1596f483aSJessica Paquette //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2596f483aSJessica Paquette //
3596f483aSJessica Paquette //                     The LLVM Compiler Infrastructure
4596f483aSJessica Paquette //
5596f483aSJessica Paquette // This file is distributed under the University of Illinois Open Source
6596f483aSJessica Paquette // License. See LICENSE.TXT for details.
7596f483aSJessica Paquette //
8596f483aSJessica Paquette //===----------------------------------------------------------------------===//
9596f483aSJessica Paquette ///
10596f483aSJessica Paquette /// \file
11596f483aSJessica Paquette /// Replaces repeated sequences of instructions with function calls.
12596f483aSJessica Paquette ///
13596f483aSJessica Paquette /// This works by placing every instruction from every basic block in a
14596f483aSJessica Paquette /// suffix tree, and repeatedly querying that tree for repeated sequences of
15596f483aSJessica Paquette /// instructions. If a sequence of instructions appears often, then it ought
16596f483aSJessica Paquette /// to be beneficial to pull out into a function.
17596f483aSJessica Paquette ///
18596f483aSJessica Paquette /// This was originally presented at the 2016 LLVM Developers' Meeting in the
19596f483aSJessica Paquette /// talk "Reducing Code Size Using Outlining". For a high-level overview of
20596f483aSJessica Paquette /// how this pass works, the talk is available on YouTube at
21596f483aSJessica Paquette ///
22596f483aSJessica Paquette /// https://www.youtube.com/watch?v=yorld-WSOeU
23596f483aSJessica Paquette ///
24596f483aSJessica Paquette /// The slides for the talk are available at
25596f483aSJessica Paquette ///
26596f483aSJessica Paquette /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
27596f483aSJessica Paquette ///
28596f483aSJessica Paquette /// The talk provides an overview of how the outliner finds candidates and
29596f483aSJessica Paquette /// ultimately outlines them. It describes how the main data structure for this
30596f483aSJessica Paquette /// pass, the suffix tree, is queried and purged for candidates. It also gives
31596f483aSJessica Paquette /// a simplified suffix tree construction algorithm for suffix trees based off
32596f483aSJessica Paquette /// of the algorithm actually used here, Ukkonen's algorithm.
33596f483aSJessica Paquette ///
34596f483aSJessica Paquette /// For the original RFC for this pass, please see
35596f483aSJessica Paquette ///
36596f483aSJessica Paquette /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
37596f483aSJessica Paquette ///
38596f483aSJessica Paquette /// For more information on the suffix tree data structure, please see
39596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
40596f483aSJessica Paquette ///
41596f483aSJessica Paquette //===----------------------------------------------------------------------===//
42596f483aSJessica Paquette #include "llvm/ADT/DenseMap.h"
43596f483aSJessica Paquette #include "llvm/ADT/Statistic.h"
44596f483aSJessica Paquette #include "llvm/ADT/Twine.h"
45596f483aSJessica Paquette #include "llvm/CodeGen/MachineFrameInfo.h"
46596f483aSJessica Paquette #include "llvm/CodeGen/MachineFunction.h"
47596f483aSJessica Paquette #include "llvm/CodeGen/MachineInstrBuilder.h"
48596f483aSJessica Paquette #include "llvm/CodeGen/MachineModuleInfo.h"
49596f483aSJessica Paquette #include "llvm/CodeGen/Passes.h"
50596f483aSJessica Paquette #include "llvm/IR/IRBuilder.h"
51596f483aSJessica Paquette #include "llvm/Support/Allocator.h"
52596f483aSJessica Paquette #include "llvm/Support/Debug.h"
53596f483aSJessica Paquette #include "llvm/Support/raw_ostream.h"
54596f483aSJessica Paquette #include "llvm/Target/TargetInstrInfo.h"
55596f483aSJessica Paquette #include "llvm/Target/TargetMachine.h"
56596f483aSJessica Paquette #include "llvm/Target/TargetRegisterInfo.h"
57596f483aSJessica Paquette #include "llvm/Target/TargetSubtargetInfo.h"
58596f483aSJessica Paquette #include <functional>
59596f483aSJessica Paquette #include <map>
60596f483aSJessica Paquette #include <sstream>
61596f483aSJessica Paquette #include <tuple>
62596f483aSJessica Paquette #include <vector>
63596f483aSJessica Paquette 
64596f483aSJessica Paquette #define DEBUG_TYPE "machine-outliner"
65596f483aSJessica Paquette 
66596f483aSJessica Paquette using namespace llvm;
67596f483aSJessica Paquette 
68596f483aSJessica Paquette STATISTIC(NumOutlined, "Number of candidates outlined");
69596f483aSJessica Paquette STATISTIC(FunctionsCreated, "Number of functions created");
70596f483aSJessica Paquette 
71596f483aSJessica Paquette namespace {
72596f483aSJessica Paquette 
73*acffa28cSJessica Paquette /// \brief An individual sequence of instructions to be replaced with a call to
74*acffa28cSJessica Paquette /// an outlined function.
75*acffa28cSJessica Paquette struct Candidate {
76*acffa28cSJessica Paquette 
77*acffa28cSJessica Paquette   /// Set to false if the candidate overlapped with another candidate.
78*acffa28cSJessica Paquette   bool InCandidateList = true;
79*acffa28cSJessica Paquette 
80*acffa28cSJessica Paquette   /// The start index of this \p Candidate.
81*acffa28cSJessica Paquette   size_t StartIdx;
82*acffa28cSJessica Paquette 
83*acffa28cSJessica Paquette   /// The number of instructions in this \p Candidate.
84*acffa28cSJessica Paquette   size_t Len;
85*acffa28cSJessica Paquette 
86*acffa28cSJessica Paquette   /// The index of this \p Candidate's \p OutlinedFunction in the list of
87*acffa28cSJessica Paquette   /// \p OutlinedFunctions.
88*acffa28cSJessica Paquette   size_t FunctionIdx;
89*acffa28cSJessica Paquette 
90*acffa28cSJessica Paquette   /// \brief The number of instructions that would be saved by outlining every
91*acffa28cSJessica Paquette   /// candidate of this type.
92*acffa28cSJessica Paquette   ///
93*acffa28cSJessica Paquette   /// This is a fixed value which is not updated during the candidate pruning
94*acffa28cSJessica Paquette   /// process. It is only used for deciding which candidate to keep if two
95*acffa28cSJessica Paquette   /// candidates overlap. The true benefit is stored in the OutlinedFunction
96*acffa28cSJessica Paquette   /// for some given candidate.
97*acffa28cSJessica Paquette   unsigned Benefit = 0;
98*acffa28cSJessica Paquette 
99*acffa28cSJessica Paquette   Candidate(size_t StartIdx, size_t Len, size_t FunctionIdx)
100*acffa28cSJessica Paquette       : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {}
101*acffa28cSJessica Paquette 
102*acffa28cSJessica Paquette   Candidate() {}
103*acffa28cSJessica Paquette 
104*acffa28cSJessica Paquette   /// \brief Used to ensure that \p Candidates are outlined in an order that
105*acffa28cSJessica Paquette   /// preserves the start and end indices of other \p Candidates.
106*acffa28cSJessica Paquette   bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; }
107*acffa28cSJessica Paquette };
108*acffa28cSJessica Paquette 
109*acffa28cSJessica Paquette /// \brief The information necessary to create an outlined function for some
110*acffa28cSJessica Paquette /// class of candidate.
111*acffa28cSJessica Paquette struct OutlinedFunction {
112*acffa28cSJessica Paquette 
113*acffa28cSJessica Paquette   /// The actual outlined function created.
114*acffa28cSJessica Paquette   /// This is initialized after we go through and create the actual function.
115*acffa28cSJessica Paquette   MachineFunction *MF = nullptr;
116*acffa28cSJessica Paquette 
117*acffa28cSJessica Paquette   /// A number assigned to this function which appears at the end of its name.
118*acffa28cSJessica Paquette   size_t Name;
119*acffa28cSJessica Paquette 
120*acffa28cSJessica Paquette   /// The number of candidates for this OutlinedFunction.
121*acffa28cSJessica Paquette   size_t OccurrenceCount = 0;
122*acffa28cSJessica Paquette 
123*acffa28cSJessica Paquette   /// \brief The sequence of integers corresponding to the instructions in this
124*acffa28cSJessica Paquette   /// function.
125*acffa28cSJessica Paquette   std::vector<unsigned> Sequence;
126*acffa28cSJessica Paquette 
127*acffa28cSJessica Paquette   /// The number of instructions this function would save.
128*acffa28cSJessica Paquette   unsigned Benefit = 0;
129*acffa28cSJessica Paquette 
130*acffa28cSJessica Paquette   /// \brief Set to true if candidates for this outlined function should be
131*acffa28cSJessica Paquette   /// replaced with tail calls to this OutlinedFunction.
132*acffa28cSJessica Paquette   bool IsTailCall = false;
133*acffa28cSJessica Paquette 
134*acffa28cSJessica Paquette   OutlinedFunction(size_t Name, size_t OccurrenceCount,
135*acffa28cSJessica Paquette                    const std::vector<unsigned> &Sequence,
136*acffa28cSJessica Paquette                    unsigned Benefit, bool IsTailCall)
137*acffa28cSJessica Paquette       : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence),
138*acffa28cSJessica Paquette         Benefit(Benefit), IsTailCall(IsTailCall)
139*acffa28cSJessica Paquette         {}
140*acffa28cSJessica Paquette };
141*acffa28cSJessica Paquette 
142596f483aSJessica Paquette /// Represents an undefined index in the suffix tree.
143596f483aSJessica Paquette const size_t EmptyIdx = -1;
144596f483aSJessica Paquette 
145596f483aSJessica Paquette /// A node in a suffix tree which represents a substring or suffix.
146596f483aSJessica Paquette ///
147596f483aSJessica Paquette /// Each node has either no children or at least two children, with the root
148596f483aSJessica Paquette /// being a exception in the empty tree.
149596f483aSJessica Paquette ///
150596f483aSJessica Paquette /// Children are represented as a map between unsigned integers and nodes. If
151596f483aSJessica Paquette /// a node N has a child M on unsigned integer k, then the mapping represented
152596f483aSJessica Paquette /// by N is a proper prefix of the mapping represented by M. Note that this,
153596f483aSJessica Paquette /// although similar to a trie is somewhat different: each node stores a full
154596f483aSJessica Paquette /// substring of the full mapping rather than a single character state.
155596f483aSJessica Paquette ///
156596f483aSJessica Paquette /// Each internal node contains a pointer to the internal node representing
157596f483aSJessica Paquette /// the same string, but with the first character chopped off. This is stored
158596f483aSJessica Paquette /// in \p Link. Each leaf node stores the start index of its respective
159596f483aSJessica Paquette /// suffix in \p SuffixIdx.
160596f483aSJessica Paquette struct SuffixTreeNode {
161596f483aSJessica Paquette 
162596f483aSJessica Paquette   /// The children of this node.
163596f483aSJessica Paquette   ///
164596f483aSJessica Paquette   /// A child existing on an unsigned integer implies that from the mapping
165596f483aSJessica Paquette   /// represented by the current node, there is a way to reach another
166596f483aSJessica Paquette   /// mapping by tacking that character on the end of the current string.
167596f483aSJessica Paquette   DenseMap<unsigned, SuffixTreeNode *> Children;
168596f483aSJessica Paquette 
169596f483aSJessica Paquette   /// A flag set to false if the node has been pruned from the tree.
170596f483aSJessica Paquette   bool IsInTree = true;
171596f483aSJessica Paquette 
172596f483aSJessica Paquette   /// The start index of this node's substring in the main string.
173596f483aSJessica Paquette   size_t StartIdx = EmptyIdx;
174596f483aSJessica Paquette 
175596f483aSJessica Paquette   /// The end index of this node's substring in the main string.
176596f483aSJessica Paquette   ///
177596f483aSJessica Paquette   /// Every leaf node must have its \p EndIdx incremented at the end of every
178596f483aSJessica Paquette   /// step in the construction algorithm. To avoid having to update O(N)
179596f483aSJessica Paquette   /// nodes individually at the end of every step, the end index is stored
180596f483aSJessica Paquette   /// as a pointer.
181596f483aSJessica Paquette   size_t *EndIdx = nullptr;
182596f483aSJessica Paquette 
183596f483aSJessica Paquette   /// For leaves, the start index of the suffix represented by this node.
184596f483aSJessica Paquette   ///
185596f483aSJessica Paquette   /// For all other nodes, this is ignored.
186596f483aSJessica Paquette   size_t SuffixIdx = EmptyIdx;
187596f483aSJessica Paquette 
188596f483aSJessica Paquette   /// \brief For internal nodes, a pointer to the internal node representing
189596f483aSJessica Paquette   /// the same sequence with the first character chopped off.
190596f483aSJessica Paquette   ///
191596f483aSJessica Paquette   /// This has two major purposes in the suffix tree. The first is as a
192596f483aSJessica Paquette   /// shortcut in Ukkonen's construction algorithm. One of the things that
193596f483aSJessica Paquette   /// Ukkonen's algorithm does to achieve linear-time construction is
194596f483aSJessica Paquette   /// keep track of which node the next insert should be at. This makes each
195596f483aSJessica Paquette   /// insert O(1), and there are a total of O(N) inserts. The suffix link
196596f483aSJessica Paquette   /// helps with inserting children of internal nodes.
197596f483aSJessica Paquette   ///
198596f483aSJessica Paquette   /// Say we add a child to an internal node with associated mapping S. The
199596f483aSJessica Paquette   /// next insertion must be at the node representing S - its first character.
200596f483aSJessica Paquette   /// This is given by the way that we iteratively build the tree in Ukkonen's
201596f483aSJessica Paquette   /// algorithm. The main idea is to look at the suffixes of each prefix in the
202596f483aSJessica Paquette   /// string, starting with the longest suffix of the prefix, and ending with
203596f483aSJessica Paquette   /// the shortest. Therefore, if we keep pointers between such nodes, we can
204596f483aSJessica Paquette   /// move to the next insertion point in O(1) time. If we don't, then we'd
205596f483aSJessica Paquette   /// have to query from the root, which takes O(N) time. This would make the
206596f483aSJessica Paquette   /// construction algorithm O(N^2) rather than O(N).
207596f483aSJessica Paquette   ///
208596f483aSJessica Paquette   /// The suffix link is also used during the tree pruning process to let us
209596f483aSJessica Paquette   /// quickly throw out a bunch of potential overlaps. Say we have a sequence
210596f483aSJessica Paquette   /// S we want to outline. Then each of its suffixes contribute to at least
211596f483aSJessica Paquette   /// one overlapping case. Therefore, we can follow the suffix links
212596f483aSJessica Paquette   /// starting at the node associated with S to the root and "delete" those
213596f483aSJessica Paquette   /// nodes, save for the root. For each candidate, this removes
214596f483aSJessica Paquette   /// O(|candidate|) overlaps from the search space. We don't actually
215596f483aSJessica Paquette   /// completely invalidate these nodes though; doing that is far too
216596f483aSJessica Paquette   /// aggressive. Consider the following pathological string:
217596f483aSJessica Paquette   ///
218596f483aSJessica Paquette   /// 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3
219596f483aSJessica Paquette   ///
220596f483aSJessica Paquette   /// If we, for the sake of example, outlined 1 2 3, then we would throw
221596f483aSJessica Paquette   /// out all instances of 2 3. This isn't desirable. To get around this,
222596f483aSJessica Paquette   /// when we visit a link node, we decrement its occurrence count by the
223596f483aSJessica Paquette   /// number of sequences we outlined in the current step. In the pathological
224596f483aSJessica Paquette   /// example, the 2 3 node would have an occurrence count of 8, while the
225596f483aSJessica Paquette   /// 1 2 3 node would have an occurrence count of 2. Thus, the 2 3 node
226596f483aSJessica Paquette   /// would survive to the next round allowing us to outline the extra
227596f483aSJessica Paquette   /// instances of 2 3.
228596f483aSJessica Paquette   SuffixTreeNode *Link = nullptr;
229596f483aSJessica Paquette 
230596f483aSJessica Paquette   /// The parent of this node. Every node except for the root has a parent.
231596f483aSJessica Paquette   SuffixTreeNode *Parent = nullptr;
232596f483aSJessica Paquette 
233596f483aSJessica Paquette   /// The number of times this node's string appears in the tree.
234596f483aSJessica Paquette   ///
235596f483aSJessica Paquette   /// This is equal to the number of leaf children of the string. It represents
236596f483aSJessica Paquette   /// the number of suffixes that the node's string is a prefix of.
237596f483aSJessica Paquette   size_t OccurrenceCount = 0;
238596f483aSJessica Paquette 
239*acffa28cSJessica Paquette   /// The length of the string formed by concatenating the edge labels from the
240*acffa28cSJessica Paquette   /// root to this node.
241*acffa28cSJessica Paquette   size_t ConcatLen = 0;
242*acffa28cSJessica Paquette 
243596f483aSJessica Paquette   /// Returns true if this node is a leaf.
244596f483aSJessica Paquette   bool isLeaf() const { return SuffixIdx != EmptyIdx; }
245596f483aSJessica Paquette 
246596f483aSJessica Paquette   /// Returns true if this node is the root of its owning \p SuffixTree.
247596f483aSJessica Paquette   bool isRoot() const { return StartIdx == EmptyIdx; }
248596f483aSJessica Paquette 
249596f483aSJessica Paquette   /// Return the number of elements in the substring associated with this node.
250596f483aSJessica Paquette   size_t size() const {
251596f483aSJessica Paquette 
252596f483aSJessica Paquette     // Is it the root? If so, it's the empty string so return 0.
253596f483aSJessica Paquette     if (isRoot())
254596f483aSJessica Paquette       return 0;
255596f483aSJessica Paquette 
256596f483aSJessica Paquette     assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
257596f483aSJessica Paquette 
258596f483aSJessica Paquette     // Size = the number of elements in the string.
259596f483aSJessica Paquette     // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
260596f483aSJessica Paquette     return *EndIdx - StartIdx + 1;
261596f483aSJessica Paquette   }
262596f483aSJessica Paquette 
263596f483aSJessica Paquette   SuffixTreeNode(size_t StartIdx, size_t *EndIdx, SuffixTreeNode *Link,
264596f483aSJessica Paquette                  SuffixTreeNode *Parent)
265596f483aSJessica Paquette       : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
266596f483aSJessica Paquette 
267596f483aSJessica Paquette   SuffixTreeNode() {}
268596f483aSJessica Paquette };
269596f483aSJessica Paquette 
270596f483aSJessica Paquette /// A data structure for fast substring queries.
271596f483aSJessica Paquette ///
272596f483aSJessica Paquette /// Suffix trees represent the suffixes of their input strings in their leaves.
273596f483aSJessica Paquette /// A suffix tree is a type of compressed trie structure where each node
274596f483aSJessica Paquette /// represents an entire substring rather than a single character. Each leaf
275596f483aSJessica Paquette /// of the tree is a suffix.
276596f483aSJessica Paquette ///
277596f483aSJessica Paquette /// A suffix tree can be seen as a type of state machine where each state is a
278596f483aSJessica Paquette /// substring of the full string. The tree is structured so that, for a string
279596f483aSJessica Paquette /// of length N, there are exactly N leaves in the tree. This structure allows
280596f483aSJessica Paquette /// us to quickly find repeated substrings of the input string.
281596f483aSJessica Paquette ///
282596f483aSJessica Paquette /// In this implementation, a "string" is a vector of unsigned integers.
283596f483aSJessica Paquette /// These integers may result from hashing some data type. A suffix tree can
284596f483aSJessica Paquette /// contain 1 or many strings, which can then be queried as one large string.
285596f483aSJessica Paquette ///
286596f483aSJessica Paquette /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
287596f483aSJessica Paquette /// suffix tree construction. Ukkonen's algorithm is explained in more detail
288596f483aSJessica Paquette /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
289596f483aSJessica Paquette /// paper is available at
290596f483aSJessica Paquette ///
291596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
292596f483aSJessica Paquette class SuffixTree {
293596f483aSJessica Paquette private:
294596f483aSJessica Paquette   /// Each element is an integer representing an instruction in the module.
295596f483aSJessica Paquette   ArrayRef<unsigned> Str;
296596f483aSJessica Paquette 
297596f483aSJessica Paquette   /// Maintains each node in the tree.
298d4cb9c6dSJessica Paquette   SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
299596f483aSJessica Paquette 
300596f483aSJessica Paquette   /// The root of the suffix tree.
301596f483aSJessica Paquette   ///
302596f483aSJessica Paquette   /// The root represents the empty string. It is maintained by the
303596f483aSJessica Paquette   /// \p NodeAllocator like every other node in the tree.
304596f483aSJessica Paquette   SuffixTreeNode *Root = nullptr;
305596f483aSJessica Paquette 
306*acffa28cSJessica Paquette   /// Stores each leaf node in the tree.
307*acffa28cSJessica Paquette   ///
308*acffa28cSJessica Paquette   /// This is used for finding outlining candidates.
309596f483aSJessica Paquette   std::vector<SuffixTreeNode *> LeafVector;
310596f483aSJessica Paquette 
311596f483aSJessica Paquette   /// Maintains the end indices of the internal nodes in the tree.
312596f483aSJessica Paquette   ///
313596f483aSJessica Paquette   /// Each internal node is guaranteed to never have its end index change
314596f483aSJessica Paquette   /// during the construction algorithm; however, leaves must be updated at
315596f483aSJessica Paquette   /// every step. Therefore, we need to store leaf end indices by reference
316596f483aSJessica Paquette   /// to avoid updating O(N) leaves at every step of construction. Thus,
317596f483aSJessica Paquette   /// every internal node must be allocated its own end index.
318596f483aSJessica Paquette   BumpPtrAllocator InternalEndIdxAllocator;
319596f483aSJessica Paquette 
320596f483aSJessica Paquette   /// The end index of each leaf in the tree.
321596f483aSJessica Paquette   size_t LeafEndIdx = -1;
322596f483aSJessica Paquette 
323596f483aSJessica Paquette   /// \brief Helper struct which keeps track of the next insertion point in
324596f483aSJessica Paquette   /// Ukkonen's algorithm.
325596f483aSJessica Paquette   struct ActiveState {
326596f483aSJessica Paquette     /// The next node to insert at.
327596f483aSJessica Paquette     SuffixTreeNode *Node;
328596f483aSJessica Paquette 
329596f483aSJessica Paquette     /// The index of the first character in the substring currently being added.
330596f483aSJessica Paquette     size_t Idx = EmptyIdx;
331596f483aSJessica Paquette 
332596f483aSJessica Paquette     /// The length of the substring we have to add at the current step.
333596f483aSJessica Paquette     size_t Len = 0;
334596f483aSJessica Paquette   };
335596f483aSJessica Paquette 
336596f483aSJessica Paquette   /// \brief The point the next insertion will take place at in the
337596f483aSJessica Paquette   /// construction algorithm.
338596f483aSJessica Paquette   ActiveState Active;
339596f483aSJessica Paquette 
340596f483aSJessica Paquette   /// Allocate a leaf node and add it to the tree.
341596f483aSJessica Paquette   ///
342596f483aSJessica Paquette   /// \param Parent The parent of this node.
343596f483aSJessica Paquette   /// \param StartIdx The start index of this node's associated string.
344596f483aSJessica Paquette   /// \param Edge The label on the edge leaving \p Parent to this node.
345596f483aSJessica Paquette   ///
346596f483aSJessica Paquette   /// \returns A pointer to the allocated leaf node.
347596f483aSJessica Paquette   SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, size_t StartIdx,
348596f483aSJessica Paquette                              unsigned Edge) {
349596f483aSJessica Paquette 
350596f483aSJessica Paquette     assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
351596f483aSJessica Paquette 
352d4cb9c6dSJessica Paquette     SuffixTreeNode *N = new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx,
353596f483aSJessica Paquette                                                                    &LeafEndIdx,
354596f483aSJessica Paquette                                                                        nullptr,
355596f483aSJessica Paquette                                                                       &Parent);
356596f483aSJessica Paquette     Parent.Children[Edge] = N;
357596f483aSJessica Paquette 
358596f483aSJessica Paquette     return N;
359596f483aSJessica Paquette   }
360596f483aSJessica Paquette 
361596f483aSJessica Paquette   /// Allocate an internal node and add it to the tree.
362596f483aSJessica Paquette   ///
363596f483aSJessica Paquette   /// \param Parent The parent of this node. Only null when allocating the root.
364596f483aSJessica Paquette   /// \param StartIdx The start index of this node's associated string.
365596f483aSJessica Paquette   /// \param EndIdx The end index of this node's associated string.
366596f483aSJessica Paquette   /// \param Edge The label on the edge leaving \p Parent to this node.
367596f483aSJessica Paquette   ///
368596f483aSJessica Paquette   /// \returns A pointer to the allocated internal node.
369596f483aSJessica Paquette   SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, size_t StartIdx,
370596f483aSJessica Paquette                                      size_t EndIdx, unsigned Edge) {
371596f483aSJessica Paquette 
372596f483aSJessica Paquette     assert(StartIdx <= EndIdx && "String can't start after it ends!");
373596f483aSJessica Paquette     assert(!(!Parent && StartIdx != EmptyIdx) &&
374596f483aSJessica Paquette     "Non-root internal nodes must have parents!");
375596f483aSJessica Paquette 
376596f483aSJessica Paquette     size_t *E = new (InternalEndIdxAllocator) size_t(EndIdx);
377d4cb9c6dSJessica Paquette     SuffixTreeNode *N = new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx,
378596f483aSJessica Paquette                                                                       E,
379596f483aSJessica Paquette                                                                       Root,
380596f483aSJessica Paquette                                                                       Parent);
381596f483aSJessica Paquette     if (Parent)
382596f483aSJessica Paquette       Parent->Children[Edge] = N;
383596f483aSJessica Paquette 
384596f483aSJessica Paquette     return N;
385596f483aSJessica Paquette   }
386596f483aSJessica Paquette 
387596f483aSJessica Paquette   /// \brief Set the suffix indices of the leaves to the start indices of their
388596f483aSJessica Paquette   /// respective suffixes. Also stores each leaf in \p LeafVector at its
389596f483aSJessica Paquette   /// respective suffix index.
390596f483aSJessica Paquette   ///
391596f483aSJessica Paquette   /// \param[in] CurrNode The node currently being visited.
392596f483aSJessica Paquette   /// \param CurrIdx The current index of the string being visited.
393596f483aSJessica Paquette   void setSuffixIndices(SuffixTreeNode &CurrNode, size_t CurrIdx) {
394596f483aSJessica Paquette 
395596f483aSJessica Paquette     bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
396596f483aSJessica Paquette 
397*acffa28cSJessica Paquette     // Store the length of the concatenation of all strings from the root to
398*acffa28cSJessica Paquette     // this node.
399*acffa28cSJessica Paquette     if (!CurrNode.isRoot()) {
400*acffa28cSJessica Paquette       if (CurrNode.ConcatLen == 0)
401*acffa28cSJessica Paquette         CurrNode.ConcatLen = CurrNode.size();
402*acffa28cSJessica Paquette 
403*acffa28cSJessica Paquette       if (CurrNode.Parent)
404*acffa28cSJessica Paquette        CurrNode.ConcatLen += CurrNode.Parent->ConcatLen;
405*acffa28cSJessica Paquette     }
406*acffa28cSJessica Paquette 
407596f483aSJessica Paquette     // Traverse the tree depth-first.
408596f483aSJessica Paquette     for (auto &ChildPair : CurrNode.Children) {
409596f483aSJessica Paquette       assert(ChildPair.second && "Node had a null child!");
410596f483aSJessica Paquette       setSuffixIndices(*ChildPair.second,
411596f483aSJessica Paquette                        CurrIdx + ChildPair.second->size());
412596f483aSJessica Paquette     }
413596f483aSJessica Paquette 
414596f483aSJessica Paquette     // Is this node a leaf?
415596f483aSJessica Paquette     if (IsLeaf) {
416596f483aSJessica Paquette       // If yes, give it a suffix index and bump its parent's occurrence count.
417596f483aSJessica Paquette       CurrNode.SuffixIdx = Str.size() - CurrIdx;
418596f483aSJessica Paquette       assert(CurrNode.Parent && "CurrNode had no parent!");
419596f483aSJessica Paquette       CurrNode.Parent->OccurrenceCount++;
420596f483aSJessica Paquette 
421596f483aSJessica Paquette       // Store the leaf in the leaf vector for pruning later.
422596f483aSJessica Paquette       LeafVector[CurrNode.SuffixIdx] = &CurrNode;
423596f483aSJessica Paquette     }
424596f483aSJessica Paquette   }
425596f483aSJessica Paquette 
426596f483aSJessica Paquette   /// \brief Construct the suffix tree for the prefix of the input ending at
427596f483aSJessica Paquette   /// \p EndIdx.
428596f483aSJessica Paquette   ///
429596f483aSJessica Paquette   /// Used to construct the full suffix tree iteratively. At the end of each
430596f483aSJessica Paquette   /// step, the constructed suffix tree is either a valid suffix tree, or a
431596f483aSJessica Paquette   /// suffix tree with implicit suffixes. At the end of the final step, the
432596f483aSJessica Paquette   /// suffix tree is a valid tree.
433596f483aSJessica Paquette   ///
434596f483aSJessica Paquette   /// \param EndIdx The end index of the current prefix in the main string.
435596f483aSJessica Paquette   /// \param SuffixesToAdd The number of suffixes that must be added
436596f483aSJessica Paquette   /// to complete the suffix tree at the current phase.
437596f483aSJessica Paquette   ///
438596f483aSJessica Paquette   /// \returns The number of suffixes that have not been added at the end of
439596f483aSJessica Paquette   /// this step.
440596f483aSJessica Paquette   unsigned extend(size_t EndIdx, size_t SuffixesToAdd) {
441596f483aSJessica Paquette     SuffixTreeNode *NeedsLink = nullptr;
442596f483aSJessica Paquette 
443596f483aSJessica Paquette     while (SuffixesToAdd > 0) {
444596f483aSJessica Paquette 
445596f483aSJessica Paquette       // Are we waiting to add anything other than just the last character?
446596f483aSJessica Paquette       if (Active.Len == 0) {
447596f483aSJessica Paquette         // If not, then say the active index is the end index.
448596f483aSJessica Paquette         Active.Idx = EndIdx;
449596f483aSJessica Paquette       }
450596f483aSJessica Paquette 
451596f483aSJessica Paquette       assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
452596f483aSJessica Paquette 
453596f483aSJessica Paquette       // The first character in the current substring we're looking at.
454596f483aSJessica Paquette       unsigned FirstChar = Str[Active.Idx];
455596f483aSJessica Paquette 
456596f483aSJessica Paquette       // Have we inserted anything starting with FirstChar at the current node?
457596f483aSJessica Paquette       if (Active.Node->Children.count(FirstChar) == 0) {
458596f483aSJessica Paquette         // If not, then we can just insert a leaf and move too the next step.
459596f483aSJessica Paquette         insertLeaf(*Active.Node, EndIdx, FirstChar);
460596f483aSJessica Paquette 
461596f483aSJessica Paquette         // The active node is an internal node, and we visited it, so it must
462596f483aSJessica Paquette         // need a link if it doesn't have one.
463596f483aSJessica Paquette         if (NeedsLink) {
464596f483aSJessica Paquette           NeedsLink->Link = Active.Node;
465596f483aSJessica Paquette           NeedsLink = nullptr;
466596f483aSJessica Paquette         }
467596f483aSJessica Paquette       } else {
468596f483aSJessica Paquette         // There's a match with FirstChar, so look for the point in the tree to
469596f483aSJessica Paquette         // insert a new node.
470596f483aSJessica Paquette         SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
471596f483aSJessica Paquette 
472596f483aSJessica Paquette         size_t SubstringLen = NextNode->size();
473596f483aSJessica Paquette 
474596f483aSJessica Paquette         // Is the current suffix we're trying to insert longer than the size of
475596f483aSJessica Paquette         // the child we want to move to?
476596f483aSJessica Paquette         if (Active.Len >= SubstringLen) {
477596f483aSJessica Paquette           // If yes, then consume the characters we've seen and move to the next
478596f483aSJessica Paquette           // node.
479596f483aSJessica Paquette           Active.Idx += SubstringLen;
480596f483aSJessica Paquette           Active.Len -= SubstringLen;
481596f483aSJessica Paquette           Active.Node = NextNode;
482596f483aSJessica Paquette           continue;
483596f483aSJessica Paquette         }
484596f483aSJessica Paquette 
485596f483aSJessica Paquette         // Otherwise, the suffix we're trying to insert must be contained in the
486596f483aSJessica Paquette         // next node we want to move to.
487596f483aSJessica Paquette         unsigned LastChar = Str[EndIdx];
488596f483aSJessica Paquette 
489596f483aSJessica Paquette         // Is the string we're trying to insert a substring of the next node?
490596f483aSJessica Paquette         if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
491596f483aSJessica Paquette           // If yes, then we're done for this step. Remember our insertion point
492596f483aSJessica Paquette           // and move to the next end index. At this point, we have an implicit
493596f483aSJessica Paquette           // suffix tree.
494596f483aSJessica Paquette           if (NeedsLink && !Active.Node->isRoot()) {
495596f483aSJessica Paquette             NeedsLink->Link = Active.Node;
496596f483aSJessica Paquette             NeedsLink = nullptr;
497596f483aSJessica Paquette           }
498596f483aSJessica Paquette 
499596f483aSJessica Paquette           Active.Len++;
500596f483aSJessica Paquette           break;
501596f483aSJessica Paquette         }
502596f483aSJessica Paquette 
503596f483aSJessica Paquette         // The string we're trying to insert isn't a substring of the next node,
504596f483aSJessica Paquette         // but matches up to a point. Split the node.
505596f483aSJessica Paquette         //
506596f483aSJessica Paquette         // For example, say we ended our search at a node n and we're trying to
507596f483aSJessica Paquette         // insert ABD. Then we'll create a new node s for AB, reduce n to just
508596f483aSJessica Paquette         // representing C, and insert a new leaf node l to represent d. This
509596f483aSJessica Paquette         // allows us to ensure that if n was a leaf, it remains a leaf.
510596f483aSJessica Paquette         //
511596f483aSJessica Paquette         //   | ABC  ---split--->  | AB
512596f483aSJessica Paquette         //   n                    s
513596f483aSJessica Paquette         //                     C / \ D
514596f483aSJessica Paquette         //                      n   l
515596f483aSJessica Paquette 
516596f483aSJessica Paquette         // The node s from the diagram
517596f483aSJessica Paquette         SuffixTreeNode *SplitNode =
518596f483aSJessica Paquette             insertInternalNode(Active.Node,
519596f483aSJessica Paquette                                NextNode->StartIdx,
520596f483aSJessica Paquette                                NextNode->StartIdx + Active.Len - 1,
521596f483aSJessica Paquette                                FirstChar);
522596f483aSJessica Paquette 
523596f483aSJessica Paquette         // Insert the new node representing the new substring into the tree as
524596f483aSJessica Paquette         // a child of the split node. This is the node l from the diagram.
525596f483aSJessica Paquette         insertLeaf(*SplitNode, EndIdx, LastChar);
526596f483aSJessica Paquette 
527596f483aSJessica Paquette         // Make the old node a child of the split node and update its start
528596f483aSJessica Paquette         // index. This is the node n from the diagram.
529596f483aSJessica Paquette         NextNode->StartIdx += Active.Len;
530596f483aSJessica Paquette         NextNode->Parent = SplitNode;
531596f483aSJessica Paquette         SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
532596f483aSJessica Paquette 
533596f483aSJessica Paquette         // SplitNode is an internal node, update the suffix link.
534596f483aSJessica Paquette         if (NeedsLink)
535596f483aSJessica Paquette           NeedsLink->Link = SplitNode;
536596f483aSJessica Paquette 
537596f483aSJessica Paquette         NeedsLink = SplitNode;
538596f483aSJessica Paquette       }
539596f483aSJessica Paquette 
540596f483aSJessica Paquette       // We've added something new to the tree, so there's one less suffix to
541596f483aSJessica Paquette       // add.
542596f483aSJessica Paquette       SuffixesToAdd--;
543596f483aSJessica Paquette 
544596f483aSJessica Paquette       if (Active.Node->isRoot()) {
545596f483aSJessica Paquette         if (Active.Len > 0) {
546596f483aSJessica Paquette           Active.Len--;
547596f483aSJessica Paquette           Active.Idx = EndIdx - SuffixesToAdd + 1;
548596f483aSJessica Paquette         }
549596f483aSJessica Paquette       } else {
550596f483aSJessica Paquette         // Start the next phase at the next smallest suffix.
551596f483aSJessica Paquette         Active.Node = Active.Node->Link;
552596f483aSJessica Paquette       }
553596f483aSJessica Paquette     }
554596f483aSJessica Paquette 
555596f483aSJessica Paquette     return SuffixesToAdd;
556596f483aSJessica Paquette   }
557596f483aSJessica Paquette 
558596f483aSJessica Paquette public:
559596f483aSJessica Paquette 
560*acffa28cSJessica Paquette   /// Find all repeated substrings that satisfy \p BenefitFn.
561596f483aSJessica Paquette   ///
562*acffa28cSJessica Paquette   /// If a substring appears at least twice, then it must be represented by
563*acffa28cSJessica Paquette   /// an internal node which appears in at least two suffixes. Each suffix is
564*acffa28cSJessica Paquette   /// represented by a leaf node. To do this, we visit each internal node in
565*acffa28cSJessica Paquette   /// the tree, using the leaf children of each internal node. If an internal
566*acffa28cSJessica Paquette   /// node represents a beneficial substring, then we use each of its leaf
567*acffa28cSJessica Paquette   /// children to find the locations of its substring.
568596f483aSJessica Paquette   ///
569*acffa28cSJessica Paquette   /// \param[out] CandidateList Filled with candidates representing each
570*acffa28cSJessica Paquette   /// beneficial substring.
571*acffa28cSJessica Paquette   /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each
572*acffa28cSJessica Paquette   /// type of candidate.
573*acffa28cSJessica Paquette   /// \param BenefitFn The function to satisfy.
574*acffa28cSJessica Paquette   ///
575*acffa28cSJessica Paquette   /// \returns The length of the longest candidate found.
576*acffa28cSJessica Paquette   size_t findCandidates(std::vector<Candidate> &CandidateList,
577*acffa28cSJessica Paquette   std::vector<OutlinedFunction> &FunctionList,
578*acffa28cSJessica Paquette   const std::function<unsigned(SuffixTreeNode &, size_t, unsigned)>
579596f483aSJessica Paquette   &BenefitFn) {
580596f483aSJessica Paquette 
581*acffa28cSJessica Paquette     CandidateList.clear();
582*acffa28cSJessica Paquette     FunctionList.clear();
583*acffa28cSJessica Paquette     size_t FnIdx = 0;
584*acffa28cSJessica Paquette     size_t MaxLen = 0;
585596f483aSJessica Paquette 
586*acffa28cSJessica Paquette     for (SuffixTreeNode* Leaf : LeafVector) {
587*acffa28cSJessica Paquette       assert(Leaf && "Leaves in LeafVector cannot be null!");
588*acffa28cSJessica Paquette       if (!Leaf->IsInTree)
589*acffa28cSJessica Paquette         continue;
590596f483aSJessica Paquette 
591*acffa28cSJessica Paquette       assert(Leaf->Parent && "All leaves must have parents!");
592*acffa28cSJessica Paquette       SuffixTreeNode &Parent = *(Leaf->Parent);
593596f483aSJessica Paquette 
594*acffa28cSJessica Paquette       // If it doesn't appear enough, or we already outlined from it, skip it.
595*acffa28cSJessica Paquette       if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree)
596*acffa28cSJessica Paquette         continue;
597596f483aSJessica Paquette 
598*acffa28cSJessica Paquette       size_t StringLen = Leaf->ConcatLen - Leaf->size();
599596f483aSJessica Paquette 
600*acffa28cSJessica Paquette       // How many instructions would outlining this string save?
601*acffa28cSJessica Paquette       unsigned Benefit = BenefitFn(Parent,
602*acffa28cSJessica Paquette         StringLen, Str[Leaf->SuffixIdx + StringLen - 1]);
603596f483aSJessica Paquette 
604*acffa28cSJessica Paquette       // If it's not beneficial, skip it.
605*acffa28cSJessica Paquette       if (Benefit < 1)
606*acffa28cSJessica Paquette         continue;
607596f483aSJessica Paquette 
608*acffa28cSJessica Paquette       if (StringLen > MaxLen)
609*acffa28cSJessica Paquette         MaxLen = StringLen;
610596f483aSJessica Paquette 
611*acffa28cSJessica Paquette       unsigned OccurrenceCount = 0;
612*acffa28cSJessica Paquette       for (auto &ChildPair : Parent.Children) {
613596f483aSJessica Paquette         SuffixTreeNode *M = ChildPair.second;
614596f483aSJessica Paquette 
615*acffa28cSJessica Paquette         // Is it a leaf? If so, we have an occurrence of this candidate.
616596f483aSJessica Paquette         if (M && M->IsInTree && M->isLeaf()) {
617*acffa28cSJessica Paquette           OccurrenceCount++;
618*acffa28cSJessica Paquette           CandidateList.emplace_back(M->SuffixIdx, StringLen, FnIdx);
619*acffa28cSJessica Paquette           CandidateList.back().Benefit = Benefit;
620596f483aSJessica Paquette           M->IsInTree = false;
621596f483aSJessica Paquette         }
622596f483aSJessica Paquette       }
623596f483aSJessica Paquette 
624*acffa28cSJessica Paquette       // Save the function for the new candidate sequence.
625*acffa28cSJessica Paquette       std::vector<unsigned> CandidateSequence;
626*acffa28cSJessica Paquette       for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++)
627*acffa28cSJessica Paquette         CandidateSequence.push_back(Str[i]);
628596f483aSJessica Paquette 
629*acffa28cSJessica Paquette       FunctionList.emplace_back(FnIdx, OccurrenceCount, CandidateSequence,
630*acffa28cSJessica Paquette                                 Benefit, false);
631596f483aSJessica Paquette 
632*acffa28cSJessica Paquette       // Move to the next function.
633*acffa28cSJessica Paquette       FnIdx++;
634*acffa28cSJessica Paquette       Parent.IsInTree = false;
635596f483aSJessica Paquette     }
636596f483aSJessica Paquette 
637*acffa28cSJessica Paquette     return MaxLen;
638596f483aSJessica Paquette   }
639596f483aSJessica Paquette 
640596f483aSJessica Paquette   /// Construct a suffix tree from a sequence of unsigned integers.
641596f483aSJessica Paquette   ///
642596f483aSJessica Paquette   /// \param Str The string to construct the suffix tree for.
643596f483aSJessica Paquette   SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
644596f483aSJessica Paquette     Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
645596f483aSJessica Paquette     Root->IsInTree = true;
646596f483aSJessica Paquette     Active.Node = Root;
647596f483aSJessica Paquette     LeafVector = std::vector<SuffixTreeNode*>(Str.size());
648596f483aSJessica Paquette 
649596f483aSJessica Paquette     // Keep track of the number of suffixes we have to add of the current
650596f483aSJessica Paquette     // prefix.
651596f483aSJessica Paquette     size_t SuffixesToAdd = 0;
652596f483aSJessica Paquette     Active.Node = Root;
653596f483aSJessica Paquette 
654596f483aSJessica Paquette     // Construct the suffix tree iteratively on each prefix of the string.
655596f483aSJessica Paquette     // PfxEndIdx is the end index of the current prefix.
656596f483aSJessica Paquette     // End is one past the last element in the string.
657596f483aSJessica Paquette     for (size_t PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) {
658596f483aSJessica Paquette       SuffixesToAdd++;
659596f483aSJessica Paquette       LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
660596f483aSJessica Paquette       SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
661596f483aSJessica Paquette     }
662596f483aSJessica Paquette 
663596f483aSJessica Paquette     // Set the suffix indices of each leaf.
664596f483aSJessica Paquette     assert(Root && "Root node can't be nullptr!");
665596f483aSJessica Paquette     setSuffixIndices(*Root, 0);
666596f483aSJessica Paquette   }
667596f483aSJessica Paquette };
668596f483aSJessica Paquette 
669596f483aSJessica Paquette /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings.
670596f483aSJessica Paquette struct InstructionMapper {
671596f483aSJessica Paquette 
672596f483aSJessica Paquette   /// \brief The next available integer to assign to a \p MachineInstr that
673596f483aSJessica Paquette   /// cannot be outlined.
674596f483aSJessica Paquette   ///
675596f483aSJessica Paquette   /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
676596f483aSJessica Paquette   unsigned IllegalInstrNumber = -3;
677596f483aSJessica Paquette 
678596f483aSJessica Paquette   /// \brief The next available integer to assign to a \p MachineInstr that can
679596f483aSJessica Paquette   /// be outlined.
680596f483aSJessica Paquette   unsigned LegalInstrNumber = 0;
681596f483aSJessica Paquette 
682596f483aSJessica Paquette   /// Correspondence from \p MachineInstrs to unsigned integers.
683596f483aSJessica Paquette   DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
684596f483aSJessica Paquette       InstructionIntegerMap;
685596f483aSJessica Paquette 
686596f483aSJessica Paquette   /// Corresponcence from unsigned integers to \p MachineInstrs.
687596f483aSJessica Paquette   /// Inverse of \p InstructionIntegerMap.
688596f483aSJessica Paquette   DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
689596f483aSJessica Paquette 
690596f483aSJessica Paquette   /// The vector of unsigned integers that the module is mapped to.
691596f483aSJessica Paquette   std::vector<unsigned> UnsignedVec;
692596f483aSJessica Paquette 
693596f483aSJessica Paquette   /// \brief Stores the location of the instruction associated with the integer
694596f483aSJessica Paquette   /// at index i in \p UnsignedVec for each index i.
695596f483aSJessica Paquette   std::vector<MachineBasicBlock::iterator> InstrList;
696596f483aSJessica Paquette 
697596f483aSJessica Paquette   /// \brief Maps \p *It to a legal integer.
698596f483aSJessica Paquette   ///
699596f483aSJessica Paquette   /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
700596f483aSJessica Paquette   /// \p IntegerInstructionMap, and \p LegalInstrNumber.
701596f483aSJessica Paquette   ///
702596f483aSJessica Paquette   /// \returns The integer that \p *It was mapped to.
703596f483aSJessica Paquette   unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
704596f483aSJessica Paquette 
705596f483aSJessica Paquette     // Get the integer for this instruction or give it the current
706596f483aSJessica Paquette     // LegalInstrNumber.
707596f483aSJessica Paquette     InstrList.push_back(It);
708596f483aSJessica Paquette     MachineInstr &MI = *It;
709596f483aSJessica Paquette     bool WasInserted;
710596f483aSJessica Paquette     DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
711596f483aSJessica Paquette     ResultIt;
712596f483aSJessica Paquette     std::tie(ResultIt, WasInserted) =
713596f483aSJessica Paquette     InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
714596f483aSJessica Paquette     unsigned MINumber = ResultIt->second;
715596f483aSJessica Paquette 
716596f483aSJessica Paquette     // There was an insertion.
717596f483aSJessica Paquette     if (WasInserted) {
718596f483aSJessica Paquette       LegalInstrNumber++;
719596f483aSJessica Paquette       IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
720596f483aSJessica Paquette     }
721596f483aSJessica Paquette 
722596f483aSJessica Paquette     UnsignedVec.push_back(MINumber);
723596f483aSJessica Paquette 
724596f483aSJessica Paquette     // Make sure we don't overflow or use any integers reserved by the DenseMap.
725596f483aSJessica Paquette     if (LegalInstrNumber >= IllegalInstrNumber)
726596f483aSJessica Paquette       report_fatal_error("Instruction mapping overflow!");
727596f483aSJessica Paquette 
728596f483aSJessica Paquette     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey()
729596f483aSJessica Paquette           && "Tried to assign DenseMap tombstone or empty key to instruction.");
730596f483aSJessica Paquette     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey()
731596f483aSJessica Paquette           && "Tried to assign DenseMap tombstone or empty key to instruction.");
732596f483aSJessica Paquette 
733596f483aSJessica Paquette     return MINumber;
734596f483aSJessica Paquette   }
735596f483aSJessica Paquette 
736596f483aSJessica Paquette   /// Maps \p *It to an illegal integer.
737596f483aSJessica Paquette   ///
738596f483aSJessica Paquette   /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
739596f483aSJessica Paquette   ///
740596f483aSJessica Paquette   /// \returns The integer that \p *It was mapped to.
741596f483aSJessica Paquette   unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
742596f483aSJessica Paquette     unsigned MINumber = IllegalInstrNumber;
743596f483aSJessica Paquette 
744596f483aSJessica Paquette     InstrList.push_back(It);
745596f483aSJessica Paquette     UnsignedVec.push_back(IllegalInstrNumber);
746596f483aSJessica Paquette     IllegalInstrNumber--;
747596f483aSJessica Paquette 
748596f483aSJessica Paquette     assert(LegalInstrNumber < IllegalInstrNumber &&
749596f483aSJessica Paquette            "Instruction mapping overflow!");
750596f483aSJessica Paquette 
751596f483aSJessica Paquette     assert(IllegalInstrNumber !=
752596f483aSJessica Paquette       DenseMapInfo<unsigned>::getEmptyKey() &&
753596f483aSJessica Paquette       "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
754596f483aSJessica Paquette 
755596f483aSJessica Paquette     assert(IllegalInstrNumber !=
756596f483aSJessica Paquette       DenseMapInfo<unsigned>::getTombstoneKey() &&
757596f483aSJessica Paquette       "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
758596f483aSJessica Paquette 
759596f483aSJessica Paquette     return MINumber;
760596f483aSJessica Paquette   }
761596f483aSJessica Paquette 
762596f483aSJessica Paquette   /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
763596f483aSJessica Paquette   /// and appends it to \p UnsignedVec and \p InstrList.
764596f483aSJessica Paquette   ///
765596f483aSJessica Paquette   /// Two instructions are assigned the same integer if they are identical.
766596f483aSJessica Paquette   /// If an instruction is deemed unsafe to outline, then it will be assigned an
767596f483aSJessica Paquette   /// unique integer. The resulting mapping is placed into a suffix tree and
768596f483aSJessica Paquette   /// queried for candidates.
769596f483aSJessica Paquette   ///
770596f483aSJessica Paquette   /// \param MBB The \p MachineBasicBlock to be translated into integers.
771596f483aSJessica Paquette   /// \param TRI \p TargetRegisterInfo for the module.
772596f483aSJessica Paquette   /// \param TII \p TargetInstrInfo for the module.
773596f483aSJessica Paquette   void convertToUnsignedVec(MachineBasicBlock &MBB,
774596f483aSJessica Paquette                             const TargetRegisterInfo &TRI,
775596f483aSJessica Paquette                             const TargetInstrInfo &TII) {
776596f483aSJessica Paquette     for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et;
777596f483aSJessica Paquette          It++) {
778596f483aSJessica Paquette 
779596f483aSJessica Paquette       // Keep track of where this instruction is in the module.
780596f483aSJessica Paquette       switch(TII.getOutliningType(*It)) {
781596f483aSJessica Paquette         case TargetInstrInfo::MachineOutlinerInstrType::Illegal:
782596f483aSJessica Paquette           mapToIllegalUnsigned(It);
783596f483aSJessica Paquette           break;
784596f483aSJessica Paquette 
785596f483aSJessica Paquette         case TargetInstrInfo::MachineOutlinerInstrType::Legal:
786596f483aSJessica Paquette           mapToLegalUnsigned(It);
787596f483aSJessica Paquette           break;
788596f483aSJessica Paquette 
789596f483aSJessica Paquette         case TargetInstrInfo::MachineOutlinerInstrType::Invisible:
790596f483aSJessica Paquette           break;
791596f483aSJessica Paquette       }
792596f483aSJessica Paquette     }
793596f483aSJessica Paquette 
794596f483aSJessica Paquette     // After we're done every insertion, uniquely terminate this part of the
795596f483aSJessica Paquette     // "string". This makes sure we won't match across basic block or function
796596f483aSJessica Paquette     // boundaries since the "end" is encoded uniquely and thus appears in no
797596f483aSJessica Paquette     // repeated substring.
798596f483aSJessica Paquette     InstrList.push_back(MBB.end());
799596f483aSJessica Paquette     UnsignedVec.push_back(IllegalInstrNumber);
800596f483aSJessica Paquette     IllegalInstrNumber--;
801596f483aSJessica Paquette   }
802596f483aSJessica Paquette 
803596f483aSJessica Paquette   InstructionMapper() {
804596f483aSJessica Paquette     // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
805596f483aSJessica Paquette     // changed.
806596f483aSJessica Paquette     assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
807596f483aSJessica Paquette                 "DenseMapInfo<unsigned>'s empty key isn't -1!");
808596f483aSJessica Paquette     assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
809596f483aSJessica Paquette                 "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
810596f483aSJessica Paquette   }
811596f483aSJessica Paquette };
812596f483aSJessica Paquette 
813596f483aSJessica Paquette /// \brief An interprocedural pass which finds repeated sequences of
814596f483aSJessica Paquette /// instructions and replaces them with calls to functions.
815596f483aSJessica Paquette ///
816596f483aSJessica Paquette /// Each instruction is mapped to an unsigned integer and placed in a string.
817596f483aSJessica Paquette /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
818596f483aSJessica Paquette /// is then repeatedly queried for repeated sequences of instructions. Each
819596f483aSJessica Paquette /// non-overlapping repeated sequence is then placed in its own
820596f483aSJessica Paquette /// \p MachineFunction and each instance is then replaced with a call to that
821596f483aSJessica Paquette /// function.
822596f483aSJessica Paquette struct MachineOutliner : public ModulePass {
823596f483aSJessica Paquette 
824596f483aSJessica Paquette   static char ID;
825596f483aSJessica Paquette 
826596f483aSJessica Paquette   StringRef getPassName() const override { return "Machine Outliner"; }
827596f483aSJessica Paquette 
828596f483aSJessica Paquette   void getAnalysisUsage(AnalysisUsage &AU) const override {
829596f483aSJessica Paquette     AU.addRequired<MachineModuleInfo>();
830596f483aSJessica Paquette     AU.addPreserved<MachineModuleInfo>();
831596f483aSJessica Paquette     AU.setPreservesAll();
832596f483aSJessica Paquette     ModulePass::getAnalysisUsage(AU);
833596f483aSJessica Paquette   }
834596f483aSJessica Paquette 
835596f483aSJessica Paquette   MachineOutliner() : ModulePass(ID) {
836596f483aSJessica Paquette     initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
837596f483aSJessica Paquette   }
838596f483aSJessica Paquette 
839596f483aSJessica Paquette   /// \brief Replace the sequences of instructions represented by the
840596f483aSJessica Paquette   /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
841596f483aSJessica Paquette   /// described in \p FunctionList.
842596f483aSJessica Paquette   ///
843596f483aSJessica Paquette   /// \param M The module we are outlining from.
844596f483aSJessica Paquette   /// \param CandidateList A list of candidates to be outlined.
845596f483aSJessica Paquette   /// \param FunctionList A list of functions to be inserted into the module.
846596f483aSJessica Paquette   /// \param Mapper Contains the instruction mappings for the module.
847596f483aSJessica Paquette   bool outline(Module &M, const ArrayRef<Candidate> &CandidateList,
848596f483aSJessica Paquette                std::vector<OutlinedFunction> &FunctionList,
849596f483aSJessica Paquette                InstructionMapper &Mapper);
850596f483aSJessica Paquette 
851596f483aSJessica Paquette   /// Creates a function for \p OF and inserts it into the module.
852596f483aSJessica Paquette   MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
853596f483aSJessica Paquette                                           InstructionMapper &Mapper);
854596f483aSJessica Paquette 
855596f483aSJessica Paquette   /// Find potential outlining candidates and store them in \p CandidateList.
856596f483aSJessica Paquette   ///
857596f483aSJessica Paquette   /// For each type of potential candidate, also build an \p OutlinedFunction
858596f483aSJessica Paquette   /// struct containing the information to build the function for that
859596f483aSJessica Paquette   /// candidate.
860596f483aSJessica Paquette   ///
861596f483aSJessica Paquette   /// \param[out] CandidateList Filled with outlining candidates for the module.
862596f483aSJessica Paquette   /// \param[out] FunctionList Filled with functions corresponding to each type
863596f483aSJessica Paquette   /// of \p Candidate.
864596f483aSJessica Paquette   /// \param ST The suffix tree for the module.
865596f483aSJessica Paquette   /// \param TII TargetInstrInfo for the module.
866596f483aSJessica Paquette   ///
867596f483aSJessica Paquette   /// \returns The length of the longest candidate found. 0 if there are none.
868596f483aSJessica Paquette   unsigned buildCandidateList(std::vector<Candidate> &CandidateList,
869596f483aSJessica Paquette                               std::vector<OutlinedFunction> &FunctionList,
870c984e213SJessica Paquette                               SuffixTree &ST,
871c984e213SJessica Paquette                               InstructionMapper &Mapper,
872c984e213SJessica Paquette                               const TargetInstrInfo &TII);
873596f483aSJessica Paquette 
874596f483aSJessica Paquette   /// \brief Remove any overlapping candidates that weren't handled by the
875596f483aSJessica Paquette   /// suffix tree's pruning method.
876596f483aSJessica Paquette   ///
877596f483aSJessica Paquette   /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
878596f483aSJessica Paquette   /// If a short candidate is chosen for outlining, then a longer candidate
879596f483aSJessica Paquette   /// which has that short candidate as a suffix is chosen, the tree's pruning
880596f483aSJessica Paquette   /// method will not find it. Thus, we need to prune before outlining as well.
881596f483aSJessica Paquette   ///
882596f483aSJessica Paquette   /// \param[in,out] CandidateList A list of outlining candidates.
883596f483aSJessica Paquette   /// \param[in,out] FunctionList A list of functions to be outlined.
884596f483aSJessica Paquette   /// \param MaxCandidateLen The length of the longest candidate.
885596f483aSJessica Paquette   /// \param TII TargetInstrInfo for the module.
886596f483aSJessica Paquette   void pruneOverlaps(std::vector<Candidate> &CandidateList,
887596f483aSJessica Paquette                      std::vector<OutlinedFunction> &FunctionList,
888596f483aSJessica Paquette                      unsigned MaxCandidateLen,
889596f483aSJessica Paquette                      const TargetInstrInfo &TII);
890596f483aSJessica Paquette 
891596f483aSJessica Paquette   /// Construct a suffix tree on the instructions in \p M and outline repeated
892596f483aSJessica Paquette   /// strings from that tree.
893596f483aSJessica Paquette   bool runOnModule(Module &M) override;
894596f483aSJessica Paquette };
895596f483aSJessica Paquette 
896596f483aSJessica Paquette } // Anonymous namespace.
897596f483aSJessica Paquette 
898596f483aSJessica Paquette char MachineOutliner::ID = 0;
899596f483aSJessica Paquette 
900596f483aSJessica Paquette namespace llvm {
901596f483aSJessica Paquette ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); }
902596f483aSJessica Paquette }
903596f483aSJessica Paquette 
904596f483aSJessica Paquette INITIALIZE_PASS(MachineOutliner, "machine-outliner",
905596f483aSJessica Paquette                 "Machine Function Outliner", false, false)
906596f483aSJessica Paquette 
907596f483aSJessica Paquette void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList,
908596f483aSJessica Paquette                                     std::vector<OutlinedFunction> &FunctionList,
909596f483aSJessica Paquette                                     unsigned MaxCandidateLen,
910596f483aSJessica Paquette                                     const TargetInstrInfo &TII) {
911*acffa28cSJessica Paquette   // TODO: Experiment with interval trees or other interval-checking structures
912*acffa28cSJessica Paquette   // to lower the time complexity of this function.
913*acffa28cSJessica Paquette   // TODO: Can we do better than the simple greedy choice?
914*acffa28cSJessica Paquette   // Check for overlaps in the range.
915*acffa28cSJessica Paquette   // This is O(MaxCandidateLen * CandidateList.size()).
916596f483aSJessica Paquette   for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
917596f483aSJessica Paquette        It++) {
918596f483aSJessica Paquette     Candidate &C1 = *It;
919596f483aSJessica Paquette     OutlinedFunction &F1 = FunctionList[C1.FunctionIdx];
920596f483aSJessica Paquette 
921596f483aSJessica Paquette     // If we removed this candidate, skip it.
922596f483aSJessica Paquette     if (!C1.InCandidateList)
923596f483aSJessica Paquette       continue;
924596f483aSJessica Paquette 
925*acffa28cSJessica Paquette     // Is it still worth it to outline C1?
926*acffa28cSJessica Paquette     if (F1.Benefit < 1 || F1.OccurrenceCount < 2) {
927*acffa28cSJessica Paquette       assert(F1.OccurrenceCount > 0 &&
928*acffa28cSJessica Paquette                "Can't remove OutlinedFunction with no occurrences!");
929*acffa28cSJessica Paquette       F1.OccurrenceCount--;
930596f483aSJessica Paquette       C1.InCandidateList = false;
931596f483aSJessica Paquette       continue;
932596f483aSJessica Paquette     }
933596f483aSJessica Paquette 
934596f483aSJessica Paquette     // The minimum start index of any candidate that could overlap with this
935596f483aSJessica Paquette     // one.
936596f483aSJessica Paquette     unsigned FarthestPossibleIdx = 0;
937596f483aSJessica Paquette 
938596f483aSJessica Paquette     // Either the index is 0, or it's at most MaxCandidateLen indices away.
939596f483aSJessica Paquette     if (C1.StartIdx > MaxCandidateLen)
940596f483aSJessica Paquette       FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen;
941596f483aSJessica Paquette 
942*acffa28cSJessica Paquette     // Compare against the candidates in the list that start at at most
943*acffa28cSJessica Paquette     // FarthestPossibleIdx indices away from C1. There are at most
944*acffa28cSJessica Paquette     // MaxCandidateLen of these.
945596f483aSJessica Paquette     for (auto Sit = It + 1; Sit != Et; Sit++) {
946596f483aSJessica Paquette       Candidate &C2 = *Sit;
947596f483aSJessica Paquette       OutlinedFunction &F2 = FunctionList[C2.FunctionIdx];
948596f483aSJessica Paquette 
949596f483aSJessica Paquette       // Is this candidate too far away to overlap?
950596f483aSJessica Paquette       if (C2.StartIdx < FarthestPossibleIdx)
951596f483aSJessica Paquette         break;
952596f483aSJessica Paquette 
953596f483aSJessica Paquette       // Did we already remove this candidate in a previous step?
954596f483aSJessica Paquette       if (!C2.InCandidateList)
955596f483aSJessica Paquette         continue;
956596f483aSJessica Paquette 
957596f483aSJessica Paquette       // Is the function beneficial to outline?
958596f483aSJessica Paquette       if (F2.OccurrenceCount < 2 || F2.Benefit < 1) {
959596f483aSJessica Paquette         // If not, remove this candidate and move to the next one.
960*acffa28cSJessica Paquette         assert(F2.OccurrenceCount > 0 &&
961*acffa28cSJessica Paquette                "Can't remove OutlinedFunction with no occurrences!");
962*acffa28cSJessica Paquette         F2.OccurrenceCount--;
963596f483aSJessica Paquette         C2.InCandidateList = false;
964596f483aSJessica Paquette         continue;
965596f483aSJessica Paquette       }
966596f483aSJessica Paquette 
967596f483aSJessica Paquette       size_t C2End = C2.StartIdx + C2.Len - 1;
968596f483aSJessica Paquette 
969596f483aSJessica Paquette       // Do C1 and C2 overlap?
970596f483aSJessica Paquette       //
971596f483aSJessica Paquette       // Not overlapping:
972596f483aSJessica Paquette       // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
973596f483aSJessica Paquette       //
974596f483aSJessica Paquette       // We sorted our candidate list so C2Start <= C1Start. We know that
975596f483aSJessica Paquette       // C2End > C2Start since each candidate has length >= 2. Therefore, all we
976596f483aSJessica Paquette       // have to check is C2End < C2Start to see if we overlap.
977596f483aSJessica Paquette       if (C2End < C1.StartIdx)
978596f483aSJessica Paquette         continue;
979596f483aSJessica Paquette 
980*acffa28cSJessica Paquette       // C1 and C2 overlap.
981*acffa28cSJessica Paquette       // We need to choose the better of the two.
982*acffa28cSJessica Paquette       //
983*acffa28cSJessica Paquette       // Approximate this by picking the one which would have saved us the
984*acffa28cSJessica Paquette       // most instructions before any pruning.
985*acffa28cSJessica Paquette       if (C1.Benefit >= C2.Benefit) {
986596f483aSJessica Paquette 
987*acffa28cSJessica Paquette         // C1 is better, so remove C2 and update C2's OutlinedFunction to
988*acffa28cSJessica Paquette         // reflect the removal.
989*acffa28cSJessica Paquette         assert(F2.OccurrenceCount > 0 &&
990*acffa28cSJessica Paquette                "Can't remove OutlinedFunction with no occurrences!");
991596f483aSJessica Paquette         F2.OccurrenceCount--;
992596f483aSJessica Paquette         F2.Benefit = TII.getOutliningBenefit(F2.Sequence.size(),
993c984e213SJessica Paquette                                              F2.OccurrenceCount,
994c984e213SJessica Paquette                                              F2.IsTailCall
995596f483aSJessica Paquette                                              );
996596f483aSJessica Paquette 
997596f483aSJessica Paquette         C2.InCandidateList = false;
998596f483aSJessica Paquette 
999596f483aSJessica Paquette         DEBUG (
1000596f483aSJessica Paquette           dbgs() << "- Removed C2. \n";
1001596f483aSJessica Paquette           dbgs() << "--- Num fns left for C2: " << F2.OccurrenceCount << "\n";
1002596f483aSJessica Paquette           dbgs() << "--- C2's benefit: " << F2.Benefit << "\n";
1003596f483aSJessica Paquette         );
1004*acffa28cSJessica Paquette 
1005*acffa28cSJessica Paquette       } else {
1006*acffa28cSJessica Paquette         // C2 is better, so remove C1 and update C1's OutlinedFunction to
1007*acffa28cSJessica Paquette         // reflect the removal.
1008*acffa28cSJessica Paquette         assert(F1.OccurrenceCount > 0 &&
1009*acffa28cSJessica Paquette                "Can't remove OutlinedFunction with no occurrences!");
1010*acffa28cSJessica Paquette         F1.OccurrenceCount--;
1011*acffa28cSJessica Paquette         F1.Benefit = TII.getOutliningBenefit(F1.Sequence.size(),
1012*acffa28cSJessica Paquette                                              F1.OccurrenceCount,
1013*acffa28cSJessica Paquette                                              F1.IsTailCall
1014*acffa28cSJessica Paquette                                              );
1015*acffa28cSJessica Paquette         C1.InCandidateList = false;
1016*acffa28cSJessica Paquette 
1017*acffa28cSJessica Paquette         DEBUG (
1018*acffa28cSJessica Paquette           dbgs() << "- Removed C1. \n";
1019*acffa28cSJessica Paquette           dbgs() << "--- Num fns left for C1: " << F1.OccurrenceCount << "\n";
1020*acffa28cSJessica Paquette           dbgs() << "--- C1's benefit: " << F1.Benefit << "\n";
1021*acffa28cSJessica Paquette         );
1022*acffa28cSJessica Paquette 
1023*acffa28cSJessica Paquette         // C1 is out, so we don't have to compare it against anyone else.
1024*acffa28cSJessica Paquette         break;
1025*acffa28cSJessica Paquette       }
1026596f483aSJessica Paquette     }
1027596f483aSJessica Paquette   }
1028596f483aSJessica Paquette }
1029596f483aSJessica Paquette 
1030596f483aSJessica Paquette unsigned
1031596f483aSJessica Paquette MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList,
1032596f483aSJessica Paquette                                     std::vector<OutlinedFunction> &FunctionList,
1033596f483aSJessica Paquette                                     SuffixTree &ST,
1034c984e213SJessica Paquette                                     InstructionMapper &Mapper,
1035596f483aSJessica Paquette                                     const TargetInstrInfo &TII) {
1036596f483aSJessica Paquette 
1037596f483aSJessica Paquette   std::vector<unsigned> CandidateSequence; // Current outlining candidate.
1038*acffa28cSJessica Paquette   size_t MaxCandidateLen = 0; // Length of the longest candidate.
1039596f483aSJessica Paquette 
1040596f483aSJessica Paquette   // Function for maximizing query in the suffix tree.
1041596f483aSJessica Paquette   // This allows us to define more fine-grained types of things to outline in
1042596f483aSJessica Paquette   // the target without putting target-specific info in the suffix tree.
1043c984e213SJessica Paquette   auto BenefitFn = [&TII, &ST, &Mapper](const SuffixTreeNode &Curr,
1044*acffa28cSJessica Paquette                                           size_t StringLen, unsigned EndVal) {
1045596f483aSJessica Paquette 
1046*acffa28cSJessica Paquette     // The root represents the empty string.
1047*acffa28cSJessica Paquette     if (Curr.isRoot())
1048596f483aSJessica Paquette       return 0u;
1049596f483aSJessica Paquette 
1050*acffa28cSJessica Paquette     // Is this long enough to outline?
1051*acffa28cSJessica Paquette 	// TODO: Let the target decide how "long" a string is in terms of the sizes
1052*acffa28cSJessica Paquette 	// of the instructions in the string. For example, if a call instruction
1053*acffa28cSJessica Paquette 	// is smaller than a one instruction string, we should outline that string.
1054596f483aSJessica Paquette     if (StringLen < 2)
1055596f483aSJessica Paquette       return 0u;
1056596f483aSJessica Paquette 
1057*acffa28cSJessica Paquette     size_t Occurrences = Curr.OccurrenceCount;
1058596f483aSJessica Paquette 
1059*acffa28cSJessica Paquette     // Anything we want to outline has to appear at least twice.
1060596f483aSJessica Paquette     if (Occurrences < 2)
1061596f483aSJessica Paquette       return 0u;
1062596f483aSJessica Paquette 
1063c984e213SJessica Paquette     // Check if the last instruction in the sequence is a return.
1064c984e213SJessica Paquette     MachineInstr *LastInstr =
1065*acffa28cSJessica Paquette     Mapper.IntegerInstructionMap[EndVal];
1066c984e213SJessica Paquette     assert(LastInstr && "Last instruction in sequence was unmapped!");
1067c984e213SJessica Paquette 
1068c984e213SJessica Paquette     // The only way a terminator could be mapped as legal is if it was safe to
1069c984e213SJessica Paquette     // tail call.
1070c984e213SJessica Paquette     bool IsTailCall = LastInstr->isTerminator();
1071c984e213SJessica Paquette     return TII.getOutliningBenefit(StringLen, Occurrences, IsTailCall);
1072596f483aSJessica Paquette   };
1073596f483aSJessica Paquette 
1074*acffa28cSJessica Paquette   MaxCandidateLen = ST.findCandidates(CandidateList, FunctionList, BenefitFn);
1075596f483aSJessica Paquette 
1076*acffa28cSJessica Paquette   for (auto &OF : FunctionList)
1077*acffa28cSJessica Paquette     OF.IsTailCall = Mapper.
1078*acffa28cSJessica Paquette                     IntegerInstructionMap[OF.Sequence.back()]->isTerminator();
1079596f483aSJessica Paquette 
1080596f483aSJessica Paquette   // Sort the candidates in decending order. This will simplify the outlining
1081596f483aSJessica Paquette   // process when we have to remove the candidates from the mapping by
1082596f483aSJessica Paquette   // allowing us to cut them out without keeping track of an offset.
1083596f483aSJessica Paquette   std::stable_sort(CandidateList.begin(), CandidateList.end());
1084596f483aSJessica Paquette 
1085596f483aSJessica Paquette   return MaxCandidateLen;
1086596f483aSJessica Paquette }
1087596f483aSJessica Paquette 
1088596f483aSJessica Paquette MachineFunction *
1089596f483aSJessica Paquette MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
1090596f483aSJessica Paquette   InstructionMapper &Mapper) {
1091596f483aSJessica Paquette 
1092596f483aSJessica Paquette   // Create the function name. This should be unique. For now, just hash the
1093596f483aSJessica Paquette   // module name and include it in the function name plus the number of this
1094596f483aSJessica Paquette   // function.
1095596f483aSJessica Paquette   std::ostringstream NameStream;
1096596f483aSJessica Paquette   NameStream << "OUTLINED_FUNCTION" << "_" << OF.Name;
1097596f483aSJessica Paquette 
1098596f483aSJessica Paquette   // Create the function using an IR-level function.
1099596f483aSJessica Paquette   LLVMContext &C = M.getContext();
1100596f483aSJessica Paquette   Function *F = dyn_cast<Function>(
1101fa97699dSSimon Pilgrim       M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C), nullptr));
1102596f483aSJessica Paquette   assert(F && "Function was null!");
1103596f483aSJessica Paquette 
1104596f483aSJessica Paquette   // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1105596f483aSJessica Paquette   // which gives us better results when we outline from linkonceodr functions.
1106596f483aSJessica Paquette   F->setLinkage(GlobalValue::PrivateLinkage);
1107596f483aSJessica Paquette   F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1108596f483aSJessica Paquette 
1109596f483aSJessica Paquette   BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1110596f483aSJessica Paquette   IRBuilder<> Builder(EntryBB);
1111596f483aSJessica Paquette   Builder.CreateRetVoid();
1112596f483aSJessica Paquette 
1113596f483aSJessica Paquette   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1114596f483aSJessica Paquette   MachineFunction &MF = MMI.getMachineFunction(*F);
1115596f483aSJessica Paquette   MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1116596f483aSJessica Paquette   const TargetSubtargetInfo &STI = MF.getSubtarget();
1117596f483aSJessica Paquette   const TargetInstrInfo &TII = *STI.getInstrInfo();
1118596f483aSJessica Paquette 
1119596f483aSJessica Paquette   // Insert the new function into the module.
1120596f483aSJessica Paquette   MF.insert(MF.begin(), &MBB);
1121596f483aSJessica Paquette 
1122c984e213SJessica Paquette   TII.insertOutlinerPrologue(MBB, MF, OF.IsTailCall);
1123596f483aSJessica Paquette 
1124596f483aSJessica Paquette   // Copy over the instructions for the function using the integer mappings in
1125596f483aSJessica Paquette   // its sequence.
1126596f483aSJessica Paquette   for (unsigned Str : OF.Sequence) {
1127596f483aSJessica Paquette     MachineInstr *NewMI =
1128596f483aSJessica Paquette         MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
1129596f483aSJessica Paquette     NewMI->dropMemRefs();
1130596f483aSJessica Paquette 
1131596f483aSJessica Paquette     // Don't keep debug information for outlined instructions.
1132596f483aSJessica Paquette     // FIXME: This means outlined functions are currently undebuggable.
1133596f483aSJessica Paquette     NewMI->setDebugLoc(DebugLoc());
1134596f483aSJessica Paquette     MBB.insert(MBB.end(), NewMI);
1135596f483aSJessica Paquette   }
1136596f483aSJessica Paquette 
1137c984e213SJessica Paquette   TII.insertOutlinerEpilogue(MBB, MF, OF.IsTailCall);
1138596f483aSJessica Paquette 
1139596f483aSJessica Paquette   return &MF;
1140596f483aSJessica Paquette }
1141596f483aSJessica Paquette 
1142596f483aSJessica Paquette bool MachineOutliner::outline(Module &M,
1143596f483aSJessica Paquette                               const ArrayRef<Candidate> &CandidateList,
1144596f483aSJessica Paquette                               std::vector<OutlinedFunction> &FunctionList,
1145596f483aSJessica Paquette                               InstructionMapper &Mapper) {
1146596f483aSJessica Paquette 
1147596f483aSJessica Paquette   bool OutlinedSomething = false;
1148596f483aSJessica Paquette 
1149596f483aSJessica Paquette   // Replace the candidates with calls to their respective outlined functions.
1150596f483aSJessica Paquette   for (const Candidate &C : CandidateList) {
1151596f483aSJessica Paquette 
1152596f483aSJessica Paquette     // Was the candidate removed during pruneOverlaps?
1153596f483aSJessica Paquette     if (!C.InCandidateList)
1154596f483aSJessica Paquette       continue;
1155596f483aSJessica Paquette 
1156596f483aSJessica Paquette     // If not, then look at its OutlinedFunction.
1157596f483aSJessica Paquette     OutlinedFunction &OF = FunctionList[C.FunctionIdx];
1158596f483aSJessica Paquette 
1159596f483aSJessica Paquette     // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
1160596f483aSJessica Paquette     if (OF.OccurrenceCount < 2 || OF.Benefit < 1)
1161596f483aSJessica Paquette       continue;
1162596f483aSJessica Paquette 
1163596f483aSJessica Paquette     // If not, then outline it.
1164596f483aSJessica Paquette     assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
1165596f483aSJessica Paquette     MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent();
1166596f483aSJessica Paquette     MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx];
1167596f483aSJessica Paquette     unsigned EndIdx = C.StartIdx + C.Len - 1;
1168596f483aSJessica Paquette 
1169596f483aSJessica Paquette     assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
1170596f483aSJessica Paquette     MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1171596f483aSJessica Paquette     assert(EndIt != MBB->end() && "EndIt out of bounds!");
1172596f483aSJessica Paquette 
1173596f483aSJessica Paquette     EndIt++; // Erase needs one past the end index.
1174596f483aSJessica Paquette 
1175596f483aSJessica Paquette     // Does this candidate have a function yet?
1176*acffa28cSJessica Paquette     if (!OF.MF) {
1177596f483aSJessica Paquette       OF.MF = createOutlinedFunction(M, OF, Mapper);
1178*acffa28cSJessica Paquette       FunctionsCreated++;
1179*acffa28cSJessica Paquette     }
1180596f483aSJessica Paquette 
1181596f483aSJessica Paquette     MachineFunction *MF = OF.MF;
1182596f483aSJessica Paquette     const TargetSubtargetInfo &STI = MF->getSubtarget();
1183596f483aSJessica Paquette     const TargetInstrInfo &TII = *STI.getInstrInfo();
1184596f483aSJessica Paquette 
1185596f483aSJessica Paquette     // Insert a call to the new function and erase the old sequence.
1186c984e213SJessica Paquette     TII.insertOutlinedCall(M, *MBB, StartIt, *MF, OF.IsTailCall);
1187596f483aSJessica Paquette     StartIt = Mapper.InstrList[C.StartIdx];
1188596f483aSJessica Paquette     MBB->erase(StartIt, EndIt);
1189596f483aSJessica Paquette 
1190596f483aSJessica Paquette     OutlinedSomething = true;
1191596f483aSJessica Paquette 
1192596f483aSJessica Paquette     // Statistics.
1193596f483aSJessica Paquette     NumOutlined++;
1194596f483aSJessica Paquette   }
1195596f483aSJessica Paquette 
1196596f483aSJessica Paquette   DEBUG (
1197596f483aSJessica Paquette     dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";
1198596f483aSJessica Paquette   );
1199596f483aSJessica Paquette 
1200596f483aSJessica Paquette   return OutlinedSomething;
1201596f483aSJessica Paquette }
1202596f483aSJessica Paquette 
1203596f483aSJessica Paquette bool MachineOutliner::runOnModule(Module &M) {
1204596f483aSJessica Paquette 
1205596f483aSJessica Paquette   // Is there anything in the module at all?
1206596f483aSJessica Paquette   if (M.empty())
1207596f483aSJessica Paquette     return false;
1208596f483aSJessica Paquette 
1209596f483aSJessica Paquette   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1210596f483aSJessica Paquette   const TargetSubtargetInfo &STI = MMI.getMachineFunction(*M.begin())
1211596f483aSJessica Paquette                                       .getSubtarget();
1212596f483aSJessica Paquette   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
1213596f483aSJessica Paquette   const TargetInstrInfo *TII = STI.getInstrInfo();
1214596f483aSJessica Paquette 
1215596f483aSJessica Paquette   InstructionMapper Mapper;
1216596f483aSJessica Paquette 
1217596f483aSJessica Paquette   // Build instruction mappings for each function in the module.
1218596f483aSJessica Paquette   for (Function &F : M) {
1219596f483aSJessica Paquette     MachineFunction &MF = MMI.getMachineFunction(F);
1220596f483aSJessica Paquette 
1221596f483aSJessica Paquette     // Is the function empty? Safe to outline from?
1222596f483aSJessica Paquette     if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF))
1223596f483aSJessica Paquette       continue;
1224596f483aSJessica Paquette 
1225596f483aSJessica Paquette     // If it is, look at each MachineBasicBlock in the function.
1226596f483aSJessica Paquette     for (MachineBasicBlock &MBB : MF) {
1227596f483aSJessica Paquette 
1228596f483aSJessica Paquette       // Is there anything in MBB?
1229596f483aSJessica Paquette       if (MBB.empty())
1230596f483aSJessica Paquette         continue;
1231596f483aSJessica Paquette 
1232596f483aSJessica Paquette       // If yes, map it.
1233596f483aSJessica Paquette       Mapper.convertToUnsignedVec(MBB, *TRI, *TII);
1234596f483aSJessica Paquette     }
1235596f483aSJessica Paquette   }
1236596f483aSJessica Paquette 
1237596f483aSJessica Paquette   // Construct a suffix tree, use it to find candidates, and then outline them.
1238596f483aSJessica Paquette   SuffixTree ST(Mapper.UnsignedVec);
1239596f483aSJessica Paquette   std::vector<Candidate> CandidateList;
1240596f483aSJessica Paquette   std::vector<OutlinedFunction> FunctionList;
1241596f483aSJessica Paquette 
1242*acffa28cSJessica Paquette   // Find all of the outlining candidates.
1243596f483aSJessica Paquette   unsigned MaxCandidateLen =
1244c984e213SJessica Paquette       buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII);
1245596f483aSJessica Paquette 
1246*acffa28cSJessica Paquette   // Remove candidates that overlap with other candidates.
1247596f483aSJessica Paquette   pruneOverlaps(CandidateList, FunctionList, MaxCandidateLen, *TII);
1248*acffa28cSJessica Paquette 
1249*acffa28cSJessica Paquette   // Outline each of the candidates and return true if something was outlined.
1250596f483aSJessica Paquette   return outline(M, CandidateList, FunctionList, Mapper);
1251596f483aSJessica Paquette }
1252