1596f483aSJessica Paquette //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2596f483aSJessica Paquette // 3596f483aSJessica Paquette // The LLVM Compiler Infrastructure 4596f483aSJessica Paquette // 5596f483aSJessica Paquette // This file is distributed under the University of Illinois Open Source 6596f483aSJessica Paquette // License. See LICENSE.TXT for details. 7596f483aSJessica Paquette // 8596f483aSJessica Paquette //===----------------------------------------------------------------------===// 9596f483aSJessica Paquette /// 10596f483aSJessica Paquette /// \file 11596f483aSJessica Paquette /// Replaces repeated sequences of instructions with function calls. 12596f483aSJessica Paquette /// 13596f483aSJessica Paquette /// This works by placing every instruction from every basic block in a 14596f483aSJessica Paquette /// suffix tree, and repeatedly querying that tree for repeated sequences of 15596f483aSJessica Paquette /// instructions. If a sequence of instructions appears often, then it ought 16596f483aSJessica Paquette /// to be beneficial to pull out into a function. 17596f483aSJessica Paquette /// 18596f483aSJessica Paquette /// This was originally presented at the 2016 LLVM Developers' Meeting in the 19596f483aSJessica Paquette /// talk "Reducing Code Size Using Outlining". For a high-level overview of 20596f483aSJessica Paquette /// how this pass works, the talk is available on YouTube at 21596f483aSJessica Paquette /// 22596f483aSJessica Paquette /// https://www.youtube.com/watch?v=yorld-WSOeU 23596f483aSJessica Paquette /// 24596f483aSJessica Paquette /// The slides for the talk are available at 25596f483aSJessica Paquette /// 26596f483aSJessica Paquette /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 27596f483aSJessica Paquette /// 28596f483aSJessica Paquette /// The talk provides an overview of how the outliner finds candidates and 29596f483aSJessica Paquette /// ultimately outlines them. It describes how the main data structure for this 30596f483aSJessica Paquette /// pass, the suffix tree, is queried and purged for candidates. It also gives 31596f483aSJessica Paquette /// a simplified suffix tree construction algorithm for suffix trees based off 32596f483aSJessica Paquette /// of the algorithm actually used here, Ukkonen's algorithm. 33596f483aSJessica Paquette /// 34596f483aSJessica Paquette /// For the original RFC for this pass, please see 35596f483aSJessica Paquette /// 36596f483aSJessica Paquette /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 37596f483aSJessica Paquette /// 38596f483aSJessica Paquette /// For more information on the suffix tree data structure, please see 39596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 40596f483aSJessica Paquette /// 41596f483aSJessica Paquette //===----------------------------------------------------------------------===// 42596f483aSJessica Paquette #include "llvm/ADT/DenseMap.h" 43596f483aSJessica Paquette #include "llvm/ADT/Statistic.h" 44596f483aSJessica Paquette #include "llvm/ADT/Twine.h" 45596f483aSJessica Paquette #include "llvm/CodeGen/MachineFrameInfo.h" 46596f483aSJessica Paquette #include "llvm/CodeGen/MachineFunction.h" 47596f483aSJessica Paquette #include "llvm/CodeGen/MachineInstrBuilder.h" 48596f483aSJessica Paquette #include "llvm/CodeGen/MachineModuleInfo.h" 49596f483aSJessica Paquette #include "llvm/CodeGen/Passes.h" 50596f483aSJessica Paquette #include "llvm/IR/IRBuilder.h" 51596f483aSJessica Paquette #include "llvm/Support/Allocator.h" 52596f483aSJessica Paquette #include "llvm/Support/Debug.h" 53596f483aSJessica Paquette #include "llvm/Support/raw_ostream.h" 54596f483aSJessica Paquette #include "llvm/Target/TargetInstrInfo.h" 55596f483aSJessica Paquette #include "llvm/Target/TargetMachine.h" 56596f483aSJessica Paquette #include "llvm/Target/TargetRegisterInfo.h" 57596f483aSJessica Paquette #include "llvm/Target/TargetSubtargetInfo.h" 58596f483aSJessica Paquette #include <functional> 59596f483aSJessica Paquette #include <map> 60596f483aSJessica Paquette #include <sstream> 61596f483aSJessica Paquette #include <tuple> 62596f483aSJessica Paquette #include <vector> 63596f483aSJessica Paquette 64596f483aSJessica Paquette #define DEBUG_TYPE "machine-outliner" 65596f483aSJessica Paquette 66596f483aSJessica Paquette using namespace llvm; 67596f483aSJessica Paquette 68596f483aSJessica Paquette STATISTIC(NumOutlined, "Number of candidates outlined"); 69596f483aSJessica Paquette STATISTIC(FunctionsCreated, "Number of functions created"); 70596f483aSJessica Paquette 71596f483aSJessica Paquette namespace { 72596f483aSJessica Paquette 73acffa28cSJessica Paquette /// \brief An individual sequence of instructions to be replaced with a call to 74acffa28cSJessica Paquette /// an outlined function. 75acffa28cSJessica Paquette struct Candidate { 76acffa28cSJessica Paquette 77acffa28cSJessica Paquette /// Set to false if the candidate overlapped with another candidate. 78acffa28cSJessica Paquette bool InCandidateList = true; 79acffa28cSJessica Paquette 80acffa28cSJessica Paquette /// The start index of this \p Candidate. 81acffa28cSJessica Paquette size_t StartIdx; 82acffa28cSJessica Paquette 83acffa28cSJessica Paquette /// The number of instructions in this \p Candidate. 84acffa28cSJessica Paquette size_t Len; 85acffa28cSJessica Paquette 86acffa28cSJessica Paquette /// The index of this \p Candidate's \p OutlinedFunction in the list of 87acffa28cSJessica Paquette /// \p OutlinedFunctions. 88acffa28cSJessica Paquette size_t FunctionIdx; 89acffa28cSJessica Paquette 90d87f5449SJessica Paquette /// Target-defined unsigned defining how to emit a call for this candidate. 91d87f5449SJessica Paquette unsigned CallClass = 0; 92d87f5449SJessica Paquette 93acffa28cSJessica Paquette /// \brief The number of instructions that would be saved by outlining every 94acffa28cSJessica Paquette /// candidate of this type. 95acffa28cSJessica Paquette /// 96acffa28cSJessica Paquette /// This is a fixed value which is not updated during the candidate pruning 97acffa28cSJessica Paquette /// process. It is only used for deciding which candidate to keep if two 98acffa28cSJessica Paquette /// candidates overlap. The true benefit is stored in the OutlinedFunction 99acffa28cSJessica Paquette /// for some given candidate. 100acffa28cSJessica Paquette unsigned Benefit = 0; 101acffa28cSJessica Paquette 102d87f5449SJessica Paquette Candidate(size_t StartIdx, size_t Len, size_t FunctionIdx, unsigned CallClass) 103d87f5449SJessica Paquette : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx), 104d87f5449SJessica Paquette CallClass(CallClass) {} 105acffa28cSJessica Paquette 106acffa28cSJessica Paquette Candidate() {} 107acffa28cSJessica Paquette 108acffa28cSJessica Paquette /// \brief Used to ensure that \p Candidates are outlined in an order that 109acffa28cSJessica Paquette /// preserves the start and end indices of other \p Candidates. 110acffa28cSJessica Paquette bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; } 111acffa28cSJessica Paquette }; 112acffa28cSJessica Paquette 113acffa28cSJessica Paquette /// \brief The information necessary to create an outlined function for some 114acffa28cSJessica Paquette /// class of candidate. 115acffa28cSJessica Paquette struct OutlinedFunction { 116acffa28cSJessica Paquette 117acffa28cSJessica Paquette /// The actual outlined function created. 118acffa28cSJessica Paquette /// This is initialized after we go through and create the actual function. 119acffa28cSJessica Paquette MachineFunction *MF = nullptr; 120acffa28cSJessica Paquette 121809d708bSJessica Paquette /// A numbefr assigned to this function which appears at the end of its name. 122acffa28cSJessica Paquette size_t Name; 123acffa28cSJessica Paquette 124acffa28cSJessica Paquette /// The number of candidates for this OutlinedFunction. 125acffa28cSJessica Paquette size_t OccurrenceCount = 0; 126acffa28cSJessica Paquette 127acffa28cSJessica Paquette /// \brief The sequence of integers corresponding to the instructions in this 128acffa28cSJessica Paquette /// function. 129acffa28cSJessica Paquette std::vector<unsigned> Sequence; 130acffa28cSJessica Paquette 131acffa28cSJessica Paquette /// The number of instructions this function would save. 132acffa28cSJessica Paquette unsigned Benefit = 0; 133acffa28cSJessica Paquette 134d87f5449SJessica Paquette /// Target-defined unsigned defining how to emit the frame for this function. 135d87f5449SJessica Paquette unsigned FrameClass = 0; 136acffa28cSJessica Paquette 137acffa28cSJessica Paquette OutlinedFunction(size_t Name, size_t OccurrenceCount, 13878681be2SJessica Paquette const std::vector<unsigned> &Sequence, unsigned Benefit, 139d87f5449SJessica Paquette unsigned FrameClass) 140acffa28cSJessica Paquette : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence), 141d87f5449SJessica Paquette Benefit(Benefit), FrameClass(FrameClass) {} 142acffa28cSJessica Paquette }; 143acffa28cSJessica Paquette 144596f483aSJessica Paquette /// Represents an undefined index in the suffix tree. 145596f483aSJessica Paquette const size_t EmptyIdx = -1; 146596f483aSJessica Paquette 147596f483aSJessica Paquette /// A node in a suffix tree which represents a substring or suffix. 148596f483aSJessica Paquette /// 149596f483aSJessica Paquette /// Each node has either no children or at least two children, with the root 150596f483aSJessica Paquette /// being a exception in the empty tree. 151596f483aSJessica Paquette /// 152596f483aSJessica Paquette /// Children are represented as a map between unsigned integers and nodes. If 153596f483aSJessica Paquette /// a node N has a child M on unsigned integer k, then the mapping represented 154596f483aSJessica Paquette /// by N is a proper prefix of the mapping represented by M. Note that this, 155596f483aSJessica Paquette /// although similar to a trie is somewhat different: each node stores a full 156596f483aSJessica Paquette /// substring of the full mapping rather than a single character state. 157596f483aSJessica Paquette /// 158596f483aSJessica Paquette /// Each internal node contains a pointer to the internal node representing 159596f483aSJessica Paquette /// the same string, but with the first character chopped off. This is stored 160596f483aSJessica Paquette /// in \p Link. Each leaf node stores the start index of its respective 161596f483aSJessica Paquette /// suffix in \p SuffixIdx. 162596f483aSJessica Paquette struct SuffixTreeNode { 163596f483aSJessica Paquette 164596f483aSJessica Paquette /// The children of this node. 165596f483aSJessica Paquette /// 166596f483aSJessica Paquette /// A child existing on an unsigned integer implies that from the mapping 167596f483aSJessica Paquette /// represented by the current node, there is a way to reach another 168596f483aSJessica Paquette /// mapping by tacking that character on the end of the current string. 169596f483aSJessica Paquette DenseMap<unsigned, SuffixTreeNode *> Children; 170596f483aSJessica Paquette 171596f483aSJessica Paquette /// A flag set to false if the node has been pruned from the tree. 172596f483aSJessica Paquette bool IsInTree = true; 173596f483aSJessica Paquette 174596f483aSJessica Paquette /// The start index of this node's substring in the main string. 175596f483aSJessica Paquette size_t StartIdx = EmptyIdx; 176596f483aSJessica Paquette 177596f483aSJessica Paquette /// The end index of this node's substring in the main string. 178596f483aSJessica Paquette /// 179596f483aSJessica Paquette /// Every leaf node must have its \p EndIdx incremented at the end of every 180596f483aSJessica Paquette /// step in the construction algorithm. To avoid having to update O(N) 181596f483aSJessica Paquette /// nodes individually at the end of every step, the end index is stored 182596f483aSJessica Paquette /// as a pointer. 183596f483aSJessica Paquette size_t *EndIdx = nullptr; 184596f483aSJessica Paquette 185596f483aSJessica Paquette /// For leaves, the start index of the suffix represented by this node. 186596f483aSJessica Paquette /// 187596f483aSJessica Paquette /// For all other nodes, this is ignored. 188596f483aSJessica Paquette size_t SuffixIdx = EmptyIdx; 189596f483aSJessica Paquette 190596f483aSJessica Paquette /// \brief For internal nodes, a pointer to the internal node representing 191596f483aSJessica Paquette /// the same sequence with the first character chopped off. 192596f483aSJessica Paquette /// 1934602c343SJessica Paquette /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 194596f483aSJessica Paquette /// Ukkonen's algorithm does to achieve linear-time construction is 195596f483aSJessica Paquette /// keep track of which node the next insert should be at. This makes each 196596f483aSJessica Paquette /// insert O(1), and there are a total of O(N) inserts. The suffix link 197596f483aSJessica Paquette /// helps with inserting children of internal nodes. 198596f483aSJessica Paquette /// 199596f483aSJessica Paquette /// Say we add a child to an internal node with associated mapping S. The 200596f483aSJessica Paquette /// next insertion must be at the node representing S - its first character. 201596f483aSJessica Paquette /// This is given by the way that we iteratively build the tree in Ukkonen's 202596f483aSJessica Paquette /// algorithm. The main idea is to look at the suffixes of each prefix in the 203596f483aSJessica Paquette /// string, starting with the longest suffix of the prefix, and ending with 204596f483aSJessica Paquette /// the shortest. Therefore, if we keep pointers between such nodes, we can 205596f483aSJessica Paquette /// move to the next insertion point in O(1) time. If we don't, then we'd 206596f483aSJessica Paquette /// have to query from the root, which takes O(N) time. This would make the 207596f483aSJessica Paquette /// construction algorithm O(N^2) rather than O(N). 208596f483aSJessica Paquette SuffixTreeNode *Link = nullptr; 209596f483aSJessica Paquette 210596f483aSJessica Paquette /// The parent of this node. Every node except for the root has a parent. 211596f483aSJessica Paquette SuffixTreeNode *Parent = nullptr; 212596f483aSJessica Paquette 213596f483aSJessica Paquette /// The number of times this node's string appears in the tree. 214596f483aSJessica Paquette /// 215596f483aSJessica Paquette /// This is equal to the number of leaf children of the string. It represents 216596f483aSJessica Paquette /// the number of suffixes that the node's string is a prefix of. 217596f483aSJessica Paquette size_t OccurrenceCount = 0; 218596f483aSJessica Paquette 219acffa28cSJessica Paquette /// The length of the string formed by concatenating the edge labels from the 220acffa28cSJessica Paquette /// root to this node. 221acffa28cSJessica Paquette size_t ConcatLen = 0; 222acffa28cSJessica Paquette 223596f483aSJessica Paquette /// Returns true if this node is a leaf. 224596f483aSJessica Paquette bool isLeaf() const { return SuffixIdx != EmptyIdx; } 225596f483aSJessica Paquette 226596f483aSJessica Paquette /// Returns true if this node is the root of its owning \p SuffixTree. 227596f483aSJessica Paquette bool isRoot() const { return StartIdx == EmptyIdx; } 228596f483aSJessica Paquette 229596f483aSJessica Paquette /// Return the number of elements in the substring associated with this node. 230596f483aSJessica Paquette size_t size() const { 231596f483aSJessica Paquette 232596f483aSJessica Paquette // Is it the root? If so, it's the empty string so return 0. 233596f483aSJessica Paquette if (isRoot()) 234596f483aSJessica Paquette return 0; 235596f483aSJessica Paquette 236596f483aSJessica Paquette assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 237596f483aSJessica Paquette 238596f483aSJessica Paquette // Size = the number of elements in the string. 239596f483aSJessica Paquette // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 240596f483aSJessica Paquette return *EndIdx - StartIdx + 1; 241596f483aSJessica Paquette } 242596f483aSJessica Paquette 243596f483aSJessica Paquette SuffixTreeNode(size_t StartIdx, size_t *EndIdx, SuffixTreeNode *Link, 244596f483aSJessica Paquette SuffixTreeNode *Parent) 245596f483aSJessica Paquette : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} 246596f483aSJessica Paquette 247596f483aSJessica Paquette SuffixTreeNode() {} 248596f483aSJessica Paquette }; 249596f483aSJessica Paquette 250596f483aSJessica Paquette /// A data structure for fast substring queries. 251596f483aSJessica Paquette /// 252596f483aSJessica Paquette /// Suffix trees represent the suffixes of their input strings in their leaves. 253596f483aSJessica Paquette /// A suffix tree is a type of compressed trie structure where each node 254596f483aSJessica Paquette /// represents an entire substring rather than a single character. Each leaf 255596f483aSJessica Paquette /// of the tree is a suffix. 256596f483aSJessica Paquette /// 257596f483aSJessica Paquette /// A suffix tree can be seen as a type of state machine where each state is a 258596f483aSJessica Paquette /// substring of the full string. The tree is structured so that, for a string 259596f483aSJessica Paquette /// of length N, there are exactly N leaves in the tree. This structure allows 260596f483aSJessica Paquette /// us to quickly find repeated substrings of the input string. 261596f483aSJessica Paquette /// 262596f483aSJessica Paquette /// In this implementation, a "string" is a vector of unsigned integers. 263596f483aSJessica Paquette /// These integers may result from hashing some data type. A suffix tree can 264596f483aSJessica Paquette /// contain 1 or many strings, which can then be queried as one large string. 265596f483aSJessica Paquette /// 266596f483aSJessica Paquette /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 267596f483aSJessica Paquette /// suffix tree construction. Ukkonen's algorithm is explained in more detail 268596f483aSJessica Paquette /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 269596f483aSJessica Paquette /// paper is available at 270596f483aSJessica Paquette /// 271596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 272596f483aSJessica Paquette class SuffixTree { 27378681be2SJessica Paquette public: 27478681be2SJessica Paquette /// Stores each leaf node in the tree. 27578681be2SJessica Paquette /// 27678681be2SJessica Paquette /// This is used for finding outlining candidates. 27778681be2SJessica Paquette std::vector<SuffixTreeNode *> LeafVector; 27878681be2SJessica Paquette 279596f483aSJessica Paquette /// Each element is an integer representing an instruction in the module. 280596f483aSJessica Paquette ArrayRef<unsigned> Str; 281596f483aSJessica Paquette 28278681be2SJessica Paquette private: 283596f483aSJessica Paquette /// Maintains each node in the tree. 284d4cb9c6dSJessica Paquette SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 285596f483aSJessica Paquette 286596f483aSJessica Paquette /// The root of the suffix tree. 287596f483aSJessica Paquette /// 288596f483aSJessica Paquette /// The root represents the empty string. It is maintained by the 289596f483aSJessica Paquette /// \p NodeAllocator like every other node in the tree. 290596f483aSJessica Paquette SuffixTreeNode *Root = nullptr; 291596f483aSJessica Paquette 292596f483aSJessica Paquette /// Maintains the end indices of the internal nodes in the tree. 293596f483aSJessica Paquette /// 294596f483aSJessica Paquette /// Each internal node is guaranteed to never have its end index change 295596f483aSJessica Paquette /// during the construction algorithm; however, leaves must be updated at 296596f483aSJessica Paquette /// every step. Therefore, we need to store leaf end indices by reference 297596f483aSJessica Paquette /// to avoid updating O(N) leaves at every step of construction. Thus, 298596f483aSJessica Paquette /// every internal node must be allocated its own end index. 299596f483aSJessica Paquette BumpPtrAllocator InternalEndIdxAllocator; 300596f483aSJessica Paquette 301596f483aSJessica Paquette /// The end index of each leaf in the tree. 302596f483aSJessica Paquette size_t LeafEndIdx = -1; 303596f483aSJessica Paquette 304596f483aSJessica Paquette /// \brief Helper struct which keeps track of the next insertion point in 305596f483aSJessica Paquette /// Ukkonen's algorithm. 306596f483aSJessica Paquette struct ActiveState { 307596f483aSJessica Paquette /// The next node to insert at. 308596f483aSJessica Paquette SuffixTreeNode *Node; 309596f483aSJessica Paquette 310596f483aSJessica Paquette /// The index of the first character in the substring currently being added. 311596f483aSJessica Paquette size_t Idx = EmptyIdx; 312596f483aSJessica Paquette 313596f483aSJessica Paquette /// The length of the substring we have to add at the current step. 314596f483aSJessica Paquette size_t Len = 0; 315596f483aSJessica Paquette }; 316596f483aSJessica Paquette 317596f483aSJessica Paquette /// \brief The point the next insertion will take place at in the 318596f483aSJessica Paquette /// construction algorithm. 319596f483aSJessica Paquette ActiveState Active; 320596f483aSJessica Paquette 321596f483aSJessica Paquette /// Allocate a leaf node and add it to the tree. 322596f483aSJessica Paquette /// 323596f483aSJessica Paquette /// \param Parent The parent of this node. 324596f483aSJessica Paquette /// \param StartIdx The start index of this node's associated string. 325596f483aSJessica Paquette /// \param Edge The label on the edge leaving \p Parent to this node. 326596f483aSJessica Paquette /// 327596f483aSJessica Paquette /// \returns A pointer to the allocated leaf node. 328596f483aSJessica Paquette SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, size_t StartIdx, 329596f483aSJessica Paquette unsigned Edge) { 330596f483aSJessica Paquette 331596f483aSJessica Paquette assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 332596f483aSJessica Paquette 33378681be2SJessica Paquette SuffixTreeNode *N = new (NodeAllocator.Allocate()) 33478681be2SJessica Paquette SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent); 335596f483aSJessica Paquette Parent.Children[Edge] = N; 336596f483aSJessica Paquette 337596f483aSJessica Paquette return N; 338596f483aSJessica Paquette } 339596f483aSJessica Paquette 340596f483aSJessica Paquette /// Allocate an internal node and add it to the tree. 341596f483aSJessica Paquette /// 342596f483aSJessica Paquette /// \param Parent The parent of this node. Only null when allocating the root. 343596f483aSJessica Paquette /// \param StartIdx The start index of this node's associated string. 344596f483aSJessica Paquette /// \param EndIdx The end index of this node's associated string. 345596f483aSJessica Paquette /// \param Edge The label on the edge leaving \p Parent to this node. 346596f483aSJessica Paquette /// 347596f483aSJessica Paquette /// \returns A pointer to the allocated internal node. 348596f483aSJessica Paquette SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, size_t StartIdx, 349596f483aSJessica Paquette size_t EndIdx, unsigned Edge) { 350596f483aSJessica Paquette 351596f483aSJessica Paquette assert(StartIdx <= EndIdx && "String can't start after it ends!"); 352596f483aSJessica Paquette assert(!(!Parent && StartIdx != EmptyIdx) && 353596f483aSJessica Paquette "Non-root internal nodes must have parents!"); 354596f483aSJessica Paquette 355596f483aSJessica Paquette size_t *E = new (InternalEndIdxAllocator) size_t(EndIdx); 35678681be2SJessica Paquette SuffixTreeNode *N = new (NodeAllocator.Allocate()) 35778681be2SJessica Paquette SuffixTreeNode(StartIdx, E, Root, Parent); 358596f483aSJessica Paquette if (Parent) 359596f483aSJessica Paquette Parent->Children[Edge] = N; 360596f483aSJessica Paquette 361596f483aSJessica Paquette return N; 362596f483aSJessica Paquette } 363596f483aSJessica Paquette 364596f483aSJessica Paquette /// \brief Set the suffix indices of the leaves to the start indices of their 365596f483aSJessica Paquette /// respective suffixes. Also stores each leaf in \p LeafVector at its 366596f483aSJessica Paquette /// respective suffix index. 367596f483aSJessica Paquette /// 368596f483aSJessica Paquette /// \param[in] CurrNode The node currently being visited. 369596f483aSJessica Paquette /// \param CurrIdx The current index of the string being visited. 370596f483aSJessica Paquette void setSuffixIndices(SuffixTreeNode &CurrNode, size_t CurrIdx) { 371596f483aSJessica Paquette 372596f483aSJessica Paquette bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 373596f483aSJessica Paquette 374acffa28cSJessica Paquette // Store the length of the concatenation of all strings from the root to 375acffa28cSJessica Paquette // this node. 376acffa28cSJessica Paquette if (!CurrNode.isRoot()) { 377acffa28cSJessica Paquette if (CurrNode.ConcatLen == 0) 378acffa28cSJessica Paquette CurrNode.ConcatLen = CurrNode.size(); 379acffa28cSJessica Paquette 380acffa28cSJessica Paquette if (CurrNode.Parent) 381acffa28cSJessica Paquette CurrNode.ConcatLen += CurrNode.Parent->ConcatLen; 382acffa28cSJessica Paquette } 383acffa28cSJessica Paquette 384596f483aSJessica Paquette // Traverse the tree depth-first. 385596f483aSJessica Paquette for (auto &ChildPair : CurrNode.Children) { 386596f483aSJessica Paquette assert(ChildPair.second && "Node had a null child!"); 38778681be2SJessica Paquette setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size()); 388596f483aSJessica Paquette } 389596f483aSJessica Paquette 390596f483aSJessica Paquette // Is this node a leaf? 391596f483aSJessica Paquette if (IsLeaf) { 392596f483aSJessica Paquette // If yes, give it a suffix index and bump its parent's occurrence count. 393596f483aSJessica Paquette CurrNode.SuffixIdx = Str.size() - CurrIdx; 394596f483aSJessica Paquette assert(CurrNode.Parent && "CurrNode had no parent!"); 395596f483aSJessica Paquette CurrNode.Parent->OccurrenceCount++; 396596f483aSJessica Paquette 397596f483aSJessica Paquette // Store the leaf in the leaf vector for pruning later. 398596f483aSJessica Paquette LeafVector[CurrNode.SuffixIdx] = &CurrNode; 399596f483aSJessica Paquette } 400596f483aSJessica Paquette } 401596f483aSJessica Paquette 402596f483aSJessica Paquette /// \brief Construct the suffix tree for the prefix of the input ending at 403596f483aSJessica Paquette /// \p EndIdx. 404596f483aSJessica Paquette /// 405596f483aSJessica Paquette /// Used to construct the full suffix tree iteratively. At the end of each 406596f483aSJessica Paquette /// step, the constructed suffix tree is either a valid suffix tree, or a 407596f483aSJessica Paquette /// suffix tree with implicit suffixes. At the end of the final step, the 408596f483aSJessica Paquette /// suffix tree is a valid tree. 409596f483aSJessica Paquette /// 410596f483aSJessica Paquette /// \param EndIdx The end index of the current prefix in the main string. 411596f483aSJessica Paquette /// \param SuffixesToAdd The number of suffixes that must be added 412596f483aSJessica Paquette /// to complete the suffix tree at the current phase. 413596f483aSJessica Paquette /// 414596f483aSJessica Paquette /// \returns The number of suffixes that have not been added at the end of 415596f483aSJessica Paquette /// this step. 416596f483aSJessica Paquette unsigned extend(size_t EndIdx, size_t SuffixesToAdd) { 417596f483aSJessica Paquette SuffixTreeNode *NeedsLink = nullptr; 418596f483aSJessica Paquette 419596f483aSJessica Paquette while (SuffixesToAdd > 0) { 420596f483aSJessica Paquette 421596f483aSJessica Paquette // Are we waiting to add anything other than just the last character? 422596f483aSJessica Paquette if (Active.Len == 0) { 423596f483aSJessica Paquette // If not, then say the active index is the end index. 424596f483aSJessica Paquette Active.Idx = EndIdx; 425596f483aSJessica Paquette } 426596f483aSJessica Paquette 427596f483aSJessica Paquette assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 428596f483aSJessica Paquette 429596f483aSJessica Paquette // The first character in the current substring we're looking at. 430596f483aSJessica Paquette unsigned FirstChar = Str[Active.Idx]; 431596f483aSJessica Paquette 432596f483aSJessica Paquette // Have we inserted anything starting with FirstChar at the current node? 433596f483aSJessica Paquette if (Active.Node->Children.count(FirstChar) == 0) { 434596f483aSJessica Paquette // If not, then we can just insert a leaf and move too the next step. 435596f483aSJessica Paquette insertLeaf(*Active.Node, EndIdx, FirstChar); 436596f483aSJessica Paquette 437596f483aSJessica Paquette // The active node is an internal node, and we visited it, so it must 438596f483aSJessica Paquette // need a link if it doesn't have one. 439596f483aSJessica Paquette if (NeedsLink) { 440596f483aSJessica Paquette NeedsLink->Link = Active.Node; 441596f483aSJessica Paquette NeedsLink = nullptr; 442596f483aSJessica Paquette } 443596f483aSJessica Paquette } else { 444596f483aSJessica Paquette // There's a match with FirstChar, so look for the point in the tree to 445596f483aSJessica Paquette // insert a new node. 446596f483aSJessica Paquette SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 447596f483aSJessica Paquette 448596f483aSJessica Paquette size_t SubstringLen = NextNode->size(); 449596f483aSJessica Paquette 450596f483aSJessica Paquette // Is the current suffix we're trying to insert longer than the size of 451596f483aSJessica Paquette // the child we want to move to? 452596f483aSJessica Paquette if (Active.Len >= SubstringLen) { 453596f483aSJessica Paquette // If yes, then consume the characters we've seen and move to the next 454596f483aSJessica Paquette // node. 455596f483aSJessica Paquette Active.Idx += SubstringLen; 456596f483aSJessica Paquette Active.Len -= SubstringLen; 457596f483aSJessica Paquette Active.Node = NextNode; 458596f483aSJessica Paquette continue; 459596f483aSJessica Paquette } 460596f483aSJessica Paquette 461596f483aSJessica Paquette // Otherwise, the suffix we're trying to insert must be contained in the 462596f483aSJessica Paquette // next node we want to move to. 463596f483aSJessica Paquette unsigned LastChar = Str[EndIdx]; 464596f483aSJessica Paquette 465596f483aSJessica Paquette // Is the string we're trying to insert a substring of the next node? 466596f483aSJessica Paquette if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 467596f483aSJessica Paquette // If yes, then we're done for this step. Remember our insertion point 468596f483aSJessica Paquette // and move to the next end index. At this point, we have an implicit 469596f483aSJessica Paquette // suffix tree. 470596f483aSJessica Paquette if (NeedsLink && !Active.Node->isRoot()) { 471596f483aSJessica Paquette NeedsLink->Link = Active.Node; 472596f483aSJessica Paquette NeedsLink = nullptr; 473596f483aSJessica Paquette } 474596f483aSJessica Paquette 475596f483aSJessica Paquette Active.Len++; 476596f483aSJessica Paquette break; 477596f483aSJessica Paquette } 478596f483aSJessica Paquette 479596f483aSJessica Paquette // The string we're trying to insert isn't a substring of the next node, 480596f483aSJessica Paquette // but matches up to a point. Split the node. 481596f483aSJessica Paquette // 482596f483aSJessica Paquette // For example, say we ended our search at a node n and we're trying to 483596f483aSJessica Paquette // insert ABD. Then we'll create a new node s for AB, reduce n to just 484596f483aSJessica Paquette // representing C, and insert a new leaf node l to represent d. This 485596f483aSJessica Paquette // allows us to ensure that if n was a leaf, it remains a leaf. 486596f483aSJessica Paquette // 487596f483aSJessica Paquette // | ABC ---split---> | AB 488596f483aSJessica Paquette // n s 489596f483aSJessica Paquette // C / \ D 490596f483aSJessica Paquette // n l 491596f483aSJessica Paquette 492596f483aSJessica Paquette // The node s from the diagram 493596f483aSJessica Paquette SuffixTreeNode *SplitNode = 49478681be2SJessica Paquette insertInternalNode(Active.Node, NextNode->StartIdx, 49578681be2SJessica Paquette NextNode->StartIdx + Active.Len - 1, FirstChar); 496596f483aSJessica Paquette 497596f483aSJessica Paquette // Insert the new node representing the new substring into the tree as 498596f483aSJessica Paquette // a child of the split node. This is the node l from the diagram. 499596f483aSJessica Paquette insertLeaf(*SplitNode, EndIdx, LastChar); 500596f483aSJessica Paquette 501596f483aSJessica Paquette // Make the old node a child of the split node and update its start 502596f483aSJessica Paquette // index. This is the node n from the diagram. 503596f483aSJessica Paquette NextNode->StartIdx += Active.Len; 504596f483aSJessica Paquette NextNode->Parent = SplitNode; 505596f483aSJessica Paquette SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 506596f483aSJessica Paquette 507596f483aSJessica Paquette // SplitNode is an internal node, update the suffix link. 508596f483aSJessica Paquette if (NeedsLink) 509596f483aSJessica Paquette NeedsLink->Link = SplitNode; 510596f483aSJessica Paquette 511596f483aSJessica Paquette NeedsLink = SplitNode; 512596f483aSJessica Paquette } 513596f483aSJessica Paquette 514596f483aSJessica Paquette // We've added something new to the tree, so there's one less suffix to 515596f483aSJessica Paquette // add. 516596f483aSJessica Paquette SuffixesToAdd--; 517596f483aSJessica Paquette 518596f483aSJessica Paquette if (Active.Node->isRoot()) { 519596f483aSJessica Paquette if (Active.Len > 0) { 520596f483aSJessica Paquette Active.Len--; 521596f483aSJessica Paquette Active.Idx = EndIdx - SuffixesToAdd + 1; 522596f483aSJessica Paquette } 523596f483aSJessica Paquette } else { 524596f483aSJessica Paquette // Start the next phase at the next smallest suffix. 525596f483aSJessica Paquette Active.Node = Active.Node->Link; 526596f483aSJessica Paquette } 527596f483aSJessica Paquette } 528596f483aSJessica Paquette 529596f483aSJessica Paquette return SuffixesToAdd; 530596f483aSJessica Paquette } 531596f483aSJessica Paquette 532596f483aSJessica Paquette public: 533596f483aSJessica Paquette /// Construct a suffix tree from a sequence of unsigned integers. 534596f483aSJessica Paquette /// 535596f483aSJessica Paquette /// \param Str The string to construct the suffix tree for. 536596f483aSJessica Paquette SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 537596f483aSJessica Paquette Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 538596f483aSJessica Paquette Root->IsInTree = true; 539596f483aSJessica Paquette Active.Node = Root; 540596f483aSJessica Paquette LeafVector = std::vector<SuffixTreeNode *>(Str.size()); 541596f483aSJessica Paquette 542596f483aSJessica Paquette // Keep track of the number of suffixes we have to add of the current 543596f483aSJessica Paquette // prefix. 544596f483aSJessica Paquette size_t SuffixesToAdd = 0; 545596f483aSJessica Paquette Active.Node = Root; 546596f483aSJessica Paquette 547596f483aSJessica Paquette // Construct the suffix tree iteratively on each prefix of the string. 548596f483aSJessica Paquette // PfxEndIdx is the end index of the current prefix. 549596f483aSJessica Paquette // End is one past the last element in the string. 550596f483aSJessica Paquette for (size_t PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) { 551596f483aSJessica Paquette SuffixesToAdd++; 552596f483aSJessica Paquette LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 553596f483aSJessica Paquette SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 554596f483aSJessica Paquette } 555596f483aSJessica Paquette 556596f483aSJessica Paquette // Set the suffix indices of each leaf. 557596f483aSJessica Paquette assert(Root && "Root node can't be nullptr!"); 558596f483aSJessica Paquette setSuffixIndices(*Root, 0); 559596f483aSJessica Paquette } 560596f483aSJessica Paquette }; 561596f483aSJessica Paquette 562596f483aSJessica Paquette /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings. 563596f483aSJessica Paquette struct InstructionMapper { 564596f483aSJessica Paquette 565596f483aSJessica Paquette /// \brief The next available integer to assign to a \p MachineInstr that 566596f483aSJessica Paquette /// cannot be outlined. 567596f483aSJessica Paquette /// 568596f483aSJessica Paquette /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 569596f483aSJessica Paquette unsigned IllegalInstrNumber = -3; 570596f483aSJessica Paquette 571596f483aSJessica Paquette /// \brief The next available integer to assign to a \p MachineInstr that can 572596f483aSJessica Paquette /// be outlined. 573596f483aSJessica Paquette unsigned LegalInstrNumber = 0; 574596f483aSJessica Paquette 575596f483aSJessica Paquette /// Correspondence from \p MachineInstrs to unsigned integers. 576596f483aSJessica Paquette DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 577596f483aSJessica Paquette InstructionIntegerMap; 578596f483aSJessica Paquette 579596f483aSJessica Paquette /// Corresponcence from unsigned integers to \p MachineInstrs. 580596f483aSJessica Paquette /// Inverse of \p InstructionIntegerMap. 581596f483aSJessica Paquette DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; 582596f483aSJessica Paquette 583596f483aSJessica Paquette /// The vector of unsigned integers that the module is mapped to. 584596f483aSJessica Paquette std::vector<unsigned> UnsignedVec; 585596f483aSJessica Paquette 586596f483aSJessica Paquette /// \brief Stores the location of the instruction associated with the integer 587596f483aSJessica Paquette /// at index i in \p UnsignedVec for each index i. 588596f483aSJessica Paquette std::vector<MachineBasicBlock::iterator> InstrList; 589596f483aSJessica Paquette 590596f483aSJessica Paquette /// \brief Maps \p *It to a legal integer. 591596f483aSJessica Paquette /// 592596f483aSJessica Paquette /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, 593596f483aSJessica Paquette /// \p IntegerInstructionMap, and \p LegalInstrNumber. 594596f483aSJessica Paquette /// 595596f483aSJessica Paquette /// \returns The integer that \p *It was mapped to. 596596f483aSJessica Paquette unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { 597596f483aSJessica Paquette 598596f483aSJessica Paquette // Get the integer for this instruction or give it the current 599596f483aSJessica Paquette // LegalInstrNumber. 600596f483aSJessica Paquette InstrList.push_back(It); 601596f483aSJessica Paquette MachineInstr &MI = *It; 602596f483aSJessica Paquette bool WasInserted; 603596f483aSJessica Paquette DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 604596f483aSJessica Paquette ResultIt; 605596f483aSJessica Paquette std::tie(ResultIt, WasInserted) = 606596f483aSJessica Paquette InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 607596f483aSJessica Paquette unsigned MINumber = ResultIt->second; 608596f483aSJessica Paquette 609596f483aSJessica Paquette // There was an insertion. 610596f483aSJessica Paquette if (WasInserted) { 611596f483aSJessica Paquette LegalInstrNumber++; 612596f483aSJessica Paquette IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); 613596f483aSJessica Paquette } 614596f483aSJessica Paquette 615596f483aSJessica Paquette UnsignedVec.push_back(MINumber); 616596f483aSJessica Paquette 617596f483aSJessica Paquette // Make sure we don't overflow or use any integers reserved by the DenseMap. 618596f483aSJessica Paquette if (LegalInstrNumber >= IllegalInstrNumber) 619596f483aSJessica Paquette report_fatal_error("Instruction mapping overflow!"); 620596f483aSJessica Paquette 62178681be2SJessica Paquette assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 62278681be2SJessica Paquette "Tried to assign DenseMap tombstone or empty key to instruction."); 62378681be2SJessica Paquette assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 62478681be2SJessica Paquette "Tried to assign DenseMap tombstone or empty key to instruction."); 625596f483aSJessica Paquette 626596f483aSJessica Paquette return MINumber; 627596f483aSJessica Paquette } 628596f483aSJessica Paquette 629596f483aSJessica Paquette /// Maps \p *It to an illegal integer. 630596f483aSJessica Paquette /// 631596f483aSJessica Paquette /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. 632596f483aSJessica Paquette /// 633596f483aSJessica Paquette /// \returns The integer that \p *It was mapped to. 634596f483aSJessica Paquette unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { 635596f483aSJessica Paquette unsigned MINumber = IllegalInstrNumber; 636596f483aSJessica Paquette 637596f483aSJessica Paquette InstrList.push_back(It); 638596f483aSJessica Paquette UnsignedVec.push_back(IllegalInstrNumber); 639596f483aSJessica Paquette IllegalInstrNumber--; 640596f483aSJessica Paquette 641596f483aSJessica Paquette assert(LegalInstrNumber < IllegalInstrNumber && 642596f483aSJessica Paquette "Instruction mapping overflow!"); 643596f483aSJessica Paquette 64478681be2SJessica Paquette assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 645596f483aSJessica Paquette "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 646596f483aSJessica Paquette 64778681be2SJessica Paquette assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 648596f483aSJessica Paquette "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 649596f483aSJessica Paquette 650596f483aSJessica Paquette return MINumber; 651596f483aSJessica Paquette } 652596f483aSJessica Paquette 653596f483aSJessica Paquette /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 654596f483aSJessica Paquette /// and appends it to \p UnsignedVec and \p InstrList. 655596f483aSJessica Paquette /// 656596f483aSJessica Paquette /// Two instructions are assigned the same integer if they are identical. 657596f483aSJessica Paquette /// If an instruction is deemed unsafe to outline, then it will be assigned an 658596f483aSJessica Paquette /// unique integer. The resulting mapping is placed into a suffix tree and 659596f483aSJessica Paquette /// queried for candidates. 660596f483aSJessica Paquette /// 661596f483aSJessica Paquette /// \param MBB The \p MachineBasicBlock to be translated into integers. 662596f483aSJessica Paquette /// \param TRI \p TargetRegisterInfo for the module. 663596f483aSJessica Paquette /// \param TII \p TargetInstrInfo for the module. 664596f483aSJessica Paquette void convertToUnsignedVec(MachineBasicBlock &MBB, 665596f483aSJessica Paquette const TargetRegisterInfo &TRI, 666596f483aSJessica Paquette const TargetInstrInfo &TII) { 667596f483aSJessica Paquette for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et; 668596f483aSJessica Paquette It++) { 669596f483aSJessica Paquette 670596f483aSJessica Paquette // Keep track of where this instruction is in the module. 671596f483aSJessica Paquette switch (TII.getOutliningType(*It)) { 672596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Illegal: 673596f483aSJessica Paquette mapToIllegalUnsigned(It); 674596f483aSJessica Paquette break; 675596f483aSJessica Paquette 676596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Legal: 677596f483aSJessica Paquette mapToLegalUnsigned(It); 678596f483aSJessica Paquette break; 679596f483aSJessica Paquette 680596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Invisible: 681596f483aSJessica Paquette break; 682596f483aSJessica Paquette } 683596f483aSJessica Paquette } 684596f483aSJessica Paquette 685596f483aSJessica Paquette // After we're done every insertion, uniquely terminate this part of the 686596f483aSJessica Paquette // "string". This makes sure we won't match across basic block or function 687596f483aSJessica Paquette // boundaries since the "end" is encoded uniquely and thus appears in no 688596f483aSJessica Paquette // repeated substring. 689596f483aSJessica Paquette InstrList.push_back(MBB.end()); 690596f483aSJessica Paquette UnsignedVec.push_back(IllegalInstrNumber); 691596f483aSJessica Paquette IllegalInstrNumber--; 692596f483aSJessica Paquette } 693596f483aSJessica Paquette 694596f483aSJessica Paquette InstructionMapper() { 695596f483aSJessica Paquette // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 696596f483aSJessica Paquette // changed. 697596f483aSJessica Paquette assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 698596f483aSJessica Paquette "DenseMapInfo<unsigned>'s empty key isn't -1!"); 699596f483aSJessica Paquette assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 700596f483aSJessica Paquette "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 701596f483aSJessica Paquette } 702596f483aSJessica Paquette }; 703596f483aSJessica Paquette 704596f483aSJessica Paquette /// \brief An interprocedural pass which finds repeated sequences of 705596f483aSJessica Paquette /// instructions and replaces them with calls to functions. 706596f483aSJessica Paquette /// 707596f483aSJessica Paquette /// Each instruction is mapped to an unsigned integer and placed in a string. 708596f483aSJessica Paquette /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 709596f483aSJessica Paquette /// is then repeatedly queried for repeated sequences of instructions. Each 710596f483aSJessica Paquette /// non-overlapping repeated sequence is then placed in its own 711596f483aSJessica Paquette /// \p MachineFunction and each instance is then replaced with a call to that 712596f483aSJessica Paquette /// function. 713596f483aSJessica Paquette struct MachineOutliner : public ModulePass { 714596f483aSJessica Paquette 715596f483aSJessica Paquette static char ID; 716596f483aSJessica Paquette 717596f483aSJessica Paquette StringRef getPassName() const override { return "Machine Outliner"; } 718596f483aSJessica Paquette 719596f483aSJessica Paquette void getAnalysisUsage(AnalysisUsage &AU) const override { 720596f483aSJessica Paquette AU.addRequired<MachineModuleInfo>(); 721596f483aSJessica Paquette AU.addPreserved<MachineModuleInfo>(); 722596f483aSJessica Paquette AU.setPreservesAll(); 723596f483aSJessica Paquette ModulePass::getAnalysisUsage(AU); 724596f483aSJessica Paquette } 725596f483aSJessica Paquette 726596f483aSJessica Paquette MachineOutliner() : ModulePass(ID) { 727596f483aSJessica Paquette initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 728596f483aSJessica Paquette } 729596f483aSJessica Paquette 73078681be2SJessica Paquette /// Find all repeated substrings that satisfy the outlining cost model. 73178681be2SJessica Paquette /// 73278681be2SJessica Paquette /// If a substring appears at least twice, then it must be represented by 73378681be2SJessica Paquette /// an internal node which appears in at least two suffixes. Each suffix is 73478681be2SJessica Paquette /// represented by a leaf node. To do this, we visit each internal node in 73578681be2SJessica Paquette /// the tree, using the leaf children of each internal node. If an internal 73678681be2SJessica Paquette /// node represents a beneficial substring, then we use each of its leaf 73778681be2SJessica Paquette /// children to find the locations of its substring. 73878681be2SJessica Paquette /// 73978681be2SJessica Paquette /// \param ST A suffix tree to query. 74078681be2SJessica Paquette /// \param TII TargetInstrInfo for the target. 74178681be2SJessica Paquette /// \param Mapper Contains outlining mapping information. 74278681be2SJessica Paquette /// \param[out] CandidateList Filled with candidates representing each 74378681be2SJessica Paquette /// beneficial substring. 74478681be2SJessica Paquette /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each 74578681be2SJessica Paquette /// type of candidate. 74678681be2SJessica Paquette /// 74778681be2SJessica Paquette /// \returns The length of the longest candidate found. 74878681be2SJessica Paquette size_t findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 74978681be2SJessica Paquette InstructionMapper &Mapper, 75078681be2SJessica Paquette std::vector<Candidate> &CandidateList, 75178681be2SJessica Paquette std::vector<OutlinedFunction> &FunctionList); 75278681be2SJessica Paquette 753596f483aSJessica Paquette /// \brief Replace the sequences of instructions represented by the 754596f483aSJessica Paquette /// \p Candidates in \p CandidateList with calls to \p MachineFunctions 755596f483aSJessica Paquette /// described in \p FunctionList. 756596f483aSJessica Paquette /// 757596f483aSJessica Paquette /// \param M The module we are outlining from. 758596f483aSJessica Paquette /// \param CandidateList A list of candidates to be outlined. 759596f483aSJessica Paquette /// \param FunctionList A list of functions to be inserted into the module. 760596f483aSJessica Paquette /// \param Mapper Contains the instruction mappings for the module. 761596f483aSJessica Paquette bool outline(Module &M, const ArrayRef<Candidate> &CandidateList, 762596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 763596f483aSJessica Paquette InstructionMapper &Mapper); 764596f483aSJessica Paquette 765596f483aSJessica Paquette /// Creates a function for \p OF and inserts it into the module. 766596f483aSJessica Paquette MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, 767596f483aSJessica Paquette InstructionMapper &Mapper); 768596f483aSJessica Paquette 769596f483aSJessica Paquette /// Find potential outlining candidates and store them in \p CandidateList. 770596f483aSJessica Paquette /// 771596f483aSJessica Paquette /// For each type of potential candidate, also build an \p OutlinedFunction 772596f483aSJessica Paquette /// struct containing the information to build the function for that 773596f483aSJessica Paquette /// candidate. 774596f483aSJessica Paquette /// 775596f483aSJessica Paquette /// \param[out] CandidateList Filled with outlining candidates for the module. 776596f483aSJessica Paquette /// \param[out] FunctionList Filled with functions corresponding to each type 777596f483aSJessica Paquette /// of \p Candidate. 778596f483aSJessica Paquette /// \param ST The suffix tree for the module. 779596f483aSJessica Paquette /// \param TII TargetInstrInfo for the module. 780596f483aSJessica Paquette /// 781596f483aSJessica Paquette /// \returns The length of the longest candidate found. 0 if there are none. 782596f483aSJessica Paquette unsigned buildCandidateList(std::vector<Candidate> &CandidateList, 783596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 78478681be2SJessica Paquette SuffixTree &ST, InstructionMapper &Mapper, 785c984e213SJessica Paquette const TargetInstrInfo &TII); 786596f483aSJessica Paquette 787596f483aSJessica Paquette /// \brief Remove any overlapping candidates that weren't handled by the 788596f483aSJessica Paquette /// suffix tree's pruning method. 789596f483aSJessica Paquette /// 790596f483aSJessica Paquette /// Pruning from the suffix tree doesn't necessarily remove all overlaps. 791596f483aSJessica Paquette /// If a short candidate is chosen for outlining, then a longer candidate 792596f483aSJessica Paquette /// which has that short candidate as a suffix is chosen, the tree's pruning 793596f483aSJessica Paquette /// method will not find it. Thus, we need to prune before outlining as well. 794596f483aSJessica Paquette /// 795596f483aSJessica Paquette /// \param[in,out] CandidateList A list of outlining candidates. 796596f483aSJessica Paquette /// \param[in,out] FunctionList A list of functions to be outlined. 797809d708bSJessica Paquette /// \param Mapper Contains instruction mapping info for outlining. 798596f483aSJessica Paquette /// \param MaxCandidateLen The length of the longest candidate. 799596f483aSJessica Paquette /// \param TII TargetInstrInfo for the module. 800596f483aSJessica Paquette void pruneOverlaps(std::vector<Candidate> &CandidateList, 801596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 802809d708bSJessica Paquette InstructionMapper &Mapper, unsigned MaxCandidateLen, 803809d708bSJessica Paquette const TargetInstrInfo &TII); 804596f483aSJessica Paquette 805596f483aSJessica Paquette /// Construct a suffix tree on the instructions in \p M and outline repeated 806596f483aSJessica Paquette /// strings from that tree. 807596f483aSJessica Paquette bool runOnModule(Module &M) override; 808596f483aSJessica Paquette }; 809596f483aSJessica Paquette 810596f483aSJessica Paquette } // Anonymous namespace. 811596f483aSJessica Paquette 812596f483aSJessica Paquette char MachineOutliner::ID = 0; 813596f483aSJessica Paquette 814596f483aSJessica Paquette namespace llvm { 815596f483aSJessica Paquette ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); } 81678681be2SJessica Paquette } // namespace llvm 81778681be2SJessica Paquette 81878681be2SJessica Paquette INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 81978681be2SJessica Paquette false) 82078681be2SJessica Paquette 82178681be2SJessica Paquette size_t 82278681be2SJessica Paquette MachineOutliner::findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 82378681be2SJessica Paquette InstructionMapper &Mapper, 82478681be2SJessica Paquette std::vector<Candidate> &CandidateList, 82578681be2SJessica Paquette std::vector<OutlinedFunction> &FunctionList) { 82678681be2SJessica Paquette 82778681be2SJessica Paquette CandidateList.clear(); 82878681be2SJessica Paquette FunctionList.clear(); 82978681be2SJessica Paquette size_t FnIdx = 0; 83078681be2SJessica Paquette size_t MaxLen = 0; 83178681be2SJessica Paquette 83278681be2SJessica Paquette // FIXME: Visit internal nodes instead of leaves. 83378681be2SJessica Paquette for (SuffixTreeNode *Leaf : ST.LeafVector) { 83478681be2SJessica Paquette assert(Leaf && "Leaves in LeafVector cannot be null!"); 83578681be2SJessica Paquette if (!Leaf->IsInTree) 83678681be2SJessica Paquette continue; 83778681be2SJessica Paquette 83878681be2SJessica Paquette assert(Leaf->Parent && "All leaves must have parents!"); 83978681be2SJessica Paquette SuffixTreeNode &Parent = *(Leaf->Parent); 84078681be2SJessica Paquette 84178681be2SJessica Paquette // If it doesn't appear enough, or we already outlined from it, skip it. 84278681be2SJessica Paquette if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree) 84378681be2SJessica Paquette continue; 84478681be2SJessica Paquette 845809d708bSJessica Paquette // Figure out if this candidate is beneficial. 84678681be2SJessica Paquette size_t StringLen = Leaf->ConcatLen - Leaf->size(); 847*95c1107fSJessica Paquette 848*95c1107fSJessica Paquette // Too short to be beneficial; skip it. 849*95c1107fSJessica Paquette // FIXME: This isn't necessarily true for, say, X86. If we factor in 850*95c1107fSJessica Paquette // instruction lengths we need more information than this. 851*95c1107fSJessica Paquette if (StringLen < 2) 852*95c1107fSJessica Paquette continue; 853*95c1107fSJessica Paquette 854809d708bSJessica Paquette size_t CallOverhead = 0; 855809d708bSJessica Paquette size_t SequenceOverhead = StringLen; 85678681be2SJessica Paquette 857d87f5449SJessica Paquette // If this is a beneficial class of candidate, then every one is stored in 858d87f5449SJessica Paquette // this vector. 859d87f5449SJessica Paquette std::vector<Candidate> CandidatesForRepeatedSeq; 860d87f5449SJessica Paquette 861d87f5449SJessica Paquette // Used for getOutliningFrameOverhead. 862d87f5449SJessica Paquette // FIXME: CandidatesForRepeatedSeq and this should be combined. 863d87f5449SJessica Paquette std::vector< 864d87f5449SJessica Paquette std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>> 865d87f5449SJessica Paquette CandidateClass; 866d87f5449SJessica Paquette 867809d708bSJessica Paquette // Figure out the call overhead for each instance of the sequence. 868809d708bSJessica Paquette for (auto &ChildPair : Parent.Children) { 869809d708bSJessica Paquette SuffixTreeNode *M = ChildPair.second; 87078681be2SJessica Paquette 871809d708bSJessica Paquette if (M && M->IsInTree && M->isLeaf()) { 872809d708bSJessica Paquette // Each sequence is over [StartIt, EndIt]. 873809d708bSJessica Paquette MachineBasicBlock::iterator StartIt = Mapper.InstrList[M->SuffixIdx]; 874809d708bSJessica Paquette MachineBasicBlock::iterator EndIt = 875809d708bSJessica Paquette Mapper.InstrList[M->SuffixIdx + StringLen - 1]; 876d87f5449SJessica Paquette 877d87f5449SJessica Paquette // Get the overhead for calling a function for this sequence and any 878d87f5449SJessica Paquette // target-specified data for how to construct the call. 879d87f5449SJessica Paquette std::pair<size_t, unsigned> CallOverheadPair = 880d87f5449SJessica Paquette TII.getOutliningCallOverhead(StartIt, EndIt); 881d87f5449SJessica Paquette CallOverhead += CallOverheadPair.first; 882d87f5449SJessica Paquette CandidatesForRepeatedSeq.emplace_back(M->SuffixIdx, StringLen, FnIdx, 883d87f5449SJessica Paquette CallOverheadPair.second); 884d87f5449SJessica Paquette CandidateClass.emplace_back(std::make_pair(StartIt, EndIt)); 885d87f5449SJessica Paquette 886d87f5449SJessica Paquette // Never visit this leaf again. 887d87f5449SJessica Paquette M->IsInTree = false; 888809d708bSJessica Paquette } 889809d708bSJessica Paquette } 890809d708bSJessica Paquette 891d87f5449SJessica Paquette std::pair<size_t, unsigned> FrameOverheadPair = 892d87f5449SJessica Paquette TII.getOutliningFrameOverhead(CandidateClass); 893d87f5449SJessica Paquette size_t FrameOverhead = FrameOverheadPair.first; 894809d708bSJessica Paquette 895809d708bSJessica Paquette size_t OutliningCost = CallOverhead + FrameOverhead + SequenceOverhead; 896809d708bSJessica Paquette size_t NotOutliningCost = SequenceOverhead * Parent.OccurrenceCount; 897809d708bSJessica Paquette 898809d708bSJessica Paquette if (NotOutliningCost <= OutliningCost) 89978681be2SJessica Paquette continue; 90078681be2SJessica Paquette 901809d708bSJessica Paquette size_t Benefit = NotOutliningCost - OutliningCost; 902809d708bSJessica Paquette 90378681be2SJessica Paquette if (StringLen > MaxLen) 90478681be2SJessica Paquette MaxLen = StringLen; 90578681be2SJessica Paquette 906d87f5449SJessica Paquette // At this point, the candidate class is seen as beneficial. Set their 907d87f5449SJessica Paquette // benefit values and save them in the candidate list. 908d87f5449SJessica Paquette for (Candidate &C : CandidatesForRepeatedSeq) { 909d87f5449SJessica Paquette C.Benefit = Benefit; 910d87f5449SJessica Paquette CandidateList.push_back(C); 911596f483aSJessica Paquette } 912596f483aSJessica Paquette 91378681be2SJessica Paquette // Save the function for the new candidate sequence. 91478681be2SJessica Paquette std::vector<unsigned> CandidateSequence; 91578681be2SJessica Paquette for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++) 91678681be2SJessica Paquette CandidateSequence.push_back(ST.Str[i]); 91778681be2SJessica Paquette 918d87f5449SJessica Paquette FunctionList.emplace_back(FnIdx, CandidatesForRepeatedSeq.size(), 919d87f5449SJessica Paquette CandidateSequence, Benefit, 920d87f5449SJessica Paquette FrameOverheadPair.second); 92178681be2SJessica Paquette 92278681be2SJessica Paquette // Move to the next function. 92378681be2SJessica Paquette FnIdx++; 92478681be2SJessica Paquette Parent.IsInTree = false; 92578681be2SJessica Paquette } 92678681be2SJessica Paquette 92778681be2SJessica Paquette return MaxLen; 92878681be2SJessica Paquette } 929596f483aSJessica Paquette 930596f483aSJessica Paquette void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList, 931596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 932809d708bSJessica Paquette InstructionMapper &Mapper, 933596f483aSJessica Paquette unsigned MaxCandidateLen, 934596f483aSJessica Paquette const TargetInstrInfo &TII) { 935acffa28cSJessica Paquette // TODO: Experiment with interval trees or other interval-checking structures 936acffa28cSJessica Paquette // to lower the time complexity of this function. 937acffa28cSJessica Paquette // TODO: Can we do better than the simple greedy choice? 938acffa28cSJessica Paquette // Check for overlaps in the range. 939acffa28cSJessica Paquette // This is O(MaxCandidateLen * CandidateList.size()). 940596f483aSJessica Paquette for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; 941596f483aSJessica Paquette It++) { 942596f483aSJessica Paquette Candidate &C1 = *It; 943596f483aSJessica Paquette OutlinedFunction &F1 = FunctionList[C1.FunctionIdx]; 944596f483aSJessica Paquette 945596f483aSJessica Paquette // If we removed this candidate, skip it. 946596f483aSJessica Paquette if (!C1.InCandidateList) 947596f483aSJessica Paquette continue; 948596f483aSJessica Paquette 949acffa28cSJessica Paquette // Is it still worth it to outline C1? 950acffa28cSJessica Paquette if (F1.Benefit < 1 || F1.OccurrenceCount < 2) { 951acffa28cSJessica Paquette assert(F1.OccurrenceCount > 0 && 952acffa28cSJessica Paquette "Can't remove OutlinedFunction with no occurrences!"); 953acffa28cSJessica Paquette F1.OccurrenceCount--; 954596f483aSJessica Paquette C1.InCandidateList = false; 955596f483aSJessica Paquette continue; 956596f483aSJessica Paquette } 957596f483aSJessica Paquette 958596f483aSJessica Paquette // The minimum start index of any candidate that could overlap with this 959596f483aSJessica Paquette // one. 960596f483aSJessica Paquette unsigned FarthestPossibleIdx = 0; 961596f483aSJessica Paquette 962596f483aSJessica Paquette // Either the index is 0, or it's at most MaxCandidateLen indices away. 963596f483aSJessica Paquette if (C1.StartIdx > MaxCandidateLen) 964596f483aSJessica Paquette FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen; 965596f483aSJessica Paquette 966acffa28cSJessica Paquette // Compare against the candidates in the list that start at at most 967acffa28cSJessica Paquette // FarthestPossibleIdx indices away from C1. There are at most 968acffa28cSJessica Paquette // MaxCandidateLen of these. 969596f483aSJessica Paquette for (auto Sit = It + 1; Sit != Et; Sit++) { 970596f483aSJessica Paquette Candidate &C2 = *Sit; 971596f483aSJessica Paquette OutlinedFunction &F2 = FunctionList[C2.FunctionIdx]; 972596f483aSJessica Paquette 973596f483aSJessica Paquette // Is this candidate too far away to overlap? 974596f483aSJessica Paquette if (C2.StartIdx < FarthestPossibleIdx) 975596f483aSJessica Paquette break; 976596f483aSJessica Paquette 977596f483aSJessica Paquette // Did we already remove this candidate in a previous step? 978596f483aSJessica Paquette if (!C2.InCandidateList) 979596f483aSJessica Paquette continue; 980596f483aSJessica Paquette 981596f483aSJessica Paquette // Is the function beneficial to outline? 982596f483aSJessica Paquette if (F2.OccurrenceCount < 2 || F2.Benefit < 1) { 983596f483aSJessica Paquette // If not, remove this candidate and move to the next one. 984acffa28cSJessica Paquette assert(F2.OccurrenceCount > 0 && 985acffa28cSJessica Paquette "Can't remove OutlinedFunction with no occurrences!"); 986acffa28cSJessica Paquette F2.OccurrenceCount--; 987596f483aSJessica Paquette C2.InCandidateList = false; 988596f483aSJessica Paquette continue; 989596f483aSJessica Paquette } 990596f483aSJessica Paquette 991596f483aSJessica Paquette size_t C2End = C2.StartIdx + C2.Len - 1; 992596f483aSJessica Paquette 993596f483aSJessica Paquette // Do C1 and C2 overlap? 994596f483aSJessica Paquette // 995596f483aSJessica Paquette // Not overlapping: 996596f483aSJessica Paquette // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices 997596f483aSJessica Paquette // 998596f483aSJessica Paquette // We sorted our candidate list so C2Start <= C1Start. We know that 999596f483aSJessica Paquette // C2End > C2Start since each candidate has length >= 2. Therefore, all we 1000596f483aSJessica Paquette // have to check is C2End < C2Start to see if we overlap. 1001596f483aSJessica Paquette if (C2End < C1.StartIdx) 1002596f483aSJessica Paquette continue; 1003596f483aSJessica Paquette 1004acffa28cSJessica Paquette // C1 and C2 overlap. 1005acffa28cSJessica Paquette // We need to choose the better of the two. 1006acffa28cSJessica Paquette // 1007acffa28cSJessica Paquette // Approximate this by picking the one which would have saved us the 1008acffa28cSJessica Paquette // most instructions before any pruning. 1009acffa28cSJessica Paquette if (C1.Benefit >= C2.Benefit) { 1010596f483aSJessica Paquette 1011acffa28cSJessica Paquette // C1 is better, so remove C2 and update C2's OutlinedFunction to 1012acffa28cSJessica Paquette // reflect the removal. 1013acffa28cSJessica Paquette assert(F2.OccurrenceCount > 0 && 1014acffa28cSJessica Paquette "Can't remove OutlinedFunction with no occurrences!"); 1015596f483aSJessica Paquette F2.OccurrenceCount--; 1016809d708bSJessica Paquette 1017809d708bSJessica Paquette // Remove the call overhead from the removed sequence. 1018809d708bSJessica Paquette MachineBasicBlock::iterator StartIt = Mapper.InstrList[C2.StartIdx]; 1019809d708bSJessica Paquette MachineBasicBlock::iterator EndIt = 1020809d708bSJessica Paquette Mapper.InstrList[C2.StartIdx + C2.Len - 1]; 1021d87f5449SJessica Paquette 1022d87f5449SJessica Paquette F2.Benefit += TII.getOutliningCallOverhead(StartIt, EndIt).first; 1023809d708bSJessica Paquette // Add back one instance of the sequence. 1024809d708bSJessica Paquette 1025809d708bSJessica Paquette if (F2.Sequence.size() > F2.Benefit) 1026809d708bSJessica Paquette F2.Benefit = 0; 1027809d708bSJessica Paquette else 1028809d708bSJessica Paquette F2.Benefit -= F2.Sequence.size(); 1029596f483aSJessica Paquette 1030596f483aSJessica Paquette C2.InCandidateList = false; 1031596f483aSJessica Paquette 103278681be2SJessica Paquette DEBUG(dbgs() << "- Removed C2. \n"; 103378681be2SJessica Paquette dbgs() << "--- Num fns left for C2: " << F2.OccurrenceCount 103478681be2SJessica Paquette << "\n"; 103578681be2SJessica Paquette dbgs() << "--- C2's benefit: " << F2.Benefit << "\n";); 1036acffa28cSJessica Paquette 1037acffa28cSJessica Paquette } else { 1038acffa28cSJessica Paquette // C2 is better, so remove C1 and update C1's OutlinedFunction to 1039acffa28cSJessica Paquette // reflect the removal. 1040acffa28cSJessica Paquette assert(F1.OccurrenceCount > 0 && 1041acffa28cSJessica Paquette "Can't remove OutlinedFunction with no occurrences!"); 1042acffa28cSJessica Paquette F1.OccurrenceCount--; 1043809d708bSJessica Paquette 1044809d708bSJessica Paquette // Remove the call overhead from the removed sequence. 1045809d708bSJessica Paquette MachineBasicBlock::iterator StartIt = Mapper.InstrList[C1.StartIdx]; 1046809d708bSJessica Paquette MachineBasicBlock::iterator EndIt = 1047809d708bSJessica Paquette Mapper.InstrList[C1.StartIdx + C1.Len - 1]; 1048d87f5449SJessica Paquette 1049d87f5449SJessica Paquette F1.Benefit += TII.getOutliningCallOverhead(StartIt, EndIt).first; 1050809d708bSJessica Paquette 1051809d708bSJessica Paquette // Add back one instance of the sequence. 1052809d708bSJessica Paquette if (F1.Sequence.size() > F1.Benefit) 1053809d708bSJessica Paquette F1.Benefit = 0; 1054809d708bSJessica Paquette else 1055809d708bSJessica Paquette F1.Benefit -= F1.Sequence.size(); 1056809d708bSJessica Paquette 1057acffa28cSJessica Paquette C1.InCandidateList = false; 1058acffa28cSJessica Paquette 105978681be2SJessica Paquette DEBUG(dbgs() << "- Removed C1. \n"; 106078681be2SJessica Paquette dbgs() << "--- Num fns left for C1: " << F1.OccurrenceCount 106178681be2SJessica Paquette << "\n"; 106278681be2SJessica Paquette dbgs() << "--- C1's benefit: " << F1.Benefit << "\n";); 1063acffa28cSJessica Paquette 1064acffa28cSJessica Paquette // C1 is out, so we don't have to compare it against anyone else. 1065acffa28cSJessica Paquette break; 1066acffa28cSJessica Paquette } 1067596f483aSJessica Paquette } 1068596f483aSJessica Paquette } 1069596f483aSJessica Paquette } 1070596f483aSJessica Paquette 1071596f483aSJessica Paquette unsigned 1072596f483aSJessica Paquette MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList, 1073596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 107478681be2SJessica Paquette SuffixTree &ST, InstructionMapper &Mapper, 1075596f483aSJessica Paquette const TargetInstrInfo &TII) { 1076596f483aSJessica Paquette 1077596f483aSJessica Paquette std::vector<unsigned> CandidateSequence; // Current outlining candidate. 1078acffa28cSJessica Paquette size_t MaxCandidateLen = 0; // Length of the longest candidate. 1079596f483aSJessica Paquette 108078681be2SJessica Paquette MaxCandidateLen = 108178681be2SJessica Paquette findCandidates(ST, TII, Mapper, CandidateList, FunctionList); 1082596f483aSJessica Paquette 1083596f483aSJessica Paquette // Sort the candidates in decending order. This will simplify the outlining 1084596f483aSJessica Paquette // process when we have to remove the candidates from the mapping by 1085596f483aSJessica Paquette // allowing us to cut them out without keeping track of an offset. 1086596f483aSJessica Paquette std::stable_sort(CandidateList.begin(), CandidateList.end()); 1087596f483aSJessica Paquette 1088596f483aSJessica Paquette return MaxCandidateLen; 1089596f483aSJessica Paquette } 1090596f483aSJessica Paquette 1091596f483aSJessica Paquette MachineFunction * 1092596f483aSJessica Paquette MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, 1093596f483aSJessica Paquette InstructionMapper &Mapper) { 1094596f483aSJessica Paquette 1095596f483aSJessica Paquette // Create the function name. This should be unique. For now, just hash the 1096596f483aSJessica Paquette // module name and include it in the function name plus the number of this 1097596f483aSJessica Paquette // function. 1098596f483aSJessica Paquette std::ostringstream NameStream; 109978681be2SJessica Paquette NameStream << "OUTLINED_FUNCTION_" << OF.Name; 1100596f483aSJessica Paquette 1101596f483aSJessica Paquette // Create the function using an IR-level function. 1102596f483aSJessica Paquette LLVMContext &C = M.getContext(); 1103596f483aSJessica Paquette Function *F = dyn_cast<Function>( 110459a2d7b9SSerge Guelton M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C))); 1105596f483aSJessica Paquette assert(F && "Function was null!"); 1106596f483aSJessica Paquette 1107596f483aSJessica Paquette // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1108596f483aSJessica Paquette // which gives us better results when we outline from linkonceodr functions. 1109596f483aSJessica Paquette F->setLinkage(GlobalValue::PrivateLinkage); 1110596f483aSJessica Paquette F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1111596f483aSJessica Paquette 1112596f483aSJessica Paquette BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1113596f483aSJessica Paquette IRBuilder<> Builder(EntryBB); 1114596f483aSJessica Paquette Builder.CreateRetVoid(); 1115596f483aSJessica Paquette 1116596f483aSJessica Paquette MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 11177bda1958SMatthias Braun MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1118596f483aSJessica Paquette MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1119596f483aSJessica Paquette const TargetSubtargetInfo &STI = MF.getSubtarget(); 1120596f483aSJessica Paquette const TargetInstrInfo &TII = *STI.getInstrInfo(); 1121596f483aSJessica Paquette 1122596f483aSJessica Paquette // Insert the new function into the module. 1123596f483aSJessica Paquette MF.insert(MF.begin(), &MBB); 1124596f483aSJessica Paquette 1125d87f5449SJessica Paquette TII.insertOutlinerPrologue(MBB, MF, OF.FrameClass); 1126596f483aSJessica Paquette 1127596f483aSJessica Paquette // Copy over the instructions for the function using the integer mappings in 1128596f483aSJessica Paquette // its sequence. 1129596f483aSJessica Paquette for (unsigned Str : OF.Sequence) { 1130596f483aSJessica Paquette MachineInstr *NewMI = 1131596f483aSJessica Paquette MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); 1132596f483aSJessica Paquette NewMI->dropMemRefs(); 1133596f483aSJessica Paquette 1134596f483aSJessica Paquette // Don't keep debug information for outlined instructions. 1135596f483aSJessica Paquette // FIXME: This means outlined functions are currently undebuggable. 1136596f483aSJessica Paquette NewMI->setDebugLoc(DebugLoc()); 1137596f483aSJessica Paquette MBB.insert(MBB.end(), NewMI); 1138596f483aSJessica Paquette } 1139596f483aSJessica Paquette 1140d87f5449SJessica Paquette TII.insertOutlinerEpilogue(MBB, MF, OF.FrameClass); 1141596f483aSJessica Paquette 1142596f483aSJessica Paquette return &MF; 1143596f483aSJessica Paquette } 1144596f483aSJessica Paquette 1145596f483aSJessica Paquette bool MachineOutliner::outline(Module &M, 1146596f483aSJessica Paquette const ArrayRef<Candidate> &CandidateList, 1147596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 1148596f483aSJessica Paquette InstructionMapper &Mapper) { 1149596f483aSJessica Paquette 1150596f483aSJessica Paquette bool OutlinedSomething = false; 1151596f483aSJessica Paquette 1152596f483aSJessica Paquette // Replace the candidates with calls to their respective outlined functions. 1153596f483aSJessica Paquette for (const Candidate &C : CandidateList) { 1154596f483aSJessica Paquette 1155596f483aSJessica Paquette // Was the candidate removed during pruneOverlaps? 1156596f483aSJessica Paquette if (!C.InCandidateList) 1157596f483aSJessica Paquette continue; 1158596f483aSJessica Paquette 1159596f483aSJessica Paquette // If not, then look at its OutlinedFunction. 1160596f483aSJessica Paquette OutlinedFunction &OF = FunctionList[C.FunctionIdx]; 1161596f483aSJessica Paquette 1162596f483aSJessica Paquette // Was its OutlinedFunction made unbeneficial during pruneOverlaps? 1163596f483aSJessica Paquette if (OF.OccurrenceCount < 2 || OF.Benefit < 1) 1164596f483aSJessica Paquette continue; 1165596f483aSJessica Paquette 1166596f483aSJessica Paquette // If not, then outline it. 1167596f483aSJessica Paquette assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1168596f483aSJessica Paquette MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent(); 1169596f483aSJessica Paquette MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx]; 1170596f483aSJessica Paquette unsigned EndIdx = C.StartIdx + C.Len - 1; 1171596f483aSJessica Paquette 1172596f483aSJessica Paquette assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1173596f483aSJessica Paquette MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1174596f483aSJessica Paquette assert(EndIt != MBB->end() && "EndIt out of bounds!"); 1175596f483aSJessica Paquette 1176596f483aSJessica Paquette EndIt++; // Erase needs one past the end index. 1177596f483aSJessica Paquette 1178596f483aSJessica Paquette // Does this candidate have a function yet? 1179acffa28cSJessica Paquette if (!OF.MF) { 1180596f483aSJessica Paquette OF.MF = createOutlinedFunction(M, OF, Mapper); 1181acffa28cSJessica Paquette FunctionsCreated++; 1182acffa28cSJessica Paquette } 1183596f483aSJessica Paquette 1184596f483aSJessica Paquette MachineFunction *MF = OF.MF; 1185596f483aSJessica Paquette const TargetSubtargetInfo &STI = MF->getSubtarget(); 1186596f483aSJessica Paquette const TargetInstrInfo &TII = *STI.getInstrInfo(); 1187596f483aSJessica Paquette 1188596f483aSJessica Paquette // Insert a call to the new function and erase the old sequence. 1189d87f5449SJessica Paquette TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.CallClass); 1190596f483aSJessica Paquette StartIt = Mapper.InstrList[C.StartIdx]; 1191596f483aSJessica Paquette MBB->erase(StartIt, EndIt); 1192596f483aSJessica Paquette 1193596f483aSJessica Paquette OutlinedSomething = true; 1194596f483aSJessica Paquette 1195596f483aSJessica Paquette // Statistics. 1196596f483aSJessica Paquette NumOutlined++; 1197596f483aSJessica Paquette } 1198596f483aSJessica Paquette 119978681be2SJessica Paquette DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1200596f483aSJessica Paquette 1201596f483aSJessica Paquette return OutlinedSomething; 1202596f483aSJessica Paquette } 1203596f483aSJessica Paquette 1204596f483aSJessica Paquette bool MachineOutliner::runOnModule(Module &M) { 1205596f483aSJessica Paquette 1206596f483aSJessica Paquette // Is there anything in the module at all? 1207596f483aSJessica Paquette if (M.empty()) 1208596f483aSJessica Paquette return false; 1209596f483aSJessica Paquette 1210596f483aSJessica Paquette MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 121178681be2SJessica Paquette const TargetSubtargetInfo &STI = 121278681be2SJessica Paquette MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget(); 1213596f483aSJessica Paquette const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 1214596f483aSJessica Paquette const TargetInstrInfo *TII = STI.getInstrInfo(); 1215596f483aSJessica Paquette 1216596f483aSJessica Paquette InstructionMapper Mapper; 1217596f483aSJessica Paquette 1218596f483aSJessica Paquette // Build instruction mappings for each function in the module. 1219596f483aSJessica Paquette for (Function &F : M) { 12207bda1958SMatthias Braun MachineFunction &MF = MMI.getOrCreateMachineFunction(F); 1221596f483aSJessica Paquette 1222596f483aSJessica Paquette // Is the function empty? Safe to outline from? 1223596f483aSJessica Paquette if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF)) 1224596f483aSJessica Paquette continue; 1225596f483aSJessica Paquette 1226596f483aSJessica Paquette // If it is, look at each MachineBasicBlock in the function. 1227596f483aSJessica Paquette for (MachineBasicBlock &MBB : MF) { 1228596f483aSJessica Paquette 1229596f483aSJessica Paquette // Is there anything in MBB? 1230596f483aSJessica Paquette if (MBB.empty()) 1231596f483aSJessica Paquette continue; 1232596f483aSJessica Paquette 1233596f483aSJessica Paquette // If yes, map it. 1234596f483aSJessica Paquette Mapper.convertToUnsignedVec(MBB, *TRI, *TII); 1235596f483aSJessica Paquette } 1236596f483aSJessica Paquette } 1237596f483aSJessica Paquette 1238596f483aSJessica Paquette // Construct a suffix tree, use it to find candidates, and then outline them. 1239596f483aSJessica Paquette SuffixTree ST(Mapper.UnsignedVec); 1240596f483aSJessica Paquette std::vector<Candidate> CandidateList; 1241596f483aSJessica Paquette std::vector<OutlinedFunction> FunctionList; 1242596f483aSJessica Paquette 1243acffa28cSJessica Paquette // Find all of the outlining candidates. 1244596f483aSJessica Paquette unsigned MaxCandidateLen = 1245c984e213SJessica Paquette buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII); 1246596f483aSJessica Paquette 1247acffa28cSJessica Paquette // Remove candidates that overlap with other candidates. 1248809d708bSJessica Paquette pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII); 1249acffa28cSJessica Paquette 1250acffa28cSJessica Paquette // Outline each of the candidates and return true if something was outlined. 1251596f483aSJessica Paquette return outline(M, CandidateList, FunctionList, Mapper); 1252596f483aSJessica Paquette } 1253