1596f483aSJessica Paquette //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2596f483aSJessica Paquette //
3596f483aSJessica Paquette //                     The LLVM Compiler Infrastructure
4596f483aSJessica Paquette //
5596f483aSJessica Paquette // This file is distributed under the University of Illinois Open Source
6596f483aSJessica Paquette // License. See LICENSE.TXT for details.
7596f483aSJessica Paquette //
8596f483aSJessica Paquette //===----------------------------------------------------------------------===//
9596f483aSJessica Paquette ///
10596f483aSJessica Paquette /// \file
11596f483aSJessica Paquette /// Replaces repeated sequences of instructions with function calls.
12596f483aSJessica Paquette ///
13596f483aSJessica Paquette /// This works by placing every instruction from every basic block in a
14596f483aSJessica Paquette /// suffix tree, and repeatedly querying that tree for repeated sequences of
15596f483aSJessica Paquette /// instructions. If a sequence of instructions appears often, then it ought
16596f483aSJessica Paquette /// to be beneficial to pull out into a function.
17596f483aSJessica Paquette ///
184cf187b5SJessica Paquette /// The MachineOutliner communicates with a given target using hooks defined in
194cf187b5SJessica Paquette /// TargetInstrInfo.h. The target supplies the outliner with information on how
204cf187b5SJessica Paquette /// a specific sequence of instructions should be outlined. This information
214cf187b5SJessica Paquette /// is used to deduce the number of instructions necessary to
224cf187b5SJessica Paquette ///
234cf187b5SJessica Paquette /// * Create an outlined function
244cf187b5SJessica Paquette /// * Call that outlined function
254cf187b5SJessica Paquette ///
264cf187b5SJessica Paquette /// Targets must implement
274cf187b5SJessica Paquette ///   * getOutliningCandidateInfo
284cf187b5SJessica Paquette ///   * insertOutlinerEpilogue
294cf187b5SJessica Paquette ///   * insertOutlinedCall
304cf187b5SJessica Paquette ///   * insertOutlinerPrologue
314cf187b5SJessica Paquette ///   * isFunctionSafeToOutlineFrom
324cf187b5SJessica Paquette ///
334cf187b5SJessica Paquette /// in order to make use of the MachineOutliner.
344cf187b5SJessica Paquette ///
35596f483aSJessica Paquette /// This was originally presented at the 2016 LLVM Developers' Meeting in the
36596f483aSJessica Paquette /// talk "Reducing Code Size Using Outlining". For a high-level overview of
37596f483aSJessica Paquette /// how this pass works, the talk is available on YouTube at
38596f483aSJessica Paquette ///
39596f483aSJessica Paquette /// https://www.youtube.com/watch?v=yorld-WSOeU
40596f483aSJessica Paquette ///
41596f483aSJessica Paquette /// The slides for the talk are available at
42596f483aSJessica Paquette ///
43596f483aSJessica Paquette /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
44596f483aSJessica Paquette ///
45596f483aSJessica Paquette /// The talk provides an overview of how the outliner finds candidates and
46596f483aSJessica Paquette /// ultimately outlines them. It describes how the main data structure for this
47596f483aSJessica Paquette /// pass, the suffix tree, is queried and purged for candidates. It also gives
48596f483aSJessica Paquette /// a simplified suffix tree construction algorithm for suffix trees based off
49596f483aSJessica Paquette /// of the algorithm actually used here, Ukkonen's algorithm.
50596f483aSJessica Paquette ///
51596f483aSJessica Paquette /// For the original RFC for this pass, please see
52596f483aSJessica Paquette ///
53596f483aSJessica Paquette /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
54596f483aSJessica Paquette ///
55596f483aSJessica Paquette /// For more information on the suffix tree data structure, please see
56596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
57596f483aSJessica Paquette ///
58596f483aSJessica Paquette //===----------------------------------------------------------------------===//
59596f483aSJessica Paquette #include "llvm/ADT/DenseMap.h"
60596f483aSJessica Paquette #include "llvm/ADT/Statistic.h"
61596f483aSJessica Paquette #include "llvm/ADT/Twine.h"
62596f483aSJessica Paquette #include "llvm/CodeGen/MachineFrameInfo.h"
63596f483aSJessica Paquette #include "llvm/CodeGen/MachineFunction.h"
64596f483aSJessica Paquette #include "llvm/CodeGen/MachineInstrBuilder.h"
65596f483aSJessica Paquette #include "llvm/CodeGen/MachineModuleInfo.h"
66ffe4abc5SJessica Paquette #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
67596f483aSJessica Paquette #include "llvm/CodeGen/Passes.h"
68596f483aSJessica Paquette #include "llvm/IR/IRBuilder.h"
69596f483aSJessica Paquette #include "llvm/Support/Allocator.h"
70596f483aSJessica Paquette #include "llvm/Support/Debug.h"
71596f483aSJessica Paquette #include "llvm/Support/raw_ostream.h"
72596f483aSJessica Paquette #include "llvm/Target/TargetInstrInfo.h"
73596f483aSJessica Paquette #include "llvm/Target/TargetMachine.h"
74596f483aSJessica Paquette #include "llvm/Target/TargetRegisterInfo.h"
75596f483aSJessica Paquette #include "llvm/Target/TargetSubtargetInfo.h"
76596f483aSJessica Paquette #include <functional>
77596f483aSJessica Paquette #include <map>
78596f483aSJessica Paquette #include <sstream>
79596f483aSJessica Paquette #include <tuple>
80596f483aSJessica Paquette #include <vector>
81596f483aSJessica Paquette 
82596f483aSJessica Paquette #define DEBUG_TYPE "machine-outliner"
83596f483aSJessica Paquette 
84596f483aSJessica Paquette using namespace llvm;
85ffe4abc5SJessica Paquette using namespace ore;
86596f483aSJessica Paquette 
87596f483aSJessica Paquette STATISTIC(NumOutlined, "Number of candidates outlined");
88596f483aSJessica Paquette STATISTIC(FunctionsCreated, "Number of functions created");
89596f483aSJessica Paquette 
90596f483aSJessica Paquette namespace {
91596f483aSJessica Paquette 
92acffa28cSJessica Paquette /// \brief An individual sequence of instructions to be replaced with a call to
93acffa28cSJessica Paquette /// an outlined function.
94acffa28cSJessica Paquette struct Candidate {
95c9ab4c26SJessica Paquette private:
96c9ab4c26SJessica Paquette   /// The start index of this \p Candidate in the instruction list.
974cf187b5SJessica Paquette   unsigned StartIdx;
98acffa28cSJessica Paquette 
99acffa28cSJessica Paquette   /// The number of instructions in this \p Candidate.
1004cf187b5SJessica Paquette   unsigned Len;
101acffa28cSJessica Paquette 
102c9ab4c26SJessica Paquette public:
103c9ab4c26SJessica Paquette   /// Set to false if the candidate overlapped with another candidate.
104c9ab4c26SJessica Paquette   bool InCandidateList = true;
105c9ab4c26SJessica Paquette 
106c9ab4c26SJessica Paquette   /// \brief The index of this \p Candidate's \p OutlinedFunction in the list of
107acffa28cSJessica Paquette   /// \p OutlinedFunctions.
1084cf187b5SJessica Paquette   unsigned FunctionIdx;
109acffa28cSJessica Paquette 
1104cf187b5SJessica Paquette   /// Contains all target-specific information for this \p Candidate.
1114cf187b5SJessica Paquette   TargetInstrInfo::MachineOutlinerInfo MInfo;
112d87f5449SJessica Paquette 
113c9ab4c26SJessica Paquette   /// Return the number of instructions in this Candidate.
1141934fd2cSJessica Paquette   unsigned getLength() const { return Len; }
115c9ab4c26SJessica Paquette 
116c9ab4c26SJessica Paquette   /// Return the start index of this candidate.
1171934fd2cSJessica Paquette   unsigned getStartIdx() const { return StartIdx; }
118c9ab4c26SJessica Paquette 
119c9ab4c26SJessica Paquette   // Return the end index of this candidate.
1201934fd2cSJessica Paquette   unsigned getEndIdx() const { return StartIdx + Len - 1; }
121c9ab4c26SJessica Paquette 
122acffa28cSJessica Paquette   /// \brief The number of instructions that would be saved by outlining every
123acffa28cSJessica Paquette   /// candidate of this type.
124acffa28cSJessica Paquette   ///
125acffa28cSJessica Paquette   /// This is a fixed value which is not updated during the candidate pruning
126acffa28cSJessica Paquette   /// process. It is only used for deciding which candidate to keep if two
127acffa28cSJessica Paquette   /// candidates overlap. The true benefit is stored in the OutlinedFunction
128acffa28cSJessica Paquette   /// for some given candidate.
129acffa28cSJessica Paquette   unsigned Benefit = 0;
130acffa28cSJessica Paquette 
1314cf187b5SJessica Paquette   Candidate(unsigned StartIdx, unsigned Len, unsigned FunctionIdx)
1324cf187b5SJessica Paquette       : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {}
133acffa28cSJessica Paquette 
134acffa28cSJessica Paquette   Candidate() {}
135acffa28cSJessica Paquette 
136acffa28cSJessica Paquette   /// \brief Used to ensure that \p Candidates are outlined in an order that
137acffa28cSJessica Paquette   /// preserves the start and end indices of other \p Candidates.
138c9ab4c26SJessica Paquette   bool operator<(const Candidate &RHS) const {
1391934fd2cSJessica Paquette     return getStartIdx() > RHS.getStartIdx();
140c9ab4c26SJessica Paquette   }
141acffa28cSJessica Paquette };
142acffa28cSJessica Paquette 
143acffa28cSJessica Paquette /// \brief The information necessary to create an outlined function for some
144acffa28cSJessica Paquette /// class of candidate.
145acffa28cSJessica Paquette struct OutlinedFunction {
146acffa28cSJessica Paquette 
14785af63d0SJessica Paquette private:
14885af63d0SJessica Paquette   /// The number of candidates for this \p OutlinedFunction.
14985af63d0SJessica Paquette   unsigned OccurrenceCount = 0;
15085af63d0SJessica Paquette 
15185af63d0SJessica Paquette public:
152*9df7fde2SJessica Paquette   std::vector<std::shared_ptr<Candidate>> Candidates;
153*9df7fde2SJessica Paquette 
154acffa28cSJessica Paquette   /// The actual outlined function created.
155acffa28cSJessica Paquette   /// This is initialized after we go through and create the actual function.
156acffa28cSJessica Paquette   MachineFunction *MF = nullptr;
157acffa28cSJessica Paquette 
1584cf187b5SJessica Paquette   /// A number assigned to this function which appears at the end of its name.
1594cf187b5SJessica Paquette   unsigned Name;
160acffa28cSJessica Paquette 
161acffa28cSJessica Paquette   /// \brief The sequence of integers corresponding to the instructions in this
162acffa28cSJessica Paquette   /// function.
163acffa28cSJessica Paquette   std::vector<unsigned> Sequence;
164acffa28cSJessica Paquette 
1654cf187b5SJessica Paquette   /// Contains all target-specific information for this \p OutlinedFunction.
1664cf187b5SJessica Paquette   TargetInstrInfo::MachineOutlinerInfo MInfo;
167acffa28cSJessica Paquette 
16885af63d0SJessica Paquette   /// Return the number of candidates for this \p OutlinedFunction.
16960d31fc3SJessica Paquette   unsigned getOccurrenceCount() { return OccurrenceCount; }
17085af63d0SJessica Paquette 
17185af63d0SJessica Paquette   /// Decrement the occurrence count of this OutlinedFunction and return the
17285af63d0SJessica Paquette   /// new count.
17385af63d0SJessica Paquette   unsigned decrement() {
17485af63d0SJessica Paquette     assert(OccurrenceCount > 0 && "Can't decrement an empty function!");
17585af63d0SJessica Paquette     OccurrenceCount--;
17685af63d0SJessica Paquette     return getOccurrenceCount();
17785af63d0SJessica Paquette   }
17885af63d0SJessica Paquette 
179acc15e12SJessica Paquette   /// \brief Return the number of instructions it would take to outline this
180acc15e12SJessica Paquette   /// function.
181acc15e12SJessica Paquette   unsigned getOutliningCost() {
182acc15e12SJessica Paquette     return (OccurrenceCount * MInfo.CallOverhead) + Sequence.size() +
183acc15e12SJessica Paquette            MInfo.FrameOverhead;
184acc15e12SJessica Paquette   }
185acc15e12SJessica Paquette 
186acc15e12SJessica Paquette   /// \brief Return the number of instructions that would be saved by outlining
187acc15e12SJessica Paquette   /// this function.
188acc15e12SJessica Paquette   unsigned getBenefit() {
189acc15e12SJessica Paquette     unsigned NotOutlinedCost = OccurrenceCount * Sequence.size();
190acc15e12SJessica Paquette     unsigned OutlinedCost = getOutliningCost();
191acc15e12SJessica Paquette     return (NotOutlinedCost < OutlinedCost) ? 0
192acc15e12SJessica Paquette                                             : NotOutlinedCost - OutlinedCost;
193acc15e12SJessica Paquette   }
194acc15e12SJessica Paquette 
1954cf187b5SJessica Paquette   OutlinedFunction(unsigned Name, unsigned OccurrenceCount,
196acc15e12SJessica Paquette                    const std::vector<unsigned> &Sequence,
1974cf187b5SJessica Paquette                    TargetInstrInfo::MachineOutlinerInfo &MInfo)
19885af63d0SJessica Paquette       : OccurrenceCount(OccurrenceCount), Name(Name), Sequence(Sequence),
199acc15e12SJessica Paquette         MInfo(MInfo) {}
200acffa28cSJessica Paquette };
201acffa28cSJessica Paquette 
202596f483aSJessica Paquette /// Represents an undefined index in the suffix tree.
2034cf187b5SJessica Paquette const unsigned EmptyIdx = -1;
204596f483aSJessica Paquette 
205596f483aSJessica Paquette /// A node in a suffix tree which represents a substring or suffix.
206596f483aSJessica Paquette ///
207596f483aSJessica Paquette /// Each node has either no children or at least two children, with the root
208596f483aSJessica Paquette /// being a exception in the empty tree.
209596f483aSJessica Paquette ///
210596f483aSJessica Paquette /// Children are represented as a map between unsigned integers and nodes. If
211596f483aSJessica Paquette /// a node N has a child M on unsigned integer k, then the mapping represented
212596f483aSJessica Paquette /// by N is a proper prefix of the mapping represented by M. Note that this,
213596f483aSJessica Paquette /// although similar to a trie is somewhat different: each node stores a full
214596f483aSJessica Paquette /// substring of the full mapping rather than a single character state.
215596f483aSJessica Paquette ///
216596f483aSJessica Paquette /// Each internal node contains a pointer to the internal node representing
217596f483aSJessica Paquette /// the same string, but with the first character chopped off. This is stored
218596f483aSJessica Paquette /// in \p Link. Each leaf node stores the start index of its respective
219596f483aSJessica Paquette /// suffix in \p SuffixIdx.
220596f483aSJessica Paquette struct SuffixTreeNode {
221596f483aSJessica Paquette 
222596f483aSJessica Paquette   /// The children of this node.
223596f483aSJessica Paquette   ///
224596f483aSJessica Paquette   /// A child existing on an unsigned integer implies that from the mapping
225596f483aSJessica Paquette   /// represented by the current node, there is a way to reach another
226596f483aSJessica Paquette   /// mapping by tacking that character on the end of the current string.
227596f483aSJessica Paquette   DenseMap<unsigned, SuffixTreeNode *> Children;
228596f483aSJessica Paquette 
229596f483aSJessica Paquette   /// A flag set to false if the node has been pruned from the tree.
230596f483aSJessica Paquette   bool IsInTree = true;
231596f483aSJessica Paquette 
232596f483aSJessica Paquette   /// The start index of this node's substring in the main string.
2334cf187b5SJessica Paquette   unsigned StartIdx = EmptyIdx;
234596f483aSJessica Paquette 
235596f483aSJessica Paquette   /// The end index of this node's substring in the main string.
236596f483aSJessica Paquette   ///
237596f483aSJessica Paquette   /// Every leaf node must have its \p EndIdx incremented at the end of every
238596f483aSJessica Paquette   /// step in the construction algorithm. To avoid having to update O(N)
239596f483aSJessica Paquette   /// nodes individually at the end of every step, the end index is stored
240596f483aSJessica Paquette   /// as a pointer.
2414cf187b5SJessica Paquette   unsigned *EndIdx = nullptr;
242596f483aSJessica Paquette 
243596f483aSJessica Paquette   /// For leaves, the start index of the suffix represented by this node.
244596f483aSJessica Paquette   ///
245596f483aSJessica Paquette   /// For all other nodes, this is ignored.
2464cf187b5SJessica Paquette   unsigned SuffixIdx = EmptyIdx;
247596f483aSJessica Paquette 
248596f483aSJessica Paquette   /// \brief For internal nodes, a pointer to the internal node representing
249596f483aSJessica Paquette   /// the same sequence with the first character chopped off.
250596f483aSJessica Paquette   ///
2514602c343SJessica Paquette   /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
252596f483aSJessica Paquette   /// Ukkonen's algorithm does to achieve linear-time construction is
253596f483aSJessica Paquette   /// keep track of which node the next insert should be at. This makes each
254596f483aSJessica Paquette   /// insert O(1), and there are a total of O(N) inserts. The suffix link
255596f483aSJessica Paquette   /// helps with inserting children of internal nodes.
256596f483aSJessica Paquette   ///
257596f483aSJessica Paquette   /// Say we add a child to an internal node with associated mapping S. The
258596f483aSJessica Paquette   /// next insertion must be at the node representing S - its first character.
259596f483aSJessica Paquette   /// This is given by the way that we iteratively build the tree in Ukkonen's
260596f483aSJessica Paquette   /// algorithm. The main idea is to look at the suffixes of each prefix in the
261596f483aSJessica Paquette   /// string, starting with the longest suffix of the prefix, and ending with
262596f483aSJessica Paquette   /// the shortest. Therefore, if we keep pointers between such nodes, we can
263596f483aSJessica Paquette   /// move to the next insertion point in O(1) time. If we don't, then we'd
264596f483aSJessica Paquette   /// have to query from the root, which takes O(N) time. This would make the
265596f483aSJessica Paquette   /// construction algorithm O(N^2) rather than O(N).
266596f483aSJessica Paquette   SuffixTreeNode *Link = nullptr;
267596f483aSJessica Paquette 
268596f483aSJessica Paquette   /// The parent of this node. Every node except for the root has a parent.
269596f483aSJessica Paquette   SuffixTreeNode *Parent = nullptr;
270596f483aSJessica Paquette 
271596f483aSJessica Paquette   /// The number of times this node's string appears in the tree.
272596f483aSJessica Paquette   ///
273596f483aSJessica Paquette   /// This is equal to the number of leaf children of the string. It represents
274596f483aSJessica Paquette   /// the number of suffixes that the node's string is a prefix of.
2754cf187b5SJessica Paquette   unsigned OccurrenceCount = 0;
276596f483aSJessica Paquette 
277acffa28cSJessica Paquette   /// The length of the string formed by concatenating the edge labels from the
278acffa28cSJessica Paquette   /// root to this node.
2794cf187b5SJessica Paquette   unsigned ConcatLen = 0;
280acffa28cSJessica Paquette 
281596f483aSJessica Paquette   /// Returns true if this node is a leaf.
282596f483aSJessica Paquette   bool isLeaf() const { return SuffixIdx != EmptyIdx; }
283596f483aSJessica Paquette 
284596f483aSJessica Paquette   /// Returns true if this node is the root of its owning \p SuffixTree.
285596f483aSJessica Paquette   bool isRoot() const { return StartIdx == EmptyIdx; }
286596f483aSJessica Paquette 
287596f483aSJessica Paquette   /// Return the number of elements in the substring associated with this node.
288596f483aSJessica Paquette   size_t size() const {
289596f483aSJessica Paquette 
290596f483aSJessica Paquette     // Is it the root? If so, it's the empty string so return 0.
291596f483aSJessica Paquette     if (isRoot())
292596f483aSJessica Paquette       return 0;
293596f483aSJessica Paquette 
294596f483aSJessica Paquette     assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
295596f483aSJessica Paquette 
296596f483aSJessica Paquette     // Size = the number of elements in the string.
297596f483aSJessica Paquette     // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
298596f483aSJessica Paquette     return *EndIdx - StartIdx + 1;
299596f483aSJessica Paquette   }
300596f483aSJessica Paquette 
3014cf187b5SJessica Paquette   SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link,
302596f483aSJessica Paquette                  SuffixTreeNode *Parent)
303596f483aSJessica Paquette       : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
304596f483aSJessica Paquette 
305596f483aSJessica Paquette   SuffixTreeNode() {}
306596f483aSJessica Paquette };
307596f483aSJessica Paquette 
308596f483aSJessica Paquette /// A data structure for fast substring queries.
309596f483aSJessica Paquette ///
310596f483aSJessica Paquette /// Suffix trees represent the suffixes of their input strings in their leaves.
311596f483aSJessica Paquette /// A suffix tree is a type of compressed trie structure where each node
312596f483aSJessica Paquette /// represents an entire substring rather than a single character. Each leaf
313596f483aSJessica Paquette /// of the tree is a suffix.
314596f483aSJessica Paquette ///
315596f483aSJessica Paquette /// A suffix tree can be seen as a type of state machine where each state is a
316596f483aSJessica Paquette /// substring of the full string. The tree is structured so that, for a string
317596f483aSJessica Paquette /// of length N, there are exactly N leaves in the tree. This structure allows
318596f483aSJessica Paquette /// us to quickly find repeated substrings of the input string.
319596f483aSJessica Paquette ///
320596f483aSJessica Paquette /// In this implementation, a "string" is a vector of unsigned integers.
321596f483aSJessica Paquette /// These integers may result from hashing some data type. A suffix tree can
322596f483aSJessica Paquette /// contain 1 or many strings, which can then be queried as one large string.
323596f483aSJessica Paquette ///
324596f483aSJessica Paquette /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
325596f483aSJessica Paquette /// suffix tree construction. Ukkonen's algorithm is explained in more detail
326596f483aSJessica Paquette /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
327596f483aSJessica Paquette /// paper is available at
328596f483aSJessica Paquette ///
329596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
330596f483aSJessica Paquette class SuffixTree {
33178681be2SJessica Paquette public:
33278681be2SJessica Paquette   /// Stores each leaf node in the tree.
33378681be2SJessica Paquette   ///
33478681be2SJessica Paquette   /// This is used for finding outlining candidates.
33578681be2SJessica Paquette   std::vector<SuffixTreeNode *> LeafVector;
33678681be2SJessica Paquette 
337596f483aSJessica Paquette   /// Each element is an integer representing an instruction in the module.
338596f483aSJessica Paquette   ArrayRef<unsigned> Str;
339596f483aSJessica Paquette 
34078681be2SJessica Paquette private:
341596f483aSJessica Paquette   /// Maintains each node in the tree.
342d4cb9c6dSJessica Paquette   SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
343596f483aSJessica Paquette 
344596f483aSJessica Paquette   /// The root of the suffix tree.
345596f483aSJessica Paquette   ///
346596f483aSJessica Paquette   /// The root represents the empty string. It is maintained by the
347596f483aSJessica Paquette   /// \p NodeAllocator like every other node in the tree.
348596f483aSJessica Paquette   SuffixTreeNode *Root = nullptr;
349596f483aSJessica Paquette 
350596f483aSJessica Paquette   /// Maintains the end indices of the internal nodes in the tree.
351596f483aSJessica Paquette   ///
352596f483aSJessica Paquette   /// Each internal node is guaranteed to never have its end index change
353596f483aSJessica Paquette   /// during the construction algorithm; however, leaves must be updated at
354596f483aSJessica Paquette   /// every step. Therefore, we need to store leaf end indices by reference
355596f483aSJessica Paquette   /// to avoid updating O(N) leaves at every step of construction. Thus,
356596f483aSJessica Paquette   /// every internal node must be allocated its own end index.
357596f483aSJessica Paquette   BumpPtrAllocator InternalEndIdxAllocator;
358596f483aSJessica Paquette 
359596f483aSJessica Paquette   /// The end index of each leaf in the tree.
3604cf187b5SJessica Paquette   unsigned LeafEndIdx = -1;
361596f483aSJessica Paquette 
362596f483aSJessica Paquette   /// \brief Helper struct which keeps track of the next insertion point in
363596f483aSJessica Paquette   /// Ukkonen's algorithm.
364596f483aSJessica Paquette   struct ActiveState {
365596f483aSJessica Paquette     /// The next node to insert at.
366596f483aSJessica Paquette     SuffixTreeNode *Node;
367596f483aSJessica Paquette 
368596f483aSJessica Paquette     /// The index of the first character in the substring currently being added.
3694cf187b5SJessica Paquette     unsigned Idx = EmptyIdx;
370596f483aSJessica Paquette 
371596f483aSJessica Paquette     /// The length of the substring we have to add at the current step.
3724cf187b5SJessica Paquette     unsigned Len = 0;
373596f483aSJessica Paquette   };
374596f483aSJessica Paquette 
375596f483aSJessica Paquette   /// \brief The point the next insertion will take place at in the
376596f483aSJessica Paquette   /// construction algorithm.
377596f483aSJessica Paquette   ActiveState Active;
378596f483aSJessica Paquette 
379596f483aSJessica Paquette   /// Allocate a leaf node and add it to the tree.
380596f483aSJessica Paquette   ///
381596f483aSJessica Paquette   /// \param Parent The parent of this node.
382596f483aSJessica Paquette   /// \param StartIdx The start index of this node's associated string.
383596f483aSJessica Paquette   /// \param Edge The label on the edge leaving \p Parent to this node.
384596f483aSJessica Paquette   ///
385596f483aSJessica Paquette   /// \returns A pointer to the allocated leaf node.
3864cf187b5SJessica Paquette   SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx,
387596f483aSJessica Paquette                              unsigned Edge) {
388596f483aSJessica Paquette 
389596f483aSJessica Paquette     assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
390596f483aSJessica Paquette 
39178681be2SJessica Paquette     SuffixTreeNode *N = new (NodeAllocator.Allocate())
39278681be2SJessica Paquette         SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent);
393596f483aSJessica Paquette     Parent.Children[Edge] = N;
394596f483aSJessica Paquette 
395596f483aSJessica Paquette     return N;
396596f483aSJessica Paquette   }
397596f483aSJessica Paquette 
398596f483aSJessica Paquette   /// Allocate an internal node and add it to the tree.
399596f483aSJessica Paquette   ///
400596f483aSJessica Paquette   /// \param Parent The parent of this node. Only null when allocating the root.
401596f483aSJessica Paquette   /// \param StartIdx The start index of this node's associated string.
402596f483aSJessica Paquette   /// \param EndIdx The end index of this node's associated string.
403596f483aSJessica Paquette   /// \param Edge The label on the edge leaving \p Parent to this node.
404596f483aSJessica Paquette   ///
405596f483aSJessica Paquette   /// \returns A pointer to the allocated internal node.
4064cf187b5SJessica Paquette   SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx,
4074cf187b5SJessica Paquette                                      unsigned EndIdx, unsigned Edge) {
408596f483aSJessica Paquette 
409596f483aSJessica Paquette     assert(StartIdx <= EndIdx && "String can't start after it ends!");
410596f483aSJessica Paquette     assert(!(!Parent && StartIdx != EmptyIdx) &&
411596f483aSJessica Paquette            "Non-root internal nodes must have parents!");
412596f483aSJessica Paquette 
4134cf187b5SJessica Paquette     unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx);
41478681be2SJessica Paquette     SuffixTreeNode *N = new (NodeAllocator.Allocate())
41578681be2SJessica Paquette         SuffixTreeNode(StartIdx, E, Root, Parent);
416596f483aSJessica Paquette     if (Parent)
417596f483aSJessica Paquette       Parent->Children[Edge] = N;
418596f483aSJessica Paquette 
419596f483aSJessica Paquette     return N;
420596f483aSJessica Paquette   }
421596f483aSJessica Paquette 
422596f483aSJessica Paquette   /// \brief Set the suffix indices of the leaves to the start indices of their
423596f483aSJessica Paquette   /// respective suffixes. Also stores each leaf in \p LeafVector at its
424596f483aSJessica Paquette   /// respective suffix index.
425596f483aSJessica Paquette   ///
426596f483aSJessica Paquette   /// \param[in] CurrNode The node currently being visited.
427596f483aSJessica Paquette   /// \param CurrIdx The current index of the string being visited.
4284cf187b5SJessica Paquette   void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) {
429596f483aSJessica Paquette 
430596f483aSJessica Paquette     bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
431596f483aSJessica Paquette 
432acffa28cSJessica Paquette     // Store the length of the concatenation of all strings from the root to
433acffa28cSJessica Paquette     // this node.
434acffa28cSJessica Paquette     if (!CurrNode.isRoot()) {
435acffa28cSJessica Paquette       if (CurrNode.ConcatLen == 0)
436acffa28cSJessica Paquette         CurrNode.ConcatLen = CurrNode.size();
437acffa28cSJessica Paquette 
438acffa28cSJessica Paquette       if (CurrNode.Parent)
439acffa28cSJessica Paquette         CurrNode.ConcatLen += CurrNode.Parent->ConcatLen;
440acffa28cSJessica Paquette     }
441acffa28cSJessica Paquette 
442596f483aSJessica Paquette     // Traverse the tree depth-first.
443596f483aSJessica Paquette     for (auto &ChildPair : CurrNode.Children) {
444596f483aSJessica Paquette       assert(ChildPair.second && "Node had a null child!");
44578681be2SJessica Paquette       setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size());
446596f483aSJessica Paquette     }
447596f483aSJessica Paquette 
448596f483aSJessica Paquette     // Is this node a leaf?
449596f483aSJessica Paquette     if (IsLeaf) {
450596f483aSJessica Paquette       // If yes, give it a suffix index and bump its parent's occurrence count.
451596f483aSJessica Paquette       CurrNode.SuffixIdx = Str.size() - CurrIdx;
452596f483aSJessica Paquette       assert(CurrNode.Parent && "CurrNode had no parent!");
453596f483aSJessica Paquette       CurrNode.Parent->OccurrenceCount++;
454596f483aSJessica Paquette 
455596f483aSJessica Paquette       // Store the leaf in the leaf vector for pruning later.
456596f483aSJessica Paquette       LeafVector[CurrNode.SuffixIdx] = &CurrNode;
457596f483aSJessica Paquette     }
458596f483aSJessica Paquette   }
459596f483aSJessica Paquette 
460596f483aSJessica Paquette   /// \brief Construct the suffix tree for the prefix of the input ending at
461596f483aSJessica Paquette   /// \p EndIdx.
462596f483aSJessica Paquette   ///
463596f483aSJessica Paquette   /// Used to construct the full suffix tree iteratively. At the end of each
464596f483aSJessica Paquette   /// step, the constructed suffix tree is either a valid suffix tree, or a
465596f483aSJessica Paquette   /// suffix tree with implicit suffixes. At the end of the final step, the
466596f483aSJessica Paquette   /// suffix tree is a valid tree.
467596f483aSJessica Paquette   ///
468596f483aSJessica Paquette   /// \param EndIdx The end index of the current prefix in the main string.
469596f483aSJessica Paquette   /// \param SuffixesToAdd The number of suffixes that must be added
470596f483aSJessica Paquette   /// to complete the suffix tree at the current phase.
471596f483aSJessica Paquette   ///
472596f483aSJessica Paquette   /// \returns The number of suffixes that have not been added at the end of
473596f483aSJessica Paquette   /// this step.
4744cf187b5SJessica Paquette   unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) {
475596f483aSJessica Paquette     SuffixTreeNode *NeedsLink = nullptr;
476596f483aSJessica Paquette 
477596f483aSJessica Paquette     while (SuffixesToAdd > 0) {
478596f483aSJessica Paquette 
479596f483aSJessica Paquette       // Are we waiting to add anything other than just the last character?
480596f483aSJessica Paquette       if (Active.Len == 0) {
481596f483aSJessica Paquette         // If not, then say the active index is the end index.
482596f483aSJessica Paquette         Active.Idx = EndIdx;
483596f483aSJessica Paquette       }
484596f483aSJessica Paquette 
485596f483aSJessica Paquette       assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
486596f483aSJessica Paquette 
487596f483aSJessica Paquette       // The first character in the current substring we're looking at.
488596f483aSJessica Paquette       unsigned FirstChar = Str[Active.Idx];
489596f483aSJessica Paquette 
490596f483aSJessica Paquette       // Have we inserted anything starting with FirstChar at the current node?
491596f483aSJessica Paquette       if (Active.Node->Children.count(FirstChar) == 0) {
492596f483aSJessica Paquette         // If not, then we can just insert a leaf and move too the next step.
493596f483aSJessica Paquette         insertLeaf(*Active.Node, EndIdx, FirstChar);
494596f483aSJessica Paquette 
495596f483aSJessica Paquette         // The active node is an internal node, and we visited it, so it must
496596f483aSJessica Paquette         // need a link if it doesn't have one.
497596f483aSJessica Paquette         if (NeedsLink) {
498596f483aSJessica Paquette           NeedsLink->Link = Active.Node;
499596f483aSJessica Paquette           NeedsLink = nullptr;
500596f483aSJessica Paquette         }
501596f483aSJessica Paquette       } else {
502596f483aSJessica Paquette         // There's a match with FirstChar, so look for the point in the tree to
503596f483aSJessica Paquette         // insert a new node.
504596f483aSJessica Paquette         SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
505596f483aSJessica Paquette 
5064cf187b5SJessica Paquette         unsigned SubstringLen = NextNode->size();
507596f483aSJessica Paquette 
508596f483aSJessica Paquette         // Is the current suffix we're trying to insert longer than the size of
509596f483aSJessica Paquette         // the child we want to move to?
510596f483aSJessica Paquette         if (Active.Len >= SubstringLen) {
511596f483aSJessica Paquette           // If yes, then consume the characters we've seen and move to the next
512596f483aSJessica Paquette           // node.
513596f483aSJessica Paquette           Active.Idx += SubstringLen;
514596f483aSJessica Paquette           Active.Len -= SubstringLen;
515596f483aSJessica Paquette           Active.Node = NextNode;
516596f483aSJessica Paquette           continue;
517596f483aSJessica Paquette         }
518596f483aSJessica Paquette 
519596f483aSJessica Paquette         // Otherwise, the suffix we're trying to insert must be contained in the
520596f483aSJessica Paquette         // next node we want to move to.
521596f483aSJessica Paquette         unsigned LastChar = Str[EndIdx];
522596f483aSJessica Paquette 
523596f483aSJessica Paquette         // Is the string we're trying to insert a substring of the next node?
524596f483aSJessica Paquette         if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
525596f483aSJessica Paquette           // If yes, then we're done for this step. Remember our insertion point
526596f483aSJessica Paquette           // and move to the next end index. At this point, we have an implicit
527596f483aSJessica Paquette           // suffix tree.
528596f483aSJessica Paquette           if (NeedsLink && !Active.Node->isRoot()) {
529596f483aSJessica Paquette             NeedsLink->Link = Active.Node;
530596f483aSJessica Paquette             NeedsLink = nullptr;
531596f483aSJessica Paquette           }
532596f483aSJessica Paquette 
533596f483aSJessica Paquette           Active.Len++;
534596f483aSJessica Paquette           break;
535596f483aSJessica Paquette         }
536596f483aSJessica Paquette 
537596f483aSJessica Paquette         // The string we're trying to insert isn't a substring of the next node,
538596f483aSJessica Paquette         // but matches up to a point. Split the node.
539596f483aSJessica Paquette         //
540596f483aSJessica Paquette         // For example, say we ended our search at a node n and we're trying to
541596f483aSJessica Paquette         // insert ABD. Then we'll create a new node s for AB, reduce n to just
542596f483aSJessica Paquette         // representing C, and insert a new leaf node l to represent d. This
543596f483aSJessica Paquette         // allows us to ensure that if n was a leaf, it remains a leaf.
544596f483aSJessica Paquette         //
545596f483aSJessica Paquette         //   | ABC  ---split--->  | AB
546596f483aSJessica Paquette         //   n                    s
547596f483aSJessica Paquette         //                     C / \ D
548596f483aSJessica Paquette         //                      n   l
549596f483aSJessica Paquette 
550596f483aSJessica Paquette         // The node s from the diagram
551596f483aSJessica Paquette         SuffixTreeNode *SplitNode =
55278681be2SJessica Paquette             insertInternalNode(Active.Node, NextNode->StartIdx,
55378681be2SJessica Paquette                                NextNode->StartIdx + Active.Len - 1, FirstChar);
554596f483aSJessica Paquette 
555596f483aSJessica Paquette         // Insert the new node representing the new substring into the tree as
556596f483aSJessica Paquette         // a child of the split node. This is the node l from the diagram.
557596f483aSJessica Paquette         insertLeaf(*SplitNode, EndIdx, LastChar);
558596f483aSJessica Paquette 
559596f483aSJessica Paquette         // Make the old node a child of the split node and update its start
560596f483aSJessica Paquette         // index. This is the node n from the diagram.
561596f483aSJessica Paquette         NextNode->StartIdx += Active.Len;
562596f483aSJessica Paquette         NextNode->Parent = SplitNode;
563596f483aSJessica Paquette         SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
564596f483aSJessica Paquette 
565596f483aSJessica Paquette         // SplitNode is an internal node, update the suffix link.
566596f483aSJessica Paquette         if (NeedsLink)
567596f483aSJessica Paquette           NeedsLink->Link = SplitNode;
568596f483aSJessica Paquette 
569596f483aSJessica Paquette         NeedsLink = SplitNode;
570596f483aSJessica Paquette       }
571596f483aSJessica Paquette 
572596f483aSJessica Paquette       // We've added something new to the tree, so there's one less suffix to
573596f483aSJessica Paquette       // add.
574596f483aSJessica Paquette       SuffixesToAdd--;
575596f483aSJessica Paquette 
576596f483aSJessica Paquette       if (Active.Node->isRoot()) {
577596f483aSJessica Paquette         if (Active.Len > 0) {
578596f483aSJessica Paquette           Active.Len--;
579596f483aSJessica Paquette           Active.Idx = EndIdx - SuffixesToAdd + 1;
580596f483aSJessica Paquette         }
581596f483aSJessica Paquette       } else {
582596f483aSJessica Paquette         // Start the next phase at the next smallest suffix.
583596f483aSJessica Paquette         Active.Node = Active.Node->Link;
584596f483aSJessica Paquette       }
585596f483aSJessica Paquette     }
586596f483aSJessica Paquette 
587596f483aSJessica Paquette     return SuffixesToAdd;
588596f483aSJessica Paquette   }
589596f483aSJessica Paquette 
590596f483aSJessica Paquette public:
591596f483aSJessica Paquette   /// Construct a suffix tree from a sequence of unsigned integers.
592596f483aSJessica Paquette   ///
593596f483aSJessica Paquette   /// \param Str The string to construct the suffix tree for.
594596f483aSJessica Paquette   SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
595596f483aSJessica Paquette     Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
596596f483aSJessica Paquette     Root->IsInTree = true;
597596f483aSJessica Paquette     Active.Node = Root;
598596f483aSJessica Paquette     LeafVector = std::vector<SuffixTreeNode *>(Str.size());
599596f483aSJessica Paquette 
600596f483aSJessica Paquette     // Keep track of the number of suffixes we have to add of the current
601596f483aSJessica Paquette     // prefix.
6024cf187b5SJessica Paquette     unsigned SuffixesToAdd = 0;
603596f483aSJessica Paquette     Active.Node = Root;
604596f483aSJessica Paquette 
605596f483aSJessica Paquette     // Construct the suffix tree iteratively on each prefix of the string.
606596f483aSJessica Paquette     // PfxEndIdx is the end index of the current prefix.
607596f483aSJessica Paquette     // End is one past the last element in the string.
6084cf187b5SJessica Paquette     for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End;
6094cf187b5SJessica Paquette          PfxEndIdx++) {
610596f483aSJessica Paquette       SuffixesToAdd++;
611596f483aSJessica Paquette       LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
612596f483aSJessica Paquette       SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
613596f483aSJessica Paquette     }
614596f483aSJessica Paquette 
615596f483aSJessica Paquette     // Set the suffix indices of each leaf.
616596f483aSJessica Paquette     assert(Root && "Root node can't be nullptr!");
617596f483aSJessica Paquette     setSuffixIndices(*Root, 0);
618596f483aSJessica Paquette   }
619596f483aSJessica Paquette };
620596f483aSJessica Paquette 
621596f483aSJessica Paquette /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings.
622596f483aSJessica Paquette struct InstructionMapper {
623596f483aSJessica Paquette 
624596f483aSJessica Paquette   /// \brief The next available integer to assign to a \p MachineInstr that
625596f483aSJessica Paquette   /// cannot be outlined.
626596f483aSJessica Paquette   ///
627596f483aSJessica Paquette   /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
628596f483aSJessica Paquette   unsigned IllegalInstrNumber = -3;
629596f483aSJessica Paquette 
630596f483aSJessica Paquette   /// \brief The next available integer to assign to a \p MachineInstr that can
631596f483aSJessica Paquette   /// be outlined.
632596f483aSJessica Paquette   unsigned LegalInstrNumber = 0;
633596f483aSJessica Paquette 
634596f483aSJessica Paquette   /// Correspondence from \p MachineInstrs to unsigned integers.
635596f483aSJessica Paquette   DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
636596f483aSJessica Paquette       InstructionIntegerMap;
637596f483aSJessica Paquette 
638596f483aSJessica Paquette   /// Corresponcence from unsigned integers to \p MachineInstrs.
639596f483aSJessica Paquette   /// Inverse of \p InstructionIntegerMap.
640596f483aSJessica Paquette   DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
641596f483aSJessica Paquette 
642596f483aSJessica Paquette   /// The vector of unsigned integers that the module is mapped to.
643596f483aSJessica Paquette   std::vector<unsigned> UnsignedVec;
644596f483aSJessica Paquette 
645596f483aSJessica Paquette   /// \brief Stores the location of the instruction associated with the integer
646596f483aSJessica Paquette   /// at index i in \p UnsignedVec for each index i.
647596f483aSJessica Paquette   std::vector<MachineBasicBlock::iterator> InstrList;
648596f483aSJessica Paquette 
649596f483aSJessica Paquette   /// \brief Maps \p *It to a legal integer.
650596f483aSJessica Paquette   ///
651596f483aSJessica Paquette   /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
652596f483aSJessica Paquette   /// \p IntegerInstructionMap, and \p LegalInstrNumber.
653596f483aSJessica Paquette   ///
654596f483aSJessica Paquette   /// \returns The integer that \p *It was mapped to.
655596f483aSJessica Paquette   unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
656596f483aSJessica Paquette 
657596f483aSJessica Paquette     // Get the integer for this instruction or give it the current
658596f483aSJessica Paquette     // LegalInstrNumber.
659596f483aSJessica Paquette     InstrList.push_back(It);
660596f483aSJessica Paquette     MachineInstr &MI = *It;
661596f483aSJessica Paquette     bool WasInserted;
662596f483aSJessica Paquette     DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
663596f483aSJessica Paquette         ResultIt;
664596f483aSJessica Paquette     std::tie(ResultIt, WasInserted) =
665596f483aSJessica Paquette         InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
666596f483aSJessica Paquette     unsigned MINumber = ResultIt->second;
667596f483aSJessica Paquette 
668596f483aSJessica Paquette     // There was an insertion.
669596f483aSJessica Paquette     if (WasInserted) {
670596f483aSJessica Paquette       LegalInstrNumber++;
671596f483aSJessica Paquette       IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
672596f483aSJessica Paquette     }
673596f483aSJessica Paquette 
674596f483aSJessica Paquette     UnsignedVec.push_back(MINumber);
675596f483aSJessica Paquette 
676596f483aSJessica Paquette     // Make sure we don't overflow or use any integers reserved by the DenseMap.
677596f483aSJessica Paquette     if (LegalInstrNumber >= IllegalInstrNumber)
678596f483aSJessica Paquette       report_fatal_error("Instruction mapping overflow!");
679596f483aSJessica Paquette 
68078681be2SJessica Paquette     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
68178681be2SJessica Paquette            "Tried to assign DenseMap tombstone or empty key to instruction.");
68278681be2SJessica Paquette     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
68378681be2SJessica Paquette            "Tried to assign DenseMap tombstone or empty key to instruction.");
684596f483aSJessica Paquette 
685596f483aSJessica Paquette     return MINumber;
686596f483aSJessica Paquette   }
687596f483aSJessica Paquette 
688596f483aSJessica Paquette   /// Maps \p *It to an illegal integer.
689596f483aSJessica Paquette   ///
690596f483aSJessica Paquette   /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
691596f483aSJessica Paquette   ///
692596f483aSJessica Paquette   /// \returns The integer that \p *It was mapped to.
693596f483aSJessica Paquette   unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
694596f483aSJessica Paquette     unsigned MINumber = IllegalInstrNumber;
695596f483aSJessica Paquette 
696596f483aSJessica Paquette     InstrList.push_back(It);
697596f483aSJessica Paquette     UnsignedVec.push_back(IllegalInstrNumber);
698596f483aSJessica Paquette     IllegalInstrNumber--;
699596f483aSJessica Paquette 
700596f483aSJessica Paquette     assert(LegalInstrNumber < IllegalInstrNumber &&
701596f483aSJessica Paquette            "Instruction mapping overflow!");
702596f483aSJessica Paquette 
70378681be2SJessica Paquette     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
704596f483aSJessica Paquette            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
705596f483aSJessica Paquette 
70678681be2SJessica Paquette     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
707596f483aSJessica Paquette            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
708596f483aSJessica Paquette 
709596f483aSJessica Paquette     return MINumber;
710596f483aSJessica Paquette   }
711596f483aSJessica Paquette 
712596f483aSJessica Paquette   /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
713596f483aSJessica Paquette   /// and appends it to \p UnsignedVec and \p InstrList.
714596f483aSJessica Paquette   ///
715596f483aSJessica Paquette   /// Two instructions are assigned the same integer if they are identical.
716596f483aSJessica Paquette   /// If an instruction is deemed unsafe to outline, then it will be assigned an
717596f483aSJessica Paquette   /// unique integer. The resulting mapping is placed into a suffix tree and
718596f483aSJessica Paquette   /// queried for candidates.
719596f483aSJessica Paquette   ///
720596f483aSJessica Paquette   /// \param MBB The \p MachineBasicBlock to be translated into integers.
721596f483aSJessica Paquette   /// \param TRI \p TargetRegisterInfo for the module.
722596f483aSJessica Paquette   /// \param TII \p TargetInstrInfo for the module.
723596f483aSJessica Paquette   void convertToUnsignedVec(MachineBasicBlock &MBB,
724596f483aSJessica Paquette                             const TargetRegisterInfo &TRI,
725596f483aSJessica Paquette                             const TargetInstrInfo &TII) {
726596f483aSJessica Paquette     for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et;
727596f483aSJessica Paquette          It++) {
728596f483aSJessica Paquette 
729596f483aSJessica Paquette       // Keep track of where this instruction is in the module.
730596f483aSJessica Paquette       switch (TII.getOutliningType(*It)) {
731596f483aSJessica Paquette       case TargetInstrInfo::MachineOutlinerInstrType::Illegal:
732596f483aSJessica Paquette         mapToIllegalUnsigned(It);
733596f483aSJessica Paquette         break;
734596f483aSJessica Paquette 
735596f483aSJessica Paquette       case TargetInstrInfo::MachineOutlinerInstrType::Legal:
736596f483aSJessica Paquette         mapToLegalUnsigned(It);
737596f483aSJessica Paquette         break;
738596f483aSJessica Paquette 
739596f483aSJessica Paquette       case TargetInstrInfo::MachineOutlinerInstrType::Invisible:
740596f483aSJessica Paquette         break;
741596f483aSJessica Paquette       }
742596f483aSJessica Paquette     }
743596f483aSJessica Paquette 
744596f483aSJessica Paquette     // After we're done every insertion, uniquely terminate this part of the
745596f483aSJessica Paquette     // "string". This makes sure we won't match across basic block or function
746596f483aSJessica Paquette     // boundaries since the "end" is encoded uniquely and thus appears in no
747596f483aSJessica Paquette     // repeated substring.
748596f483aSJessica Paquette     InstrList.push_back(MBB.end());
749596f483aSJessica Paquette     UnsignedVec.push_back(IllegalInstrNumber);
750596f483aSJessica Paquette     IllegalInstrNumber--;
751596f483aSJessica Paquette   }
752596f483aSJessica Paquette 
753596f483aSJessica Paquette   InstructionMapper() {
754596f483aSJessica Paquette     // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
755596f483aSJessica Paquette     // changed.
756596f483aSJessica Paquette     assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
757596f483aSJessica Paquette            "DenseMapInfo<unsigned>'s empty key isn't -1!");
758596f483aSJessica Paquette     assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
759596f483aSJessica Paquette            "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
760596f483aSJessica Paquette   }
761596f483aSJessica Paquette };
762596f483aSJessica Paquette 
763596f483aSJessica Paquette /// \brief An interprocedural pass which finds repeated sequences of
764596f483aSJessica Paquette /// instructions and replaces them with calls to functions.
765596f483aSJessica Paquette ///
766596f483aSJessica Paquette /// Each instruction is mapped to an unsigned integer and placed in a string.
767596f483aSJessica Paquette /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
768596f483aSJessica Paquette /// is then repeatedly queried for repeated sequences of instructions. Each
769596f483aSJessica Paquette /// non-overlapping repeated sequence is then placed in its own
770596f483aSJessica Paquette /// \p MachineFunction and each instance is then replaced with a call to that
771596f483aSJessica Paquette /// function.
772596f483aSJessica Paquette struct MachineOutliner : public ModulePass {
773596f483aSJessica Paquette 
774596f483aSJessica Paquette   static char ID;
775596f483aSJessica Paquette 
77613593843SJessica Paquette   /// \brief Set to true if the outliner should consider functions with
77713593843SJessica Paquette   /// linkonceodr linkage.
77813593843SJessica Paquette   bool OutlineFromLinkOnceODRs = false;
77913593843SJessica Paquette 
780596f483aSJessica Paquette   StringRef getPassName() const override { return "Machine Outliner"; }
781596f483aSJessica Paquette 
782596f483aSJessica Paquette   void getAnalysisUsage(AnalysisUsage &AU) const override {
783596f483aSJessica Paquette     AU.addRequired<MachineModuleInfo>();
784596f483aSJessica Paquette     AU.addPreserved<MachineModuleInfo>();
785596f483aSJessica Paquette     AU.setPreservesAll();
786596f483aSJessica Paquette     ModulePass::getAnalysisUsage(AU);
787596f483aSJessica Paquette   }
788596f483aSJessica Paquette 
789c9ab4c26SJessica Paquette   MachineOutliner(bool OutlineFromLinkOnceODRs = false)
790c9ab4c26SJessica Paquette       : ModulePass(ID), OutlineFromLinkOnceODRs(OutlineFromLinkOnceODRs) {
791596f483aSJessica Paquette     initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
792596f483aSJessica Paquette   }
793596f483aSJessica Paquette 
79478681be2SJessica Paquette   /// Find all repeated substrings that satisfy the outlining cost model.
79578681be2SJessica Paquette   ///
79678681be2SJessica Paquette   /// If a substring appears at least twice, then it must be represented by
79778681be2SJessica Paquette   /// an internal node which appears in at least two suffixes. Each suffix is
79878681be2SJessica Paquette   /// represented by a leaf node. To do this, we visit each internal node in
79978681be2SJessica Paquette   /// the tree, using the leaf children of each internal node. If an internal
80078681be2SJessica Paquette   /// node represents a beneficial substring, then we use each of its leaf
80178681be2SJessica Paquette   /// children to find the locations of its substring.
80278681be2SJessica Paquette   ///
80378681be2SJessica Paquette   /// \param ST A suffix tree to query.
80478681be2SJessica Paquette   /// \param TII TargetInstrInfo for the target.
80578681be2SJessica Paquette   /// \param Mapper Contains outlining mapping information.
80678681be2SJessica Paquette   /// \param[out] CandidateList Filled with candidates representing each
80778681be2SJessica Paquette   /// beneficial substring.
80878681be2SJessica Paquette   /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each
80978681be2SJessica Paquette   /// type of candidate.
81078681be2SJessica Paquette   ///
81178681be2SJessica Paquette   /// \returns The length of the longest candidate found.
812*9df7fde2SJessica Paquette   unsigned
813*9df7fde2SJessica Paquette   findCandidates(SuffixTree &ST, const TargetInstrInfo &TII,
81478681be2SJessica Paquette                  InstructionMapper &Mapper,
815*9df7fde2SJessica Paquette                  std::vector<std::shared_ptr<Candidate>> &CandidateList,
81678681be2SJessica Paquette                  std::vector<OutlinedFunction> &FunctionList);
81778681be2SJessica Paquette 
818596f483aSJessica Paquette   /// \brief Replace the sequences of instructions represented by the
819596f483aSJessica Paquette   /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
820596f483aSJessica Paquette   /// described in \p FunctionList.
821596f483aSJessica Paquette   ///
822596f483aSJessica Paquette   /// \param M The module we are outlining from.
823596f483aSJessica Paquette   /// \param CandidateList A list of candidates to be outlined.
824596f483aSJessica Paquette   /// \param FunctionList A list of functions to be inserted into the module.
825596f483aSJessica Paquette   /// \param Mapper Contains the instruction mappings for the module.
826*9df7fde2SJessica Paquette   bool outline(Module &M,
827*9df7fde2SJessica Paquette                const ArrayRef<std::shared_ptr<Candidate>> &CandidateList,
828596f483aSJessica Paquette                std::vector<OutlinedFunction> &FunctionList,
829596f483aSJessica Paquette                InstructionMapper &Mapper);
830596f483aSJessica Paquette 
831596f483aSJessica Paquette   /// Creates a function for \p OF and inserts it into the module.
832596f483aSJessica Paquette   MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
833596f483aSJessica Paquette                                           InstructionMapper &Mapper);
834596f483aSJessica Paquette 
835596f483aSJessica Paquette   /// Find potential outlining candidates and store them in \p CandidateList.
836596f483aSJessica Paquette   ///
837596f483aSJessica Paquette   /// For each type of potential candidate, also build an \p OutlinedFunction
838596f483aSJessica Paquette   /// struct containing the information to build the function for that
839596f483aSJessica Paquette   /// candidate.
840596f483aSJessica Paquette   ///
841596f483aSJessica Paquette   /// \param[out] CandidateList Filled with outlining candidates for the module.
842596f483aSJessica Paquette   /// \param[out] FunctionList Filled with functions corresponding to each type
843596f483aSJessica Paquette   /// of \p Candidate.
844596f483aSJessica Paquette   /// \param ST The suffix tree for the module.
845596f483aSJessica Paquette   /// \param TII TargetInstrInfo for the module.
846596f483aSJessica Paquette   ///
847596f483aSJessica Paquette   /// \returns The length of the longest candidate found. 0 if there are none.
848*9df7fde2SJessica Paquette   unsigned
849*9df7fde2SJessica Paquette   buildCandidateList(std::vector<std::shared_ptr<Candidate>> &CandidateList,
850596f483aSJessica Paquette                      std::vector<OutlinedFunction> &FunctionList,
85178681be2SJessica Paquette                      SuffixTree &ST, InstructionMapper &Mapper,
852c984e213SJessica Paquette                      const TargetInstrInfo &TII);
853596f483aSJessica Paquette 
85460d31fc3SJessica Paquette   /// Helper function for pruneOverlaps.
85560d31fc3SJessica Paquette   /// Removes \p C from the candidate list, and updates its \p OutlinedFunction.
85660d31fc3SJessica Paquette   void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList);
85760d31fc3SJessica Paquette 
858596f483aSJessica Paquette   /// \brief Remove any overlapping candidates that weren't handled by the
859596f483aSJessica Paquette   /// suffix tree's pruning method.
860596f483aSJessica Paquette   ///
861596f483aSJessica Paquette   /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
862596f483aSJessica Paquette   /// If a short candidate is chosen for outlining, then a longer candidate
863596f483aSJessica Paquette   /// which has that short candidate as a suffix is chosen, the tree's pruning
864596f483aSJessica Paquette   /// method will not find it. Thus, we need to prune before outlining as well.
865596f483aSJessica Paquette   ///
866596f483aSJessica Paquette   /// \param[in,out] CandidateList A list of outlining candidates.
867596f483aSJessica Paquette   /// \param[in,out] FunctionList A list of functions to be outlined.
868809d708bSJessica Paquette   /// \param Mapper Contains instruction mapping info for outlining.
869596f483aSJessica Paquette   /// \param MaxCandidateLen The length of the longest candidate.
870596f483aSJessica Paquette   /// \param TII TargetInstrInfo for the module.
871*9df7fde2SJessica Paquette   void pruneOverlaps(std::vector<std::shared_ptr<Candidate>> &CandidateList,
872596f483aSJessica Paquette                      std::vector<OutlinedFunction> &FunctionList,
873809d708bSJessica Paquette                      InstructionMapper &Mapper, unsigned MaxCandidateLen,
874809d708bSJessica Paquette                      const TargetInstrInfo &TII);
875596f483aSJessica Paquette 
876596f483aSJessica Paquette   /// Construct a suffix tree on the instructions in \p M and outline repeated
877596f483aSJessica Paquette   /// strings from that tree.
878596f483aSJessica Paquette   bool runOnModule(Module &M) override;
879596f483aSJessica Paquette };
880596f483aSJessica Paquette 
881596f483aSJessica Paquette } // Anonymous namespace.
882596f483aSJessica Paquette 
883596f483aSJessica Paquette char MachineOutliner::ID = 0;
884596f483aSJessica Paquette 
885596f483aSJessica Paquette namespace llvm {
88613593843SJessica Paquette ModulePass *createMachineOutlinerPass(bool OutlineFromLinkOnceODRs) {
88713593843SJessica Paquette   return new MachineOutliner(OutlineFromLinkOnceODRs);
88813593843SJessica Paquette }
88913593843SJessica Paquette 
89078681be2SJessica Paquette } // namespace llvm
89178681be2SJessica Paquette 
89278681be2SJessica Paquette INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
89378681be2SJessica Paquette                 false)
89478681be2SJessica Paquette 
895*9df7fde2SJessica Paquette unsigned MachineOutliner::findCandidates(
896*9df7fde2SJessica Paquette     SuffixTree &ST, const TargetInstrInfo &TII, InstructionMapper &Mapper,
897*9df7fde2SJessica Paquette     std::vector<std::shared_ptr<Candidate>> &CandidateList,
89878681be2SJessica Paquette     std::vector<OutlinedFunction> &FunctionList) {
89978681be2SJessica Paquette   CandidateList.clear();
90078681be2SJessica Paquette   FunctionList.clear();
9014cf187b5SJessica Paquette   unsigned MaxLen = 0;
90278681be2SJessica Paquette 
90378681be2SJessica Paquette   // FIXME: Visit internal nodes instead of leaves.
90478681be2SJessica Paquette   for (SuffixTreeNode *Leaf : ST.LeafVector) {
90578681be2SJessica Paquette     assert(Leaf && "Leaves in LeafVector cannot be null!");
90678681be2SJessica Paquette     if (!Leaf->IsInTree)
90778681be2SJessica Paquette       continue;
90878681be2SJessica Paquette 
90978681be2SJessica Paquette     assert(Leaf->Parent && "All leaves must have parents!");
91078681be2SJessica Paquette     SuffixTreeNode &Parent = *(Leaf->Parent);
91178681be2SJessica Paquette 
91278681be2SJessica Paquette     // If it doesn't appear enough, or we already outlined from it, skip it.
91378681be2SJessica Paquette     if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree)
91478681be2SJessica Paquette       continue;
91578681be2SJessica Paquette 
916809d708bSJessica Paquette     // Figure out if this candidate is beneficial.
9174cf187b5SJessica Paquette     unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size();
91895c1107fSJessica Paquette 
91995c1107fSJessica Paquette     // Too short to be beneficial; skip it.
92095c1107fSJessica Paquette     // FIXME: This isn't necessarily true for, say, X86. If we factor in
92195c1107fSJessica Paquette     // instruction lengths we need more information than this.
92295c1107fSJessica Paquette     if (StringLen < 2)
92395c1107fSJessica Paquette       continue;
92495c1107fSJessica Paquette 
925d87f5449SJessica Paquette     // If this is a beneficial class of candidate, then every one is stored in
926d87f5449SJessica Paquette     // this vector.
927d87f5449SJessica Paquette     std::vector<Candidate> CandidatesForRepeatedSeq;
928d87f5449SJessica Paquette 
9294cf187b5SJessica Paquette     // Describes the start and end point of each candidate. This allows the
9304cf187b5SJessica Paquette     // target to infer some information about each occurrence of each repeated
9314cf187b5SJessica Paquette     // sequence.
932d87f5449SJessica Paquette     // FIXME: CandidatesForRepeatedSeq and this should be combined.
933d87f5449SJessica Paquette     std::vector<
934d87f5449SJessica Paquette         std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
9354cf187b5SJessica Paquette         RepeatedSequenceLocs;
936d87f5449SJessica Paquette 
937809d708bSJessica Paquette     // Figure out the call overhead for each instance of the sequence.
938809d708bSJessica Paquette     for (auto &ChildPair : Parent.Children) {
939809d708bSJessica Paquette       SuffixTreeNode *M = ChildPair.second;
94078681be2SJessica Paquette 
941809d708bSJessica Paquette       if (M && M->IsInTree && M->isLeaf()) {
942809d708bSJessica Paquette         // Each sequence is over [StartIt, EndIt].
943809d708bSJessica Paquette         MachineBasicBlock::iterator StartIt = Mapper.InstrList[M->SuffixIdx];
944809d708bSJessica Paquette         MachineBasicBlock::iterator EndIt =
945809d708bSJessica Paquette             Mapper.InstrList[M->SuffixIdx + StringLen - 1];
946d87f5449SJessica Paquette 
947acc15e12SJessica Paquette         CandidatesForRepeatedSeq.emplace_back(M->SuffixIdx, StringLen,
948acc15e12SJessica Paquette                                               FunctionList.size());
9494cf187b5SJessica Paquette         RepeatedSequenceLocs.emplace_back(std::make_pair(StartIt, EndIt));
950d87f5449SJessica Paquette 
951d87f5449SJessica Paquette         // Never visit this leaf again.
952d87f5449SJessica Paquette         M->IsInTree = false;
953809d708bSJessica Paquette       }
954809d708bSJessica Paquette     }
955809d708bSJessica Paquette 
956acc15e12SJessica Paquette     // We've found something we might want to outline.
957acc15e12SJessica Paquette     // Create an OutlinedFunction to store it and check if it'd be beneficial
958acc15e12SJessica Paquette     // to outline.
9594cf187b5SJessica Paquette     TargetInstrInfo::MachineOutlinerInfo MInfo =
9604cf187b5SJessica Paquette         TII.getOutlininingCandidateInfo(RepeatedSequenceLocs);
961acc15e12SJessica Paquette     std::vector<unsigned> Seq;
962acc15e12SJessica Paquette     for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++)
963acc15e12SJessica Paquette       Seq.push_back(ST.Str[i]);
964acc15e12SJessica Paquette     OutlinedFunction OF(FunctionList.size(), Parent.OccurrenceCount, Seq,
965acc15e12SJessica Paquette                         MInfo);
966acc15e12SJessica Paquette     unsigned Benefit = OF.getBenefit();
967809d708bSJessica Paquette 
968ffe4abc5SJessica Paquette     // Is it better to outline this candidate than not?
969acc15e12SJessica Paquette     if (Benefit < 1) {
970ffe4abc5SJessica Paquette       // Outlining this candidate would take more instructions than not
971ffe4abc5SJessica Paquette       // outlining.
972ffe4abc5SJessica Paquette       // Emit a remark explaining why we didn't outline this candidate.
973ffe4abc5SJessica Paquette       std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator> C =
9744cf187b5SJessica Paquette           RepeatedSequenceLocs[0];
9759590658fSVivek Pandya       MachineOptimizationRemarkEmitter MORE(
9769590658fSVivek Pandya           *(C.first->getParent()->getParent()), nullptr);
9779590658fSVivek Pandya       MORE.emit([&]() {
978ffe4abc5SJessica Paquette         MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
979ffe4abc5SJessica Paquette                                           C.first->getDebugLoc(),
980ffe4abc5SJessica Paquette                                           C.first->getParent());
981ffe4abc5SJessica Paquette         R << "Did not outline " << NV("Length", StringLen) << " instructions"
9824cf187b5SJessica Paquette           << " from " << NV("NumOccurrences", RepeatedSequenceLocs.size())
983ffe4abc5SJessica Paquette           << " locations."
984ffe4abc5SJessica Paquette           << " Instructions from outlining all occurrences ("
985acc15e12SJessica Paquette           << NV("OutliningCost", OF.getOutliningCost()) << ")"
986ffe4abc5SJessica Paquette           << " >= Unoutlined instruction count ("
98785af63d0SJessica Paquette           << NV("NotOutliningCost", StringLen * OF.getOccurrenceCount()) << ")"
988ffe4abc5SJessica Paquette           << " (Also found at: ";
989ffe4abc5SJessica Paquette 
990ffe4abc5SJessica Paquette         // Tell the user the other places the candidate was found.
9914cf187b5SJessica Paquette         for (unsigned i = 1, e = RepeatedSequenceLocs.size(); i < e; i++) {
992ffe4abc5SJessica Paquette           R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
9934cf187b5SJessica Paquette                   RepeatedSequenceLocs[i].first->getDebugLoc());
994ffe4abc5SJessica Paquette           if (i != e - 1)
995ffe4abc5SJessica Paquette             R << ", ";
996ffe4abc5SJessica Paquette         }
997ffe4abc5SJessica Paquette 
998ffe4abc5SJessica Paquette         R << ")";
9999590658fSVivek Pandya         return R;
10009590658fSVivek Pandya       });
1001ffe4abc5SJessica Paquette 
1002ffe4abc5SJessica Paquette       // Move to the next candidate.
100378681be2SJessica Paquette       continue;
1004ffe4abc5SJessica Paquette     }
100578681be2SJessica Paquette 
100678681be2SJessica Paquette     if (StringLen > MaxLen)
100778681be2SJessica Paquette       MaxLen = StringLen;
100878681be2SJessica Paquette 
1009d87f5449SJessica Paquette     // At this point, the candidate class is seen as beneficial. Set their
1010d87f5449SJessica Paquette     // benefit values and save them in the candidate list.
1011*9df7fde2SJessica Paquette     std::vector<std::shared_ptr<Candidate>> CandidatesForFn;
1012d87f5449SJessica Paquette     for (Candidate &C : CandidatesForRepeatedSeq) {
1013d87f5449SJessica Paquette       C.Benefit = Benefit;
10144cf187b5SJessica Paquette       C.MInfo = MInfo;
1015*9df7fde2SJessica Paquette       std::shared_ptr<Candidate> Cptr = std::make_shared<Candidate>(C);
1016*9df7fde2SJessica Paquette       CandidateList.push_back(Cptr);
1017*9df7fde2SJessica Paquette       CandidatesForFn.push_back(Cptr);
1018596f483aSJessica Paquette     }
1019596f483aSJessica Paquette 
1020acc15e12SJessica Paquette     FunctionList.push_back(OF);
1021*9df7fde2SJessica Paquette     FunctionList.back().Candidates = CandidatesForFn;
102278681be2SJessica Paquette 
102378681be2SJessica Paquette     // Move to the next function.
102478681be2SJessica Paquette     Parent.IsInTree = false;
102578681be2SJessica Paquette   }
102678681be2SJessica Paquette 
102778681be2SJessica Paquette   return MaxLen;
102878681be2SJessica Paquette }
1029596f483aSJessica Paquette 
103091999169SJessica Paquette // Remove C from the candidate space, and update its OutlinedFunction.
103160d31fc3SJessica Paquette void MachineOutliner::prune(Candidate &C,
103260d31fc3SJessica Paquette                             std::vector<OutlinedFunction> &FunctionList) {
103391999169SJessica Paquette   // Get the OutlinedFunction associated with this Candidate.
103491999169SJessica Paquette   OutlinedFunction &F = FunctionList[C.FunctionIdx];
103591999169SJessica Paquette 
103691999169SJessica Paquette   // Update C's associated function's occurrence count.
103785af63d0SJessica Paquette   F.decrement();
103891999169SJessica Paquette 
103991999169SJessica Paquette   // Remove C from the CandidateList.
104091999169SJessica Paquette   C.InCandidateList = false;
104191999169SJessica Paquette 
104291999169SJessica Paquette   DEBUG(dbgs() << "- Removed a Candidate \n";
104385af63d0SJessica Paquette         dbgs() << "--- Num fns left for candidate: " << F.getOccurrenceCount()
104491999169SJessica Paquette                << "\n";
1045acc15e12SJessica Paquette         dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit()
104691999169SJessica Paquette                << "\n";);
104760d31fc3SJessica Paquette }
104860d31fc3SJessica Paquette 
1049*9df7fde2SJessica Paquette void MachineOutliner::pruneOverlaps(
1050*9df7fde2SJessica Paquette     std::vector<std::shared_ptr<Candidate>> &CandidateList,
1051*9df7fde2SJessica Paquette     std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper,
1052*9df7fde2SJessica Paquette     unsigned MaxCandidateLen, const TargetInstrInfo &TII) {
105360d31fc3SJessica Paquette 
105460d31fc3SJessica Paquette   // Return true if this candidate became unbeneficial for outlining in a
105560d31fc3SJessica Paquette   // previous step.
105660d31fc3SJessica Paquette   auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) {
105760d31fc3SJessica Paquette 
105860d31fc3SJessica Paquette     // Check if the candidate was removed in a previous step.
105960d31fc3SJessica Paquette     if (!C.InCandidateList)
106060d31fc3SJessica Paquette       return true;
106160d31fc3SJessica Paquette 
106260d31fc3SJessica Paquette     // C must be alive. Check if we should remove it.
106360d31fc3SJessica Paquette     if (FunctionList[C.FunctionIdx].getBenefit() < 1) {
106460d31fc3SJessica Paquette       prune(C, FunctionList);
106560d31fc3SJessica Paquette       return true;
106660d31fc3SJessica Paquette     }
106760d31fc3SJessica Paquette 
106860d31fc3SJessica Paquette     // C is in the list, and F is still beneficial.
106960d31fc3SJessica Paquette     return false;
107091999169SJessica Paquette   };
107191999169SJessica Paquette 
1072acffa28cSJessica Paquette   // TODO: Experiment with interval trees or other interval-checking structures
1073acffa28cSJessica Paquette   // to lower the time complexity of this function.
1074acffa28cSJessica Paquette   // TODO: Can we do better than the simple greedy choice?
1075acffa28cSJessica Paquette   // Check for overlaps in the range.
1076acffa28cSJessica Paquette   // This is O(MaxCandidateLen * CandidateList.size()).
1077596f483aSJessica Paquette   for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
1078596f483aSJessica Paquette        It++) {
1079*9df7fde2SJessica Paquette     Candidate &C1 = **It;
1080596f483aSJessica Paquette 
108191999169SJessica Paquette     // If C1 was already pruned, or its function is no longer beneficial for
108291999169SJessica Paquette     // outlining, move to the next candidate.
108391999169SJessica Paquette     if (ShouldSkipCandidate(C1))
1084596f483aSJessica Paquette       continue;
1085596f483aSJessica Paquette 
1086596f483aSJessica Paquette     // The minimum start index of any candidate that could overlap with this
1087596f483aSJessica Paquette     // one.
1088596f483aSJessica Paquette     unsigned FarthestPossibleIdx = 0;
1089596f483aSJessica Paquette 
1090596f483aSJessica Paquette     // Either the index is 0, or it's at most MaxCandidateLen indices away.
10911934fd2cSJessica Paquette     if (C1.getStartIdx() > MaxCandidateLen)
10921934fd2cSJessica Paquette       FarthestPossibleIdx = C1.getStartIdx() - MaxCandidateLen;
1093596f483aSJessica Paquette 
1094acffa28cSJessica Paquette     // Compare against the candidates in the list that start at at most
1095acffa28cSJessica Paquette     // FarthestPossibleIdx indices away from C1. There are at most
1096acffa28cSJessica Paquette     // MaxCandidateLen of these.
1097596f483aSJessica Paquette     for (auto Sit = It + 1; Sit != Et; Sit++) {
1098*9df7fde2SJessica Paquette       Candidate &C2 = **Sit;
1099596f483aSJessica Paquette 
1100596f483aSJessica Paquette       // Is this candidate too far away to overlap?
11011934fd2cSJessica Paquette       if (C2.getStartIdx() < FarthestPossibleIdx)
1102596f483aSJessica Paquette         break;
1103596f483aSJessica Paquette 
110491999169SJessica Paquette       // If C2 was already pruned, or its function is no longer beneficial for
110591999169SJessica Paquette       // outlining, move to the next candidate.
110691999169SJessica Paquette       if (ShouldSkipCandidate(C2))
1107596f483aSJessica Paquette         continue;
1108596f483aSJessica Paquette 
1109596f483aSJessica Paquette       // Do C1 and C2 overlap?
1110596f483aSJessica Paquette       //
1111596f483aSJessica Paquette       // Not overlapping:
1112596f483aSJessica Paquette       // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
1113596f483aSJessica Paquette       //
1114596f483aSJessica Paquette       // We sorted our candidate list so C2Start <= C1Start. We know that
1115596f483aSJessica Paquette       // C2End > C2Start since each candidate has length >= 2. Therefore, all we
1116596f483aSJessica Paquette       // have to check is C2End < C2Start to see if we overlap.
11171934fd2cSJessica Paquette       if (C2.getEndIdx() < C1.getStartIdx())
1118596f483aSJessica Paquette         continue;
1119596f483aSJessica Paquette 
1120acffa28cSJessica Paquette       // C1 and C2 overlap.
1121acffa28cSJessica Paquette       // We need to choose the better of the two.
1122acffa28cSJessica Paquette       //
1123acffa28cSJessica Paquette       // Approximate this by picking the one which would have saved us the
1124acffa28cSJessica Paquette       // most instructions before any pruning.
112560d31fc3SJessica Paquette 
112660d31fc3SJessica Paquette       // Is C2 a better candidate?
112760d31fc3SJessica Paquette       if (C2.Benefit > C1.Benefit) {
112860d31fc3SJessica Paquette         // Yes, so prune C1. Since C1 is dead, we don't have to compare it
112960d31fc3SJessica Paquette         // against anything anymore, so break.
113060d31fc3SJessica Paquette         prune(C1, FunctionList);
1131acffa28cSJessica Paquette         break;
1132acffa28cSJessica Paquette       }
113360d31fc3SJessica Paquette 
113460d31fc3SJessica Paquette       // Prune C2 and move on to the next candidate.
113560d31fc3SJessica Paquette       prune(C2, FunctionList);
1136596f483aSJessica Paquette     }
1137596f483aSJessica Paquette   }
1138596f483aSJessica Paquette }
1139596f483aSJessica Paquette 
1140*9df7fde2SJessica Paquette unsigned MachineOutliner::buildCandidateList(
1141*9df7fde2SJessica Paquette     std::vector<std::shared_ptr<Candidate>> &CandidateList,
1142*9df7fde2SJessica Paquette     std::vector<OutlinedFunction> &FunctionList, SuffixTree &ST,
1143*9df7fde2SJessica Paquette     InstructionMapper &Mapper, const TargetInstrInfo &TII) {
1144596f483aSJessica Paquette 
1145596f483aSJessica Paquette   std::vector<unsigned> CandidateSequence; // Current outlining candidate.
11464cf187b5SJessica Paquette   unsigned MaxCandidateLen = 0;            // Length of the longest candidate.
1147596f483aSJessica Paquette 
114878681be2SJessica Paquette   MaxCandidateLen =
114978681be2SJessica Paquette       findCandidates(ST, TII, Mapper, CandidateList, FunctionList);
1150596f483aSJessica Paquette 
1151596f483aSJessica Paquette   // Sort the candidates in decending order. This will simplify the outlining
1152596f483aSJessica Paquette   // process when we have to remove the candidates from the mapping by
1153596f483aSJessica Paquette   // allowing us to cut them out without keeping track of an offset.
1154*9df7fde2SJessica Paquette   std::stable_sort(
1155*9df7fde2SJessica Paquette       CandidateList.begin(), CandidateList.end(),
1156*9df7fde2SJessica Paquette       [](const std::shared_ptr<Candidate> &LHS,
1157*9df7fde2SJessica Paquette          const std::shared_ptr<Candidate> &RHS) { return *LHS < *RHS; });
1158596f483aSJessica Paquette 
1159596f483aSJessica Paquette   return MaxCandidateLen;
1160596f483aSJessica Paquette }
1161596f483aSJessica Paquette 
1162596f483aSJessica Paquette MachineFunction *
1163596f483aSJessica Paquette MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
1164596f483aSJessica Paquette                                         InstructionMapper &Mapper) {
1165596f483aSJessica Paquette 
1166596f483aSJessica Paquette   // Create the function name. This should be unique. For now, just hash the
1167596f483aSJessica Paquette   // module name and include it in the function name plus the number of this
1168596f483aSJessica Paquette   // function.
1169596f483aSJessica Paquette   std::ostringstream NameStream;
117078681be2SJessica Paquette   NameStream << "OUTLINED_FUNCTION_" << OF.Name;
1171596f483aSJessica Paquette 
1172596f483aSJessica Paquette   // Create the function using an IR-level function.
1173596f483aSJessica Paquette   LLVMContext &C = M.getContext();
1174596f483aSJessica Paquette   Function *F = dyn_cast<Function>(
117559a2d7b9SSerge Guelton       M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C)));
1176596f483aSJessica Paquette   assert(F && "Function was null!");
1177596f483aSJessica Paquette 
1178596f483aSJessica Paquette   // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1179596f483aSJessica Paquette   // which gives us better results when we outline from linkonceodr functions.
1180596f483aSJessica Paquette   F->setLinkage(GlobalValue::PrivateLinkage);
1181596f483aSJessica Paquette   F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1182596f483aSJessica Paquette 
1183596f483aSJessica Paquette   BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1184596f483aSJessica Paquette   IRBuilder<> Builder(EntryBB);
1185596f483aSJessica Paquette   Builder.CreateRetVoid();
1186596f483aSJessica Paquette 
1187596f483aSJessica Paquette   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
11887bda1958SMatthias Braun   MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
1189596f483aSJessica Paquette   MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1190596f483aSJessica Paquette   const TargetSubtargetInfo &STI = MF.getSubtarget();
1191596f483aSJessica Paquette   const TargetInstrInfo &TII = *STI.getInstrInfo();
1192596f483aSJessica Paquette 
1193596f483aSJessica Paquette   // Insert the new function into the module.
1194596f483aSJessica Paquette   MF.insert(MF.begin(), &MBB);
1195596f483aSJessica Paquette 
11964cf187b5SJessica Paquette   TII.insertOutlinerPrologue(MBB, MF, OF.MInfo);
1197596f483aSJessica Paquette 
1198596f483aSJessica Paquette   // Copy over the instructions for the function using the integer mappings in
1199596f483aSJessica Paquette   // its sequence.
1200596f483aSJessica Paquette   for (unsigned Str : OF.Sequence) {
1201596f483aSJessica Paquette     MachineInstr *NewMI =
1202596f483aSJessica Paquette         MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
1203596f483aSJessica Paquette     NewMI->dropMemRefs();
1204596f483aSJessica Paquette 
1205596f483aSJessica Paquette     // Don't keep debug information for outlined instructions.
1206596f483aSJessica Paquette     // FIXME: This means outlined functions are currently undebuggable.
1207596f483aSJessica Paquette     NewMI->setDebugLoc(DebugLoc());
1208596f483aSJessica Paquette     MBB.insert(MBB.end(), NewMI);
1209596f483aSJessica Paquette   }
1210596f483aSJessica Paquette 
12114cf187b5SJessica Paquette   TII.insertOutlinerEpilogue(MBB, MF, OF.MInfo);
1212596f483aSJessica Paquette 
1213596f483aSJessica Paquette   return &MF;
1214596f483aSJessica Paquette }
1215596f483aSJessica Paquette 
1216*9df7fde2SJessica Paquette bool MachineOutliner::outline(
1217*9df7fde2SJessica Paquette     Module &M, const ArrayRef<std::shared_ptr<Candidate>> &CandidateList,
1218*9df7fde2SJessica Paquette     std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper) {
1219596f483aSJessica Paquette 
1220596f483aSJessica Paquette   bool OutlinedSomething = false;
1221596f483aSJessica Paquette   // Replace the candidates with calls to their respective outlined functions.
1222*9df7fde2SJessica Paquette   for (const std::shared_ptr<Candidate> &Cptr : CandidateList) {
1223*9df7fde2SJessica Paquette     Candidate &C = *Cptr;
1224596f483aSJessica Paquette     // Was the candidate removed during pruneOverlaps?
1225596f483aSJessica Paquette     if (!C.InCandidateList)
1226596f483aSJessica Paquette       continue;
1227596f483aSJessica Paquette 
1228596f483aSJessica Paquette     // If not, then look at its OutlinedFunction.
1229596f483aSJessica Paquette     OutlinedFunction &OF = FunctionList[C.FunctionIdx];
1230596f483aSJessica Paquette 
1231596f483aSJessica Paquette     // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
123285af63d0SJessica Paquette     if (OF.getBenefit() < 1)
1233596f483aSJessica Paquette       continue;
1234596f483aSJessica Paquette 
1235596f483aSJessica Paquette     // If not, then outline it.
12361934fd2cSJessica Paquette     assert(C.getStartIdx() < Mapper.InstrList.size() &&
1237c9ab4c26SJessica Paquette            "Candidate out of bounds!");
12381934fd2cSJessica Paquette     MachineBasicBlock *MBB = (*Mapper.InstrList[C.getStartIdx()]).getParent();
12391934fd2cSJessica Paquette     MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.getStartIdx()];
12401934fd2cSJessica Paquette     unsigned EndIdx = C.getEndIdx();
1241596f483aSJessica Paquette 
1242596f483aSJessica Paquette     assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
1243596f483aSJessica Paquette     MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1244596f483aSJessica Paquette     assert(EndIt != MBB->end() && "EndIt out of bounds!");
1245596f483aSJessica Paquette 
1246596f483aSJessica Paquette     EndIt++; // Erase needs one past the end index.
1247596f483aSJessica Paquette 
1248596f483aSJessica Paquette     // Does this candidate have a function yet?
1249acffa28cSJessica Paquette     if (!OF.MF) {
1250596f483aSJessica Paquette       OF.MF = createOutlinedFunction(M, OF, Mapper);
1251*9df7fde2SJessica Paquette       MachineBasicBlock *MBB = &*OF.MF->begin();
1252*9df7fde2SJessica Paquette 
1253*9df7fde2SJessica Paquette       // Output a remark telling the user that an outlined function was created,
1254*9df7fde2SJessica Paquette       // and explaining where it came from.
1255*9df7fde2SJessica Paquette       MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr);
1256*9df7fde2SJessica Paquette       MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction",
1257*9df7fde2SJessica Paquette                                   MBB->findDebugLoc(MBB->begin()), MBB);
1258*9df7fde2SJessica Paquette       R << "Saved " << NV("OutliningBenefit", OF.getBenefit())
1259*9df7fde2SJessica Paquette         << " instructions by "
1260*9df7fde2SJessica Paquette         << "outlining " << NV("Length", OF.Sequence.size()) << " instructions "
1261*9df7fde2SJessica Paquette         << "from " << NV("NumOccurrences", OF.getOccurrenceCount())
1262*9df7fde2SJessica Paquette         << " locations. "
1263*9df7fde2SJessica Paquette         << "(Found at: ";
1264*9df7fde2SJessica Paquette 
1265*9df7fde2SJessica Paquette       // Tell the user the other places the candidate was found.
1266*9df7fde2SJessica Paquette       for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) {
1267*9df7fde2SJessica Paquette 
1268*9df7fde2SJessica Paquette         // Skip over things that were pruned.
1269*9df7fde2SJessica Paquette         if (!OF.Candidates[i]->InCandidateList)
1270*9df7fde2SJessica Paquette           continue;
1271*9df7fde2SJessica Paquette 
1272*9df7fde2SJessica Paquette         R << NV(
1273*9df7fde2SJessica Paquette             (Twine("StartLoc") + Twine(i)).str(),
1274*9df7fde2SJessica Paquette             Mapper.InstrList[OF.Candidates[i]->getStartIdx()]->getDebugLoc());
1275*9df7fde2SJessica Paquette         if (i != e - 1)
1276*9df7fde2SJessica Paquette           R << ", ";
1277*9df7fde2SJessica Paquette       }
1278*9df7fde2SJessica Paquette 
1279*9df7fde2SJessica Paquette       R << ")";
1280*9df7fde2SJessica Paquette 
1281*9df7fde2SJessica Paquette       MORE.emit(R);
1282acffa28cSJessica Paquette       FunctionsCreated++;
1283acffa28cSJessica Paquette     }
1284596f483aSJessica Paquette 
1285596f483aSJessica Paquette     MachineFunction *MF = OF.MF;
1286596f483aSJessica Paquette     const TargetSubtargetInfo &STI = MF->getSubtarget();
1287596f483aSJessica Paquette     const TargetInstrInfo &TII = *STI.getInstrInfo();
1288596f483aSJessica Paquette 
1289596f483aSJessica Paquette     // Insert a call to the new function and erase the old sequence.
12904cf187b5SJessica Paquette     TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.MInfo);
12911934fd2cSJessica Paquette     StartIt = Mapper.InstrList[C.getStartIdx()];
1292596f483aSJessica Paquette     MBB->erase(StartIt, EndIt);
1293596f483aSJessica Paquette 
1294596f483aSJessica Paquette     OutlinedSomething = true;
1295596f483aSJessica Paquette 
1296596f483aSJessica Paquette     // Statistics.
1297596f483aSJessica Paquette     NumOutlined++;
1298596f483aSJessica Paquette   }
1299596f483aSJessica Paquette 
130078681be2SJessica Paquette   DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
1301596f483aSJessica Paquette 
1302596f483aSJessica Paquette   return OutlinedSomething;
1303596f483aSJessica Paquette }
1304596f483aSJessica Paquette 
1305596f483aSJessica Paquette bool MachineOutliner::runOnModule(Module &M) {
1306596f483aSJessica Paquette 
1307596f483aSJessica Paquette   // Is there anything in the module at all?
1308596f483aSJessica Paquette   if (M.empty())
1309596f483aSJessica Paquette     return false;
1310596f483aSJessica Paquette 
1311596f483aSJessica Paquette   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
131278681be2SJessica Paquette   const TargetSubtargetInfo &STI =
131378681be2SJessica Paquette       MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget();
1314596f483aSJessica Paquette   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
1315596f483aSJessica Paquette   const TargetInstrInfo *TII = STI.getInstrInfo();
1316596f483aSJessica Paquette 
1317596f483aSJessica Paquette   InstructionMapper Mapper;
1318596f483aSJessica Paquette 
1319596f483aSJessica Paquette   // Build instruction mappings for each function in the module.
1320596f483aSJessica Paquette   for (Function &F : M) {
13217bda1958SMatthias Braun     MachineFunction &MF = MMI.getOrCreateMachineFunction(F);
1322596f483aSJessica Paquette 
1323596f483aSJessica Paquette     // Is the function empty? Safe to outline from?
132413593843SJessica Paquette     if (F.empty() ||
132513593843SJessica Paquette         !TII->isFunctionSafeToOutlineFrom(MF, OutlineFromLinkOnceODRs))
1326596f483aSJessica Paquette       continue;
1327596f483aSJessica Paquette 
1328596f483aSJessica Paquette     // If it is, look at each MachineBasicBlock in the function.
1329596f483aSJessica Paquette     for (MachineBasicBlock &MBB : MF) {
1330596f483aSJessica Paquette 
1331596f483aSJessica Paquette       // Is there anything in MBB?
1332596f483aSJessica Paquette       if (MBB.empty())
1333596f483aSJessica Paquette         continue;
1334596f483aSJessica Paquette 
1335596f483aSJessica Paquette       // If yes, map it.
1336596f483aSJessica Paquette       Mapper.convertToUnsignedVec(MBB, *TRI, *TII);
1337596f483aSJessica Paquette     }
1338596f483aSJessica Paquette   }
1339596f483aSJessica Paquette 
1340596f483aSJessica Paquette   // Construct a suffix tree, use it to find candidates, and then outline them.
1341596f483aSJessica Paquette   SuffixTree ST(Mapper.UnsignedVec);
1342*9df7fde2SJessica Paquette   std::vector<std::shared_ptr<Candidate>> CandidateList;
1343596f483aSJessica Paquette   std::vector<OutlinedFunction> FunctionList;
1344596f483aSJessica Paquette 
1345acffa28cSJessica Paquette   // Find all of the outlining candidates.
1346596f483aSJessica Paquette   unsigned MaxCandidateLen =
1347c984e213SJessica Paquette       buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII);
1348596f483aSJessica Paquette 
1349acffa28cSJessica Paquette   // Remove candidates that overlap with other candidates.
1350809d708bSJessica Paquette   pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII);
1351acffa28cSJessica Paquette 
1352acffa28cSJessica Paquette   // Outline each of the candidates and return true if something was outlined.
1353596f483aSJessica Paquette   return outline(M, CandidateList, FunctionList, Mapper);
1354596f483aSJessica Paquette }
1355