessica Paquette /// \brief The next available integer to assign to a \p MachineInstr that 673596f483aSJessica Paquette /// cannot be outlined. 674596f483aSJessica Paquette /// 675596f483aSJessica Paquette /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 676596f483aSJessica Paquette unsigned IllegalInstrNumber = -3; 677596f483aSJessica Paquette 678596f483aSJessica Paquette /// \brief The next available integer to assign to a \p MachineInstr that can 679596f483aSJessica Paquette /// be outlined. 680596f483aSJessica Paquette unsigned LegalInstrNumber = 0; 681596f483aSJessica Paquette 682596f483aSJessica Paquette /// Correspondence from \p MachineInstrs to unsigned integers. 683596f483aSJessica Paquette DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 684596f483aSJessica Paquette InstructionIntegerMap; 685596f483aSJessica Paquette 686596f483aSJessica Paquette /// Corresponcence from unsigned integers to \p MachineInstrs. 687596f483aSJessica Paquette /// Inverse of \p InstructionIntegerMap. 688596f483aSJessica Paquette DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; 689596f483aSJessica Paquette 690596f483aSJessica Paquette /// The vector of unsigned integers that the module is mapped to. 691596f483aSJessica Paquette std::vector<unsigned> UnsignedVec; 692596f483aSJessica Paquette 693596f483aSJessica Paquette /// \brief Stores the location of the instruction associated with the integer 694596f483aSJessica Paquette /// at index i in \p UnsignedVec for each index i. 695596f483aSJessica Paquette std::vector<MachineBasicBlock::iterator> InstrList; 696596f483aSJessica Paquette 697596f483aSJessica Paquette /// \brief Maps \p *It to a legal integer. 698596f483aSJessica Paquette /// 699596f483aSJessica Paquette /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, 700596f483aSJessica Paquette /// \p IntegerInstructionMap, and \p LegalInstrNumber. 701596f483aSJessica Paquette /// 702596f483aSJessica Paquette /// \returns The integer that \p *It was mapped to. 703596f483aSJessica Paquette unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { 704596f483aSJessica Paquette 705596f483aSJessica Paquette // Get the integer for this instruction or give it the current 706596f483aSJessica Paquette // LegalInstrNumber. 707596f483aSJessica Paquette InstrList.push_back(It); 708596f483aSJessica Paquette MachineInstr &MI = *It; 709596f483aSJessica Paquette bool WasInserted; 710596f483aSJessica Paquette DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 711596f483aSJessica Paquette ResultIt; 712596f483aSJessica Paquette std::tie(ResultIt, WasInserted) = 713596f483aSJessica Paquette InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 714596f483aSJessica Paquette unsigned MINumber = ResultIt->second; 715596f483aSJessica Paquette 716596f483aSJessica Paquette // There was an insertion. 717596f483aSJessica Paquette if (WasInserted) { 718596f483aSJessica Paquette LegalInstrNumber++; 719596f483aSJessica Paquette IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); 720596f483aSJessica Paquette } 721596f483aSJessica Paquette 722596f483aSJessica Paquette UnsignedVec.push_back(MINumber); 723596f483aSJessica Paquette 724596f483aSJessica Paquette // Make sure we don't overflow or use any integers reserved by the DenseMap. 725596f483aSJessica Paquette if (LegalInstrNumber >= IllegalInstrNumber) 726596f483aSJessica Paquette report_fatal_error("Instruction mapping overflow!"); 727596f483aSJessica Paquette 728596f483aSJessica Paquette assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() 729596f483aSJessica Paquette && "Tried to assign DenseMap tombstone or empty key to instruction."); 730596f483aSJessica Paquette assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() 731596f483aSJessica Paquette && "Tried to assign DenseMap tombstone or empty key to instruction."); 732596f483aSJessica Paquette 733596f483aSJessica Paquette return MINumber; 734596f483aSJessica Paquette } 735596f483aSJessica Paquette 736596f483aSJessica Paquette /// Maps \p *It to an illegal integer. 737596f483aSJessica Paquette /// 738596f483aSJessica Paquette /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. 739596f483aSJessica Paquette /// 740596f483aSJessica Paquette /// \returns The integer that \p *It was mapped to. 741596f483aSJessica Paquette unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { 742596f483aSJessica Paquette unsigned MINumber = IllegalInstrNumber; 743596f483aSJessica Paquette 744596f483aSJessica Paquette InstrList.push_back(It); 745596f483aSJessica Paquette UnsignedVec.push_back(IllegalInstrNumber); 746596f483aSJessica Paquette IllegalInstrNumber--; 747596f483aSJessica Paquette 748596f483aSJessica Paquette assert(LegalInstrNumber < IllegalInstrNumber && 749596f483aSJessica Paquette "Instruction mapping overflow!"); 750596f483aSJessica Paquette 751596f483aSJessica Paquette assert(IllegalInstrNumber != 752596f483aSJessica Paquette DenseMapInfo<unsigned>::getEmptyKey() && 753596f483aSJessica Paquette "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 754596f483aSJessica Paquette 755596f483aSJessica Paquette assert(IllegalInstrNumber != 756596f483aSJessica Paquette DenseMapInfo<unsigned>::getTombstoneKey() && 757596f483aSJessica Paquette "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 758596f483aSJessica Paquette 759596f483aSJessica Paquette return MINumber; 760596f483aSJessica Paquette } 761596f483aSJessica Paquette 762596f483aSJessica Paquette /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 763596f483aSJessica Paquette /// and appends it to \p UnsignedVec and \p InstrList. 764596f483aSJessica Paquette /// 765596f483aSJessica Paquette /// Two instructions are assigned the same integer if they are identical. 766596f483aSJessica Paquette /// If an instruction is deemed unsafe to outline, then it will be assigned an 767596f483aSJessica Paquette /// unique integer. The resulting mapping is placed into a suffix tree and 768596f483aSJessica Paquette /// queried for candidates. 769596f483aSJessica Paquette /// 770596f483aSJessica Paquette /// \param MBB The \p MachineBasicBlock to be translated into integers. 771596f483aSJessica Paquette /// \param TRI \p TargetRegisterInfo for the module. 772596f483aSJessica Paquette /// \param TII \p TargetInstrInfo for the module. 773596f483aSJessica Paquette void convertToUnsignedVec(MachineBasicBlock &MBB, 774596f483aSJessica Paquette const TargetRegisterInfo &TRI, 775596f483aSJessica Paquette const TargetInstrInfo &TII) { 776596f483aSJessica Paquette for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et; 777596f483aSJessica Paquette It++) { 778596f483aSJessica Paquette 779596f483aSJessica Paquette // Keep track of where this instruction is in the module. 780596f483aSJessica Paquette switch(TII.getOutliningType(*It)) { 781596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Illegal: 782596f483aSJessica Paquette mapToIllegalUnsigned(It); 783596f483aSJessica Paquette break; 784596f483aSJessica Paquette 785596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Legal: 786596f483aSJessica Paquette mapToLegalUnsigned(It); 787596f483aSJessica Paquette break; 788596f483aSJessica Paquette 789596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Invisible: 790596f483aSJessica Paquette break; 791596f483aSJessica Paquette } 792596f483aSJessica Paquette } 793596f483aSJessica Paquette 794596f483aSJessica Paquette // After we're done every insertion, uniquely terminate this part of the 795596f483aSJessica Paquette // "string". This makes sure we won't match across basic block or function 796596f483aSJessica Paquette // boundaries since the "end" is encoded uniquely and thus appears in no 797596f483aSJessica Paquette // repeated substring. 798596f483aSJessica Paquette InstrList.push_back(MBB.end()); 799596f483aSJessica Paquette UnsignedVec.push_back(IllegalInstrNumber); 800596f483aSJessica Paquette IllegalInstrNumber--; 801596f483aSJessica Paquette } 802596f483aSJessica Paquette 803596f483aSJessica Paquette InstructionMapper() { 804596f483aSJessica Paquette // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 805596f483aSJessica Paquette // changed. 806596f483aSJessica Paquette assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 807596f483aSJessica Paquette "DenseMapInfo<unsigned>'s empty key isn't -1!"); 808596f483aSJessica Paquette assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 809596f483aSJessica Paquette "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 810596f483aSJessica Paquette } 811596f483aSJessica Paquette }; 812596f483aSJessica Paquette 813596f483aSJessica Paquette /// \brief An interprocedural pass which finds repeated sequences of 814596f483aSJessica Paquette /// instructions and replaces them with calls to functions. 815596f483aSJessica Paquette /// 816596f483aSJessica Paquette /// Each instruction is mapped to an unsigned integer and placed in a string. 817596f483aSJessica Paquette /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 818596f483aSJessica Paquette /// is then repeatedly queried for repeated sequences of instructions. Each 819596f483aSJessica Paquette /// non-overlapping repeated sequence is then placed in its own 820596f483aSJessica Paquette /// \p MachineFunction and each instance is then replaced with a call to that 821596f483aSJessica Paquette /// function. 822596f483aSJessica Paquette struct MachineOutliner : public ModulePass { 823596f483aSJessica Paquette 824596f483aSJessica Paquette static char ID; 825596f483aSJessica Paquette 826596f483aSJessica Paquette StringRef getPassName() const override { return "Machine Outliner"; } 827596f483aSJessica Paquette 828596f483aSJessica Paquette void getAnalysisUsage(AnalysisUsage &AU) const override { 829596f483aSJessica Paquette AU.addRequired<MachineModuleInfo>(); 830596f483aSJessica Paquette AU.addPreserved<MachineModuleInfo>(); 831596f483aSJessica Paquette AU.setPreservesAll(); 832596f483aSJessica Paquette ModulePass::getAnalysisUsage(AU); 833596f483aSJessica Paquette } 834596f483aSJessica Paquette 835596f483aSJessica Paquette MachineOutliner() : ModulePass(ID) { 836596f483aSJessica Paquette initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 837596f483aSJessica Paquette } 838596f483aSJessica Paquette 839596f483aSJessica Paquette /// \brief Replace the sequences of instructions represented by the 840596f483aSJessica Paquette /// \p Candidates in \p CandidateList with calls to \p MachineFunctions 841596f483aSJessica Paquette /// described in \p FunctionList. 842596f483aSJessica Paquette /// 843596f483aSJessica Paquette /// \param M The module we are outlining from. 844596f483aSJessica Paquette /// \param CandidateList A list of candidates to be outlined. 845596f483aSJessica Paquette /// \param FunctionList A list of functions to be inserted into the module. 846596f483aSJessica Paquette /// \param Mapper Contains the instruction mappings for the module. 847596f483aSJessica Paquette bool outline(Module &M, const ArrayRef<Candidate> &CandidateList, 848596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 849596f483aSJessica Paquette InstructionMapper &Mapper); 850596f483aSJessica Paquette 851596f483aSJessica Paquette /// Creates a function for \p OF and inserts it into the module. 852596f483aSJessica Paquette MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, 853596f483aSJessica Paquette InstructionMapper &Mapper); 854596f483aSJessica Paquette 855596f483aSJessica Paquette /// Find potential outlining candidates and store them in \p CandidateList. 856596f483aSJessica Paquette /// 857596f483aSJessica Paquette /// For each type of potential candidate, also build an \p OutlinedFunction 858596f483aSJessica Paquette /// struct containing the information to build the function for that 859596f483aSJessica Paquette /// candidate. 860596f483aSJessica Paquette /// 861596f483aSJessica Paquette /// \param[out] CandidateList Filled with outlining candidates for the module. 862596f483aSJessica Paquette /// \param[out] FunctionList Filled with functions corresponding to each type 863596f483aSJessica Paquette /// of \p Candidate. 864596f483aSJessica Paquette /// \param ST The suffix tree for the module. 865596f483aSJessica Paquette /// \param TII TargetInstrInfo for the module. 866596f483aSJessica Paquette /// 867596f483aSJessica Paquette /// \returns The length of the longest candidate found. 0 if there are none. 868596f483aSJessica Paquette unsigned buildCandidateList(std::vector<Candidate> &CandidateList, 869596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 870c984e213SJessica Paquette SuffixTree &ST, 871c984e213SJessica Paquette InstructionMapper &Mapper, 872c984e213SJessica Paquette const TargetInstrInfo &TII); 873596f483aSJessica Paquette 874596f483aSJessica Paquette /// \brief Remove any overlapping candidates that weren't handled by the 875596f483aSJessica Paquette /// suffix tree's pruning method. 876596f483aSJessica Paquette /// 877596f483aSJessica Paquette /// Pruning from the suffix tree doesn't necessarily remove all overlaps. 878596f483aSJessica Paquette /// If a short candidate is chosen for outlining, then a longer candidate 879596f483aSJessica Paquette /// which has that short candidate as a suffix is chosen, the tree's pruning 880596f483aSJessica Paquette /// method will not find it. Thus, we need to prune before outlining as well. 881596f483aSJessica Paquette /// 882596f483aSJessica Paquette /// \param[in,out] CandidateList A list of outlining candidates. 883596f483aSJessica Paquette /// \param[in,out] FunctionList A list of functions to be outlined. 884596f483aSJessica Paquette /// \param MaxCandidateLen The length of the longest candidate. 885596f483aSJessica Paquette /// \param TII TargetInstrInfo for the module. 886596f483aSJessica Paquette void pruneOverlaps(std::vector<Candidate> &CandidateList, 887596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 888596f483aSJessica Paquette unsigned MaxCandidateLen, 889596f483aSJessica Paquette const TargetInstrInfo &TII); 890596f483aSJessica Paquette 891596f483aSJessica Paquette /// Construct a suffix tree on the instructions in \p M and outline repeated 892596f483aSJessica Paquette /// strings from that tree. 893596f483aSJessica Paquette bool runOnModule(Module &M) override; 894596f483aSJessica Paquette }; 895596f483aSJessica Paquette 896596f483aSJessica Paquette } // Anonymous namespace. 897596f483aSJessica Paquette 898596f483aSJessica Paquette char MachineOutliner::ID = 0; 899596f483aSJessica Paquette 900596f483aSJessica Paquette namespace llvm { 901596f483aSJessica Paquette ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); } 902596f483aSJessica Paquette } 903596f483aSJessica Paquette 904596f483aSJessica Paquette INITIALIZE_PASS(MachineOutliner, "machine-outliner", 905596f483aSJessica Paquette "Machine Function Outliner", false, false) 906596f483aSJessica Paquette 907596f483aSJessica Paquette void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList, 908596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 909596f483aSJessica Paquette unsigned MaxCandidateLen, 910596f483aSJessica Paquette const TargetInstrInfo &TII) { 911*acffa28cSJessica Paquette // TODO: Experiment with interval trees or other interval-checking structures 912*acffa28cSJessica Paquette // to lower the time complexity of this function. 913*acffa28cSJessica Paquette // TODO: Can we do better than the simple greedy choice? 914*acffa28cSJessica Paquette // Check for overlaps in the range. 915*acffa28cSJessica Paquette // This is O(MaxCandidateLen * CandidateList.size()). 916596f483aSJessica Paquette for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; 917596f483aSJessica Paquette It++) { 918596f483aSJessica Paquette Candidate &C1 = *It; 919596f483aSJessica Paquette OutlinedFunction &F1 = FunctionList[C1.FunctionIdx]; 920596f483aSJessica Paquette 921596f483aSJessica Paquette // If we removed this candidate, skip it. 922596f483aSJessica Paquette if (!C1.InCandidateList) 923596f483aSJessica Paquette continue; 924596f483aSJessica Paquette 925*acffa28cSJessica Paquette // Is it still worth it to outline C1? 926*acffa28cSJessica Paquette if (F1.Benefit < 1 || F1.OccurrenceCount < 2) { 927*acffa28cSJessica Paquette assert(F1.OccurrenceCount > 0 && 928*acffa28cSJessica Paquette "Can't remove OutlinedFunction with no occurrences!"); 929*acffa28cSJessica Paquette F1.OccurrenceCount--; 930596f483aSJessica Paquette C1.InCandidateList = false; 931596f483aSJessica Paquette continue; 932596f483aSJessica Paquette } 933596f483aSJessica Paquette 934596f483aSJessica Paquette // The minimum start index of any candidate that could overlap with this 935596f483aSJessica Paquette // one. 936596f483aSJessica Paquette unsigned FarthestPossibleIdx = 0; 937596f483aSJessica Paquette 938596f483aSJessica Paquette // Either the index is 0, or it's at most MaxCandidateLen indices away. 939596f483aSJessica Paquette if (C1.StartIdx > MaxCandidateLen) 940596f483aSJessica Paquette FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen; 941596f483aSJessica Paquette 942*acffa28cSJessica Paquette // Compare against the candidates in the list that start at at most 943*acffa28cSJessica Paquette // FarthestPossibleIdx indices away from C1. There are at most 944*acffa28cSJessica Paquette // MaxCandidateLen of these. 945596f483aSJessica Paquette for (auto Sit = It + 1; Sit != Et; Sit++) { 946596f483aSJessica Paquette Candidate &C2 = *Sit; 947596f483aSJessica Paquette OutlinedFunction &F2 = FunctionList[C2.FunctionIdx]; 948596f483aSJessica Paquette 949596f483aSJessica Paquette // Is this candidate too far away to overlap? 950596f483aSJessica Paquette if (C2.StartIdx < FarthestPossibleIdx) 951596f483aSJessica Paquette break; 952596f483aSJessica Paquette 953596f483aSJessica Paquette // Did we already remove this candidate in a previous step? 954596f483aSJessica Paquette if (!C2.InCandidateList) 955596f483aSJessica Paquette continue; 956596f483aSJessica Paquette 957596f483aSJessica Paquette // Is the function beneficial to outline? 958596f483aSJessica Paquette if (F2.OccurrenceCount < 2 || F2.Benefit < 1) { 959596f483aSJessica Paquette // If not, remove this candidate and move to the next one. 960*acffa28cSJessica Paquette assert(F2.OccurrenceCount > 0 && 961*acffa28cSJessica Paquette "Can't remove OutlinedFunction with no occurrences!"); 962*acffa28cSJessica Paquette F2.OccurrenceCount--; 963596f483aSJessica Paquette C2.InCandidateList = false; 964596f483aSJessica Paquette continue; 965596f483aSJessica Paquette } 966596f483aSJessica Paquette 967596f483aSJessica Paquette size_t C2End = C2.StartIdx + C2.Len - 1; 968596f483aSJessica Paquette 969596f483aSJessica Paquette // Do C1 and C2 overlap? 970596f483aSJessica Paquette // 971596f483aSJessica Paquette // Not overlapping: 972596f483aSJessica Paquette // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices 973596f483aSJessica Paquette // 974596f483aSJessica Paquette // We sorted our candidate list so C2Start <= C1Start. We know that 975596f483aSJessica Paquette // C2End > C2Start since each candidate has length >= 2. Therefore, all we 976596f483aSJessica Paquette // have to check is C2End < C2Start to see if we overlap. 977596f483aSJessica Paquette if (C2End < C1.StartIdx) 978596f483aSJessica Paquette continue; 979596f483aSJessica Paquette 980*acffa28cSJessica Paquette // C1 and C2 overlap. 981*acffa28cSJessica Paquette // We need to choose the better of the two. 982*acffa28cSJessica Paquette // 983*acffa28cSJessica Paquette // Approximate this by picking the one which would have saved us the 984*acffa28cSJessica Paquette // most instructions before any pruning. 985*acffa28cSJessica Paquette if (C1.Benefit >= C2.Benefit) { 986596f483aSJessica Paquette 987*acffa28cSJessica Paquette // C1 is better, so remove C2 and update C2's OutlinedFunction to 988*acffa28cSJessica Paquette // reflect the removal. 989*acffa28cSJessica Paquette assert(F2.OccurrenceCount > 0 && 990*acffa28cSJessica Paquette "Can't remove OutlinedFunction with no occurrences!"); 991596f483aSJessica Paquette F2.OccurrenceCount--; 992596f483aSJessica Paquette F2.Benefit = TII.getOutliningBenefit(F2.Sequence.size(), 993c984e213SJessica Paquette F2.OccurrenceCount, 994c984e213SJessica Paquette F2.IsTailCall 995596f483aSJessica Paquette ); 996596f483aSJessica Paquette 997596f483aSJessica Paquette C2.InCandidateList = false; 998596f483aSJessica Paquette 999596f483aSJessica Paquette DEBUG ( 1000596f483aSJessica Paquette dbgs() << "- Removed C2. \n"; 1001596f483aSJessica Paquette dbgs() << "--- Num fns left for C2: " << F2.OccurrenceCount << "\n"; 1002596f483aSJessica Paquette dbgs() << "--- C2's benefit: " << F2.Benefit << "\n"; 1003596f483aSJessica Paquette ); 1004*acffa28cSJessica Paquette 1005*acffa28cSJessica Paquette } else { 1006*acffa28cSJessica Paquette // C2 is better, so remove C1 and update C1's OutlinedFunction to 1007*acffa28cSJessica Paquette // reflect the removal. 1008*acffa28cSJessica Paquette assert(F1.OccurrenceCount > 0 && 1009*acffa28cSJessica Paquette "Can't remove OutlinedFunction with no occurrences!"); 1010*acffa28cSJessica Paquette F1.OccurrenceCount--; 1011*acffa28cSJessica Paquette F1.Benefit = TII.getOutliningBenefit(F1.Sequence.size(), 1012*acffa28cSJessica Paquette F1.OccurrenceCount, 1013*acffa28cSJessica Paquette F1.IsTailCall 1014*acffa28cSJessica Paquette ); 1015*acffa28cSJessica Paquette C1.InCandidateList = false; 1016*acffa28cSJessica Paquette 1017*acffa28cSJessica Paquette DEBUG ( 1018*acffa28cSJessica Paquette dbgs() << "- Removed C1. \n"; 1019*acffa28cSJessica Paquette dbgs() << "--- Num fns left for C1: " << F1.OccurrenceCount << "\n"; 1020*acffa28cSJessica Paquette dbgs() << "--- C1's benefit: " << F1.Benefit << "\n"; 1021*acffa28cSJessica Paquette ); 1022*acffa28cSJessica Paquette 1023*acffa28cSJessica Paquette // C1 is out, so we don't have to compare it against anyone else. 1024*acffa28cSJessica Paquette break; 1025*acffa28cSJessica Paquette } 1026596f483aSJessica Paquette } 1027596f483aSJessica Paquette } 1028596f483aSJessica Paquette } 1029596f483aSJessica Paquette 1030596f483aSJessica Paquette unsigned 1031596f483aSJessica Paquette MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList, 1032596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 1033596f483aSJessica Paquette SuffixTree &ST, 1034c984e213SJessica Paquette InstructionMapper &Mapper, 1035596f483aSJessica Paquette const TargetInstrInfo &TII) { 1036596f483aSJessica Paquette 1037596f483aSJessica Paquette std::vector<unsigned> CandidateSequence; // Current outlining candidate. 1038*acffa28cSJessica Paquette size_t MaxCandidateLen = 0; // Length of the longest candidate. 1039596f483aSJessica Paquette 1040596f483aSJessica Paquette // Function for maximizing query in the suffix tree. 1041596f483aSJessica Paquette // This allows us to define more fine-grained types of things to outline in 1042596f483aSJessica Paquette // the target without putting target-specific info in the suffix tree. 1043c984e213SJessica Paquette auto BenefitFn = [&TII, &ST, &Mapper](const SuffixTreeNode &Curr, 1044*acffa28cSJessica Paquette size_t StringLen, unsigned EndVal) { 1045596f483aSJessica Paquette 1046*acffa28cSJessica Paquette // The root represents the empty string. 1047*acffa28cSJessica Paquette if (Curr.isRoot()) 1048596f483aSJessica Paquette return 0u; 1049596f483aSJessica Paquette 1050*acffa28cSJessica Paquette // Is this long enough to outline? 1051*acffa28cSJessica Paquette // TODO: Let the target decide how "long" a string is in terms of the sizes 1052*acffa28cSJessica Paquette // of the instructions in the string. For example, if a call instruction 1053*acffa28cSJessica Paquette // is smaller than a one instruction string, we should outline that string. 1054596f483aSJessica Paquette if (StringLen < 2) 1055596f483aSJessica Paquette return 0u; 1056596f483aSJessica Paquette 1057*acffa28cSJessica Paquette size_t Occurrences = Curr.OccurrenceCount; 1058596f483aSJessica Paquette 1059*acffa28cSJessica Paquette // Anything we want to outline has to appear at least twice. 1060596f483aSJessica Paquette if (Occurrences < 2) 1061596f483aSJessica Paquette return 0u; 1062596f483aSJessica Paquette 1063c984e213SJessica Paquette // Check if the last instruction in the sequence is a return. 1064c984e213SJessica Paquette MachineInstr *LastInstr = 1065*acffa28cSJessica Paquette Mapper.IntegerInstructionMap[EndVal]; 1066c984e213SJessica Paquette assert(LastInstr && "Last instruction in sequence was unmapped!"); 1067c984e213SJessica Paquette 1068c984e213SJessica Paquette // The only way a terminator could be mapped as legal is if it was safe to 1069c984e213SJessica Paquette // tail call. 1070c984e213SJessica Paquette bool IsTailCall = LastInstr->isTerminator(); 1071c984e213SJessica Paquette return TII.getOutliningBenefit(StringLen, Occurrences, IsTailCall); 1072596f483aSJessica Paquette }; 1073596f483aSJessica Paquette 1074*acffa28cSJessica Paquette MaxCandidateLen = ST.findCandidates(CandidateList, FunctionList, BenefitFn); 1075596f483aSJessica Paquette 1076*acffa28cSJessica Paquette for (auto &OF : FunctionList) 1077*acffa28cSJessica Paquette OF.IsTailCall = Mapper. 1078*acffa28cSJessica Paquette IntegerInstructionMap[OF.Sequence.back()]->isTerminator(); 1079596f483aSJessica Paquette 1080596f483aSJessica Paquette // Sort the candidates in decending order. This will simplify the outlining 1081596f483aSJessica Paquette // process when we have to remove the candidates from the mapping by 1082596f483aSJessica Paquette // allowing us to cut them out without keeping track of an offset. 1083596f483aSJessica Paquette std::stable_sort(CandidateList.begin(), CandidateList.end()); 1084596f483aSJessica Paquette 1085596f483aSJessica Paquette return MaxCandidateLen; 1086596f483aSJessica Paquette } 1087596f483aSJessica Paquette 1088596f483aSJessica Paquette MachineFunction * 1089596f483aSJessica Paquette MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, 1090596f483aSJessica Paquette InstructionMapper &Mapper) { 1091596f483aSJessica Paquette 1092596f483aSJessica Paquette // Create the function name. This should be unique. For now, just hash the 1093596f483aSJessica Paquette // module name and include it in the function name plus the number of this 1094596f483aSJessica Paquette // function. 1095596f483aSJessica Paquette std::ostringstream NameStream; 1096596f483aSJessica Paquette NameStream << "OUTLINED_FUNCTION" << "_" << OF.Name; 1097596f483aSJessica Paquette 1098596f483aSJessica Paquette // Create the function using an IR-level function. 1099596f483aSJessica Paquette LLVMContext &C = M.getContext(); 1100596f483aSJessica Paquette Function *F = dyn_cast<Function>( 1101fa97699dSSimon Pilgrim M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C), nullptr)); 1102596f483aSJessica Paquette assert(F && "Function was null!"); 1103596f483aSJessica Paquette 1104596f483aSJessica Paquette // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1105596f483aSJessica Paquette // which gives us better results when we outline from linkonceodr functions. 1106596f483aSJessica Paquette F->setLinkage(GlobalValue::PrivateLinkage); 1107596f483aSJessica Paquette F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1108596f483aSJessica Paquette 1109596f483aSJessica Paquette BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1110596f483aSJessica Paquette IRBuilder<> Builder(EntryBB); 1111596f483aSJessica Paquette Builder.CreateRetVoid(); 1112596f483aSJessica Paquette 1113596f483aSJessica Paquette MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1114596f483aSJessica Paquette MachineFunction &MF = MMI.getMachineFunction(*F); 1115596f483aSJessica Paquette MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1116596f483aSJessica Paquette const TargetSubtargetInfo &STI = MF.getSubtarget(); 1117596f483aSJessica Paquette const TargetInstrInfo &TII = *STI.getInstrInfo(); 1118596f483aSJessica Paquette 1119596f483aSJessica Paquette // Insert the new function into the module. 1120596f483aSJessica Paquette MF.insert(MF.begin(), &MBB); 1121596f483aSJessica Paquette 1122c984e213SJessica Paquette TII.insertOutlinerPrologue(MBB, MF, OF.IsTailCall); 1123596f483aSJessica Paquette 1124596f483aSJessica Paquette // Copy over the instructions for the function using the integer mappings in 1125596f483aSJessica Paquette // its sequence. 1126596f483aSJessica Paquette for (unsigned Str : OF.Sequence) { 1127596f483aSJessica Paquette MachineInstr *NewMI = 1128596f483aSJessica Paquette MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); 1129596f483aSJessica Paquette NewMI->dropMemRefs(); 1130596f483aSJessica Paquette 1131596f483aSJessica Paquette // Don't keep debug information for outlined instructions. 1132596f483aSJessica Paquette // FIXME: This means outlined functions are currently undebuggable. 1133596f483aSJessica Paquette NewMI->setDebugLoc(DebugLoc()); 1134596f483aSJessica Paquette MBB.insert(MBB.end(), NewMI); 1135596f483aSJessica Paquette } 1136596f483aSJessica Paquette 1137c984e213SJessica Paquette TII.insertOutlinerEpilogue(MBB, MF, OF.IsTailCall); 1138596f483aSJessica Paquette 1139596f483aSJessica Paquette return &MF; 1140596f483aSJessica Paquette } 1141596f483aSJessica Paquette 1142596f483aSJessica Paquette bool MachineOutliner::outline(Module &M, 1143596f483aSJessica Paquette const ArrayRef<Candidate> &CandidateList, 1144596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 1145596f483aSJessica Paquette InstructionMapper &Mapper) { 1146596f483aSJessica Paquette 1147596f483aSJessica Paquette bool OutlinedSomething = false; 1148596f483aSJessica Paquette 1149596f483aSJessica Paquette // Replace the candidates with calls to their respective outlined functions. 1150596f483aSJessica Paquette for (const Candidate &C : CandidateList) { 1151596f483aSJessica Paquette 1152596f483aSJessica Paquette // Was the candidate removed during pruneOverlaps? 1153596f483aSJessica Paquette if (!C.InCandidateList) 1154596f483aSJessica Paquette continue; 1155596f483aSJessica Paquette 1156596f483aSJessica Paquette // If not, then look at its OutlinedFunction. 1157596f483aSJessica Paquette OutlinedFunction &OF = FunctionList[C.FunctionIdx]; 1158596f483aSJessica Paquette 1159596f483aSJessica Paquette // Was its OutlinedFunction made unbeneficial during pruneOverlaps? 1160596f483aSJessica Paquette if (OF.OccurrenceCount < 2 || OF.Benefit < 1) 1161596f483aSJessica Paquette continue; 1162596f483aSJessica Paquette 1163596f483aSJessica Paquette // If not, then outline it. 1164596f483aSJessica Paquette assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1165596f483aSJessica Paquette MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent(); 1166596f483aSJessica Paquette MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx]; 1167596f483aSJessica Paquette unsigned EndIdx = C.StartIdx + C.Len - 1; 1168596f483aSJessica Paquette 1169596f483aSJessica Paquette assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1170596f483aSJessica Paquette MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1171596f483aSJessica Paquette assert(EndIt != MBB->end() && "EndIt out of bounds!"); 1172596f483aSJessica Paquette 1173596f483aSJessica Paquette EndIt++; // Erase needs one past the end index. 1174596f483aSJessica Paquette 1175596f483aSJessica Paquette // Does this candidate have a function yet? 1176*acffa28cSJessica Paquette if (!OF.MF) { 1177596f483aSJessica Paquette OF.MF = createOutlinedFunction(M, OF, Mapper); 1178*acffa28cSJessica Paquette FunctionsCreated++; 1179*acffa28cSJessica Paquette } 1180596f483aSJessica Paquette 1181596f483aSJessica Paquette MachineFunction *MF = OF.MF; 1182596f483aSJessica Paquette const TargetSubtargetInfo &STI = MF->getSubtarget(); 1183596f483aSJessica Paquette const TargetInstrInfo &TII = *STI.getInstrInfo(); 1184596f483aSJessica Paquette 1185596f483aSJessica Paquette // Insert a call to the new function and erase the old sequence. 1186c984e213SJessica Paquette TII.insertOutlinedCall(M, *MBB, StartIt, *MF, OF.IsTailCall); 1187596f483aSJessica Paquette StartIt = Mapper.InstrList[C.StartIdx]; 1188596f483aSJessica Paquette MBB->erase(StartIt, EndIt); 1189596f483aSJessica Paquette 1190596f483aSJessica Paquette OutlinedSomething = true; 1191596f483aSJessica Paquette 1192596f483aSJessica Paquette // Statistics. 1193596f483aSJessica Paquette NumOutlined++; 1194596f483aSJessica Paquette } 1195596f483aSJessica Paquette 1196596f483aSJessica Paquette DEBUG ( 1197596f483aSJessica Paquette dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n"; 1198596f483aSJessica Paquette ); 1199596f483aSJessica Paquette 1200596f483aSJessica Paquette return OutlinedSomething; 1201596f483aSJessica Paquette } 1202596f483aSJessica Paquette 1203596f483aSJessica Paquette bool MachineOutliner::runOnModule(Module &M) { 1204596f483aSJessica Paquette 1205596f483aSJessica Paquette // Is there anything in the module at all? 1206596f483aSJessica Paquette if (M.empty()) 1207596f483aSJessica Paquette return false; 1208596f483aSJessica Paquette 1209596f483aSJessica Paquette MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1210596f483aSJessica Paquette const TargetSubtargetInfo &STI = MMI.getMachineFunction(*M.begin()) 1211596f483aSJessica Paquette .getSubtarget(); 1212596f483aSJessica Paquette const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 1213596f483aSJessica Paquette const TargetInstrInfo *TII = STI.getInstrInfo(); 1214596f483aSJessica Paquette 1215596f483aSJessica Paquette InstructionMapper Mapper; 1216596f483aSJessica Paquette 1217596f483aSJessica Paquette // Build instruction mappings for each function in the module. 1218596f483aSJessica Paquette for (Function &F : M) { 1219596f483aSJessica Paquette MachineFunction &MF = MMI.getMachineFunction(F); 1220596f483aSJessica Paquette 1221596f483aSJessica Paquette // Is the function empty? Safe to outline from? 1222596f483aSJessica Paquette if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF)) 1223596f483aSJessica Paquette continue; 1224596f483aSJessica Paquette 1225596f483aSJessica Paquette // If it is, look at each MachineBasicBlock in the function. 1226596f483aSJessica Paquette for (MachineBasicBlock &MBB : MF) { 1227596f483aSJessica Paquette 1228596f483aSJessica Paquette // Is there anything in MBB? 1229596f483aSJessica Paquette if (MBB.empty()) 1230596f483aSJessica Paquette continue; 1231596f483aSJessica Paquette 1232596f483aSJessica Paquette // If yes, map it. 1233596f483aSJessica Paquette Mapper.convertToUnsignedVec(MBB, *TRI, *TII); 1234596f483aSJessica Paquette } 1235596f483aSJessica Paquette } 1236596f483aSJessica Paquette 1237596f483aSJessica Paquette // Construct a suffix tree, use it to find candidates, and then outline them. 1238596f483aSJessica Paquette SuffixTree ST(Mapper.UnsignedVec); 1239596f483aSJessica Paquette std::vector<Candidate> CandidateList; 1240596f483aSJessica Paquette std::vector<OutlinedFunction> FunctionList; 1241596f483aSJessica Paquette 1242*acffa28cSJessica Paquette // Find all of the outlining candidates. 1243596f483aSJessica Paquette unsigned MaxCandidateLen = 1244c984e213SJessica Paquette buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII); 1245596f483aSJessica Paquette 1246*acffa28cSJessica Paquette // Remove candidates that overlap with other candidates. 1247596f483aSJessica Paquette pruneOverlaps(CandidateList, FunctionList, MaxCandidateLen, *TII); 1248*acffa28cSJessica Paquette 1249*acffa28cSJessica Paquette // Outline each of the candidates and return true if something was outlined. 1250596f483aSJessica Paquette return outline(M, CandidateList, FunctionList, Mapper); 1251596f483aSJessica Paquette } 1252