1596f483aSJessica Paquette //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2596f483aSJessica Paquette // 3596f483aSJessica Paquette // The LLVM Compiler Infrastructure 4596f483aSJessica Paquette // 5596f483aSJessica Paquette // This file is distributed under the University of Illinois Open Source 6596f483aSJessica Paquette // License. See LICENSE.TXT for details. 7596f483aSJessica Paquette // 8596f483aSJessica Paquette //===----------------------------------------------------------------------===// 9596f483aSJessica Paquette /// 10596f483aSJessica Paquette /// \file 11596f483aSJessica Paquette /// Replaces repeated sequences of instructions with function calls. 12596f483aSJessica Paquette /// 13596f483aSJessica Paquette /// This works by placing every instruction from every basic block in a 14596f483aSJessica Paquette /// suffix tree, and repeatedly querying that tree for repeated sequences of 15596f483aSJessica Paquette /// instructions. If a sequence of instructions appears often, then it ought 16596f483aSJessica Paquette /// to be beneficial to pull out into a function. 17596f483aSJessica Paquette /// 184cf187b5SJessica Paquette /// The MachineOutliner communicates with a given target using hooks defined in 194cf187b5SJessica Paquette /// TargetInstrInfo.h. The target supplies the outliner with information on how 204cf187b5SJessica Paquette /// a specific sequence of instructions should be outlined. This information 214cf187b5SJessica Paquette /// is used to deduce the number of instructions necessary to 224cf187b5SJessica Paquette /// 234cf187b5SJessica Paquette /// * Create an outlined function 244cf187b5SJessica Paquette /// * Call that outlined function 254cf187b5SJessica Paquette /// 264cf187b5SJessica Paquette /// Targets must implement 274cf187b5SJessica Paquette /// * getOutliningCandidateInfo 284cf187b5SJessica Paquette /// * insertOutlinerEpilogue 294cf187b5SJessica Paquette /// * insertOutlinedCall 304cf187b5SJessica Paquette /// * insertOutlinerPrologue 314cf187b5SJessica Paquette /// * isFunctionSafeToOutlineFrom 324cf187b5SJessica Paquette /// 334cf187b5SJessica Paquette /// in order to make use of the MachineOutliner. 344cf187b5SJessica Paquette /// 35596f483aSJessica Paquette /// This was originally presented at the 2016 LLVM Developers' Meeting in the 36596f483aSJessica Paquette /// talk "Reducing Code Size Using Outlining". For a high-level overview of 37596f483aSJessica Paquette /// how this pass works, the talk is available on YouTube at 38596f483aSJessica Paquette /// 39596f483aSJessica Paquette /// https://www.youtube.com/watch?v=yorld-WSOeU 40596f483aSJessica Paquette /// 41596f483aSJessica Paquette /// The slides for the talk are available at 42596f483aSJessica Paquette /// 43596f483aSJessica Paquette /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 44596f483aSJessica Paquette /// 45596f483aSJessica Paquette /// The talk provides an overview of how the outliner finds candidates and 46596f483aSJessica Paquette /// ultimately outlines them. It describes how the main data structure for this 47596f483aSJessica Paquette /// pass, the suffix tree, is queried and purged for candidates. It also gives 48596f483aSJessica Paquette /// a simplified suffix tree construction algorithm for suffix trees based off 49596f483aSJessica Paquette /// of the algorithm actually used here, Ukkonen's algorithm. 50596f483aSJessica Paquette /// 51596f483aSJessica Paquette /// For the original RFC for this pass, please see 52596f483aSJessica Paquette /// 53596f483aSJessica Paquette /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 54596f483aSJessica Paquette /// 55596f483aSJessica Paquette /// For more information on the suffix tree data structure, please see 56596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 57596f483aSJessica Paquette /// 58596f483aSJessica Paquette //===----------------------------------------------------------------------===// 59596f483aSJessica Paquette #include "llvm/ADT/DenseMap.h" 60596f483aSJessica Paquette #include "llvm/ADT/Statistic.h" 61596f483aSJessica Paquette #include "llvm/ADT/Twine.h" 62596f483aSJessica Paquette #include "llvm/CodeGen/MachineFrameInfo.h" 63596f483aSJessica Paquette #include "llvm/CodeGen/MachineFunction.h" 64596f483aSJessica Paquette #include "llvm/CodeGen/MachineInstrBuilder.h" 65596f483aSJessica Paquette #include "llvm/CodeGen/MachineModuleInfo.h" 66ffe4abc5SJessica Paquette #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 67596f483aSJessica Paquette #include "llvm/CodeGen/Passes.h" 68596f483aSJessica Paquette #include "llvm/IR/IRBuilder.h" 69596f483aSJessica Paquette #include "llvm/Support/Allocator.h" 70596f483aSJessica Paquette #include "llvm/Support/Debug.h" 71596f483aSJessica Paquette #include "llvm/Support/raw_ostream.h" 72596f483aSJessica Paquette #include "llvm/Target/TargetInstrInfo.h" 73596f483aSJessica Paquette #include "llvm/Target/TargetMachine.h" 74596f483aSJessica Paquette #include "llvm/Target/TargetRegisterInfo.h" 75596f483aSJessica Paquette #include "llvm/Target/TargetSubtargetInfo.h" 76596f483aSJessica Paquette #include <functional> 77596f483aSJessica Paquette #include <map> 78596f483aSJessica Paquette #include <sstream> 79596f483aSJessica Paquette #include <tuple> 80596f483aSJessica Paquette #include <vector> 81596f483aSJessica Paquette 82596f483aSJessica Paquette #define DEBUG_TYPE "machine-outliner" 83596f483aSJessica Paquette 84596f483aSJessica Paquette using namespace llvm; 85ffe4abc5SJessica Paquette using namespace ore; 86596f483aSJessica Paquette 87596f483aSJessica Paquette STATISTIC(NumOutlined, "Number of candidates outlined"); 88596f483aSJessica Paquette STATISTIC(FunctionsCreated, "Number of functions created"); 89596f483aSJessica Paquette 90596f483aSJessica Paquette namespace { 91596f483aSJessica Paquette 92acffa28cSJessica Paquette /// \brief An individual sequence of instructions to be replaced with a call to 93acffa28cSJessica Paquette /// an outlined function. 94acffa28cSJessica Paquette struct Candidate { 95acffa28cSJessica Paquette 96acffa28cSJessica Paquette /// Set to false if the candidate overlapped with another candidate. 97acffa28cSJessica Paquette bool InCandidateList = true; 98acffa28cSJessica Paquette 99acffa28cSJessica Paquette /// The start index of this \p Candidate. 1004cf187b5SJessica Paquette unsigned StartIdx; 101acffa28cSJessica Paquette 102acffa28cSJessica Paquette /// The number of instructions in this \p Candidate. 1034cf187b5SJessica Paquette unsigned Len; 104acffa28cSJessica Paquette 105acffa28cSJessica Paquette /// The index of this \p Candidate's \p OutlinedFunction in the list of 106acffa28cSJessica Paquette /// \p OutlinedFunctions. 1074cf187b5SJessica Paquette unsigned FunctionIdx; 108acffa28cSJessica Paquette 1094cf187b5SJessica Paquette /// Contains all target-specific information for this \p Candidate. 1104cf187b5SJessica Paquette TargetInstrInfo::MachineOutlinerInfo MInfo; 111d87f5449SJessica Paquette 112acffa28cSJessica Paquette /// \brief The number of instructions that would be saved by outlining every 113acffa28cSJessica Paquette /// candidate of this type. 114acffa28cSJessica Paquette /// 115acffa28cSJessica Paquette /// This is a fixed value which is not updated during the candidate pruning 116acffa28cSJessica Paquette /// process. It is only used for deciding which candidate to keep if two 117acffa28cSJessica Paquette /// candidates overlap. The true benefit is stored in the OutlinedFunction 118acffa28cSJessica Paquette /// for some given candidate. 119acffa28cSJessica Paquette unsigned Benefit = 0; 120acffa28cSJessica Paquette 1214cf187b5SJessica Paquette Candidate(unsigned StartIdx, unsigned Len, unsigned FunctionIdx) 1224cf187b5SJessica Paquette : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {} 123acffa28cSJessica Paquette 124acffa28cSJessica Paquette Candidate() {} 125acffa28cSJessica Paquette 126acffa28cSJessica Paquette /// \brief Used to ensure that \p Candidates are outlined in an order that 127acffa28cSJessica Paquette /// preserves the start and end indices of other \p Candidates. 128acffa28cSJessica Paquette bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; } 129acffa28cSJessica Paquette }; 130acffa28cSJessica Paquette 131acffa28cSJessica Paquette /// \brief The information necessary to create an outlined function for some 132acffa28cSJessica Paquette /// class of candidate. 133acffa28cSJessica Paquette struct OutlinedFunction { 134acffa28cSJessica Paquette 135acffa28cSJessica Paquette /// The actual outlined function created. 136acffa28cSJessica Paquette /// This is initialized after we go through and create the actual function. 137acffa28cSJessica Paquette MachineFunction *MF = nullptr; 138acffa28cSJessica Paquette 1394cf187b5SJessica Paquette /// A number assigned to this function which appears at the end of its name. 1404cf187b5SJessica Paquette unsigned Name; 141acffa28cSJessica Paquette 142acffa28cSJessica Paquette /// The number of candidates for this OutlinedFunction. 1434cf187b5SJessica Paquette unsigned OccurrenceCount = 0; 144acffa28cSJessica Paquette 145acffa28cSJessica Paquette /// \brief The sequence of integers corresponding to the instructions in this 146acffa28cSJessica Paquette /// function. 147acffa28cSJessica Paquette std::vector<unsigned> Sequence; 148acffa28cSJessica Paquette 1494cf187b5SJessica Paquette /// Contains all target-specific information for this \p OutlinedFunction. 1504cf187b5SJessica Paquette TargetInstrInfo::MachineOutlinerInfo MInfo; 151acffa28cSJessica Paquette 152*acc15e12SJessica Paquette /// \brief Return the number of instructions it would take to outline this 153*acc15e12SJessica Paquette /// function. 154*acc15e12SJessica Paquette unsigned getOutliningCost() { 155*acc15e12SJessica Paquette return (OccurrenceCount * MInfo.CallOverhead) + Sequence.size() + 156*acc15e12SJessica Paquette MInfo.FrameOverhead; 157*acc15e12SJessica Paquette } 158*acc15e12SJessica Paquette 159*acc15e12SJessica Paquette /// \brief Return the number of instructions that would be saved by outlining 160*acc15e12SJessica Paquette /// this function. 161*acc15e12SJessica Paquette unsigned getBenefit() { 162*acc15e12SJessica Paquette unsigned NotOutlinedCost = OccurrenceCount * Sequence.size(); 163*acc15e12SJessica Paquette unsigned OutlinedCost = getOutliningCost(); 164*acc15e12SJessica Paquette return (NotOutlinedCost < OutlinedCost) ? 0 165*acc15e12SJessica Paquette : NotOutlinedCost - OutlinedCost; 166*acc15e12SJessica Paquette } 167*acc15e12SJessica Paquette 1684cf187b5SJessica Paquette OutlinedFunction(unsigned Name, unsigned OccurrenceCount, 169*acc15e12SJessica Paquette const std::vector<unsigned> &Sequence, 1704cf187b5SJessica Paquette TargetInstrInfo::MachineOutlinerInfo &MInfo) 171acffa28cSJessica Paquette : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence), 172*acc15e12SJessica Paquette MInfo(MInfo) {} 173acffa28cSJessica Paquette }; 174acffa28cSJessica Paquette 175596f483aSJessica Paquette /// Represents an undefined index in the suffix tree. 1764cf187b5SJessica Paquette const unsigned EmptyIdx = -1; 177596f483aSJessica Paquette 178596f483aSJessica Paquette /// A node in a suffix tree which represents a substring or suffix. 179596f483aSJessica Paquette /// 180596f483aSJessica Paquette /// Each node has either no children or at least two children, with the root 181596f483aSJessica Paquette /// being a exception in the empty tree. 182596f483aSJessica Paquette /// 183596f483aSJessica Paquette /// Children are represented as a map between unsigned integers and nodes. If 184596f483aSJessica Paquette /// a node N has a child M on unsigned integer k, then the mapping represented 185596f483aSJessica Paquette /// by N is a proper prefix of the mapping represented by M. Note that this, 186596f483aSJessica Paquette /// although similar to a trie is somewhat different: each node stores a full 187596f483aSJessica Paquette /// substring of the full mapping rather than a single character state. 188596f483aSJessica Paquette /// 189596f483aSJessica Paquette /// Each internal node contains a pointer to the internal node representing 190596f483aSJessica Paquette /// the same string, but with the first character chopped off. This is stored 191596f483aSJessica Paquette /// in \p Link. Each leaf node stores the start index of its respective 192596f483aSJessica Paquette /// suffix in \p SuffixIdx. 193596f483aSJessica Paquette struct SuffixTreeNode { 194596f483aSJessica Paquette 195596f483aSJessica Paquette /// The children of this node. 196596f483aSJessica Paquette /// 197596f483aSJessica Paquette /// A child existing on an unsigned integer implies that from the mapping 198596f483aSJessica Paquette /// represented by the current node, there is a way to reach another 199596f483aSJessica Paquette /// mapping by tacking that character on the end of the current string. 200596f483aSJessica Paquette DenseMap<unsigned, SuffixTreeNode *> Children; 201596f483aSJessica Paquette 202596f483aSJessica Paquette /// A flag set to false if the node has been pruned from the tree. 203596f483aSJessica Paquette bool IsInTree = true; 204596f483aSJessica Paquette 205596f483aSJessica Paquette /// The start index of this node's substring in the main string. 2064cf187b5SJessica Paquette unsigned StartIdx = EmptyIdx; 207596f483aSJessica Paquette 208596f483aSJessica Paquette /// The end index of this node's substring in the main string. 209596f483aSJessica Paquette /// 210596f483aSJessica Paquette /// Every leaf node must have its \p EndIdx incremented at the end of every 211596f483aSJessica Paquette /// step in the construction algorithm. To avoid having to update O(N) 212596f483aSJessica Paquette /// nodes individually at the end of every step, the end index is stored 213596f483aSJessica Paquette /// as a pointer. 2144cf187b5SJessica Paquette unsigned *EndIdx = nullptr; 215596f483aSJessica Paquette 216596f483aSJessica Paquette /// For leaves, the start index of the suffix represented by this node. 217596f483aSJessica Paquette /// 218596f483aSJessica Paquette /// For all other nodes, this is ignored. 2194cf187b5SJessica Paquette unsigned SuffixIdx = EmptyIdx; 220596f483aSJessica Paquette 221596f483aSJessica Paquette /// \brief For internal nodes, a pointer to the internal node representing 222596f483aSJessica Paquette /// the same sequence with the first character chopped off. 223596f483aSJessica Paquette /// 2244602c343SJessica Paquette /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 225596f483aSJessica Paquette /// Ukkonen's algorithm does to achieve linear-time construction is 226596f483aSJessica Paquette /// keep track of which node the next insert should be at. This makes each 227596f483aSJessica Paquette /// insert O(1), and there are a total of O(N) inserts. The suffix link 228596f483aSJessica Paquette /// helps with inserting children of internal nodes. 229596f483aSJessica Paquette /// 230596f483aSJessica Paquette /// Say we add a child to an internal node with associated mapping S. The 231596f483aSJessica Paquette /// next insertion must be at the node representing S - its first character. 232596f483aSJessica Paquette /// This is given by the way that we iteratively build the tree in Ukkonen's 233596f483aSJessica Paquette /// algorithm. The main idea is to look at the suffixes of each prefix in the 234596f483aSJessica Paquette /// string, starting with the longest suffix of the prefix, and ending with 235596f483aSJessica Paquette /// the shortest. Therefore, if we keep pointers between such nodes, we can 236596f483aSJessica Paquette /// move to the next insertion point in O(1) time. If we don't, then we'd 237596f483aSJessica Paquette /// have to query from the root, which takes O(N) time. This would make the 238596f483aSJessica Paquette /// construction algorithm O(N^2) rather than O(N). 239596f483aSJessica Paquette SuffixTreeNode *Link = nullptr; 240596f483aSJessica Paquette 241596f483aSJessica Paquette /// The parent of this node. Every node except for the root has a parent. 242596f483aSJessica Paquette SuffixTreeNode *Parent = nullptr; 243596f483aSJessica Paquette 244596f483aSJessica Paquette /// The number of times this node's string appears in the tree. 245596f483aSJessica Paquette /// 246596f483aSJessica Paquette /// This is equal to the number of leaf children of the string. It represents 247596f483aSJessica Paquette /// the number of suffixes that the node's string is a prefix of. 2484cf187b5SJessica Paquette unsigned OccurrenceCount = 0; 249596f483aSJessica Paquette 250acffa28cSJessica Paquette /// The length of the string formed by concatenating the edge labels from the 251acffa28cSJessica Paquette /// root to this node. 2524cf187b5SJessica Paquette unsigned ConcatLen = 0; 253acffa28cSJessica Paquette 254596f483aSJessica Paquette /// Returns true if this node is a leaf. 255596f483aSJessica Paquette bool isLeaf() const { return SuffixIdx != EmptyIdx; } 256596f483aSJessica Paquette 257596f483aSJessica Paquette /// Returns true if this node is the root of its owning \p SuffixTree. 258596f483aSJessica Paquette bool isRoot() const { return StartIdx == EmptyIdx; } 259596f483aSJessica Paquette 260596f483aSJessica Paquette /// Return the number of elements in the substring associated with this node. 261596f483aSJessica Paquette size_t size() const { 262596f483aSJessica Paquette 263596f483aSJessica Paquette // Is it the root? If so, it's the empty string so return 0. 264596f483aSJessica Paquette if (isRoot()) 265596f483aSJessica Paquette return 0; 266596f483aSJessica Paquette 267596f483aSJessica Paquette assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 268596f483aSJessica Paquette 269596f483aSJessica Paquette // Size = the number of elements in the string. 270596f483aSJessica Paquette // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 271596f483aSJessica Paquette return *EndIdx - StartIdx + 1; 272596f483aSJessica Paquette } 273596f483aSJessica Paquette 2744cf187b5SJessica Paquette SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link, 275596f483aSJessica Paquette SuffixTreeNode *Parent) 276596f483aSJessica Paquette : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} 277596f483aSJessica Paquette 278596f483aSJessica Paquette SuffixTreeNode() {} 279596f483aSJessica Paquette }; 280596f483aSJessica Paquette 281596f483aSJessica Paquette /// A data structure for fast substring queries. 282596f483aSJessica Paquette /// 283596f483aSJessica Paquette /// Suffix trees represent the suffixes of their input strings in their leaves. 284596f483aSJessica Paquette /// A suffix tree is a type of compressed trie structure where each node 285596f483aSJessica Paquette /// represents an entire substring rather than a single character. Each leaf 286596f483aSJessica Paquette /// of the tree is a suffix. 287596f483aSJessica Paquette /// 288596f483aSJessica Paquette /// A suffix tree can be seen as a type of state machine where each state is a 289596f483aSJessica Paquette /// substring of the full string. The tree is structured so that, for a string 290596f483aSJessica Paquette /// of length N, there are exactly N leaves in the tree. This structure allows 291596f483aSJessica Paquette /// us to quickly find repeated substrings of the input string. 292596f483aSJessica Paquette /// 293596f483aSJessica Paquette /// In this implementation, a "string" is a vector of unsigned integers. 294596f483aSJessica Paquette /// These integers may result from hashing some data type. A suffix tree can 295596f483aSJessica Paquette /// contain 1 or many strings, which can then be queried as one large string. 296596f483aSJessica Paquette /// 297596f483aSJessica Paquette /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 298596f483aSJessica Paquette /// suffix tree construction. Ukkonen's algorithm is explained in more detail 299596f483aSJessica Paquette /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 300596f483aSJessica Paquette /// paper is available at 301596f483aSJessica Paquette /// 302596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 303596f483aSJessica Paquette class SuffixTree { 30478681be2SJessica Paquette public: 30578681be2SJessica Paquette /// Stores each leaf node in the tree. 30678681be2SJessica Paquette /// 30778681be2SJessica Paquette /// This is used for finding outlining candidates. 30878681be2SJessica Paquette std::vector<SuffixTreeNode *> LeafVector; 30978681be2SJessica Paquette 310596f483aSJessica Paquette /// Each element is an integer representing an instruction in the module. 311596f483aSJessica Paquette ArrayRef<unsigned> Str; 312596f483aSJessica Paquette 31378681be2SJessica Paquette private: 314596f483aSJessica Paquette /// Maintains each node in the tree. 315d4cb9c6dSJessica Paquette SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 316596f483aSJessica Paquette 317596f483aSJessica Paquette /// The root of the suffix tree. 318596f483aSJessica Paquette /// 319596f483aSJessica Paquette /// The root represents the empty string. It is maintained by the 320596f483aSJessica Paquette /// \p NodeAllocator like every other node in the tree. 321596f483aSJessica Paquette SuffixTreeNode *Root = nullptr; 322596f483aSJessica Paquette 323596f483aSJessica Paquette /// Maintains the end indices of the internal nodes in the tree. 324596f483aSJessica Paquette /// 325596f483aSJessica Paquette /// Each internal node is guaranteed to never have its end index change 326596f483aSJessica Paquette /// during the construction algorithm; however, leaves must be updated at 327596f483aSJessica Paquette /// every step. Therefore, we need to store leaf end indices by reference 328596f483aSJessica Paquette /// to avoid updating O(N) leaves at every step of construction. Thus, 329596f483aSJessica Paquette /// every internal node must be allocated its own end index. 330596f483aSJessica Paquette BumpPtrAllocator InternalEndIdxAllocator; 331596f483aSJessica Paquette 332596f483aSJessica Paquette /// The end index of each leaf in the tree. 3334cf187b5SJessica Paquette unsigned LeafEndIdx = -1; 334596f483aSJessica Paquette 335596f483aSJessica Paquette /// \brief Helper struct which keeps track of the next insertion point in 336596f483aSJessica Paquette /// Ukkonen's algorithm. 337596f483aSJessica Paquette struct ActiveState { 338596f483aSJessica Paquette /// The next node to insert at. 339596f483aSJessica Paquette SuffixTreeNode *Node; 340596f483aSJessica Paquette 341596f483aSJessica Paquette /// The index of the first character in the substring currently being added. 3424cf187b5SJessica Paquette unsigned Idx = EmptyIdx; 343596f483aSJessica Paquette 344596f483aSJessica Paquette /// The length of the substring we have to add at the current step. 3454cf187b5SJessica Paquette unsigned Len = 0; 346596f483aSJessica Paquette }; 347596f483aSJessica Paquette 348596f483aSJessica Paquette /// \brief The point the next insertion will take place at in the 349596f483aSJessica Paquette /// construction algorithm. 350596f483aSJessica Paquette ActiveState Active; 351596f483aSJessica Paquette 352596f483aSJessica Paquette /// Allocate a leaf node and add it to the tree. 353596f483aSJessica Paquette /// 354596f483aSJessica Paquette /// \param Parent The parent of this node. 355596f483aSJessica Paquette /// \param StartIdx The start index of this node's associated string. 356596f483aSJessica Paquette /// \param Edge The label on the edge leaving \p Parent to this node. 357596f483aSJessica Paquette /// 358596f483aSJessica Paquette /// \returns A pointer to the allocated leaf node. 3594cf187b5SJessica Paquette SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, 360596f483aSJessica Paquette unsigned Edge) { 361596f483aSJessica Paquette 362596f483aSJessica Paquette assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 363596f483aSJessica Paquette 36478681be2SJessica Paquette SuffixTreeNode *N = new (NodeAllocator.Allocate()) 36578681be2SJessica Paquette SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent); 366596f483aSJessica Paquette Parent.Children[Edge] = N; 367596f483aSJessica Paquette 368596f483aSJessica Paquette return N; 369596f483aSJessica Paquette } 370596f483aSJessica Paquette 371596f483aSJessica Paquette /// Allocate an internal node and add it to the tree. 372596f483aSJessica Paquette /// 373596f483aSJessica Paquette /// \param Parent The parent of this node. Only null when allocating the root. 374596f483aSJessica Paquette /// \param StartIdx The start index of this node's associated string. 375596f483aSJessica Paquette /// \param EndIdx The end index of this node's associated string. 376596f483aSJessica Paquette /// \param Edge The label on the edge leaving \p Parent to this node. 377596f483aSJessica Paquette /// 378596f483aSJessica Paquette /// \returns A pointer to the allocated internal node. 3794cf187b5SJessica Paquette SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, 3804cf187b5SJessica Paquette unsigned EndIdx, unsigned Edge) { 381596f483aSJessica Paquette 382596f483aSJessica Paquette assert(StartIdx <= EndIdx && "String can't start after it ends!"); 383596f483aSJessica Paquette assert(!(!Parent && StartIdx != EmptyIdx) && 384596f483aSJessica Paquette "Non-root internal nodes must have parents!"); 385596f483aSJessica Paquette 3864cf187b5SJessica Paquette unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); 38778681be2SJessica Paquette SuffixTreeNode *N = new (NodeAllocator.Allocate()) 38878681be2SJessica Paquette SuffixTreeNode(StartIdx, E, Root, Parent); 389596f483aSJessica Paquette if (Parent) 390596f483aSJessica Paquette Parent->Children[Edge] = N; 391596f483aSJessica Paquette 392596f483aSJessica Paquette return N; 393596f483aSJessica Paquette } 394596f483aSJessica Paquette 395596f483aSJessica Paquette /// \brief Set the suffix indices of the leaves to the start indices of their 396596f483aSJessica Paquette /// respective suffixes. Also stores each leaf in \p LeafVector at its 397596f483aSJessica Paquette /// respective suffix index. 398596f483aSJessica Paquette /// 399596f483aSJessica Paquette /// \param[in] CurrNode The node currently being visited. 400596f483aSJessica Paquette /// \param CurrIdx The current index of the string being visited. 4014cf187b5SJessica Paquette void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) { 402596f483aSJessica Paquette 403596f483aSJessica Paquette bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 404596f483aSJessica Paquette 405acffa28cSJessica Paquette // Store the length of the concatenation of all strings from the root to 406acffa28cSJessica Paquette // this node. 407acffa28cSJessica Paquette if (!CurrNode.isRoot()) { 408acffa28cSJessica Paquette if (CurrNode.ConcatLen == 0) 409acffa28cSJessica Paquette CurrNode.ConcatLen = CurrNode.size(); 410acffa28cSJessica Paquette 411acffa28cSJessica Paquette if (CurrNode.Parent) 412acffa28cSJessica Paquette CurrNode.ConcatLen += CurrNode.Parent->ConcatLen; 413acffa28cSJessica Paquette } 414acffa28cSJessica Paquette 415596f483aSJessica Paquette // Traverse the tree depth-first. 416596f483aSJessica Paquette for (auto &ChildPair : CurrNode.Children) { 417596f483aSJessica Paquette assert(ChildPair.second && "Node had a null child!"); 41878681be2SJessica Paquette setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size()); 419596f483aSJessica Paquette } 420596f483aSJessica Paquette 421596f483aSJessica Paquette // Is this node a leaf? 422596f483aSJessica Paquette if (IsLeaf) { 423596f483aSJessica Paquette // If yes, give it a suffix index and bump its parent's occurrence count. 424596f483aSJessica Paquette CurrNode.SuffixIdx = Str.size() - CurrIdx; 425596f483aSJessica Paquette assert(CurrNode.Parent && "CurrNode had no parent!"); 426596f483aSJessica Paquette CurrNode.Parent->OccurrenceCount++; 427596f483aSJessica Paquette 428596f483aSJessica Paquette // Store the leaf in the leaf vector for pruning later. 429596f483aSJessica Paquette LeafVector[CurrNode.SuffixIdx] = &CurrNode; 430596f483aSJessica Paquette } 431596f483aSJessica Paquette } 432596f483aSJessica Paquette 433596f483aSJessica Paquette /// \brief Construct the suffix tree for the prefix of the input ending at 434596f483aSJessica Paquette /// \p EndIdx. 435596f483aSJessica Paquette /// 436596f483aSJessica Paquette /// Used to construct the full suffix tree iteratively. At the end of each 437596f483aSJessica Paquette /// step, the constructed suffix tree is either a valid suffix tree, or a 438596f483aSJessica Paquette /// suffix tree with implicit suffixes. At the end of the final step, the 439596f483aSJessica Paquette /// suffix tree is a valid tree. 440596f483aSJessica Paquette /// 441596f483aSJessica Paquette /// \param EndIdx The end index of the current prefix in the main string. 442596f483aSJessica Paquette /// \param SuffixesToAdd The number of suffixes that must be added 443596f483aSJessica Paquette /// to complete the suffix tree at the current phase. 444596f483aSJessica Paquette /// 445596f483aSJessica Paquette /// \returns The number of suffixes that have not been added at the end of 446596f483aSJessica Paquette /// this step. 4474cf187b5SJessica Paquette unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { 448596f483aSJessica Paquette SuffixTreeNode *NeedsLink = nullptr; 449596f483aSJessica Paquette 450596f483aSJessica Paquette while (SuffixesToAdd > 0) { 451596f483aSJessica Paquette 452596f483aSJessica Paquette // Are we waiting to add anything other than just the last character? 453596f483aSJessica Paquette if (Active.Len == 0) { 454596f483aSJessica Paquette // If not, then say the active index is the end index. 455596f483aSJessica Paquette Active.Idx = EndIdx; 456596f483aSJessica Paquette } 457596f483aSJessica Paquette 458596f483aSJessica Paquette assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 459596f483aSJessica Paquette 460596f483aSJessica Paquette // The first character in the current substring we're looking at. 461596f483aSJessica Paquette unsigned FirstChar = Str[Active.Idx]; 462596f483aSJessica Paquette 463596f483aSJessica Paquette // Have we inserted anything starting with FirstChar at the current node? 464596f483aSJessica Paquette if (Active.Node->Children.count(FirstChar) == 0) { 465596f483aSJessica Paquette // If not, then we can just insert a leaf and move too the next step. 466596f483aSJessica Paquette insertLeaf(*Active.Node, EndIdx, FirstChar); 467596f483aSJessica Paquette 468596f483aSJessica Paquette // The active node is an internal node, and we visited it, so it must 469596f483aSJessica Paquette // need a link if it doesn't have one. 470596f483aSJessica Paquette if (NeedsLink) { 471596f483aSJessica Paquette NeedsLink->Link = Active.Node; 472596f483aSJessica Paquette NeedsLink = nullptr; 473596f483aSJessica Paquette } 474596f483aSJessica Paquette } else { 475596f483aSJessica Paquette // There's a match with FirstChar, so look for the point in the tree to 476596f483aSJessica Paquette // insert a new node. 477596f483aSJessica Paquette SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 478596f483aSJessica Paquette 4794cf187b5SJessica Paquette unsigned SubstringLen = NextNode->size(); 480596f483aSJessica Paquette 481596f483aSJessica Paquette // Is the current suffix we're trying to insert longer than the size of 482596f483aSJessica Paquette // the child we want to move to? 483596f483aSJessica Paquette if (Active.Len >= SubstringLen) { 484596f483aSJessica Paquette // If yes, then consume the characters we've seen and move to the next 485596f483aSJessica Paquette // node. 486596f483aSJessica Paquette Active.Idx += SubstringLen; 487596f483aSJessica Paquette Active.Len -= SubstringLen; 488596f483aSJessica Paquette Active.Node = NextNode; 489596f483aSJessica Paquette continue; 490596f483aSJessica Paquette } 491596f483aSJessica Paquette 492596f483aSJessica Paquette // Otherwise, the suffix we're trying to insert must be contained in the 493596f483aSJessica Paquette // next node we want to move to. 494596f483aSJessica Paquette unsigned LastChar = Str[EndIdx]; 495596f483aSJessica Paquette 496596f483aSJessica Paquette // Is the string we're trying to insert a substring of the next node? 497596f483aSJessica Paquette if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 498596f483aSJessica Paquette // If yes, then we're done for this step. Remember our insertion point 499596f483aSJessica Paquette // and move to the next end index. At this point, we have an implicit 500596f483aSJessica Paquette // suffix tree. 501596f483aSJessica Paquette if (NeedsLink && !Active.Node->isRoot()) { 502596f483aSJessica Paquette NeedsLink->Link = Active.Node; 503596f483aSJessica Paquette NeedsLink = nullptr; 504596f483aSJessica Paquette } 505596f483aSJessica Paquette 506596f483aSJessica Paquette Active.Len++; 507596f483aSJessica Paquette break; 508596f483aSJessica Paquette } 509596f483aSJessica Paquette 510596f483aSJessica Paquette // The string we're trying to insert isn't a substring of the next node, 511596f483aSJessica Paquette // but matches up to a point. Split the node. 512596f483aSJessica Paquette // 513596f483aSJessica Paquette // For example, say we ended our search at a node n and we're trying to 514596f483aSJessica Paquette // insert ABD. Then we'll create a new node s for AB, reduce n to just 515596f483aSJessica Paquette // representing C, and insert a new leaf node l to represent d. This 516596f483aSJessica Paquette // allows us to ensure that if n was a leaf, it remains a leaf. 517596f483aSJessica Paquette // 518596f483aSJessica Paquette // | ABC ---split---> | AB 519596f483aSJessica Paquette // n s 520596f483aSJessica Paquette // C / \ D 521596f483aSJessica Paquette // n l 522596f483aSJessica Paquette 523596f483aSJessica Paquette // The node s from the diagram 524596f483aSJessica Paquette SuffixTreeNode *SplitNode = 52578681be2SJessica Paquette insertInternalNode(Active.Node, NextNode->StartIdx, 52678681be2SJessica Paquette NextNode->StartIdx + Active.Len - 1, FirstChar); 527596f483aSJessica Paquette 528596f483aSJessica Paquette // Insert the new node representing the new substring into the tree as 529596f483aSJessica Paquette // a child of the split node. This is the node l from the diagram. 530596f483aSJessica Paquette insertLeaf(*SplitNode, EndIdx, LastChar); 531596f483aSJessica Paquette 532596f483aSJessica Paquette // Make the old node a child of the split node and update its start 533596f483aSJessica Paquette // index. This is the node n from the diagram. 534596f483aSJessica Paquette NextNode->StartIdx += Active.Len; 535596f483aSJessica Paquette NextNode->Parent = SplitNode; 536596f483aSJessica Paquette SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 537596f483aSJessica Paquette 538596f483aSJessica Paquette // SplitNode is an internal node, update the suffix link. 539596f483aSJessica Paquette if (NeedsLink) 540596f483aSJessica Paquette NeedsLink->Link = SplitNode; 541596f483aSJessica Paquette 542596f483aSJessica Paquette NeedsLink = SplitNode; 543596f483aSJessica Paquette } 544596f483aSJessica Paquette 545596f483aSJessica Paquette // We've added something new to the tree, so there's one less suffix to 546596f483aSJessica Paquette // add. 547596f483aSJessica Paquette SuffixesToAdd--; 548596f483aSJessica Paquette 549596f483aSJessica Paquette if (Active.Node->isRoot()) { 550596f483aSJessica Paquette if (Active.Len > 0) { 551596f483aSJessica Paquette Active.Len--; 552596f483aSJessica Paquette Active.Idx = EndIdx - SuffixesToAdd + 1; 553596f483aSJessica Paquette } 554596f483aSJessica Paquette } else { 555596f483aSJessica Paquette // Start the next phase at the next smallest suffix. 556596f483aSJessica Paquette Active.Node = Active.Node->Link; 557596f483aSJessica Paquette } 558596f483aSJessica Paquette } 559596f483aSJessica Paquette 560596f483aSJessica Paquette return SuffixesToAdd; 561596f483aSJessica Paquette } 562596f483aSJessica Paquette 563596f483aSJessica Paquette public: 564596f483aSJessica Paquette /// Construct a suffix tree from a sequence of unsigned integers. 565596f483aSJessica Paquette /// 566596f483aSJessica Paquette /// \param Str The string to construct the suffix tree for. 567596f483aSJessica Paquette SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 568596f483aSJessica Paquette Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 569596f483aSJessica Paquette Root->IsInTree = true; 570596f483aSJessica Paquette Active.Node = Root; 571596f483aSJessica Paquette LeafVector = std::vector<SuffixTreeNode *>(Str.size()); 572596f483aSJessica Paquette 573596f483aSJessica Paquette // Keep track of the number of suffixes we have to add of the current 574596f483aSJessica Paquette // prefix. 5754cf187b5SJessica Paquette unsigned SuffixesToAdd = 0; 576596f483aSJessica Paquette Active.Node = Root; 577596f483aSJessica Paquette 578596f483aSJessica Paquette // Construct the suffix tree iteratively on each prefix of the string. 579596f483aSJessica Paquette // PfxEndIdx is the end index of the current prefix. 580596f483aSJessica Paquette // End is one past the last element in the string. 5814cf187b5SJessica Paquette for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; 5824cf187b5SJessica Paquette PfxEndIdx++) { 583596f483aSJessica Paquette SuffixesToAdd++; 584596f483aSJessica Paquette LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 585596f483aSJessica Paquette SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 586596f483aSJessica Paquette } 587596f483aSJessica Paquette 588596f483aSJessica Paquette // Set the suffix indices of each leaf. 589596f483aSJessica Paquette assert(Root && "Root node can't be nullptr!"); 590596f483aSJessica Paquette setSuffixIndices(*Root, 0); 591596f483aSJessica Paquette } 592596f483aSJessica Paquette }; 593596f483aSJessica Paquette 594596f483aSJessica Paquette /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings. 595596f483aSJessica Paquette struct InstructionMapper { 596596f483aSJessica Paquette 597596f483aSJessica Paquette /// \brief The next available integer to assign to a \p MachineInstr that 598596f483aSJessica Paquette /// cannot be outlined. 599596f483aSJessica Paquette /// 600596f483aSJessica Paquette /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 601596f483aSJessica Paquette unsigned IllegalInstrNumber = -3; 602596f483aSJessica Paquette 603596f483aSJessica Paquette /// \brief The next available integer to assign to a \p MachineInstr that can 604596f483aSJessica Paquette /// be outlined. 605596f483aSJessica Paquette unsigned LegalInstrNumber = 0; 606596f483aSJessica Paquette 607596f483aSJessica Paquette /// Correspondence from \p MachineInstrs to unsigned integers. 608596f483aSJessica Paquette DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 609596f483aSJessica Paquette InstructionIntegerMap; 610596f483aSJessica Paquette 611596f483aSJessica Paquette /// Corresponcence from unsigned integers to \p MachineInstrs. 612596f483aSJessica Paquette /// Inverse of \p InstructionIntegerMap. 613596f483aSJessica Paquette DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; 614596f483aSJessica Paquette 615596f483aSJessica Paquette /// The vector of unsigned integers that the module is mapped to. 616596f483aSJessica Paquette std::vector<unsigned> UnsignedVec; 617596f483aSJessica Paquette 618596f483aSJessica Paquette /// \brief Stores the location of the instruction associated with the integer 619596f483aSJessica Paquette /// at index i in \p UnsignedVec for each index i. 620596f483aSJessica Paquette std::vector<MachineBasicBlock::iterator> InstrList; 621596f483aSJessica Paquette 622596f483aSJessica Paquette /// \brief Maps \p *It to a legal integer. 623596f483aSJessica Paquette /// 624596f483aSJessica Paquette /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, 625596f483aSJessica Paquette /// \p IntegerInstructionMap, and \p LegalInstrNumber. 626596f483aSJessica Paquette /// 627596f483aSJessica Paquette /// \returns The integer that \p *It was mapped to. 628596f483aSJessica Paquette unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { 629596f483aSJessica Paquette 630596f483aSJessica Paquette // Get the integer for this instruction or give it the current 631596f483aSJessica Paquette // LegalInstrNumber. 632596f483aSJessica Paquette InstrList.push_back(It); 633596f483aSJessica Paquette MachineInstr &MI = *It; 634596f483aSJessica Paquette bool WasInserted; 635596f483aSJessica Paquette DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 636596f483aSJessica Paquette ResultIt; 637596f483aSJessica Paquette std::tie(ResultIt, WasInserted) = 638596f483aSJessica Paquette InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 639596f483aSJessica Paquette unsigned MINumber = ResultIt->second; 640596f483aSJessica Paquette 641596f483aSJessica Paquette // There was an insertion. 642596f483aSJessica Paquette if (WasInserted) { 643596f483aSJessica Paquette LegalInstrNumber++; 644596f483aSJessica Paquette IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); 645596f483aSJessica Paquette } 646596f483aSJessica Paquette 647596f483aSJessica Paquette UnsignedVec.push_back(MINumber); 648596f483aSJessica Paquette 649596f483aSJessica Paquette // Make sure we don't overflow or use any integers reserved by the DenseMap. 650596f483aSJessica Paquette if (LegalInstrNumber >= IllegalInstrNumber) 651596f483aSJessica Paquette report_fatal_error("Instruction mapping overflow!"); 652596f483aSJessica Paquette 65378681be2SJessica Paquette assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 65478681be2SJessica Paquette "Tried to assign DenseMap tombstone or empty key to instruction."); 65578681be2SJessica Paquette assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 65678681be2SJessica Paquette "Tried to assign DenseMap tombstone or empty key to instruction."); 657596f483aSJessica Paquette 658596f483aSJessica Paquette return MINumber; 659596f483aSJessica Paquette } 660596f483aSJessica Paquette 661596f483aSJessica Paquette /// Maps \p *It to an illegal integer. 662596f483aSJessica Paquette /// 663596f483aSJessica Paquette /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. 664596f483aSJessica Paquette /// 665596f483aSJessica Paquette /// \returns The integer that \p *It was mapped to. 666596f483aSJessica Paquette unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { 667596f483aSJessica Paquette unsigned MINumber = IllegalInstrNumber; 668596f483aSJessica Paquette 669596f483aSJessica Paquette InstrList.push_back(It); 670596f483aSJessica Paquette UnsignedVec.push_back(IllegalInstrNumber); 671596f483aSJessica Paquette IllegalInstrNumber--; 672596f483aSJessica Paquette 673596f483aSJessica Paquette assert(LegalInstrNumber < IllegalInstrNumber && 674596f483aSJessica Paquette "Instruction mapping overflow!"); 675596f483aSJessica Paquette 67678681be2SJessica Paquette assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 677596f483aSJessica Paquette "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 678596f483aSJessica Paquette 67978681be2SJessica Paquette assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 680596f483aSJessica Paquette "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 681596f483aSJessica Paquette 682596f483aSJessica Paquette return MINumber; 683596f483aSJessica Paquette } 684596f483aSJessica Paquette 685596f483aSJessica Paquette /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 686596f483aSJessica Paquette /// and appends it to \p UnsignedVec and \p InstrList. 687596f483aSJessica Paquette /// 688596f483aSJessica Paquette /// Two instructions are assigned the same integer if they are identical. 689596f483aSJessica Paquette /// If an instruction is deemed unsafe to outline, then it will be assigned an 690596f483aSJessica Paquette /// unique integer. The resulting mapping is placed into a suffix tree and 691596f483aSJessica Paquette /// queried for candidates. 692596f483aSJessica Paquette /// 693596f483aSJessica Paquette /// \param MBB The \p MachineBasicBlock to be translated into integers. 694596f483aSJessica Paquette /// \param TRI \p TargetRegisterInfo for the module. 695596f483aSJessica Paquette /// \param TII \p TargetInstrInfo for the module. 696596f483aSJessica Paquette void convertToUnsignedVec(MachineBasicBlock &MBB, 697596f483aSJessica Paquette const TargetRegisterInfo &TRI, 698596f483aSJessica Paquette const TargetInstrInfo &TII) { 699596f483aSJessica Paquette for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et; 700596f483aSJessica Paquette It++) { 701596f483aSJessica Paquette 702596f483aSJessica Paquette // Keep track of where this instruction is in the module. 703596f483aSJessica Paquette switch (TII.getOutliningType(*It)) { 704596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Illegal: 705596f483aSJessica Paquette mapToIllegalUnsigned(It); 706596f483aSJessica Paquette break; 707596f483aSJessica Paquette 708596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Legal: 709596f483aSJessica Paquette mapToLegalUnsigned(It); 710596f483aSJessica Paquette break; 711596f483aSJessica Paquette 712596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Invisible: 713596f483aSJessica Paquette break; 714596f483aSJessica Paquette } 715596f483aSJessica Paquette } 716596f483aSJessica Paquette 717596f483aSJessica Paquette // After we're done every insertion, uniquely terminate this part of the 718596f483aSJessica Paquette // "string". This makes sure we won't match across basic block or function 719596f483aSJessica Paquette // boundaries since the "end" is encoded uniquely and thus appears in no 720596f483aSJessica Paquette // repeated substring. 721596f483aSJessica Paquette InstrList.push_back(MBB.end()); 722596f483aSJessica Paquette UnsignedVec.push_back(IllegalInstrNumber); 723596f483aSJessica Paquette IllegalInstrNumber--; 724596f483aSJessica Paquette } 725596f483aSJessica Paquette 726596f483aSJessica Paquette InstructionMapper() { 727596f483aSJessica Paquette // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 728596f483aSJessica Paquette // changed. 729596f483aSJessica Paquette assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 730596f483aSJessica Paquette "DenseMapInfo<unsigned>'s empty key isn't -1!"); 731596f483aSJessica Paquette assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 732596f483aSJessica Paquette "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 733596f483aSJessica Paquette } 734596f483aSJessica Paquette }; 735596f483aSJessica Paquette 736596f483aSJessica Paquette /// \brief An interprocedural pass which finds repeated sequences of 737596f483aSJessica Paquette /// instructions and replaces them with calls to functions. 738596f483aSJessica Paquette /// 739596f483aSJessica Paquette /// Each instruction is mapped to an unsigned integer and placed in a string. 740596f483aSJessica Paquette /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 741596f483aSJessica Paquette /// is then repeatedly queried for repeated sequences of instructions. Each 742596f483aSJessica Paquette /// non-overlapping repeated sequence is then placed in its own 743596f483aSJessica Paquette /// \p MachineFunction and each instance is then replaced with a call to that 744596f483aSJessica Paquette /// function. 745596f483aSJessica Paquette struct MachineOutliner : public ModulePass { 746596f483aSJessica Paquette 747596f483aSJessica Paquette static char ID; 748596f483aSJessica Paquette 749596f483aSJessica Paquette StringRef getPassName() const override { return "Machine Outliner"; } 750596f483aSJessica Paquette 751596f483aSJessica Paquette void getAnalysisUsage(AnalysisUsage &AU) const override { 752596f483aSJessica Paquette AU.addRequired<MachineModuleInfo>(); 753596f483aSJessica Paquette AU.addPreserved<MachineModuleInfo>(); 754596f483aSJessica Paquette AU.setPreservesAll(); 755596f483aSJessica Paquette ModulePass::getAnalysisUsage(AU); 756596f483aSJessica Paquette } 757596f483aSJessica Paquette 758596f483aSJessica Paquette MachineOutliner() : ModulePass(ID) { 759596f483aSJessica Paquette initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 760596f483aSJessica Paquette } 761596f483aSJessica Paquette 76278681be2SJessica Paquette /// Find all repeated substrings that satisfy the outlining cost model. 76378681be2SJessica Paquette /// 76478681be2SJessica Paquette /// If a substring appears at least twice, then it must be represented by 76578681be2SJessica Paquette /// an internal node which appears in at least two suffixes. Each suffix is 76678681be2SJessica Paquette /// represented by a leaf node. To do this, we visit each internal node in 76778681be2SJessica Paquette /// the tree, using the leaf children of each internal node. If an internal 76878681be2SJessica Paquette /// node represents a beneficial substring, then we use each of its leaf 76978681be2SJessica Paquette /// children to find the locations of its substring. 77078681be2SJessica Paquette /// 77178681be2SJessica Paquette /// \param ST A suffix tree to query. 77278681be2SJessica Paquette /// \param TII TargetInstrInfo for the target. 77378681be2SJessica Paquette /// \param Mapper Contains outlining mapping information. 77478681be2SJessica Paquette /// \param[out] CandidateList Filled with candidates representing each 77578681be2SJessica Paquette /// beneficial substring. 77678681be2SJessica Paquette /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each 77778681be2SJessica Paquette /// type of candidate. 77878681be2SJessica Paquette /// 77978681be2SJessica Paquette /// \returns The length of the longest candidate found. 7804cf187b5SJessica Paquette unsigned findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 78178681be2SJessica Paquette InstructionMapper &Mapper, 78278681be2SJessica Paquette std::vector<Candidate> &CandidateList, 78378681be2SJessica Paquette std::vector<OutlinedFunction> &FunctionList); 78478681be2SJessica Paquette 785596f483aSJessica Paquette /// \brief Replace the sequences of instructions represented by the 786596f483aSJessica Paquette /// \p Candidates in \p CandidateList with calls to \p MachineFunctions 787596f483aSJessica Paquette /// described in \p FunctionList. 788596f483aSJessica Paquette /// 789596f483aSJessica Paquette /// \param M The module we are outlining from. 790596f483aSJessica Paquette /// \param CandidateList A list of candidates to be outlined. 791596f483aSJessica Paquette /// \param FunctionList A list of functions to be inserted into the module. 792596f483aSJessica Paquette /// \param Mapper Contains the instruction mappings for the module. 793596f483aSJessica Paquette bool outline(Module &M, const ArrayRef<Candidate> &CandidateList, 794596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 795596f483aSJessica Paquette InstructionMapper &Mapper); 796596f483aSJessica Paquette 797596f483aSJessica Paquette /// Creates a function for \p OF and inserts it into the module. 798596f483aSJessica Paquette MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, 799596f483aSJessica Paquette InstructionMapper &Mapper); 800596f483aSJessica Paquette 801596f483aSJessica Paquette /// Find potential outlining candidates and store them in \p CandidateList. 802596f483aSJessica Paquette /// 803596f483aSJessica Paquette /// For each type of potential candidate, also build an \p OutlinedFunction 804596f483aSJessica Paquette /// struct containing the information to build the function for that 805596f483aSJessica Paquette /// candidate. 806596f483aSJessica Paquette /// 807596f483aSJessica Paquette /// \param[out] CandidateList Filled with outlining candidates for the module. 808596f483aSJessica Paquette /// \param[out] FunctionList Filled with functions corresponding to each type 809596f483aSJessica Paquette /// of \p Candidate. 810596f483aSJessica Paquette /// \param ST The suffix tree for the module. 811596f483aSJessica Paquette /// \param TII TargetInstrInfo for the module. 812596f483aSJessica Paquette /// 813596f483aSJessica Paquette /// \returns The length of the longest candidate found. 0 if there are none. 814596f483aSJessica Paquette unsigned buildCandidateList(std::vector<Candidate> &CandidateList, 815596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 81678681be2SJessica Paquette SuffixTree &ST, InstructionMapper &Mapper, 817c984e213SJessica Paquette const TargetInstrInfo &TII); 818596f483aSJessica Paquette 819596f483aSJessica Paquette /// \brief Remove any overlapping candidates that weren't handled by the 820596f483aSJessica Paquette /// suffix tree's pruning method. 821596f483aSJessica Paquette /// 822596f483aSJessica Paquette /// Pruning from the suffix tree doesn't necessarily remove all overlaps. 823596f483aSJessica Paquette /// If a short candidate is chosen for outlining, then a longer candidate 824596f483aSJessica Paquette /// which has that short candidate as a suffix is chosen, the tree's pruning 825596f483aSJessica Paquette /// method will not find it. Thus, we need to prune before outlining as well. 826596f483aSJessica Paquette /// 827596f483aSJessica Paquette /// \param[in,out] CandidateList A list of outlining candidates. 828596f483aSJessica Paquette /// \param[in,out] FunctionList A list of functions to be outlined. 829809d708bSJessica Paquette /// \param Mapper Contains instruction mapping info for outlining. 830596f483aSJessica Paquette /// \param MaxCandidateLen The length of the longest candidate. 831596f483aSJessica Paquette /// \param TII TargetInstrInfo for the module. 832596f483aSJessica Paquette void pruneOverlaps(std::vector<Candidate> &CandidateList, 833596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 834809d708bSJessica Paquette InstructionMapper &Mapper, unsigned MaxCandidateLen, 835809d708bSJessica Paquette const TargetInstrInfo &TII); 836596f483aSJessica Paquette 837596f483aSJessica Paquette /// Construct a suffix tree on the instructions in \p M and outline repeated 838596f483aSJessica Paquette /// strings from that tree. 839596f483aSJessica Paquette bool runOnModule(Module &M) override; 840596f483aSJessica Paquette }; 841596f483aSJessica Paquette 842596f483aSJessica Paquette } // Anonymous namespace. 843596f483aSJessica Paquette 844596f483aSJessica Paquette char MachineOutliner::ID = 0; 845596f483aSJessica Paquette 846596f483aSJessica Paquette namespace llvm { 847596f483aSJessica Paquette ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); } 84878681be2SJessica Paquette } // namespace llvm 84978681be2SJessica Paquette 85078681be2SJessica Paquette INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 85178681be2SJessica Paquette false) 85278681be2SJessica Paquette 8534cf187b5SJessica Paquette unsigned 85478681be2SJessica Paquette MachineOutliner::findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 85578681be2SJessica Paquette InstructionMapper &Mapper, 85678681be2SJessica Paquette std::vector<Candidate> &CandidateList, 85778681be2SJessica Paquette std::vector<OutlinedFunction> &FunctionList) { 85878681be2SJessica Paquette CandidateList.clear(); 85978681be2SJessica Paquette FunctionList.clear(); 8604cf187b5SJessica Paquette unsigned MaxLen = 0; 86178681be2SJessica Paquette 86278681be2SJessica Paquette // FIXME: Visit internal nodes instead of leaves. 86378681be2SJessica Paquette for (SuffixTreeNode *Leaf : ST.LeafVector) { 86478681be2SJessica Paquette assert(Leaf && "Leaves in LeafVector cannot be null!"); 86578681be2SJessica Paquette if (!Leaf->IsInTree) 86678681be2SJessica Paquette continue; 86778681be2SJessica Paquette 86878681be2SJessica Paquette assert(Leaf->Parent && "All leaves must have parents!"); 86978681be2SJessica Paquette SuffixTreeNode &Parent = *(Leaf->Parent); 87078681be2SJessica Paquette 87178681be2SJessica Paquette // If it doesn't appear enough, or we already outlined from it, skip it. 87278681be2SJessica Paquette if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree) 87378681be2SJessica Paquette continue; 87478681be2SJessica Paquette 875809d708bSJessica Paquette // Figure out if this candidate is beneficial. 8764cf187b5SJessica Paquette unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size(); 87795c1107fSJessica Paquette 87895c1107fSJessica Paquette // Too short to be beneficial; skip it. 87995c1107fSJessica Paquette // FIXME: This isn't necessarily true for, say, X86. If we factor in 88095c1107fSJessica Paquette // instruction lengths we need more information than this. 88195c1107fSJessica Paquette if (StringLen < 2) 88295c1107fSJessica Paquette continue; 88395c1107fSJessica Paquette 884d87f5449SJessica Paquette // If this is a beneficial class of candidate, then every one is stored in 885d87f5449SJessica Paquette // this vector. 886d87f5449SJessica Paquette std::vector<Candidate> CandidatesForRepeatedSeq; 887d87f5449SJessica Paquette 8884cf187b5SJessica Paquette // Describes the start and end point of each candidate. This allows the 8894cf187b5SJessica Paquette // target to infer some information about each occurrence of each repeated 8904cf187b5SJessica Paquette // sequence. 891d87f5449SJessica Paquette // FIXME: CandidatesForRepeatedSeq and this should be combined. 892d87f5449SJessica Paquette std::vector< 893d87f5449SJessica Paquette std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>> 8944cf187b5SJessica Paquette RepeatedSequenceLocs; 895d87f5449SJessica Paquette 896809d708bSJessica Paquette // Figure out the call overhead for each instance of the sequence. 897809d708bSJessica Paquette for (auto &ChildPair : Parent.Children) { 898809d708bSJessica Paquette SuffixTreeNode *M = ChildPair.second; 89978681be2SJessica Paquette 900809d708bSJessica Paquette if (M && M->IsInTree && M->isLeaf()) { 901809d708bSJessica Paquette // Each sequence is over [StartIt, EndIt]. 902809d708bSJessica Paquette MachineBasicBlock::iterator StartIt = Mapper.InstrList[M->SuffixIdx]; 903809d708bSJessica Paquette MachineBasicBlock::iterator EndIt = 904809d708bSJessica Paquette Mapper.InstrList[M->SuffixIdx + StringLen - 1]; 905d87f5449SJessica Paquette 906*acc15e12SJessica Paquette CandidatesForRepeatedSeq.emplace_back(M->SuffixIdx, StringLen, 907*acc15e12SJessica Paquette FunctionList.size()); 9084cf187b5SJessica Paquette RepeatedSequenceLocs.emplace_back(std::make_pair(StartIt, EndIt)); 909d87f5449SJessica Paquette 910d87f5449SJessica Paquette // Never visit this leaf again. 911d87f5449SJessica Paquette M->IsInTree = false; 912809d708bSJessica Paquette } 913809d708bSJessica Paquette } 914809d708bSJessica Paquette 915*acc15e12SJessica Paquette // We've found something we might want to outline. 916*acc15e12SJessica Paquette // Create an OutlinedFunction to store it and check if it'd be beneficial 917*acc15e12SJessica Paquette // to outline. 9184cf187b5SJessica Paquette TargetInstrInfo::MachineOutlinerInfo MInfo = 9194cf187b5SJessica Paquette TII.getOutlininingCandidateInfo(RepeatedSequenceLocs); 920*acc15e12SJessica Paquette std::vector<unsigned> Seq; 921*acc15e12SJessica Paquette for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++) 922*acc15e12SJessica Paquette Seq.push_back(ST.Str[i]); 923*acc15e12SJessica Paquette OutlinedFunction OF(FunctionList.size(), Parent.OccurrenceCount, Seq, 924*acc15e12SJessica Paquette MInfo); 925*acc15e12SJessica Paquette unsigned Benefit = OF.getBenefit(); 926809d708bSJessica Paquette 927ffe4abc5SJessica Paquette // Is it better to outline this candidate than not? 928*acc15e12SJessica Paquette if (Benefit < 1) { 929ffe4abc5SJessica Paquette // Outlining this candidate would take more instructions than not 930ffe4abc5SJessica Paquette // outlining. 931ffe4abc5SJessica Paquette // Emit a remark explaining why we didn't outline this candidate. 932ffe4abc5SJessica Paquette std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator> C = 9334cf187b5SJessica Paquette RepeatedSequenceLocs[0]; 934ffe4abc5SJessica Paquette MachineOptimizationRemarkEmitter MORE( 935ffe4abc5SJessica Paquette *(C.first->getParent()->getParent()), nullptr); 936ffe4abc5SJessica Paquette MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", 937ffe4abc5SJessica Paquette C.first->getDebugLoc(), 938ffe4abc5SJessica Paquette C.first->getParent()); 939ffe4abc5SJessica Paquette R << "Did not outline " << NV("Length", StringLen) << " instructions" 9404cf187b5SJessica Paquette << " from " << NV("NumOccurrences", RepeatedSequenceLocs.size()) 941ffe4abc5SJessica Paquette << " locations." 942ffe4abc5SJessica Paquette << " Instructions from outlining all occurrences (" 943*acc15e12SJessica Paquette << NV("OutliningCost", OF.getOutliningCost()) << ")" 944ffe4abc5SJessica Paquette << " >= Unoutlined instruction count (" 945*acc15e12SJessica Paquette << NV("NotOutliningCost", StringLen * OF.OccurrenceCount) << ")" 946ffe4abc5SJessica Paquette << " (Also found at: "; 947ffe4abc5SJessica Paquette 948ffe4abc5SJessica Paquette // Tell the user the other places the candidate was found. 9494cf187b5SJessica Paquette for (unsigned i = 1, e = RepeatedSequenceLocs.size(); i < e; i++) { 950ffe4abc5SJessica Paquette R << NV((Twine("OtherStartLoc") + Twine(i)).str(), 9514cf187b5SJessica Paquette RepeatedSequenceLocs[i].first->getDebugLoc()); 952ffe4abc5SJessica Paquette if (i != e - 1) 953ffe4abc5SJessica Paquette R << ", "; 954ffe4abc5SJessica Paquette } 955ffe4abc5SJessica Paquette 956ffe4abc5SJessica Paquette R << ")"; 957ffe4abc5SJessica Paquette MORE.emit(R); 958ffe4abc5SJessica Paquette 959ffe4abc5SJessica Paquette // Move to the next candidate. 96078681be2SJessica Paquette continue; 961ffe4abc5SJessica Paquette } 96278681be2SJessica Paquette 96378681be2SJessica Paquette if (StringLen > MaxLen) 96478681be2SJessica Paquette MaxLen = StringLen; 96578681be2SJessica Paquette 966d87f5449SJessica Paquette // At this point, the candidate class is seen as beneficial. Set their 967d87f5449SJessica Paquette // benefit values and save them in the candidate list. 968d87f5449SJessica Paquette for (Candidate &C : CandidatesForRepeatedSeq) { 969d87f5449SJessica Paquette C.Benefit = Benefit; 9704cf187b5SJessica Paquette C.MInfo = MInfo; 971d87f5449SJessica Paquette CandidateList.push_back(C); 972596f483aSJessica Paquette } 973596f483aSJessica Paquette 974*acc15e12SJessica Paquette FunctionList.push_back(OF); 97578681be2SJessica Paquette 97678681be2SJessica Paquette // Move to the next function. 97778681be2SJessica Paquette Parent.IsInTree = false; 97878681be2SJessica Paquette } 97978681be2SJessica Paquette 98078681be2SJessica Paquette return MaxLen; 98178681be2SJessica Paquette } 982596f483aSJessica Paquette 983596f483aSJessica Paquette void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList, 984596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 985809d708bSJessica Paquette InstructionMapper &Mapper, 986596f483aSJessica Paquette unsigned MaxCandidateLen, 987596f483aSJessica Paquette const TargetInstrInfo &TII) { 98891999169SJessica Paquette 98991999169SJessica Paquette // Return true if this candidate became unbeneficial for outlining in a 99091999169SJessica Paquette // previous step. 99191999169SJessica Paquette auto ShouldSkipCandidate = [&FunctionList](Candidate &C) { 99291999169SJessica Paquette 99391999169SJessica Paquette // Check if the candidate was removed in a previous step. 99491999169SJessica Paquette if (!C.InCandidateList) 99591999169SJessica Paquette return true; 99691999169SJessica Paquette 99791999169SJessica Paquette // Check if C's associated function is still beneficial after previous 99891999169SJessica Paquette // pruning steps. 99991999169SJessica Paquette OutlinedFunction &F = FunctionList[C.FunctionIdx]; 100091999169SJessica Paquette 1001*acc15e12SJessica Paquette if (F.OccurrenceCount < 2 || F.getBenefit() < 1) { 100291999169SJessica Paquette assert(F.OccurrenceCount > 0 && 100391999169SJessica Paquette "Can't remove OutlinedFunction with no occurrences!"); 100491999169SJessica Paquette F.OccurrenceCount--; 100591999169SJessica Paquette C.InCandidateList = false; 100691999169SJessica Paquette return true; 100791999169SJessica Paquette } 100891999169SJessica Paquette 100991999169SJessica Paquette // C is in the list, and F is still beneficial. 101091999169SJessica Paquette return false; 101191999169SJessica Paquette }; 101291999169SJessica Paquette 101391999169SJessica Paquette // Remove C from the candidate space, and update its OutlinedFunction. 101491999169SJessica Paquette auto Prune = [&FunctionList](Candidate &C) { 101591999169SJessica Paquette 101691999169SJessica Paquette // Get the OutlinedFunction associated with this Candidate. 101791999169SJessica Paquette OutlinedFunction &F = FunctionList[C.FunctionIdx]; 101891999169SJessica Paquette 101991999169SJessica Paquette // Update C's associated function's occurrence count. 102091999169SJessica Paquette assert(F.OccurrenceCount > 0 && 102191999169SJessica Paquette "Can't remove OutlinedFunction with no occurrences!"); 102291999169SJessica Paquette F.OccurrenceCount--; 102391999169SJessica Paquette 102491999169SJessica Paquette // Remove C from the CandidateList. 102591999169SJessica Paquette C.InCandidateList = false; 102691999169SJessica Paquette 102791999169SJessica Paquette DEBUG(dbgs() << "- Removed a Candidate \n"; 102891999169SJessica Paquette dbgs() << "--- Num fns left for candidate: " << F.OccurrenceCount 102991999169SJessica Paquette << "\n"; 1030*acc15e12SJessica Paquette dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit() 103191999169SJessica Paquette << "\n";); 103291999169SJessica Paquette }; 103391999169SJessica Paquette 1034acffa28cSJessica Paquette // TODO: Experiment with interval trees or other interval-checking structures 1035acffa28cSJessica Paquette // to lower the time complexity of this function. 1036acffa28cSJessica Paquette // TODO: Can we do better than the simple greedy choice? 1037acffa28cSJessica Paquette // Check for overlaps in the range. 1038acffa28cSJessica Paquette // This is O(MaxCandidateLen * CandidateList.size()). 1039596f483aSJessica Paquette for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; 1040596f483aSJessica Paquette It++) { 1041596f483aSJessica Paquette Candidate &C1 = *It; 1042596f483aSJessica Paquette 104391999169SJessica Paquette // If C1 was already pruned, or its function is no longer beneficial for 104491999169SJessica Paquette // outlining, move to the next candidate. 104591999169SJessica Paquette if (ShouldSkipCandidate(C1)) 1046596f483aSJessica Paquette continue; 1047596f483aSJessica Paquette 1048596f483aSJessica Paquette // The minimum start index of any candidate that could overlap with this 1049596f483aSJessica Paquette // one. 1050596f483aSJessica Paquette unsigned FarthestPossibleIdx = 0; 1051596f483aSJessica Paquette 1052596f483aSJessica Paquette // Either the index is 0, or it's at most MaxCandidateLen indices away. 1053596f483aSJessica Paquette if (C1.StartIdx > MaxCandidateLen) 1054596f483aSJessica Paquette FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen; 1055596f483aSJessica Paquette 1056acffa28cSJessica Paquette // Compare against the candidates in the list that start at at most 1057acffa28cSJessica Paquette // FarthestPossibleIdx indices away from C1. There are at most 1058acffa28cSJessica Paquette // MaxCandidateLen of these. 1059596f483aSJessica Paquette for (auto Sit = It + 1; Sit != Et; Sit++) { 1060596f483aSJessica Paquette Candidate &C2 = *Sit; 1061596f483aSJessica Paquette 1062596f483aSJessica Paquette // Is this candidate too far away to overlap? 1063596f483aSJessica Paquette if (C2.StartIdx < FarthestPossibleIdx) 1064596f483aSJessica Paquette break; 1065596f483aSJessica Paquette 106691999169SJessica Paquette // If C2 was already pruned, or its function is no longer beneficial for 106791999169SJessica Paquette // outlining, move to the next candidate. 106891999169SJessica Paquette if (ShouldSkipCandidate(C2)) 1069596f483aSJessica Paquette continue; 1070596f483aSJessica Paquette 10714cf187b5SJessica Paquette unsigned C2End = C2.StartIdx + C2.Len - 1; 1072596f483aSJessica Paquette 1073596f483aSJessica Paquette // Do C1 and C2 overlap? 1074596f483aSJessica Paquette // 1075596f483aSJessica Paquette // Not overlapping: 1076596f483aSJessica Paquette // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices 1077596f483aSJessica Paquette // 1078596f483aSJessica Paquette // We sorted our candidate list so C2Start <= C1Start. We know that 1079596f483aSJessica Paquette // C2End > C2Start since each candidate has length >= 2. Therefore, all we 1080596f483aSJessica Paquette // have to check is C2End < C2Start to see if we overlap. 1081596f483aSJessica Paquette if (C2End < C1.StartIdx) 1082596f483aSJessica Paquette continue; 1083596f483aSJessica Paquette 1084acffa28cSJessica Paquette // C1 and C2 overlap. 1085acffa28cSJessica Paquette // We need to choose the better of the two. 1086acffa28cSJessica Paquette // 1087acffa28cSJessica Paquette // Approximate this by picking the one which would have saved us the 1088acffa28cSJessica Paquette // most instructions before any pruning. 1089acffa28cSJessica Paquette if (C1.Benefit >= C2.Benefit) { 109091999169SJessica Paquette Prune(C2); 1091acffa28cSJessica Paquette } else { 109291999169SJessica Paquette Prune(C1); 1093acffa28cSJessica Paquette // C1 is out, so we don't have to compare it against anyone else. 1094acffa28cSJessica Paquette break; 1095acffa28cSJessica Paquette } 1096596f483aSJessica Paquette } 1097596f483aSJessica Paquette } 1098596f483aSJessica Paquette } 1099596f483aSJessica Paquette 1100596f483aSJessica Paquette unsigned 1101596f483aSJessica Paquette MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList, 1102596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 110378681be2SJessica Paquette SuffixTree &ST, InstructionMapper &Mapper, 1104596f483aSJessica Paquette const TargetInstrInfo &TII) { 1105596f483aSJessica Paquette 1106596f483aSJessica Paquette std::vector<unsigned> CandidateSequence; // Current outlining candidate. 11074cf187b5SJessica Paquette unsigned MaxCandidateLen = 0; // Length of the longest candidate. 1108596f483aSJessica Paquette 110978681be2SJessica Paquette MaxCandidateLen = 111078681be2SJessica Paquette findCandidates(ST, TII, Mapper, CandidateList, FunctionList); 1111596f483aSJessica Paquette 1112596f483aSJessica Paquette // Sort the candidates in decending order. This will simplify the outlining 1113596f483aSJessica Paquette // process when we have to remove the candidates from the mapping by 1114596f483aSJessica Paquette // allowing us to cut them out without keeping track of an offset. 1115596f483aSJessica Paquette std::stable_sort(CandidateList.begin(), CandidateList.end()); 1116596f483aSJessica Paquette 1117596f483aSJessica Paquette return MaxCandidateLen; 1118596f483aSJessica Paquette } 1119596f483aSJessica Paquette 1120596f483aSJessica Paquette MachineFunction * 1121596f483aSJessica Paquette MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, 1122596f483aSJessica Paquette InstructionMapper &Mapper) { 1123596f483aSJessica Paquette 1124596f483aSJessica Paquette // Create the function name. This should be unique. For now, just hash the 1125596f483aSJessica Paquette // module name and include it in the function name plus the number of this 1126596f483aSJessica Paquette // function. 1127596f483aSJessica Paquette std::ostringstream NameStream; 112878681be2SJessica Paquette NameStream << "OUTLINED_FUNCTION_" << OF.Name; 1129596f483aSJessica Paquette 1130596f483aSJessica Paquette // Create the function using an IR-level function. 1131596f483aSJessica Paquette LLVMContext &C = M.getContext(); 1132596f483aSJessica Paquette Function *F = dyn_cast<Function>( 113359a2d7b9SSerge Guelton M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C))); 1134596f483aSJessica Paquette assert(F && "Function was null!"); 1135596f483aSJessica Paquette 1136596f483aSJessica Paquette // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1137596f483aSJessica Paquette // which gives us better results when we outline from linkonceodr functions. 1138596f483aSJessica Paquette F->setLinkage(GlobalValue::PrivateLinkage); 1139596f483aSJessica Paquette F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1140596f483aSJessica Paquette 1141596f483aSJessica Paquette BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1142596f483aSJessica Paquette IRBuilder<> Builder(EntryBB); 1143596f483aSJessica Paquette Builder.CreateRetVoid(); 1144596f483aSJessica Paquette 1145596f483aSJessica Paquette MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 11467bda1958SMatthias Braun MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1147596f483aSJessica Paquette MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1148596f483aSJessica Paquette const TargetSubtargetInfo &STI = MF.getSubtarget(); 1149596f483aSJessica Paquette const TargetInstrInfo &TII = *STI.getInstrInfo(); 1150596f483aSJessica Paquette 1151596f483aSJessica Paquette // Insert the new function into the module. 1152596f483aSJessica Paquette MF.insert(MF.begin(), &MBB); 1153596f483aSJessica Paquette 11544cf187b5SJessica Paquette TII.insertOutlinerPrologue(MBB, MF, OF.MInfo); 1155596f483aSJessica Paquette 1156596f483aSJessica Paquette // Copy over the instructions for the function using the integer mappings in 1157596f483aSJessica Paquette // its sequence. 1158596f483aSJessica Paquette for (unsigned Str : OF.Sequence) { 1159596f483aSJessica Paquette MachineInstr *NewMI = 1160596f483aSJessica Paquette MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); 1161596f483aSJessica Paquette NewMI->dropMemRefs(); 1162596f483aSJessica Paquette 1163596f483aSJessica Paquette // Don't keep debug information for outlined instructions. 1164596f483aSJessica Paquette // FIXME: This means outlined functions are currently undebuggable. 1165596f483aSJessica Paquette NewMI->setDebugLoc(DebugLoc()); 1166596f483aSJessica Paquette MBB.insert(MBB.end(), NewMI); 1167596f483aSJessica Paquette } 1168596f483aSJessica Paquette 11694cf187b5SJessica Paquette TII.insertOutlinerEpilogue(MBB, MF, OF.MInfo); 1170596f483aSJessica Paquette 1171596f483aSJessica Paquette return &MF; 1172596f483aSJessica Paquette } 1173596f483aSJessica Paquette 1174596f483aSJessica Paquette bool MachineOutliner::outline(Module &M, 1175596f483aSJessica Paquette const ArrayRef<Candidate> &CandidateList, 1176596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 1177596f483aSJessica Paquette InstructionMapper &Mapper) { 1178596f483aSJessica Paquette 1179596f483aSJessica Paquette bool OutlinedSomething = false; 1180596f483aSJessica Paquette // Replace the candidates with calls to their respective outlined functions. 1181596f483aSJessica Paquette for (const Candidate &C : CandidateList) { 1182596f483aSJessica Paquette 1183596f483aSJessica Paquette // Was the candidate removed during pruneOverlaps? 1184596f483aSJessica Paquette if (!C.InCandidateList) 1185596f483aSJessica Paquette continue; 1186596f483aSJessica Paquette 1187596f483aSJessica Paquette // If not, then look at its OutlinedFunction. 1188596f483aSJessica Paquette OutlinedFunction &OF = FunctionList[C.FunctionIdx]; 1189596f483aSJessica Paquette 1190596f483aSJessica Paquette // Was its OutlinedFunction made unbeneficial during pruneOverlaps? 1191*acc15e12SJessica Paquette if (OF.OccurrenceCount < 2 || OF.getBenefit() < 1) 1192596f483aSJessica Paquette continue; 1193596f483aSJessica Paquette 1194596f483aSJessica Paquette // If not, then outline it. 1195596f483aSJessica Paquette assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1196596f483aSJessica Paquette MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent(); 1197596f483aSJessica Paquette MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx]; 1198596f483aSJessica Paquette unsigned EndIdx = C.StartIdx + C.Len - 1; 1199596f483aSJessica Paquette 1200596f483aSJessica Paquette assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1201596f483aSJessica Paquette MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1202596f483aSJessica Paquette assert(EndIt != MBB->end() && "EndIt out of bounds!"); 1203596f483aSJessica Paquette 1204596f483aSJessica Paquette EndIt++; // Erase needs one past the end index. 1205596f483aSJessica Paquette 1206596f483aSJessica Paquette // Does this candidate have a function yet? 1207acffa28cSJessica Paquette if (!OF.MF) { 1208596f483aSJessica Paquette OF.MF = createOutlinedFunction(M, OF, Mapper); 1209acffa28cSJessica Paquette FunctionsCreated++; 1210acffa28cSJessica Paquette } 1211596f483aSJessica Paquette 1212596f483aSJessica Paquette MachineFunction *MF = OF.MF; 1213596f483aSJessica Paquette const TargetSubtargetInfo &STI = MF->getSubtarget(); 1214596f483aSJessica Paquette const TargetInstrInfo &TII = *STI.getInstrInfo(); 1215596f483aSJessica Paquette 1216596f483aSJessica Paquette // Insert a call to the new function and erase the old sequence. 12174cf187b5SJessica Paquette TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.MInfo); 1218596f483aSJessica Paquette StartIt = Mapper.InstrList[C.StartIdx]; 1219596f483aSJessica Paquette MBB->erase(StartIt, EndIt); 1220596f483aSJessica Paquette 1221596f483aSJessica Paquette OutlinedSomething = true; 1222596f483aSJessica Paquette 1223596f483aSJessica Paquette // Statistics. 1224596f483aSJessica Paquette NumOutlined++; 1225596f483aSJessica Paquette } 1226596f483aSJessica Paquette 122778681be2SJessica Paquette DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1228596f483aSJessica Paquette 1229596f483aSJessica Paquette return OutlinedSomething; 1230596f483aSJessica Paquette } 1231596f483aSJessica Paquette 1232596f483aSJessica Paquette bool MachineOutliner::runOnModule(Module &M) { 1233596f483aSJessica Paquette 1234596f483aSJessica Paquette // Is there anything in the module at all? 1235596f483aSJessica Paquette if (M.empty()) 1236596f483aSJessica Paquette return false; 1237596f483aSJessica Paquette 1238596f483aSJessica Paquette MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 123978681be2SJessica Paquette const TargetSubtargetInfo &STI = 124078681be2SJessica Paquette MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget(); 1241596f483aSJessica Paquette const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 1242596f483aSJessica Paquette const TargetInstrInfo *TII = STI.getInstrInfo(); 1243596f483aSJessica Paquette 1244596f483aSJessica Paquette InstructionMapper Mapper; 1245596f483aSJessica Paquette 1246596f483aSJessica Paquette // Build instruction mappings for each function in the module. 1247596f483aSJessica Paquette for (Function &F : M) { 12487bda1958SMatthias Braun MachineFunction &MF = MMI.getOrCreateMachineFunction(F); 1249596f483aSJessica Paquette 1250596f483aSJessica Paquette // Is the function empty? Safe to outline from? 1251596f483aSJessica Paquette if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF)) 1252596f483aSJessica Paquette continue; 1253596f483aSJessica Paquette 1254596f483aSJessica Paquette // If it is, look at each MachineBasicBlock in the function. 1255596f483aSJessica Paquette for (MachineBasicBlock &MBB : MF) { 1256596f483aSJessica Paquette 1257596f483aSJessica Paquette // Is there anything in MBB? 1258596f483aSJessica Paquette if (MBB.empty()) 1259596f483aSJessica Paquette continue; 1260596f483aSJessica Paquette 1261596f483aSJessica Paquette // If yes, map it. 1262596f483aSJessica Paquette Mapper.convertToUnsignedVec(MBB, *TRI, *TII); 1263596f483aSJessica Paquette } 1264596f483aSJessica Paquette } 1265596f483aSJessica Paquette 1266596f483aSJessica Paquette // Construct a suffix tree, use it to find candidates, and then outline them. 1267596f483aSJessica Paquette SuffixTree ST(Mapper.UnsignedVec); 1268596f483aSJessica Paquette std::vector<Candidate> CandidateList; 1269596f483aSJessica Paquette std::vector<OutlinedFunction> FunctionList; 1270596f483aSJessica Paquette 1271acffa28cSJessica Paquette // Find all of the outlining candidates. 1272596f483aSJessica Paquette unsigned MaxCandidateLen = 1273c984e213SJessica Paquette buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII); 1274596f483aSJessica Paquette 1275acffa28cSJessica Paquette // Remove candidates that overlap with other candidates. 1276809d708bSJessica Paquette pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII); 1277acffa28cSJessica Paquette 1278acffa28cSJessica Paquette // Outline each of the candidates and return true if something was outlined. 1279596f483aSJessica Paquette return outline(M, CandidateList, FunctionList, Mapper); 1280596f483aSJessica Paquette } 1281