1596f483aSJessica Paquette //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2596f483aSJessica Paquette // 3596f483aSJessica Paquette // The LLVM Compiler Infrastructure 4596f483aSJessica Paquette // 5596f483aSJessica Paquette // This file is distributed under the University of Illinois Open Source 6596f483aSJessica Paquette // License. See LICENSE.TXT for details. 7596f483aSJessica Paquette // 8596f483aSJessica Paquette //===----------------------------------------------------------------------===// 9596f483aSJessica Paquette /// 10596f483aSJessica Paquette /// \file 11596f483aSJessica Paquette /// Replaces repeated sequences of instructions with function calls. 12596f483aSJessica Paquette /// 13596f483aSJessica Paquette /// This works by placing every instruction from every basic block in a 14596f483aSJessica Paquette /// suffix tree, and repeatedly querying that tree for repeated sequences of 15596f483aSJessica Paquette /// instructions. If a sequence of instructions appears often, then it ought 16596f483aSJessica Paquette /// to be beneficial to pull out into a function. 17596f483aSJessica Paquette /// 18596f483aSJessica Paquette /// This was originally presented at the 2016 LLVM Developers' Meeting in the 19596f483aSJessica Paquette /// talk "Reducing Code Size Using Outlining". For a high-level overview of 20596f483aSJessica Paquette /// how this pass works, the talk is available on YouTube at 21596f483aSJessica Paquette /// 22596f483aSJessica Paquette /// https://www.youtube.com/watch?v=yorld-WSOeU 23596f483aSJessica Paquette /// 24596f483aSJessica Paquette /// The slides for the talk are available at 25596f483aSJessica Paquette /// 26596f483aSJessica Paquette /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 27596f483aSJessica Paquette /// 28596f483aSJessica Paquette /// The talk provides an overview of how the outliner finds candidates and 29596f483aSJessica Paquette /// ultimately outlines them. It describes how the main data structure for this 30596f483aSJessica Paquette /// pass, the suffix tree, is queried and purged for candidates. It also gives 31596f483aSJessica Paquette /// a simplified suffix tree construction algorithm for suffix trees based off 32596f483aSJessica Paquette /// of the algorithm actually used here, Ukkonen's algorithm. 33596f483aSJessica Paquette /// 34596f483aSJessica Paquette /// For the original RFC for this pass, please see 35596f483aSJessica Paquette /// 36596f483aSJessica Paquette /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 37596f483aSJessica Paquette /// 38596f483aSJessica Paquette /// For more information on the suffix tree data structure, please see 39596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 40596f483aSJessica Paquette /// 41596f483aSJessica Paquette //===----------------------------------------------------------------------===// 42596f483aSJessica Paquette #include "llvm/ADT/DenseMap.h" 43596f483aSJessica Paquette #include "llvm/ADT/Statistic.h" 44596f483aSJessica Paquette #include "llvm/ADT/Twine.h" 45596f483aSJessica Paquette #include "llvm/CodeGen/MachineFrameInfo.h" 46596f483aSJessica Paquette #include "llvm/CodeGen/MachineFunction.h" 47596f483aSJessica Paquette #include "llvm/CodeGen/MachineInstrBuilder.h" 48596f483aSJessica Paquette #include "llvm/CodeGen/MachineModuleInfo.h" 49596f483aSJessica Paquette #include "llvm/CodeGen/Passes.h" 50596f483aSJessica Paquette #include "llvm/IR/IRBuilder.h" 51596f483aSJessica Paquette #include "llvm/Support/Allocator.h" 52596f483aSJessica Paquette #include "llvm/Support/Debug.h" 53596f483aSJessica Paquette #include "llvm/Support/raw_ostream.h" 54596f483aSJessica Paquette #include "llvm/Target/TargetInstrInfo.h" 55596f483aSJessica Paquette #include "llvm/Target/TargetMachine.h" 56596f483aSJessica Paquette #include "llvm/Target/TargetRegisterInfo.h" 57596f483aSJessica Paquette #include "llvm/Target/TargetSubtargetInfo.h" 58596f483aSJessica Paquette #include <functional> 59596f483aSJessica Paquette #include <map> 60596f483aSJessica Paquette #include <sstream> 61596f483aSJessica Paquette #include <tuple> 62596f483aSJessica Paquette #include <vector> 63596f483aSJessica Paquette 64596f483aSJessica Paquette #define DEBUG_TYPE "machine-outliner" 65596f483aSJessica Paquette 66596f483aSJessica Paquette using namespace llvm; 67596f483aSJessica Paquette 68596f483aSJessica Paquette STATISTIC(NumOutlined, "Number of candidates outlined"); 69596f483aSJessica Paquette STATISTIC(FunctionsCreated, "Number of functions created"); 70596f483aSJessica Paquette 71596f483aSJessica Paquette namespace { 72596f483aSJessica Paquette 73acffa28cSJessica Paquette /// \brief An individual sequence of instructions to be replaced with a call to 74acffa28cSJessica Paquette /// an outlined function. 75acffa28cSJessica Paquette struct Candidate { 76acffa28cSJessica Paquette 77acffa28cSJessica Paquette /// Set to false if the candidate overlapped with another candidate. 78acffa28cSJessica Paquette bool InCandidateList = true; 79acffa28cSJessica Paquette 80acffa28cSJessica Paquette /// The start index of this \p Candidate. 81acffa28cSJessica Paquette size_t StartIdx; 82acffa28cSJessica Paquette 83acffa28cSJessica Paquette /// The number of instructions in this \p Candidate. 84acffa28cSJessica Paquette size_t Len; 85acffa28cSJessica Paquette 86acffa28cSJessica Paquette /// The index of this \p Candidate's \p OutlinedFunction in the list of 87acffa28cSJessica Paquette /// \p OutlinedFunctions. 88acffa28cSJessica Paquette size_t FunctionIdx; 89acffa28cSJessica Paquette 90acffa28cSJessica Paquette /// \brief The number of instructions that would be saved by outlining every 91acffa28cSJessica Paquette /// candidate of this type. 92acffa28cSJessica Paquette /// 93acffa28cSJessica Paquette /// This is a fixed value which is not updated during the candidate pruning 94acffa28cSJessica Paquette /// process. It is only used for deciding which candidate to keep if two 95acffa28cSJessica Paquette /// candidates overlap. The true benefit is stored in the OutlinedFunction 96acffa28cSJessica Paquette /// for some given candidate. 97acffa28cSJessica Paquette unsigned Benefit = 0; 98acffa28cSJessica Paquette 99acffa28cSJessica Paquette Candidate(size_t StartIdx, size_t Len, size_t FunctionIdx) 100acffa28cSJessica Paquette : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {} 101acffa28cSJessica Paquette 102acffa28cSJessica Paquette Candidate() {} 103acffa28cSJessica Paquette 104acffa28cSJessica Paquette /// \brief Used to ensure that \p Candidates are outlined in an order that 105acffa28cSJessica Paquette /// preserves the start and end indices of other \p Candidates. 106acffa28cSJessica Paquette bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; } 107acffa28cSJessica Paquette }; 108acffa28cSJessica Paquette 109acffa28cSJessica Paquette /// \brief The information necessary to create an outlined function for some 110acffa28cSJessica Paquette /// class of candidate. 111acffa28cSJessica Paquette struct OutlinedFunction { 112acffa28cSJessica Paquette 113acffa28cSJessica Paquette /// The actual outlined function created. 114acffa28cSJessica Paquette /// This is initialized after we go through and create the actual function. 115acffa28cSJessica Paquette MachineFunction *MF = nullptr; 116acffa28cSJessica Paquette 117*809d708bSJessica Paquette /// A numbefr assigned to this function which appears at the end of its name. 118acffa28cSJessica Paquette size_t Name; 119acffa28cSJessica Paquette 120acffa28cSJessica Paquette /// The number of candidates for this OutlinedFunction. 121acffa28cSJessica Paquette size_t OccurrenceCount = 0; 122acffa28cSJessica Paquette 123acffa28cSJessica Paquette /// \brief The sequence of integers corresponding to the instructions in this 124acffa28cSJessica Paquette /// function. 125acffa28cSJessica Paquette std::vector<unsigned> Sequence; 126acffa28cSJessica Paquette 127acffa28cSJessica Paquette /// The number of instructions this function would save. 128acffa28cSJessica Paquette unsigned Benefit = 0; 129acffa28cSJessica Paquette 130acffa28cSJessica Paquette /// \brief Set to true if candidates for this outlined function should be 131acffa28cSJessica Paquette /// replaced with tail calls to this OutlinedFunction. 132acffa28cSJessica Paquette bool IsTailCall = false; 133acffa28cSJessica Paquette 134acffa28cSJessica Paquette OutlinedFunction(size_t Name, size_t OccurrenceCount, 13578681be2SJessica Paquette const std::vector<unsigned> &Sequence, unsigned Benefit, 13678681be2SJessica Paquette bool IsTailCall) 137acffa28cSJessica Paquette : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence), 13878681be2SJessica Paquette Benefit(Benefit), IsTailCall(IsTailCall) {} 139acffa28cSJessica Paquette }; 140acffa28cSJessica Paquette 141596f483aSJessica Paquette /// Represents an undefined index in the suffix tree. 142596f483aSJessica Paquette const size_t EmptyIdx = -1; 143596f483aSJessica Paquette 144596f483aSJessica Paquette /// A node in a suffix tree which represents a substring or suffix. 145596f483aSJessica Paquette /// 146596f483aSJessica Paquette /// Each node has either no children or at least two children, with the root 147596f483aSJessica Paquette /// being a exception in the empty tree. 148596f483aSJessica Paquette /// 149596f483aSJessica Paquette /// Children are represented as a map between unsigned integers and nodes. If 150596f483aSJessica Paquette /// a node N has a child M on unsigned integer k, then the mapping represented 151596f483aSJessica Paquette /// by N is a proper prefix of the mapping represented by M. Note that this, 152596f483aSJessica Paquette /// although similar to a trie is somewhat different: each node stores a full 153596f483aSJessica Paquette /// substring of the full mapping rather than a single character state. 154596f483aSJessica Paquette /// 155596f483aSJessica Paquette /// Each internal node contains a pointer to the internal node representing 156596f483aSJessica Paquette /// the same string, but with the first character chopped off. This is stored 157596f483aSJessica Paquette /// in \p Link. Each leaf node stores the start index of its respective 158596f483aSJessica Paquette /// suffix in \p SuffixIdx. 159596f483aSJessica Paquette struct SuffixTreeNode { 160596f483aSJessica Paquette 161596f483aSJessica Paquette /// The children of this node. 162596f483aSJessica Paquette /// 163596f483aSJessica Paquette /// A child existing on an unsigned integer implies that from the mapping 164596f483aSJessica Paquette /// represented by the current node, there is a way to reach another 165596f483aSJessica Paquette /// mapping by tacking that character on the end of the current string. 166596f483aSJessica Paquette DenseMap<unsigned, SuffixTreeNode *> Children; 167596f483aSJessica Paquette 168596f483aSJessica Paquette /// A flag set to false if the node has been pruned from the tree. 169596f483aSJessica Paquette bool IsInTree = true; 170596f483aSJessica Paquette 171596f483aSJessica Paquette /// The start index of this node's substring in the main string. 172596f483aSJessica Paquette size_t StartIdx = EmptyIdx; 173596f483aSJessica Paquette 174596f483aSJessica Paquette /// The end index of this node's substring in the main string. 175596f483aSJessica Paquette /// 176596f483aSJessica Paquette /// Every leaf node must have its \p EndIdx incremented at the end of every 177596f483aSJessica Paquette /// step in the construction algorithm. To avoid having to update O(N) 178596f483aSJessica Paquette /// nodes individually at the end of every step, the end index is stored 179596f483aSJessica Paquette /// as a pointer. 180596f483aSJessica Paquette size_t *EndIdx = nullptr; 181596f483aSJessica Paquette 182596f483aSJessica Paquette /// For leaves, the start index of the suffix represented by this node. 183596f483aSJessica Paquette /// 184596f483aSJessica Paquette /// For all other nodes, this is ignored. 185596f483aSJessica Paquette size_t SuffixIdx = EmptyIdx; 186596f483aSJessica Paquette 187596f483aSJessica Paquette /// \brief For internal nodes, a pointer to the internal node representing 188596f483aSJessica Paquette /// the same sequence with the first character chopped off. 189596f483aSJessica Paquette /// 190596f483aSJessica Paquette /// This has two major purposes in the suffix tree. The first is as a 191596f483aSJessica Paquette /// shortcut in Ukkonen's construction algorithm. One of the things that 192596f483aSJessica Paquette /// Ukkonen's algorithm does to achieve linear-time construction is 193596f483aSJessica Paquette /// keep track of which node the next insert should be at. This makes each 194596f483aSJessica Paquette /// insert O(1), and there are a total of O(N) inserts. The suffix link 195596f483aSJessica Paquette /// helps with inserting children of internal nodes. 196596f483aSJessica Paquette /// 197596f483aSJessica Paquette /// Say we add a child to an internal node with associated mapping S. The 198596f483aSJessica Paquette /// next insertion must be at the node representing S - its first character. 199596f483aSJessica Paquette /// This is given by the way that we iteratively build the tree in Ukkonen's 200596f483aSJessica Paquette /// algorithm. The main idea is to look at the suffixes of each prefix in the 201596f483aSJessica Paquette /// string, starting with the longest suffix of the prefix, and ending with 202596f483aSJessica Paquette /// the shortest. Therefore, if we keep pointers between such nodes, we can 203596f483aSJessica Paquette /// move to the next insertion point in O(1) time. If we don't, then we'd 204596f483aSJessica Paquette /// have to query from the root, which takes O(N) time. This would make the 205596f483aSJessica Paquette /// construction algorithm O(N^2) rather than O(N). 206596f483aSJessica Paquette /// 207596f483aSJessica Paquette /// The suffix link is also used during the tree pruning process to let us 208596f483aSJessica Paquette /// quickly throw out a bunch of potential overlaps. Say we have a sequence 209596f483aSJessica Paquette /// S we want to outline. Then each of its suffixes contribute to at least 210596f483aSJessica Paquette /// one overlapping case. Therefore, we can follow the suffix links 211596f483aSJessica Paquette /// starting at the node associated with S to the root and "delete" those 212596f483aSJessica Paquette /// nodes, save for the root. For each candidate, this removes 213596f483aSJessica Paquette /// O(|candidate|) overlaps from the search space. We don't actually 214596f483aSJessica Paquette /// completely invalidate these nodes though; doing that is far too 215596f483aSJessica Paquette /// aggressive. Consider the following pathological string: 216596f483aSJessica Paquette /// 217596f483aSJessica Paquette /// 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 218596f483aSJessica Paquette /// 219596f483aSJessica Paquette /// If we, for the sake of example, outlined 1 2 3, then we would throw 220596f483aSJessica Paquette /// out all instances of 2 3. This isn't desirable. To get around this, 221596f483aSJessica Paquette /// when we visit a link node, we decrement its occurrence count by the 222596f483aSJessica Paquette /// number of sequences we outlined in the current step. In the pathological 223596f483aSJessica Paquette /// example, the 2 3 node would have an occurrence count of 8, while the 224596f483aSJessica Paquette /// 1 2 3 node would have an occurrence count of 2. Thus, the 2 3 node 225596f483aSJessica Paquette /// would survive to the next round allowing us to outline the extra 226596f483aSJessica Paquette /// instances of 2 3. 227596f483aSJessica Paquette SuffixTreeNode *Link = nullptr; 228596f483aSJessica Paquette 229596f483aSJessica Paquette /// The parent of this node. Every node except for the root has a parent. 230596f483aSJessica Paquette SuffixTreeNode *Parent = nullptr; 231596f483aSJessica Paquette 232596f483aSJessica Paquette /// The number of times this node's string appears in the tree. 233596f483aSJessica Paquette /// 234596f483aSJessica Paquette /// This is equal to the number of leaf children of the string. It represents 235596f483aSJessica Paquette /// the number of suffixes that the node's string is a prefix of. 236596f483aSJessica Paquette size_t OccurrenceCount = 0; 237596f483aSJessica Paquette 238acffa28cSJessica Paquette /// The length of the string formed by concatenating the edge labels from the 239acffa28cSJessica Paquette /// root to this node. 240acffa28cSJessica Paquette size_t ConcatLen = 0; 241acffa28cSJessica Paquette 242596f483aSJessica Paquette /// Returns true if this node is a leaf. 243596f483aSJessica Paquette bool isLeaf() const { return SuffixIdx != EmptyIdx; } 244596f483aSJessica Paquette 245596f483aSJessica Paquette /// Returns true if this node is the root of its owning \p SuffixTree. 246596f483aSJessica Paquette bool isRoot() const { return StartIdx == EmptyIdx; } 247596f483aSJessica Paquette 248596f483aSJessica Paquette /// Return the number of elements in the substring associated with this node. 249596f483aSJessica Paquette size_t size() const { 250596f483aSJessica Paquette 251596f483aSJessica Paquette // Is it the root? If so, it's the empty string so return 0. 252596f483aSJessica Paquette if (isRoot()) 253596f483aSJessica Paquette return 0; 254596f483aSJessica Paquette 255596f483aSJessica Paquette assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 256596f483aSJessica Paquette 257596f483aSJessica Paquette // Size = the number of elements in the string. 258596f483aSJessica Paquette // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 259596f483aSJessica Paquette return *EndIdx - StartIdx + 1; 260596f483aSJessica Paquette } 261596f483aSJessica Paquette 262596f483aSJessica Paquette SuffixTreeNode(size_t StartIdx, size_t *EndIdx, SuffixTreeNode *Link, 263596f483aSJessica Paquette SuffixTreeNode *Parent) 264596f483aSJessica Paquette : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} 265596f483aSJessica Paquette 266596f483aSJessica Paquette SuffixTreeNode() {} 267596f483aSJessica Paquette }; 268596f483aSJessica Paquette 269596f483aSJessica Paquette /// A data structure for fast substring queries. 270596f483aSJessica Paquette /// 271596f483aSJessica Paquette /// Suffix trees represent the suffixes of their input strings in their leaves. 272596f483aSJessica Paquette /// A suffix tree is a type of compressed trie structure where each node 273596f483aSJessica Paquette /// represents an entire substring rather than a single character. Each leaf 274596f483aSJessica Paquette /// of the tree is a suffix. 275596f483aSJessica Paquette /// 276596f483aSJessica Paquette /// A suffix tree can be seen as a type of state machine where each state is a 277596f483aSJessica Paquette /// substring of the full string. The tree is structured so that, for a string 278596f483aSJessica Paquette /// of length N, there are exactly N leaves in the tree. This structure allows 279596f483aSJessica Paquette /// us to quickly find repeated substrings of the input string. 280596f483aSJessica Paquette /// 281596f483aSJessica Paquette /// In this implementation, a "string" is a vector of unsigned integers. 282596f483aSJessica Paquette /// These integers may result from hashing some data type. A suffix tree can 283596f483aSJessica Paquette /// contain 1 or many strings, which can then be queried as one large string. 284596f483aSJessica Paquette /// 285596f483aSJessica Paquette /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 286596f483aSJessica Paquette /// suffix tree construction. Ukkonen's algorithm is explained in more detail 287596f483aSJessica Paquette /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 288596f483aSJessica Paquette /// paper is available at 289596f483aSJessica Paquette /// 290596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 291596f483aSJessica Paquette class SuffixTree { 29278681be2SJessica Paquette public: 29378681be2SJessica Paquette /// Stores each leaf node in the tree. 29478681be2SJessica Paquette /// 29578681be2SJessica Paquette /// This is used for finding outlining candidates. 29678681be2SJessica Paquette std::vector<SuffixTreeNode *> LeafVector; 29778681be2SJessica Paquette 298596f483aSJessica Paquette /// Each element is an integer representing an instruction in the module. 299596f483aSJessica Paquette ArrayRef<unsigned> Str; 300596f483aSJessica Paquette 30178681be2SJessica Paquette private: 302596f483aSJessica Paquette /// Maintains each node in the tree. 303d4cb9c6dSJessica Paquette SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 304596f483aSJessica Paquette 305596f483aSJessica Paquette /// The root of the suffix tree. 306596f483aSJessica Paquette /// 307596f483aSJessica Paquette /// The root represents the empty string. It is maintained by the 308596f483aSJessica Paquette /// \p NodeAllocator like every other node in the tree. 309596f483aSJessica Paquette SuffixTreeNode *Root = nullptr; 310596f483aSJessica Paquette 311596f483aSJessica Paquette /// Maintains the end indices of the internal nodes in the tree. 312596f483aSJessica Paquette /// 313596f483aSJessica Paquette /// Each internal node is guaranteed to never have its end index change 314596f483aSJessica Paquette /// during the construction algorithm; however, leaves must be updated at 315596f483aSJessica Paquette /// every step. Therefore, we need to store leaf end indices by reference 316596f483aSJessica Paquette /// to avoid updating O(N) leaves at every step of construction. Thus, 317596f483aSJessica Paquette /// every internal node must be allocated its own end index. 318596f483aSJessica Paquette BumpPtrAllocator InternalEndIdxAllocator; 319596f483aSJessica Paquette 320596f483aSJessica Paquette /// The end index of each leaf in the tree. 321596f483aSJessica Paquette size_t LeafEndIdx = -1; 322596f483aSJessica Paquette 323596f483aSJessica Paquette /// \brief Helper struct which keeps track of the next insertion point in 324596f483aSJessica Paquette /// Ukkonen's algorithm. 325596f483aSJessica Paquette struct ActiveState { 326596f483aSJessica Paquette /// The next node to insert at. 327596f483aSJessica Paquette SuffixTreeNode *Node; 328596f483aSJessica Paquette 329596f483aSJessica Paquette /// The index of the first character in the substring currently being added. 330596f483aSJessica Paquette size_t Idx = EmptyIdx; 331596f483aSJessica Paquette 332596f483aSJessica Paquette /// The length of the substring we have to add at the current step. 333596f483aSJessica Paquette size_t Len = 0; 334596f483aSJessica Paquette }; 335596f483aSJessica Paquette 336596f483aSJessica Paquette /// \brief The point the next insertion will take place at in the 337596f483aSJessica Paquette /// construction algorithm. 338596f483aSJessica Paquette ActiveState Active; 339596f483aSJessica Paquette 340596f483aSJessica Paquette /// Allocate a leaf node and add it to the tree. 341596f483aSJessica Paquette /// 342596f483aSJessica Paquette /// \param Parent The parent of this node. 343596f483aSJessica Paquette /// \param StartIdx The start index of this node's associated string. 344596f483aSJessica Paquette /// \param Edge The label on the edge leaving \p Parent to this node. 345596f483aSJessica Paquette /// 346596f483aSJessica Paquette /// \returns A pointer to the allocated leaf node. 347596f483aSJessica Paquette SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, size_t StartIdx, 348596f483aSJessica Paquette unsigned Edge) { 349596f483aSJessica Paquette 350596f483aSJessica Paquette assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 351596f483aSJessica Paquette 35278681be2SJessica Paquette SuffixTreeNode *N = new (NodeAllocator.Allocate()) 35378681be2SJessica Paquette SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent); 354596f483aSJessica Paquette Parent.Children[Edge] = N; 355596f483aSJessica Paquette 356596f483aSJessica Paquette return N; 357596f483aSJessica Paquette } 358596f483aSJessica Paquette 359596f483aSJessica Paquette /// Allocate an internal node and add it to the tree. 360596f483aSJessica Paquette /// 361596f483aSJessica Paquette /// \param Parent The parent of this node. Only null when allocating the root. 362596f483aSJessica Paquette /// \param StartIdx The start index of this node's associated string. 363596f483aSJessica Paquette /// \param EndIdx The end index of this node's associated string. 364596f483aSJessica Paquette /// \param Edge The label on the edge leaving \p Parent to this node. 365596f483aSJessica Paquette /// 366596f483aSJessica Paquette /// \returns A pointer to the allocated internal node. 367596f483aSJessica Paquette SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, size_t StartIdx, 368596f483aSJessica Paquette size_t EndIdx, unsigned Edge) { 369596f483aSJessica Paquette 370596f483aSJessica Paquette assert(StartIdx <= EndIdx && "String can't start after it ends!"); 371596f483aSJessica Paquette assert(!(!Parent && StartIdx != EmptyIdx) && 372596f483aSJessica Paquette "Non-root internal nodes must have parents!"); 373596f483aSJessica Paquette 374596f483aSJessica Paquette size_t *E = new (InternalEndIdxAllocator) size_t(EndIdx); 37578681be2SJessica Paquette SuffixTreeNode *N = new (NodeAllocator.Allocate()) 37678681be2SJessica Paquette SuffixTreeNode(StartIdx, E, Root, Parent); 377596f483aSJessica Paquette if (Parent) 378596f483aSJessica Paquette Parent->Children[Edge] = N; 379596f483aSJessica Paquette 380596f483aSJessica Paquette return N; 381596f483aSJessica Paquette } 382596f483aSJessica Paquette 383596f483aSJessica Paquette /// \brief Set the suffix indices of the leaves to the start indices of their 384596f483aSJessica Paquette /// respective suffixes. Also stores each leaf in \p LeafVector at its 385596f483aSJessica Paquette /// respective suffix index. 386596f483aSJessica Paquette /// 387596f483aSJessica Paquette /// \param[in] CurrNode The node currently being visited. 388596f483aSJessica Paquette /// \param CurrIdx The current index of the string being visited. 389596f483aSJessica Paquette void setSuffixIndices(SuffixTreeNode &CurrNode, size_t CurrIdx) { 390596f483aSJessica Paquette 391596f483aSJessica Paquette bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 392596f483aSJessica Paquette 393acffa28cSJessica Paquette // Store the length of the concatenation of all strings from the root to 394acffa28cSJessica Paquette // this node. 395acffa28cSJessica Paquette if (!CurrNode.isRoot()) { 396acffa28cSJessica Paquette if (CurrNode.ConcatLen == 0) 397acffa28cSJessica Paquette CurrNode.ConcatLen = CurrNode.size(); 398acffa28cSJessica Paquette 399acffa28cSJessica Paquette if (CurrNode.Parent) 400acffa28cSJessica Paquette CurrNode.ConcatLen += CurrNode.Parent->ConcatLen; 401acffa28cSJessica Paquette } 402acffa28cSJessica Paquette 403596f483aSJessica Paquette // Traverse the tree depth-first. 404596f483aSJessica Paquette for (auto &ChildPair : CurrNode.Children) { 405596f483aSJessica Paquette assert(ChildPair.second && "Node had a null child!"); 40678681be2SJessica Paquette setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size()); 407596f483aSJessica Paquette } 408596f483aSJessica Paquette 409596f483aSJessica Paquette // Is this node a leaf? 410596f483aSJessica Paquette if (IsLeaf) { 411596f483aSJessica Paquette // If yes, give it a suffix index and bump its parent's occurrence count. 412596f483aSJessica Paquette CurrNode.SuffixIdx = Str.size() - CurrIdx; 413596f483aSJessica Paquette assert(CurrNode.Parent && "CurrNode had no parent!"); 414596f483aSJessica Paquette CurrNode.Parent->OccurrenceCount++; 415596f483aSJessica Paquette 416596f483aSJessica Paquette // Store the leaf in the leaf vector for pruning later. 417596f483aSJessica Paquette LeafVector[CurrNode.SuffixIdx] = &CurrNode; 418596f483aSJessica Paquette } 419596f483aSJessica Paquette } 420596f483aSJessica Paquette 421596f483aSJessica Paquette /// \brief Construct the suffix tree for the prefix of the input ending at 422596f483aSJessica Paquette /// \p EndIdx. 423596f483aSJessica Paquette /// 424596f483aSJessica Paquette /// Used to construct the full suffix tree iteratively. At the end of each 425596f483aSJessica Paquette /// step, the constructed suffix tree is either a valid suffix tree, or a 426596f483aSJessica Paquette /// suffix tree with implicit suffixes. At the end of the final step, the 427596f483aSJessica Paquette /// suffix tree is a valid tree. 428596f483aSJessica Paquette /// 429596f483aSJessica Paquette /// \param EndIdx The end index of the current prefix in the main string. 430596f483aSJessica Paquette /// \param SuffixesToAdd The number of suffixes that must be added 431596f483aSJessica Paquette /// to complete the suffix tree at the current phase. 432596f483aSJessica Paquette /// 433596f483aSJessica Paquette /// \returns The number of suffixes that have not been added at the end of 434596f483aSJessica Paquette /// this step. 435596f483aSJessica Paquette unsigned extend(size_t EndIdx, size_t SuffixesToAdd) { 436596f483aSJessica Paquette SuffixTreeNode *NeedsLink = nullptr; 437596f483aSJessica Paquette 438596f483aSJessica Paquette while (SuffixesToAdd > 0) { 439596f483aSJessica Paquette 440596f483aSJessica Paquette // Are we waiting to add anything other than just the last character? 441596f483aSJessica Paquette if (Active.Len == 0) { 442596f483aSJessica Paquette // If not, then say the active index is the end index. 443596f483aSJessica Paquette Active.Idx = EndIdx; 444596f483aSJessica Paquette } 445596f483aSJessica Paquette 446596f483aSJessica Paquette assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 447596f483aSJessica Paquette 448596f483aSJessica Paquette // The first character in the current substring we're looking at. 449596f483aSJessica Paquette unsigned FirstChar = Str[Active.Idx]; 450596f483aSJessica Paquette 451596f483aSJessica Paquette // Have we inserted anything starting with FirstChar at the current node? 452596f483aSJessica Paquette if (Active.Node->Children.count(FirstChar) == 0) { 453596f483aSJessica Paquette // If not, then we can just insert a leaf and move too the next step. 454596f483aSJessica Paquette insertLeaf(*Active.Node, EndIdx, FirstChar); 455596f483aSJessica Paquette 456596f483aSJessica Paquette // The active node is an internal node, and we visited it, so it must 457596f483aSJessica Paquette // need a link if it doesn't have one. 458596f483aSJessica Paquette if (NeedsLink) { 459596f483aSJessica Paquette NeedsLink->Link = Active.Node; 460596f483aSJessica Paquette NeedsLink = nullptr; 461596f483aSJessica Paquette } 462596f483aSJessica Paquette } else { 463596f483aSJessica Paquette // There's a match with FirstChar, so look for the point in the tree to 464596f483aSJessica Paquette // insert a new node. 465596f483aSJessica Paquette SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 466596f483aSJessica Paquette 467596f483aSJessica Paquette size_t SubstringLen = NextNode->size(); 468596f483aSJessica Paquette 469596f483aSJessica Paquette // Is the current suffix we're trying to insert longer than the size of 470596f483aSJessica Paquette // the child we want to move to? 471596f483aSJessica Paquette if (Active.Len >= SubstringLen) { 472596f483aSJessica Paquette // If yes, then consume the characters we've seen and move to the next 473596f483aSJessica Paquette // node. 474596f483aSJessica Paquette Active.Idx += SubstringLen; 475596f483aSJessica Paquette Active.Len -= SubstringLen; 476596f483aSJessica Paquette Active.Node = NextNode; 477596f483aSJessica Paquette continue; 478596f483aSJessica Paquette } 479596f483aSJessica Paquette 480596f483aSJessica Paquette // Otherwise, the suffix we're trying to insert must be contained in the 481596f483aSJessica Paquette // next node we want to move to. 482596f483aSJessica Paquette unsigned LastChar = Str[EndIdx]; 483596f483aSJessica Paquette 484596f483aSJessica Paquette // Is the string we're trying to insert a substring of the next node? 485596f483aSJessica Paquette if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 486596f483aSJessica Paquette // If yes, then we're done for this step. Remember our insertion point 487596f483aSJessica Paquette // and move to the next end index. At this point, we have an implicit 488596f483aSJessica Paquette // suffix tree. 489596f483aSJessica Paquette if (NeedsLink && !Active.Node->isRoot()) { 490596f483aSJessica Paquette NeedsLink->Link = Active.Node; 491596f483aSJessica Paquette NeedsLink = nullptr; 492596f483aSJessica Paquette } 493596f483aSJessica Paquette 494596f483aSJessica Paquette Active.Len++; 495596f483aSJessica Paquette break; 496596f483aSJessica Paquette } 497596f483aSJessica Paquette 498596f483aSJessica Paquette // The string we're trying to insert isn't a substring of the next node, 499596f483aSJessica Paquette // but matches up to a point. Split the node. 500596f483aSJessica Paquette // 501596f483aSJessica Paquette // For example, say we ended our search at a node n and we're trying to 502596f483aSJessica Paquette // insert ABD. Then we'll create a new node s for AB, reduce n to just 503596f483aSJessica Paquette // representing C, and insert a new leaf node l to represent d. This 504596f483aSJessica Paquette // allows us to ensure that if n was a leaf, it remains a leaf. 505596f483aSJessica Paquette // 506596f483aSJessica Paquette // | ABC ---split---> | AB 507596f483aSJessica Paquette // n s 508596f483aSJessica Paquette // C / \ D 509596f483aSJessica Paquette // n l 510596f483aSJessica Paquette 511596f483aSJessica Paquette // The node s from the diagram 512596f483aSJessica Paquette SuffixTreeNode *SplitNode = 51378681be2SJessica Paquette insertInternalNode(Active.Node, NextNode->StartIdx, 51478681be2SJessica Paquette NextNode->StartIdx + Active.Len - 1, FirstChar); 515596f483aSJessica Paquette 516596f483aSJessica Paquette // Insert the new node representing the new substring into the tree as 517596f483aSJessica Paquette // a child of the split node. This is the node l from the diagram. 518596f483aSJessica Paquette insertLeaf(*SplitNode, EndIdx, LastChar); 519596f483aSJessica Paquette 520596f483aSJessica Paquette // Make the old node a child of the split node and update its start 521596f483aSJessica Paquette // index. This is the node n from the diagram. 522596f483aSJessica Paquette NextNode->StartIdx += Active.Len; 523596f483aSJessica Paquette NextNode->Parent = SplitNode; 524596f483aSJessica Paquette SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 525596f483aSJessica Paquette 526596f483aSJessica Paquette // SplitNode is an internal node, update the suffix link. 527596f483aSJessica Paquette if (NeedsLink) 528596f483aSJessica Paquette NeedsLink->Link = SplitNode; 529596f483aSJessica Paquette 530596f483aSJessica Paquette NeedsLink = SplitNode; 531596f483aSJessica Paquette } 532596f483aSJessica Paquette 533596f483aSJessica Paquette // We've added something new to the tree, so there's one less suffix to 534596f483aSJessica Paquette // add. 535596f483aSJessica Paquette SuffixesToAdd--; 536596f483aSJessica Paquette 537596f483aSJessica Paquette if (Active.Node->isRoot()) { 538596f483aSJessica Paquette if (Active.Len > 0) { 539596f483aSJessica Paquette Active.Len--; 540596f483aSJessica Paquette Active.Idx = EndIdx - SuffixesToAdd + 1; 541596f483aSJessica Paquette } 542596f483aSJessica Paquette } else { 543596f483aSJessica Paquette // Start the next phase at the next smallest suffix. 544596f483aSJessica Paquette Active.Node = Active.Node->Link; 545596f483aSJessica Paquette } 546596f483aSJessica Paquette } 547596f483aSJessica Paquette 548596f483aSJessica Paquette return SuffixesToAdd; 549596f483aSJessica Paquette } 550596f483aSJessica Paquette 551596f483aSJessica Paquette public: 552596f483aSJessica Paquette /// Construct a suffix tree from a sequence of unsigned integers. 553596f483aSJessica Paquette /// 554596f483aSJessica Paquette /// \param Str The string to construct the suffix tree for. 555596f483aSJessica Paquette SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 556596f483aSJessica Paquette Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 557596f483aSJessica Paquette Root->IsInTree = true; 558596f483aSJessica Paquette Active.Node = Root; 559596f483aSJessica Paquette LeafVector = std::vector<SuffixTreeNode *>(Str.size()); 560596f483aSJessica Paquette 561596f483aSJessica Paquette // Keep track of the number of suffixes we have to add of the current 562596f483aSJessica Paquette // prefix. 563596f483aSJessica Paquette size_t SuffixesToAdd = 0; 564596f483aSJessica Paquette Active.Node = Root; 565596f483aSJessica Paquette 566596f483aSJessica Paquette // Construct the suffix tree iteratively on each prefix of the string. 567596f483aSJessica Paquette // PfxEndIdx is the end index of the current prefix. 568596f483aSJessica Paquette // End is one past the last element in the string. 569596f483aSJessica Paquette for (size_t PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) { 570596f483aSJessica Paquette SuffixesToAdd++; 571596f483aSJessica Paquette LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 572596f483aSJessica Paquette SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 573596f483aSJessica Paquette } 574596f483aSJessica Paquette 575596f483aSJessica Paquette // Set the suffix indices of each leaf. 576596f483aSJessica Paquette assert(Root && "Root node can't be nullptr!"); 577596f483aSJessica Paquette setSuffixIndices(*Root, 0); 578596f483aSJessica Paquette } 579596f483aSJessica Paquette }; 580596f483aSJessica Paquette 581596f483aSJessica Paquette /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings. 582596f483aSJessica Paquette struct InstructionMapper { 583596f483aSJessica Paquette 584596f483aSJessica Paquette /// \brief The next available integer to assign to a \p MachineInstr that 585596f483aSJessica Paquette /// cannot be outlined. 586596f483aSJessica Paquette /// 587596f483aSJessica Paquette /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 588596f483aSJessica Paquette unsigned IllegalInstrNumber = -3; 589596f483aSJessica Paquette 590596f483aSJessica Paquette /// \brief The next available integer to assign to a \p MachineInstr that can 591596f483aSJessica Paquette /// be outlined. 592596f483aSJessica Paquette unsigned LegalInstrNumber = 0; 593596f483aSJessica Paquette 594596f483aSJessica Paquette /// Correspondence from \p MachineInstrs to unsigned integers. 595596f483aSJessica Paquette DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 596596f483aSJessica Paquette InstructionIntegerMap; 597596f483aSJessica Paquette 598596f483aSJessica Paquette /// Corresponcence from unsigned integers to \p MachineInstrs. 599596f483aSJessica Paquette /// Inverse of \p InstructionIntegerMap. 600596f483aSJessica Paquette DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; 601596f483aSJessica Paquette 602596f483aSJessica Paquette /// The vector of unsigned integers that the module is mapped to. 603596f483aSJessica Paquette std::vector<unsigned> UnsignedVec; 604596f483aSJessica Paquette 605596f483aSJessica Paquette /// \brief Stores the location of the instruction associated with the integer 606596f483aSJessica Paquette /// at index i in \p UnsignedVec for each index i. 607596f483aSJessica Paquette std::vector<MachineBasicBlock::iterator> InstrList; 608596f483aSJessica Paquette 609596f483aSJessica Paquette /// \brief Maps \p *It to a legal integer. 610596f483aSJessica Paquette /// 611596f483aSJessica Paquette /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, 612596f483aSJessica Paquette /// \p IntegerInstructionMap, and \p LegalInstrNumber. 613596f483aSJessica Paquette /// 614596f483aSJessica Paquette /// \returns The integer that \p *It was mapped to. 615596f483aSJessica Paquette unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { 616596f483aSJessica Paquette 617596f483aSJessica Paquette // Get the integer for this instruction or give it the current 618596f483aSJessica Paquette // LegalInstrNumber. 619596f483aSJessica Paquette InstrList.push_back(It); 620596f483aSJessica Paquette MachineInstr &MI = *It; 621596f483aSJessica Paquette bool WasInserted; 622596f483aSJessica Paquette DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 623596f483aSJessica Paquette ResultIt; 624596f483aSJessica Paquette std::tie(ResultIt, WasInserted) = 625596f483aSJessica Paquette InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 626596f483aSJessica Paquette unsigned MINumber = ResultIt->second; 627596f483aSJessica Paquette 628596f483aSJessica Paquette // There was an insertion. 629596f483aSJessica Paquette if (WasInserted) { 630596f483aSJessica Paquette LegalInstrNumber++; 631596f483aSJessica Paquette IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); 632596f483aSJessica Paquette } 633596f483aSJessica Paquette 634596f483aSJessica Paquette UnsignedVec.push_back(MINumber); 635596f483aSJessica Paquette 636596f483aSJessica Paquette // Make sure we don't overflow or use any integers reserved by the DenseMap. 637596f483aSJessica Paquette if (LegalInstrNumber >= IllegalInstrNumber) 638596f483aSJessica Paquette report_fatal_error("Instruction mapping overflow!"); 639596f483aSJessica Paquette 64078681be2SJessica Paquette assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 64178681be2SJessica Paquette "Tried to assign DenseMap tombstone or empty key to instruction."); 64278681be2SJessica Paquette assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 64378681be2SJessica Paquette "Tried to assign DenseMap tombstone or empty key to instruction."); 644596f483aSJessica Paquette 645596f483aSJessica Paquette return MINumber; 646596f483aSJessica Paquette } 647596f483aSJessica Paquette 648596f483aSJessica Paquette /// Maps \p *It to an illegal integer. 649596f483aSJessica Paquette /// 650596f483aSJessica Paquette /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. 651596f483aSJessica Paquette /// 652596f483aSJessica Paquette /// \returns The integer that \p *It was mapped to. 653596f483aSJessica Paquette unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { 654596f483aSJessica Paquette unsigned MINumber = IllegalInstrNumber; 655596f483aSJessica Paquette 656596f483aSJessica Paquette InstrList.push_back(It); 657596f483aSJessica Paquette UnsignedVec.push_back(IllegalInstrNumber); 658596f483aSJessica Paquette IllegalInstrNumber--; 659596f483aSJessica Paquette 660596f483aSJessica Paquette assert(LegalInstrNumber < IllegalInstrNumber && 661596f483aSJessica Paquette "Instruction mapping overflow!"); 662596f483aSJessica Paquette 66378681be2SJessica Paquette assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 664596f483aSJessica Paquette "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 665596f483aSJessica Paquette 66678681be2SJessica Paquette assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 667596f483aSJessica Paquette "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 668596f483aSJessica Paquette 669596f483aSJessica Paquette return MINumber; 670596f483aSJessica Paquette } 671596f483aSJessica Paquette 672596f483aSJessica Paquette /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 673596f483aSJessica Paquette /// and appends it to \p UnsignedVec and \p InstrList. 674596f483aSJessica Paquette /// 675596f483aSJessica Paquette /// Two instructions are assigned the same integer if they are identical. 676596f483aSJessica Paquette /// If an instruction is deemed unsafe to outline, then it will be assigned an 677596f483aSJessica Paquette /// unique integer. The resulting mapping is placed into a suffix tree and 678596f483aSJessica Paquette /// queried for candidates. 679596f483aSJessica Paquette /// 680596f483aSJessica Paquette /// \param MBB The \p MachineBasicBlock to be translated into integers. 681596f483aSJessica Paquette /// \param TRI \p TargetRegisterInfo for the module. 682596f483aSJessica Paquette /// \param TII \p TargetInstrInfo for the module. 683596f483aSJessica Paquette void convertToUnsignedVec(MachineBasicBlock &MBB, 684596f483aSJessica Paquette const TargetRegisterInfo &TRI, 685596f483aSJessica Paquette const TargetInstrInfo &TII) { 686596f483aSJessica Paquette for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et; 687596f483aSJessica Paquette It++) { 688596f483aSJessica Paquette 689596f483aSJessica Paquette // Keep track of where this instruction is in the module. 690596f483aSJessica Paquette switch (TII.getOutliningType(*It)) { 691596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Illegal: 692596f483aSJessica Paquette mapToIllegalUnsigned(It); 693596f483aSJessica Paquette break; 694596f483aSJessica Paquette 695596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Legal: 696596f483aSJessica Paquette mapToLegalUnsigned(It); 697596f483aSJessica Paquette break; 698596f483aSJessica Paquette 699596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Invisible: 700596f483aSJessica Paquette break; 701596f483aSJessica Paquette } 702596f483aSJessica Paquette } 703596f483aSJessica Paquette 704596f483aSJessica Paquette // After we're done every insertion, uniquely terminate this part of the 705596f483aSJessica Paquette // "string". This makes sure we won't match across basic block or function 706596f483aSJessica Paquette // boundaries since the "end" is encoded uniquely and thus appears in no 707596f483aSJessica Paquette // repeated substring. 708596f483aSJessica Paquette InstrList.push_back(MBB.end()); 709596f483aSJessica Paquette UnsignedVec.push_back(IllegalInstrNumber); 710596f483aSJessica Paquette IllegalInstrNumber--; 711596f483aSJessica Paquette } 712596f483aSJessica Paquette 713596f483aSJessica Paquette InstructionMapper() { 714596f483aSJessica Paquette // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 715596f483aSJessica Paquette // changed. 716596f483aSJessica Paquette assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 717596f483aSJessica Paquette "DenseMapInfo<unsigned>'s empty key isn't -1!"); 718596f483aSJessica Paquette assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 719596f483aSJessica Paquette "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 720596f483aSJessica Paquette } 721596f483aSJessica Paquette }; 722596f483aSJessica Paquette 723596f483aSJessica Paquette /// \brief An interprocedural pass which finds repeated sequences of 724596f483aSJessica Paquette /// instructions and replaces them with calls to functions. 725596f483aSJessica Paquette /// 726596f483aSJessica Paquette /// Each instruction is mapped to an unsigned integer and placed in a string. 727596f483aSJessica Paquette /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 728596f483aSJessica Paquette /// is then repeatedly queried for repeated sequences of instructions. Each 729596f483aSJessica Paquette /// non-overlapping repeated sequence is then placed in its own 730596f483aSJessica Paquette /// \p MachineFunction and each instance is then replaced with a call to that 731596f483aSJessica Paquette /// function. 732596f483aSJessica Paquette struct MachineOutliner : public ModulePass { 733596f483aSJessica Paquette 734596f483aSJessica Paquette static char ID; 735596f483aSJessica Paquette 736596f483aSJessica Paquette StringRef getPassName() const override { return "Machine Outliner"; } 737596f483aSJessica Paquette 738596f483aSJessica Paquette void getAnalysisUsage(AnalysisUsage &AU) const override { 739596f483aSJessica Paquette AU.addRequired<MachineModuleInfo>(); 740596f483aSJessica Paquette AU.addPreserved<MachineModuleInfo>(); 741596f483aSJessica Paquette AU.setPreservesAll(); 742596f483aSJessica Paquette ModulePass::getAnalysisUsage(AU); 743596f483aSJessica Paquette } 744596f483aSJessica Paquette 745596f483aSJessica Paquette MachineOutliner() : ModulePass(ID) { 746596f483aSJessica Paquette initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 747596f483aSJessica Paquette } 748596f483aSJessica Paquette 74978681be2SJessica Paquette /// Find all repeated substrings that satisfy the outlining cost model. 75078681be2SJessica Paquette /// 75178681be2SJessica Paquette /// If a substring appears at least twice, then it must be represented by 75278681be2SJessica Paquette /// an internal node which appears in at least two suffixes. Each suffix is 75378681be2SJessica Paquette /// represented by a leaf node. To do this, we visit each internal node in 75478681be2SJessica Paquette /// the tree, using the leaf children of each internal node. If an internal 75578681be2SJessica Paquette /// node represents a beneficial substring, then we use each of its leaf 75678681be2SJessica Paquette /// children to find the locations of its substring. 75778681be2SJessica Paquette /// 75878681be2SJessica Paquette /// \param ST A suffix tree to query. 75978681be2SJessica Paquette /// \param TII TargetInstrInfo for the target. 76078681be2SJessica Paquette /// \param Mapper Contains outlining mapping information. 76178681be2SJessica Paquette /// \param[out] CandidateList Filled with candidates representing each 76278681be2SJessica Paquette /// beneficial substring. 76378681be2SJessica Paquette /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each 76478681be2SJessica Paquette /// type of candidate. 76578681be2SJessica Paquette /// 76678681be2SJessica Paquette /// \returns The length of the longest candidate found. 76778681be2SJessica Paquette size_t findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 76878681be2SJessica Paquette InstructionMapper &Mapper, 76978681be2SJessica Paquette std::vector<Candidate> &CandidateList, 77078681be2SJessica Paquette std::vector<OutlinedFunction> &FunctionList); 77178681be2SJessica Paquette 772596f483aSJessica Paquette /// \brief Replace the sequences of instructions represented by the 773596f483aSJessica Paquette /// \p Candidates in \p CandidateList with calls to \p MachineFunctions 774596f483aSJessica Paquette /// described in \p FunctionList. 775596f483aSJessica Paquette /// 776596f483aSJessica Paquette /// \param M The module we are outlining from. 777596f483aSJessica Paquette /// \param CandidateList A list of candidates to be outlined. 778596f483aSJessica Paquette /// \param FunctionList A list of functions to be inserted into the module. 779596f483aSJessica Paquette /// \param Mapper Contains the instruction mappings for the module. 780596f483aSJessica Paquette bool outline(Module &M, const ArrayRef<Candidate> &CandidateList, 781596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 782596f483aSJessica Paquette InstructionMapper &Mapper); 783596f483aSJessica Paquette 784596f483aSJessica Paquette /// Creates a function for \p OF and inserts it into the module. 785596f483aSJessica Paquette MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, 786596f483aSJessica Paquette InstructionMapper &Mapper); 787596f483aSJessica Paquette 788596f483aSJessica Paquette /// Find potential outlining candidates and store them in \p CandidateList. 789596f483aSJessica Paquette /// 790596f483aSJessica Paquette /// For each type of potential candidate, also build an \p OutlinedFunction 791596f483aSJessica Paquette /// struct containing the information to build the function for that 792596f483aSJessica Paquette /// candidate. 793596f483aSJessica Paquette /// 794596f483aSJessica Paquette /// \param[out] CandidateList Filled with outlining candidates for the module. 795596f483aSJessica Paquette /// \param[out] FunctionList Filled with functions corresponding to each type 796596f483aSJessica Paquette /// of \p Candidate. 797596f483aSJessica Paquette /// \param ST The suffix tree for the module. 798596f483aSJessica Paquette /// \param TII TargetInstrInfo for the module. 799596f483aSJessica Paquette /// 800596f483aSJessica Paquette /// \returns The length of the longest candidate found. 0 if there are none. 801596f483aSJessica Paquette unsigned buildCandidateList(std::vector<Candidate> &CandidateList, 802596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 80378681be2SJessica Paquette SuffixTree &ST, InstructionMapper &Mapper, 804c984e213SJessica Paquette const TargetInstrInfo &TII); 805596f483aSJessica Paquette 806596f483aSJessica Paquette /// \brief Remove any overlapping candidates that weren't handled by the 807596f483aSJessica Paquette /// suffix tree's pruning method. 808596f483aSJessica Paquette /// 809596f483aSJessica Paquette /// Pruning from the suffix tree doesn't necessarily remove all overlaps. 810596f483aSJessica Paquette /// If a short candidate is chosen for outlining, then a longer candidate 811596f483aSJessica Paquette /// which has that short candidate as a suffix is chosen, the tree's pruning 812596f483aSJessica Paquette /// method will not find it. Thus, we need to prune before outlining as well. 813596f483aSJessica Paquette /// 814596f483aSJessica Paquette /// \param[in,out] CandidateList A list of outlining candidates. 815596f483aSJessica Paquette /// \param[in,out] FunctionList A list of functions to be outlined. 816*809d708bSJessica Paquette /// \param Mapper Contains instruction mapping info for outlining. 817596f483aSJessica Paquette /// \param MaxCandidateLen The length of the longest candidate. 818596f483aSJessica Paquette /// \param TII TargetInstrInfo for the module. 819596f483aSJessica Paquette void pruneOverlaps(std::vector<Candidate> &CandidateList, 820596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 821*809d708bSJessica Paquette InstructionMapper &Mapper, unsigned MaxCandidateLen, 822*809d708bSJessica Paquette const TargetInstrInfo &TII); 823596f483aSJessica Paquette 824596f483aSJessica Paquette /// Construct a suffix tree on the instructions in \p M and outline repeated 825596f483aSJessica Paquette /// strings from that tree. 826596f483aSJessica Paquette bool runOnModule(Module &M) override; 827596f483aSJessica Paquette }; 828596f483aSJessica Paquette 829596f483aSJessica Paquette } // Anonymous namespace. 830596f483aSJessica Paquette 831596f483aSJessica Paquette char MachineOutliner::ID = 0; 832596f483aSJessica Paquette 833596f483aSJessica Paquette namespace llvm { 834596f483aSJessica Paquette ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); } 83578681be2SJessica Paquette } // namespace llvm 83678681be2SJessica Paquette 83778681be2SJessica Paquette INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 83878681be2SJessica Paquette false) 83978681be2SJessica Paquette 84078681be2SJessica Paquette size_t 84178681be2SJessica Paquette MachineOutliner::findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 84278681be2SJessica Paquette InstructionMapper &Mapper, 84378681be2SJessica Paquette std::vector<Candidate> &CandidateList, 84478681be2SJessica Paquette std::vector<OutlinedFunction> &FunctionList) { 84578681be2SJessica Paquette 84678681be2SJessica Paquette CandidateList.clear(); 84778681be2SJessica Paquette FunctionList.clear(); 84878681be2SJessica Paquette size_t FnIdx = 0; 84978681be2SJessica Paquette size_t MaxLen = 0; 85078681be2SJessica Paquette 85178681be2SJessica Paquette // FIXME: Visit internal nodes instead of leaves. 85278681be2SJessica Paquette for (SuffixTreeNode *Leaf : ST.LeafVector) { 85378681be2SJessica Paquette assert(Leaf && "Leaves in LeafVector cannot be null!"); 85478681be2SJessica Paquette if (!Leaf->IsInTree) 85578681be2SJessica Paquette continue; 85678681be2SJessica Paquette 85778681be2SJessica Paquette assert(Leaf->Parent && "All leaves must have parents!"); 85878681be2SJessica Paquette SuffixTreeNode &Parent = *(Leaf->Parent); 85978681be2SJessica Paquette 86078681be2SJessica Paquette // If it doesn't appear enough, or we already outlined from it, skip it. 86178681be2SJessica Paquette if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree) 86278681be2SJessica Paquette continue; 86378681be2SJessica Paquette 864*809d708bSJessica Paquette // Figure out if this candidate is beneficial. 86578681be2SJessica Paquette size_t StringLen = Leaf->ConcatLen - Leaf->size(); 866*809d708bSJessica Paquette size_t CallOverhead = 0; 867*809d708bSJessica Paquette size_t FrameOverhead = 0; 868*809d708bSJessica Paquette size_t SequenceOverhead = StringLen; 86978681be2SJessica Paquette 870*809d708bSJessica Paquette // Figure out the call overhead for each instance of the sequence. 871*809d708bSJessica Paquette for (auto &ChildPair : Parent.Children) { 872*809d708bSJessica Paquette SuffixTreeNode *M = ChildPair.second; 87378681be2SJessica Paquette 874*809d708bSJessica Paquette if (M && M->IsInTree && M->isLeaf()) { 875*809d708bSJessica Paquette // Each sequence is over [StartIt, EndIt]. 876*809d708bSJessica Paquette MachineBasicBlock::iterator StartIt = Mapper.InstrList[M->SuffixIdx]; 877*809d708bSJessica Paquette MachineBasicBlock::iterator EndIt = 878*809d708bSJessica Paquette Mapper.InstrList[M->SuffixIdx + StringLen - 1]; 879*809d708bSJessica Paquette CallOverhead += TII.getOutliningCallOverhead(StartIt, EndIt); 880*809d708bSJessica Paquette } 881*809d708bSJessica Paquette } 882*809d708bSJessica Paquette 883*809d708bSJessica Paquette // Figure out how many instructions it'll take to construct an outlined 884*809d708bSJessica Paquette // function frame for this sequence. 885*809d708bSJessica Paquette MachineBasicBlock::iterator StartIt = Mapper.InstrList[Leaf->SuffixIdx]; 886*809d708bSJessica Paquette MachineBasicBlock::iterator EndIt = 887*809d708bSJessica Paquette Mapper.InstrList[Leaf->SuffixIdx + StringLen - 1]; 888*809d708bSJessica Paquette FrameOverhead = TII.getOutliningFrameOverhead(StartIt, EndIt); 889*809d708bSJessica Paquette 890*809d708bSJessica Paquette size_t OutliningCost = CallOverhead + FrameOverhead + SequenceOverhead; 891*809d708bSJessica Paquette size_t NotOutliningCost = SequenceOverhead * Parent.OccurrenceCount; 892*809d708bSJessica Paquette 893*809d708bSJessica Paquette if (NotOutliningCost <= OutliningCost) 89478681be2SJessica Paquette continue; 89578681be2SJessica Paquette 896*809d708bSJessica Paquette size_t Benefit = NotOutliningCost - OutliningCost; 897*809d708bSJessica Paquette 89878681be2SJessica Paquette if (StringLen > MaxLen) 89978681be2SJessica Paquette MaxLen = StringLen; 90078681be2SJessica Paquette 90178681be2SJessica Paquette unsigned OccurrenceCount = 0; 90278681be2SJessica Paquette for (auto &ChildPair : Parent.Children) { 90378681be2SJessica Paquette SuffixTreeNode *M = ChildPair.second; 90478681be2SJessica Paquette 90578681be2SJessica Paquette // Is it a leaf? If so, we have an occurrence of this candidate. 90678681be2SJessica Paquette if (M && M->IsInTree && M->isLeaf()) { 90778681be2SJessica Paquette OccurrenceCount++; 90878681be2SJessica Paquette CandidateList.emplace_back(M->SuffixIdx, StringLen, FnIdx); 90978681be2SJessica Paquette CandidateList.back().Benefit = Benefit; 91078681be2SJessica Paquette M->IsInTree = false; 91178681be2SJessica Paquette } 912596f483aSJessica Paquette } 913596f483aSJessica Paquette 91478681be2SJessica Paquette // Save the function for the new candidate sequence. 91578681be2SJessica Paquette std::vector<unsigned> CandidateSequence; 91678681be2SJessica Paquette for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++) 91778681be2SJessica Paquette CandidateSequence.push_back(ST.Str[i]); 91878681be2SJessica Paquette 91978681be2SJessica Paquette FunctionList.emplace_back(FnIdx, OccurrenceCount, CandidateSequence, 92078681be2SJessica Paquette Benefit, false); 92178681be2SJessica Paquette 92278681be2SJessica Paquette // Move to the next function. 92378681be2SJessica Paquette FnIdx++; 92478681be2SJessica Paquette Parent.IsInTree = false; 92578681be2SJessica Paquette } 92678681be2SJessica Paquette 92778681be2SJessica Paquette return MaxLen; 92878681be2SJessica Paquette } 929596f483aSJessica Paquette 930596f483aSJessica Paquette void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList, 931596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 932*809d708bSJessica Paquette InstructionMapper &Mapper, 933596f483aSJessica Paquette unsigned MaxCandidateLen, 934596f483aSJessica Paquette const TargetInstrInfo &TII) { 935acffa28cSJessica Paquette // TODO: Experiment with interval trees or other interval-checking structures 936acffa28cSJessica Paquette // to lower the time complexity of this function. 937acffa28cSJessica Paquette // TODO: Can we do better than the simple greedy choice? 938acffa28cSJessica Paquette // Check for overlaps in the range. 939acffa28cSJessica Paquette // This is O(MaxCandidateLen * CandidateList.size()). 940596f483aSJessica Paquette for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; 941596f483aSJessica Paquette It++) { 942596f483aSJessica Paquette Candidate &C1 = *It; 943596f483aSJessica Paquette OutlinedFunction &F1 = FunctionList[C1.FunctionIdx]; 944596f483aSJessica Paquette 945596f483aSJessica Paquette // If we removed this candidate, skip it. 946596f483aSJessica Paquette if (!C1.InCandidateList) 947596f483aSJessica Paquette continue; 948596f483aSJessica Paquette 949acffa28cSJessica Paquette // Is it still worth it to outline C1? 950acffa28cSJessica Paquette if (F1.Benefit < 1 || F1.OccurrenceCount < 2) { 951acffa28cSJessica Paquette assert(F1.OccurrenceCount > 0 && 952acffa28cSJessica Paquette "Can't remove OutlinedFunction with no occurrences!"); 953acffa28cSJessica Paquette F1.OccurrenceCount--; 954596f483aSJessica Paquette C1.InCandidateList = false; 955596f483aSJessica Paquette continue; 956596f483aSJessica Paquette } 957596f483aSJessica Paquette 958596f483aSJessica Paquette // The minimum start index of any candidate that could overlap with this 959596f483aSJessica Paquette // one. 960596f483aSJessica Paquette unsigned FarthestPossibleIdx = 0; 961596f483aSJessica Paquette 962596f483aSJessica Paquette // Either the index is 0, or it's at most MaxCandidateLen indices away. 963596f483aSJessica Paquette if (C1.StartIdx > MaxCandidateLen) 964596f483aSJessica Paquette FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen; 965596f483aSJessica Paquette 966acffa28cSJessica Paquette // Compare against the candidates in the list that start at at most 967acffa28cSJessica Paquette // FarthestPossibleIdx indices away from C1. There are at most 968acffa28cSJessica Paquette // MaxCandidateLen of these. 969596f483aSJessica Paquette for (auto Sit = It + 1; Sit != Et; Sit++) { 970596f483aSJessica Paquette Candidate &C2 = *Sit; 971596f483aSJessica Paquette OutlinedFunction &F2 = FunctionList[C2.FunctionIdx]; 972596f483aSJessica Paquette 973596f483aSJessica Paquette // Is this candidate too far away to overlap? 974596f483aSJessica Paquette if (C2.StartIdx < FarthestPossibleIdx) 975596f483aSJessica Paquette break; 976596f483aSJessica Paquette 977596f483aSJessica Paquette // Did we already remove this candidate in a previous step? 978596f483aSJessica Paquette if (!C2.InCandidateList) 979596f483aSJessica Paquette continue; 980596f483aSJessica Paquette 981596f483aSJessica Paquette // Is the function beneficial to outline? 982596f483aSJessica Paquette if (F2.OccurrenceCount < 2 || F2.Benefit < 1) { 983596f483aSJessica Paquette // If not, remove this candidate and move to the next one. 984acffa28cSJessica Paquette assert(F2.OccurrenceCount > 0 && 985acffa28cSJessica Paquette "Can't remove OutlinedFunction with no occurrences!"); 986acffa28cSJessica Paquette F2.OccurrenceCount--; 987596f483aSJessica Paquette C2.InCandidateList = false; 988596f483aSJessica Paquette continue; 989596f483aSJessica Paquette } 990596f483aSJessica Paquette 991596f483aSJessica Paquette size_t C2End = C2.StartIdx + C2.Len - 1; 992596f483aSJessica Paquette 993596f483aSJessica Paquette // Do C1 and C2 overlap? 994596f483aSJessica Paquette // 995596f483aSJessica Paquette // Not overlapping: 996596f483aSJessica Paquette // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices 997596f483aSJessica Paquette // 998596f483aSJessica Paquette // We sorted our candidate list so C2Start <= C1Start. We know that 999596f483aSJessica Paquette // C2End > C2Start since each candidate has length >= 2. Therefore, all we 1000596f483aSJessica Paquette // have to check is C2End < C2Start to see if we overlap. 1001596f483aSJessica Paquette if (C2End < C1.StartIdx) 1002596f483aSJessica Paquette continue; 1003596f483aSJessica Paquette 1004acffa28cSJessica Paquette // C1 and C2 overlap. 1005acffa28cSJessica Paquette // We need to choose the better of the two. 1006acffa28cSJessica Paquette // 1007acffa28cSJessica Paquette // Approximate this by picking the one which would have saved us the 1008acffa28cSJessica Paquette // most instructions before any pruning. 1009acffa28cSJessica Paquette if (C1.Benefit >= C2.Benefit) { 1010596f483aSJessica Paquette 1011acffa28cSJessica Paquette // C1 is better, so remove C2 and update C2's OutlinedFunction to 1012acffa28cSJessica Paquette // reflect the removal. 1013acffa28cSJessica Paquette assert(F2.OccurrenceCount > 0 && 1014acffa28cSJessica Paquette "Can't remove OutlinedFunction with no occurrences!"); 1015596f483aSJessica Paquette F2.OccurrenceCount--; 1016*809d708bSJessica Paquette 1017*809d708bSJessica Paquette // Remove the call overhead from the removed sequence. 1018*809d708bSJessica Paquette MachineBasicBlock::iterator StartIt = Mapper.InstrList[C2.StartIdx]; 1019*809d708bSJessica Paquette MachineBasicBlock::iterator EndIt = 1020*809d708bSJessica Paquette Mapper.InstrList[C2.StartIdx + C2.Len - 1]; 1021*809d708bSJessica Paquette F2.Benefit += TII.getOutliningCallOverhead(StartIt, EndIt); 1022*809d708bSJessica Paquette // Add back one instance of the sequence. 1023*809d708bSJessica Paquette 1024*809d708bSJessica Paquette if (F2.Sequence.size() > F2.Benefit) 1025*809d708bSJessica Paquette F2.Benefit = 0; 1026*809d708bSJessica Paquette else 1027*809d708bSJessica Paquette F2.Benefit -= F2.Sequence.size(); 1028596f483aSJessica Paquette 1029596f483aSJessica Paquette C2.InCandidateList = false; 1030596f483aSJessica Paquette 103178681be2SJessica Paquette DEBUG(dbgs() << "- Removed C2. \n"; 103278681be2SJessica Paquette dbgs() << "--- Num fns left for C2: " << F2.OccurrenceCount 103378681be2SJessica Paquette << "\n"; 103478681be2SJessica Paquette dbgs() << "--- C2's benefit: " << F2.Benefit << "\n";); 1035acffa28cSJessica Paquette 1036acffa28cSJessica Paquette } else { 1037acffa28cSJessica Paquette // C2 is better, so remove C1 and update C1's OutlinedFunction to 1038acffa28cSJessica Paquette // reflect the removal. 1039acffa28cSJessica Paquette assert(F1.OccurrenceCount > 0 && 1040acffa28cSJessica Paquette "Can't remove OutlinedFunction with no occurrences!"); 1041acffa28cSJessica Paquette F1.OccurrenceCount--; 1042*809d708bSJessica Paquette 1043*809d708bSJessica Paquette // Remove the call overhead from the removed sequence. 1044*809d708bSJessica Paquette MachineBasicBlock::iterator StartIt = Mapper.InstrList[C1.StartIdx]; 1045*809d708bSJessica Paquette MachineBasicBlock::iterator EndIt = 1046*809d708bSJessica Paquette Mapper.InstrList[C1.StartIdx + C1.Len - 1]; 1047*809d708bSJessica Paquette F2.Benefit += TII.getOutliningCallOverhead(StartIt, EndIt); 1048*809d708bSJessica Paquette 1049*809d708bSJessica Paquette // Add back one instance of the sequence. 1050*809d708bSJessica Paquette if (F1.Sequence.size() > F1.Benefit) 1051*809d708bSJessica Paquette F1.Benefit = 0; 1052*809d708bSJessica Paquette else 1053*809d708bSJessica Paquette F1.Benefit -= F1.Sequence.size(); 1054*809d708bSJessica Paquette 1055acffa28cSJessica Paquette C1.InCandidateList = false; 1056acffa28cSJessica Paquette 105778681be2SJessica Paquette DEBUG(dbgs() << "- Removed C1. \n"; 105878681be2SJessica Paquette dbgs() << "--- Num fns left for C1: " << F1.OccurrenceCount 105978681be2SJessica Paquette << "\n"; 106078681be2SJessica Paquette dbgs() << "--- C1's benefit: " << F1.Benefit << "\n";); 1061acffa28cSJessica Paquette 1062acffa28cSJessica Paquette // C1 is out, so we don't have to compare it against anyone else. 1063acffa28cSJessica Paquette break; 1064acffa28cSJessica Paquette } 1065596f483aSJessica Paquette } 1066596f483aSJessica Paquette } 1067596f483aSJessica Paquette } 1068596f483aSJessica Paquette 1069596f483aSJessica Paquette unsigned 1070596f483aSJessica Paquette MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList, 1071596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 107278681be2SJessica Paquette SuffixTree &ST, InstructionMapper &Mapper, 1073596f483aSJessica Paquette const TargetInstrInfo &TII) { 1074596f483aSJessica Paquette 1075596f483aSJessica Paquette std::vector<unsigned> CandidateSequence; // Current outlining candidate. 1076acffa28cSJessica Paquette size_t MaxCandidateLen = 0; // Length of the longest candidate. 1077596f483aSJessica Paquette 107878681be2SJessica Paquette MaxCandidateLen = 107978681be2SJessica Paquette findCandidates(ST, TII, Mapper, CandidateList, FunctionList); 1080596f483aSJessica Paquette 1081acffa28cSJessica Paquette for (auto &OF : FunctionList) 108278681be2SJessica Paquette OF.IsTailCall = 108378681be2SJessica Paquette Mapper.IntegerInstructionMap[OF.Sequence.back()]->isTerminator(); 1084596f483aSJessica Paquette 1085596f483aSJessica Paquette // Sort the candidates in decending order. This will simplify the outlining 1086596f483aSJessica Paquette // process when we have to remove the candidates from the mapping by 1087596f483aSJessica Paquette // allowing us to cut them out without keeping track of an offset. 1088596f483aSJessica Paquette std::stable_sort(CandidateList.begin(), CandidateList.end()); 1089596f483aSJessica Paquette 1090596f483aSJessica Paquette return MaxCandidateLen; 1091596f483aSJessica Paquette } 1092596f483aSJessica Paquette 1093596f483aSJessica Paquette MachineFunction * 1094596f483aSJessica Paquette MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, 1095596f483aSJessica Paquette InstructionMapper &Mapper) { 1096596f483aSJessica Paquette 1097596f483aSJessica Paquette // Create the function name. This should be unique. For now, just hash the 1098596f483aSJessica Paquette // module name and include it in the function name plus the number of this 1099596f483aSJessica Paquette // function. 1100596f483aSJessica Paquette std::ostringstream NameStream; 110178681be2SJessica Paquette NameStream << "OUTLINED_FUNCTION_" << OF.Name; 1102596f483aSJessica Paquette 1103596f483aSJessica Paquette // Create the function using an IR-level function. 1104596f483aSJessica Paquette LLVMContext &C = M.getContext(); 1105596f483aSJessica Paquette Function *F = dyn_cast<Function>( 110659a2d7b9SSerge Guelton M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C))); 1107596f483aSJessica Paquette assert(F && "Function was null!"); 1108596f483aSJessica Paquette 1109596f483aSJessica Paquette // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1110596f483aSJessica Paquette // which gives us better results when we outline from linkonceodr functions. 1111596f483aSJessica Paquette F->setLinkage(GlobalValue::PrivateLinkage); 1112596f483aSJessica Paquette F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1113596f483aSJessica Paquette 1114596f483aSJessica Paquette BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1115596f483aSJessica Paquette IRBuilder<> Builder(EntryBB); 1116596f483aSJessica Paquette Builder.CreateRetVoid(); 1117596f483aSJessica Paquette 1118596f483aSJessica Paquette MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 11197bda1958SMatthias Braun MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1120596f483aSJessica Paquette MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1121596f483aSJessica Paquette const TargetSubtargetInfo &STI = MF.getSubtarget(); 1122596f483aSJessica Paquette const TargetInstrInfo &TII = *STI.getInstrInfo(); 1123596f483aSJessica Paquette 1124596f483aSJessica Paquette // Insert the new function into the module. 1125596f483aSJessica Paquette MF.insert(MF.begin(), &MBB); 1126596f483aSJessica Paquette 1127c984e213SJessica Paquette TII.insertOutlinerPrologue(MBB, MF, OF.IsTailCall); 1128596f483aSJessica Paquette 1129596f483aSJessica Paquette // Copy over the instructions for the function using the integer mappings in 1130596f483aSJessica Paquette // its sequence. 1131596f483aSJessica Paquette for (unsigned Str : OF.Sequence) { 1132596f483aSJessica Paquette MachineInstr *NewMI = 1133596f483aSJessica Paquette MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); 1134596f483aSJessica Paquette NewMI->dropMemRefs(); 1135596f483aSJessica Paquette 1136596f483aSJessica Paquette // Don't keep debug information for outlined instructions. 1137596f483aSJessica Paquette // FIXME: This means outlined functions are currently undebuggable. 1138596f483aSJessica Paquette NewMI->setDebugLoc(DebugLoc()); 1139596f483aSJessica Paquette MBB.insert(MBB.end(), NewMI); 1140596f483aSJessica Paquette } 1141596f483aSJessica Paquette 1142c984e213SJessica Paquette TII.insertOutlinerEpilogue(MBB, MF, OF.IsTailCall); 1143596f483aSJessica Paquette 1144596f483aSJessica Paquette return &MF; 1145596f483aSJessica Paquette } 1146596f483aSJessica Paquette 1147596f483aSJessica Paquette bool MachineOutliner::outline(Module &M, 1148596f483aSJessica Paquette const ArrayRef<Candidate> &CandidateList, 1149596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 1150596f483aSJessica Paquette InstructionMapper &Mapper) { 1151596f483aSJessica Paquette 1152596f483aSJessica Paquette bool OutlinedSomething = false; 1153596f483aSJessica Paquette 1154596f483aSJessica Paquette // Replace the candidates with calls to their respective outlined functions. 1155596f483aSJessica Paquette for (const Candidate &C : CandidateList) { 1156596f483aSJessica Paquette 1157596f483aSJessica Paquette // Was the candidate removed during pruneOverlaps? 1158596f483aSJessica Paquette if (!C.InCandidateList) 1159596f483aSJessica Paquette continue; 1160596f483aSJessica Paquette 1161596f483aSJessica Paquette // If not, then look at its OutlinedFunction. 1162596f483aSJessica Paquette OutlinedFunction &OF = FunctionList[C.FunctionIdx]; 1163596f483aSJessica Paquette 1164596f483aSJessica Paquette // Was its OutlinedFunction made unbeneficial during pruneOverlaps? 1165596f483aSJessica Paquette if (OF.OccurrenceCount < 2 || OF.Benefit < 1) 1166596f483aSJessica Paquette continue; 1167596f483aSJessica Paquette 1168596f483aSJessica Paquette // If not, then outline it. 1169596f483aSJessica Paquette assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1170596f483aSJessica Paquette MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent(); 1171596f483aSJessica Paquette MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx]; 1172596f483aSJessica Paquette unsigned EndIdx = C.StartIdx + C.Len - 1; 1173596f483aSJessica Paquette 1174596f483aSJessica Paquette assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1175596f483aSJessica Paquette MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1176596f483aSJessica Paquette assert(EndIt != MBB->end() && "EndIt out of bounds!"); 1177596f483aSJessica Paquette 1178596f483aSJessica Paquette EndIt++; // Erase needs one past the end index. 1179596f483aSJessica Paquette 1180596f483aSJessica Paquette // Does this candidate have a function yet? 1181acffa28cSJessica Paquette if (!OF.MF) { 1182596f483aSJessica Paquette OF.MF = createOutlinedFunction(M, OF, Mapper); 1183acffa28cSJessica Paquette FunctionsCreated++; 1184acffa28cSJessica Paquette } 1185596f483aSJessica Paquette 1186596f483aSJessica Paquette MachineFunction *MF = OF.MF; 1187596f483aSJessica Paquette const TargetSubtargetInfo &STI = MF->getSubtarget(); 1188596f483aSJessica Paquette const TargetInstrInfo &TII = *STI.getInstrInfo(); 1189596f483aSJessica Paquette 1190596f483aSJessica Paquette // Insert a call to the new function and erase the old sequence. 1191c984e213SJessica Paquette TII.insertOutlinedCall(M, *MBB, StartIt, *MF, OF.IsTailCall); 1192596f483aSJessica Paquette StartIt = Mapper.InstrList[C.StartIdx]; 1193596f483aSJessica Paquette MBB->erase(StartIt, EndIt); 1194596f483aSJessica Paquette 1195596f483aSJessica Paquette OutlinedSomething = true; 1196596f483aSJessica Paquette 1197596f483aSJessica Paquette // Statistics. 1198596f483aSJessica Paquette NumOutlined++; 1199596f483aSJessica Paquette } 1200596f483aSJessica Paquette 120178681be2SJessica Paquette DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1202596f483aSJessica Paquette 1203596f483aSJessica Paquette return OutlinedSomething; 1204596f483aSJessica Paquette } 1205596f483aSJessica Paquette 1206596f483aSJessica Paquette bool MachineOutliner::runOnModule(Module &M) { 1207596f483aSJessica Paquette 1208596f483aSJessica Paquette // Is there anything in the module at all? 1209596f483aSJessica Paquette if (M.empty()) 1210596f483aSJessica Paquette return false; 1211596f483aSJessica Paquette 1212596f483aSJessica Paquette MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 121378681be2SJessica Paquette const TargetSubtargetInfo &STI = 121478681be2SJessica Paquette MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget(); 1215596f483aSJessica Paquette const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 1216596f483aSJessica Paquette const TargetInstrInfo *TII = STI.getInstrInfo(); 1217596f483aSJessica Paquette 1218596f483aSJessica Paquette InstructionMapper Mapper; 1219596f483aSJessica Paquette 1220596f483aSJessica Paquette // Build instruction mappings for each function in the module. 1221596f483aSJessica Paquette for (Function &F : M) { 12227bda1958SMatthias Braun MachineFunction &MF = MMI.getOrCreateMachineFunction(F); 1223596f483aSJessica Paquette 1224596f483aSJessica Paquette // Is the function empty? Safe to outline from? 1225596f483aSJessica Paquette if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF)) 1226596f483aSJessica Paquette continue; 1227596f483aSJessica Paquette 1228596f483aSJessica Paquette // If it is, look at each MachineBasicBlock in the function. 1229596f483aSJessica Paquette for (MachineBasicBlock &MBB : MF) { 1230596f483aSJessica Paquette 1231596f483aSJessica Paquette // Is there anything in MBB? 1232596f483aSJessica Paquette if (MBB.empty()) 1233596f483aSJessica Paquette continue; 1234596f483aSJessica Paquette 1235596f483aSJessica Paquette // If yes, map it. 1236596f483aSJessica Paquette Mapper.convertToUnsignedVec(MBB, *TRI, *TII); 1237596f483aSJessica Paquette } 1238596f483aSJessica Paquette } 1239596f483aSJessica Paquette 1240596f483aSJessica Paquette // Construct a suffix tree, use it to find candidates, and then outline them. 1241596f483aSJessica Paquette SuffixTree ST(Mapper.UnsignedVec); 1242596f483aSJessica Paquette std::vector<Candidate> CandidateList; 1243596f483aSJessica Paquette std::vector<OutlinedFunction> FunctionList; 1244596f483aSJessica Paquette 1245acffa28cSJessica Paquette // Find all of the outlining candidates. 1246596f483aSJessica Paquette unsigned MaxCandidateLen = 1247c984e213SJessica Paquette buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII); 1248596f483aSJessica Paquette 1249acffa28cSJessica Paquette // Remove candidates that overlap with other candidates. 1250*809d708bSJessica Paquette pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII); 1251acffa28cSJessica Paquette 1252acffa28cSJessica Paquette // Outline each of the candidates and return true if something was outlined. 1253596f483aSJessica Paquette return outline(M, CandidateList, FunctionList, Mapper); 1254596f483aSJessica Paquette } 1255