1596f483aSJessica Paquette //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2596f483aSJessica Paquette //
3596f483aSJessica Paquette //                     The LLVM Compiler Infrastructure
4596f483aSJessica Paquette //
5596f483aSJessica Paquette // This file is distributed under the University of Illinois Open Source
6596f483aSJessica Paquette // License. See LICENSE.TXT for details.
7596f483aSJessica Paquette //
8596f483aSJessica Paquette //===----------------------------------------------------------------------===//
9596f483aSJessica Paquette ///
10596f483aSJessica Paquette /// \file
11596f483aSJessica Paquette /// Replaces repeated sequences of instructions with function calls.
12596f483aSJessica Paquette ///
13596f483aSJessica Paquette /// This works by placing every instruction from every basic block in a
14596f483aSJessica Paquette /// suffix tree, and repeatedly querying that tree for repeated sequences of
15596f483aSJessica Paquette /// instructions. If a sequence of instructions appears often, then it ought
16596f483aSJessica Paquette /// to be beneficial to pull out into a function.
17596f483aSJessica Paquette ///
18596f483aSJessica Paquette /// This was originally presented at the 2016 LLVM Developers' Meeting in the
19596f483aSJessica Paquette /// talk "Reducing Code Size Using Outlining". For a high-level overview of
20596f483aSJessica Paquette /// how this pass works, the talk is available on YouTube at
21596f483aSJessica Paquette ///
22596f483aSJessica Paquette /// https://www.youtube.com/watch?v=yorld-WSOeU
23596f483aSJessica Paquette ///
24596f483aSJessica Paquette /// The slides for the talk are available at
25596f483aSJessica Paquette ///
26596f483aSJessica Paquette /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
27596f483aSJessica Paquette ///
28596f483aSJessica Paquette /// The talk provides an overview of how the outliner finds candidates and
29596f483aSJessica Paquette /// ultimately outlines them. It describes how the main data structure for this
30596f483aSJessica Paquette /// pass, the suffix tree, is queried and purged for candidates. It also gives
31596f483aSJessica Paquette /// a simplified suffix tree construction algorithm for suffix trees based off
32596f483aSJessica Paquette /// of the algorithm actually used here, Ukkonen's algorithm.
33596f483aSJessica Paquette ///
34596f483aSJessica Paquette /// For the original RFC for this pass, please see
35596f483aSJessica Paquette ///
36596f483aSJessica Paquette /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
37596f483aSJessica Paquette ///
38596f483aSJessica Paquette /// For more information on the suffix tree data structure, please see
39596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
40596f483aSJessica Paquette ///
41596f483aSJessica Paquette //===----------------------------------------------------------------------===//
42596f483aSJessica Paquette #include "llvm/ADT/DenseMap.h"
43596f483aSJessica Paquette #include "llvm/ADT/Statistic.h"
44596f483aSJessica Paquette #include "llvm/ADT/Twine.h"
45596f483aSJessica Paquette #include "llvm/CodeGen/MachineFrameInfo.h"
46596f483aSJessica Paquette #include "llvm/CodeGen/MachineFunction.h"
47596f483aSJessica Paquette #include "llvm/CodeGen/MachineInstrBuilder.h"
48596f483aSJessica Paquette #include "llvm/CodeGen/MachineModuleInfo.h"
49596f483aSJessica Paquette #include "llvm/CodeGen/Passes.h"
50596f483aSJessica Paquette #include "llvm/IR/IRBuilder.h"
51596f483aSJessica Paquette #include "llvm/Support/Allocator.h"
52596f483aSJessica Paquette #include "llvm/Support/Debug.h"
53596f483aSJessica Paquette #include "llvm/Support/raw_ostream.h"
54596f483aSJessica Paquette #include "llvm/Target/TargetInstrInfo.h"
55596f483aSJessica Paquette #include "llvm/Target/TargetMachine.h"
56596f483aSJessica Paquette #include "llvm/Target/TargetRegisterInfo.h"
57596f483aSJessica Paquette #include "llvm/Target/TargetSubtargetInfo.h"
58596f483aSJessica Paquette #include <functional>
59596f483aSJessica Paquette #include <map>
60596f483aSJessica Paquette #include <sstream>
61596f483aSJessica Paquette #include <tuple>
62596f483aSJessica Paquette #include <vector>
63596f483aSJessica Paquette 
64596f483aSJessica Paquette #define DEBUG_TYPE "machine-outliner"
65596f483aSJessica Paquette 
66596f483aSJessica Paquette using namespace llvm;
67596f483aSJessica Paquette 
68596f483aSJessica Paquette STATISTIC(NumOutlined, "Number of candidates outlined");
69596f483aSJessica Paquette STATISTIC(FunctionsCreated, "Number of functions created");
70596f483aSJessica Paquette 
71596f483aSJessica Paquette namespace {
72596f483aSJessica Paquette 
73acffa28cSJessica Paquette /// \brief An individual sequence of instructions to be replaced with a call to
74acffa28cSJessica Paquette /// an outlined function.
75acffa28cSJessica Paquette struct Candidate {
76acffa28cSJessica Paquette 
77acffa28cSJessica Paquette   /// Set to false if the candidate overlapped with another candidate.
78acffa28cSJessica Paquette   bool InCandidateList = true;
79acffa28cSJessica Paquette 
80acffa28cSJessica Paquette   /// The start index of this \p Candidate.
81acffa28cSJessica Paquette   size_t StartIdx;
82acffa28cSJessica Paquette 
83acffa28cSJessica Paquette   /// The number of instructions in this \p Candidate.
84acffa28cSJessica Paquette   size_t Len;
85acffa28cSJessica Paquette 
86acffa28cSJessica Paquette   /// The index of this \p Candidate's \p OutlinedFunction in the list of
87acffa28cSJessica Paquette   /// \p OutlinedFunctions.
88acffa28cSJessica Paquette   size_t FunctionIdx;
89acffa28cSJessica Paquette 
90acffa28cSJessica Paquette   /// \brief The number of instructions that would be saved by outlining every
91acffa28cSJessica Paquette   /// candidate of this type.
92acffa28cSJessica Paquette   ///
93acffa28cSJessica Paquette   /// This is a fixed value which is not updated during the candidate pruning
94acffa28cSJessica Paquette   /// process. It is only used for deciding which candidate to keep if two
95acffa28cSJessica Paquette   /// candidates overlap. The true benefit is stored in the OutlinedFunction
96acffa28cSJessica Paquette   /// for some given candidate.
97acffa28cSJessica Paquette   unsigned Benefit = 0;
98acffa28cSJessica Paquette 
99acffa28cSJessica Paquette   Candidate(size_t StartIdx, size_t Len, size_t FunctionIdx)
100acffa28cSJessica Paquette       : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {}
101acffa28cSJessica Paquette 
102acffa28cSJessica Paquette   Candidate() {}
103acffa28cSJessica Paquette 
104acffa28cSJessica Paquette   /// \brief Used to ensure that \p Candidates are outlined in an order that
105acffa28cSJessica Paquette   /// preserves the start and end indices of other \p Candidates.
106acffa28cSJessica Paquette   bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; }
107acffa28cSJessica Paquette };
108acffa28cSJessica Paquette 
109acffa28cSJessica Paquette /// \brief The information necessary to create an outlined function for some
110acffa28cSJessica Paquette /// class of candidate.
111acffa28cSJessica Paquette struct OutlinedFunction {
112acffa28cSJessica Paquette 
113acffa28cSJessica Paquette   /// The actual outlined function created.
114acffa28cSJessica Paquette   /// This is initialized after we go through and create the actual function.
115acffa28cSJessica Paquette   MachineFunction *MF = nullptr;
116acffa28cSJessica Paquette 
117*809d708bSJessica Paquette   /// A numbefr assigned to this function which appears at the end of its name.
118acffa28cSJessica Paquette   size_t Name;
119acffa28cSJessica Paquette 
120acffa28cSJessica Paquette   /// The number of candidates for this OutlinedFunction.
121acffa28cSJessica Paquette   size_t OccurrenceCount = 0;
122acffa28cSJessica Paquette 
123acffa28cSJessica Paquette   /// \brief The sequence of integers corresponding to the instructions in this
124acffa28cSJessica Paquette   /// function.
125acffa28cSJessica Paquette   std::vector<unsigned> Sequence;
126acffa28cSJessica Paquette 
127acffa28cSJessica Paquette   /// The number of instructions this function would save.
128acffa28cSJessica Paquette   unsigned Benefit = 0;
129acffa28cSJessica Paquette 
130acffa28cSJessica Paquette   /// \brief Set to true if candidates for this outlined function should be
131acffa28cSJessica Paquette   /// replaced with tail calls to this OutlinedFunction.
132acffa28cSJessica Paquette   bool IsTailCall = false;
133acffa28cSJessica Paquette 
134acffa28cSJessica Paquette   OutlinedFunction(size_t Name, size_t OccurrenceCount,
13578681be2SJessica Paquette                    const std::vector<unsigned> &Sequence, unsigned Benefit,
13678681be2SJessica Paquette                    bool IsTailCall)
137acffa28cSJessica Paquette       : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence),
13878681be2SJessica Paquette         Benefit(Benefit), IsTailCall(IsTailCall) {}
139acffa28cSJessica Paquette };
140acffa28cSJessica Paquette 
141596f483aSJessica Paquette /// Represents an undefined index in the suffix tree.
142596f483aSJessica Paquette const size_t EmptyIdx = -1;
143596f483aSJessica Paquette 
144596f483aSJessica Paquette /// A node in a suffix tree which represents a substring or suffix.
145596f483aSJessica Paquette ///
146596f483aSJessica Paquette /// Each node has either no children or at least two children, with the root
147596f483aSJessica Paquette /// being a exception in the empty tree.
148596f483aSJessica Paquette ///
149596f483aSJessica Paquette /// Children are represented as a map between unsigned integers and nodes. If
150596f483aSJessica Paquette /// a node N has a child M on unsigned integer k, then the mapping represented
151596f483aSJessica Paquette /// by N is a proper prefix of the mapping represented by M. Note that this,
152596f483aSJessica Paquette /// although similar to a trie is somewhat different: each node stores a full
153596f483aSJessica Paquette /// substring of the full mapping rather than a single character state.
154596f483aSJessica Paquette ///
155596f483aSJessica Paquette /// Each internal node contains a pointer to the internal node representing
156596f483aSJessica Paquette /// the same string, but with the first character chopped off. This is stored
157596f483aSJessica Paquette /// in \p Link. Each leaf node stores the start index of its respective
158596f483aSJessica Paquette /// suffix in \p SuffixIdx.
159596f483aSJessica Paquette struct SuffixTreeNode {
160596f483aSJessica Paquette 
161596f483aSJessica Paquette   /// The children of this node.
162596f483aSJessica Paquette   ///
163596f483aSJessica Paquette   /// A child existing on an unsigned integer implies that from the mapping
164596f483aSJessica Paquette   /// represented by the current node, there is a way to reach another
165596f483aSJessica Paquette   /// mapping by tacking that character on the end of the current string.
166596f483aSJessica Paquette   DenseMap<unsigned, SuffixTreeNode *> Children;
167596f483aSJessica Paquette 
168596f483aSJessica Paquette   /// A flag set to false if the node has been pruned from the tree.
169596f483aSJessica Paquette   bool IsInTree = true;
170596f483aSJessica Paquette 
171596f483aSJessica Paquette   /// The start index of this node's substring in the main string.
172596f483aSJessica Paquette   size_t StartIdx = EmptyIdx;
173596f483aSJessica Paquette 
174596f483aSJessica Paquette   /// The end index of this node's substring in the main string.
175596f483aSJessica Paquette   ///
176596f483aSJessica Paquette   /// Every leaf node must have its \p EndIdx incremented at the end of every
177596f483aSJessica Paquette   /// step in the construction algorithm. To avoid having to update O(N)
178596f483aSJessica Paquette   /// nodes individually at the end of every step, the end index is stored
179596f483aSJessica Paquette   /// as a pointer.
180596f483aSJessica Paquette   size_t *EndIdx = nullptr;
181596f483aSJessica Paquette 
182596f483aSJessica Paquette   /// For leaves, the start index of the suffix represented by this node.
183596f483aSJessica Paquette   ///
184596f483aSJessica Paquette   /// For all other nodes, this is ignored.
185596f483aSJessica Paquette   size_t SuffixIdx = EmptyIdx;
186596f483aSJessica Paquette 
187596f483aSJessica Paquette   /// \brief For internal nodes, a pointer to the internal node representing
188596f483aSJessica Paquette   /// the same sequence with the first character chopped off.
189596f483aSJessica Paquette   ///
190596f483aSJessica Paquette   /// This has two major purposes in the suffix tree. The first is as a
191596f483aSJessica Paquette   /// shortcut in Ukkonen's construction algorithm. One of the things that
192596f483aSJessica Paquette   /// Ukkonen's algorithm does to achieve linear-time construction is
193596f483aSJessica Paquette   /// keep track of which node the next insert should be at. This makes each
194596f483aSJessica Paquette   /// insert O(1), and there are a total of O(N) inserts. The suffix link
195596f483aSJessica Paquette   /// helps with inserting children of internal nodes.
196596f483aSJessica Paquette   ///
197596f483aSJessica Paquette   /// Say we add a child to an internal node with associated mapping S. The
198596f483aSJessica Paquette   /// next insertion must be at the node representing S - its first character.
199596f483aSJessica Paquette   /// This is given by the way that we iteratively build the tree in Ukkonen's
200596f483aSJessica Paquette   /// algorithm. The main idea is to look at the suffixes of each prefix in the
201596f483aSJessica Paquette   /// string, starting with the longest suffix of the prefix, and ending with
202596f483aSJessica Paquette   /// the shortest. Therefore, if we keep pointers between such nodes, we can
203596f483aSJessica Paquette   /// move to the next insertion point in O(1) time. If we don't, then we'd
204596f483aSJessica Paquette   /// have to query from the root, which takes O(N) time. This would make the
205596f483aSJessica Paquette   /// construction algorithm O(N^2) rather than O(N).
206596f483aSJessica Paquette   ///
207596f483aSJessica Paquette   /// The suffix link is also used during the tree pruning process to let us
208596f483aSJessica Paquette   /// quickly throw out a bunch of potential overlaps. Say we have a sequence
209596f483aSJessica Paquette   /// S we want to outline. Then each of its suffixes contribute to at least
210596f483aSJessica Paquette   /// one overlapping case. Therefore, we can follow the suffix links
211596f483aSJessica Paquette   /// starting at the node associated with S to the root and "delete" those
212596f483aSJessica Paquette   /// nodes, save for the root. For each candidate, this removes
213596f483aSJessica Paquette   /// O(|candidate|) overlaps from the search space. We don't actually
214596f483aSJessica Paquette   /// completely invalidate these nodes though; doing that is far too
215596f483aSJessica Paquette   /// aggressive. Consider the following pathological string:
216596f483aSJessica Paquette   ///
217596f483aSJessica Paquette   /// 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3
218596f483aSJessica Paquette   ///
219596f483aSJessica Paquette   /// If we, for the sake of example, outlined 1 2 3, then we would throw
220596f483aSJessica Paquette   /// out all instances of 2 3. This isn't desirable. To get around this,
221596f483aSJessica Paquette   /// when we visit a link node, we decrement its occurrence count by the
222596f483aSJessica Paquette   /// number of sequences we outlined in the current step. In the pathological
223596f483aSJessica Paquette   /// example, the 2 3 node would have an occurrence count of 8, while the
224596f483aSJessica Paquette   /// 1 2 3 node would have an occurrence count of 2. Thus, the 2 3 node
225596f483aSJessica Paquette   /// would survive to the next round allowing us to outline the extra
226596f483aSJessica Paquette   /// instances of 2 3.
227596f483aSJessica Paquette   SuffixTreeNode *Link = nullptr;
228596f483aSJessica Paquette 
229596f483aSJessica Paquette   /// The parent of this node. Every node except for the root has a parent.
230596f483aSJessica Paquette   SuffixTreeNode *Parent = nullptr;
231596f483aSJessica Paquette 
232596f483aSJessica Paquette   /// The number of times this node's string appears in the tree.
233596f483aSJessica Paquette   ///
234596f483aSJessica Paquette   /// This is equal to the number of leaf children of the string. It represents
235596f483aSJessica Paquette   /// the number of suffixes that the node's string is a prefix of.
236596f483aSJessica Paquette   size_t OccurrenceCount = 0;
237596f483aSJessica Paquette 
238acffa28cSJessica Paquette   /// The length of the string formed by concatenating the edge labels from the
239acffa28cSJessica Paquette   /// root to this node.
240acffa28cSJessica Paquette   size_t ConcatLen = 0;
241acffa28cSJessica Paquette 
242596f483aSJessica Paquette   /// Returns true if this node is a leaf.
243596f483aSJessica Paquette   bool isLeaf() const { return SuffixIdx != EmptyIdx; }
244596f483aSJessica Paquette 
245596f483aSJessica Paquette   /// Returns true if this node is the root of its owning \p SuffixTree.
246596f483aSJessica Paquette   bool isRoot() const { return StartIdx == EmptyIdx; }
247596f483aSJessica Paquette 
248596f483aSJessica Paquette   /// Return the number of elements in the substring associated with this node.
249596f483aSJessica Paquette   size_t size() const {
250596f483aSJessica Paquette 
251596f483aSJessica Paquette     // Is it the root? If so, it's the empty string so return 0.
252596f483aSJessica Paquette     if (isRoot())
253596f483aSJessica Paquette       return 0;
254596f483aSJessica Paquette 
255596f483aSJessica Paquette     assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
256596f483aSJessica Paquette 
257596f483aSJessica Paquette     // Size = the number of elements in the string.
258596f483aSJessica Paquette     // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
259596f483aSJessica Paquette     return *EndIdx - StartIdx + 1;
260596f483aSJessica Paquette   }
261596f483aSJessica Paquette 
262596f483aSJessica Paquette   SuffixTreeNode(size_t StartIdx, size_t *EndIdx, SuffixTreeNode *Link,
263596f483aSJessica Paquette                  SuffixTreeNode *Parent)
264596f483aSJessica Paquette       : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
265596f483aSJessica Paquette 
266596f483aSJessica Paquette   SuffixTreeNode() {}
267596f483aSJessica Paquette };
268596f483aSJessica Paquette 
269596f483aSJessica Paquette /// A data structure for fast substring queries.
270596f483aSJessica Paquette ///
271596f483aSJessica Paquette /// Suffix trees represent the suffixes of their input strings in their leaves.
272596f483aSJessica Paquette /// A suffix tree is a type of compressed trie structure where each node
273596f483aSJessica Paquette /// represents an entire substring rather than a single character. Each leaf
274596f483aSJessica Paquette /// of the tree is a suffix.
275596f483aSJessica Paquette ///
276596f483aSJessica Paquette /// A suffix tree can be seen as a type of state machine where each state is a
277596f483aSJessica Paquette /// substring of the full string. The tree is structured so that, for a string
278596f483aSJessica Paquette /// of length N, there are exactly N leaves in the tree. This structure allows
279596f483aSJessica Paquette /// us to quickly find repeated substrings of the input string.
280596f483aSJessica Paquette ///
281596f483aSJessica Paquette /// In this implementation, a "string" is a vector of unsigned integers.
282596f483aSJessica Paquette /// These integers may result from hashing some data type. A suffix tree can
283596f483aSJessica Paquette /// contain 1 or many strings, which can then be queried as one large string.
284596f483aSJessica Paquette ///
285596f483aSJessica Paquette /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
286596f483aSJessica Paquette /// suffix tree construction. Ukkonen's algorithm is explained in more detail
287596f483aSJessica Paquette /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
288596f483aSJessica Paquette /// paper is available at
289596f483aSJessica Paquette ///
290596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
291596f483aSJessica Paquette class SuffixTree {
29278681be2SJessica Paquette public:
29378681be2SJessica Paquette   /// Stores each leaf node in the tree.
29478681be2SJessica Paquette   ///
29578681be2SJessica Paquette   /// This is used for finding outlining candidates.
29678681be2SJessica Paquette   std::vector<SuffixTreeNode *> LeafVector;
29778681be2SJessica Paquette 
298596f483aSJessica Paquette   /// Each element is an integer representing an instruction in the module.
299596f483aSJessica Paquette   ArrayRef<unsigned> Str;
300596f483aSJessica Paquette 
30178681be2SJessica Paquette private:
302596f483aSJessica Paquette   /// Maintains each node in the tree.
303d4cb9c6dSJessica Paquette   SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
304596f483aSJessica Paquette 
305596f483aSJessica Paquette   /// The root of the suffix tree.
306596f483aSJessica Paquette   ///
307596f483aSJessica Paquette   /// The root represents the empty string. It is maintained by the
308596f483aSJessica Paquette   /// \p NodeAllocator like every other node in the tree.
309596f483aSJessica Paquette   SuffixTreeNode *Root = nullptr;
310596f483aSJessica Paquette 
311596f483aSJessica Paquette   /// Maintains the end indices of the internal nodes in the tree.
312596f483aSJessica Paquette   ///
313596f483aSJessica Paquette   /// Each internal node is guaranteed to never have its end index change
314596f483aSJessica Paquette   /// during the construction algorithm; however, leaves must be updated at
315596f483aSJessica Paquette   /// every step. Therefore, we need to store leaf end indices by reference
316596f483aSJessica Paquette   /// to avoid updating O(N) leaves at every step of construction. Thus,
317596f483aSJessica Paquette   /// every internal node must be allocated its own end index.
318596f483aSJessica Paquette   BumpPtrAllocator InternalEndIdxAllocator;
319596f483aSJessica Paquette 
320596f483aSJessica Paquette   /// The end index of each leaf in the tree.
321596f483aSJessica Paquette   size_t LeafEndIdx = -1;
322596f483aSJessica Paquette 
323596f483aSJessica Paquette   /// \brief Helper struct which keeps track of the next insertion point in
324596f483aSJessica Paquette   /// Ukkonen's algorithm.
325596f483aSJessica Paquette   struct ActiveState {
326596f483aSJessica Paquette     /// The next node to insert at.
327596f483aSJessica Paquette     SuffixTreeNode *Node;
328596f483aSJessica Paquette 
329596f483aSJessica Paquette     /// The index of the first character in the substring currently being added.
330596f483aSJessica Paquette     size_t Idx = EmptyIdx;
331596f483aSJessica Paquette 
332596f483aSJessica Paquette     /// The length of the substring we have to add at the current step.
333596f483aSJessica Paquette     size_t Len = 0;
334596f483aSJessica Paquette   };
335596f483aSJessica Paquette 
336596f483aSJessica Paquette   /// \brief The point the next insertion will take place at in the
337596f483aSJessica Paquette   /// construction algorithm.
338596f483aSJessica Paquette   ActiveState Active;
339596f483aSJessica Paquette 
340596f483aSJessica Paquette   /// Allocate a leaf node and add it to the tree.
341596f483aSJessica Paquette   ///
342596f483aSJessica Paquette   /// \param Parent The parent of this node.
343596f483aSJessica Paquette   /// \param StartIdx The start index of this node's associated string.
344596f483aSJessica Paquette   /// \param Edge The label on the edge leaving \p Parent to this node.
345596f483aSJessica Paquette   ///
346596f483aSJessica Paquette   /// \returns A pointer to the allocated leaf node.
347596f483aSJessica Paquette   SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, size_t StartIdx,
348596f483aSJessica Paquette                              unsigned Edge) {
349596f483aSJessica Paquette 
350596f483aSJessica Paquette     assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
351596f483aSJessica Paquette 
35278681be2SJessica Paquette     SuffixTreeNode *N = new (NodeAllocator.Allocate())
35378681be2SJessica Paquette         SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent);
354596f483aSJessica Paquette     Parent.Children[Edge] = N;
355596f483aSJessica Paquette 
356596f483aSJessica Paquette     return N;
357596f483aSJessica Paquette   }
358596f483aSJessica Paquette 
359596f483aSJessica Paquette   /// Allocate an internal node and add it to the tree.
360596f483aSJessica Paquette   ///
361596f483aSJessica Paquette   /// \param Parent The parent of this node. Only null when allocating the root.
362596f483aSJessica Paquette   /// \param StartIdx The start index of this node's associated string.
363596f483aSJessica Paquette   /// \param EndIdx The end index of this node's associated string.
364596f483aSJessica Paquette   /// \param Edge The label on the edge leaving \p Parent to this node.
365596f483aSJessica Paquette   ///
366596f483aSJessica Paquette   /// \returns A pointer to the allocated internal node.
367596f483aSJessica Paquette   SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, size_t StartIdx,
368596f483aSJessica Paquette                                      size_t EndIdx, unsigned Edge) {
369596f483aSJessica Paquette 
370596f483aSJessica Paquette     assert(StartIdx <= EndIdx && "String can't start after it ends!");
371596f483aSJessica Paquette     assert(!(!Parent && StartIdx != EmptyIdx) &&
372596f483aSJessica Paquette            "Non-root internal nodes must have parents!");
373596f483aSJessica Paquette 
374596f483aSJessica Paquette     size_t *E = new (InternalEndIdxAllocator) size_t(EndIdx);
37578681be2SJessica Paquette     SuffixTreeNode *N = new (NodeAllocator.Allocate())
37678681be2SJessica Paquette         SuffixTreeNode(StartIdx, E, Root, Parent);
377596f483aSJessica Paquette     if (Parent)
378596f483aSJessica Paquette       Parent->Children[Edge] = N;
379596f483aSJessica Paquette 
380596f483aSJessica Paquette     return N;
381596f483aSJessica Paquette   }
382596f483aSJessica Paquette 
383596f483aSJessica Paquette   /// \brief Set the suffix indices of the leaves to the start indices of their
384596f483aSJessica Paquette   /// respective suffixes. Also stores each leaf in \p LeafVector at its
385596f483aSJessica Paquette   /// respective suffix index.
386596f483aSJessica Paquette   ///
387596f483aSJessica Paquette   /// \param[in] CurrNode The node currently being visited.
388596f483aSJessica Paquette   /// \param CurrIdx The current index of the string being visited.
389596f483aSJessica Paquette   void setSuffixIndices(SuffixTreeNode &CurrNode, size_t CurrIdx) {
390596f483aSJessica Paquette 
391596f483aSJessica Paquette     bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
392596f483aSJessica Paquette 
393acffa28cSJessica Paquette     // Store the length of the concatenation of all strings from the root to
394acffa28cSJessica Paquette     // this node.
395acffa28cSJessica Paquette     if (!CurrNode.isRoot()) {
396acffa28cSJessica Paquette       if (CurrNode.ConcatLen == 0)
397acffa28cSJessica Paquette         CurrNode.ConcatLen = CurrNode.size();
398acffa28cSJessica Paquette 
399acffa28cSJessica Paquette       if (CurrNode.Parent)
400acffa28cSJessica Paquette         CurrNode.ConcatLen += CurrNode.Parent->ConcatLen;
401acffa28cSJessica Paquette     }
402acffa28cSJessica Paquette 
403596f483aSJessica Paquette     // Traverse the tree depth-first.
404596f483aSJessica Paquette     for (auto &ChildPair : CurrNode.Children) {
405596f483aSJessica Paquette       assert(ChildPair.second && "Node had a null child!");
40678681be2SJessica Paquette       setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size());
407596f483aSJessica Paquette     }
408596f483aSJessica Paquette 
409596f483aSJessica Paquette     // Is this node a leaf?
410596f483aSJessica Paquette     if (IsLeaf) {
411596f483aSJessica Paquette       // If yes, give it a suffix index and bump its parent's occurrence count.
412596f483aSJessica Paquette       CurrNode.SuffixIdx = Str.size() - CurrIdx;
413596f483aSJessica Paquette       assert(CurrNode.Parent && "CurrNode had no parent!");
414596f483aSJessica Paquette       CurrNode.Parent->OccurrenceCount++;
415596f483aSJessica Paquette 
416596f483aSJessica Paquette       // Store the leaf in the leaf vector for pruning later.
417596f483aSJessica Paquette       LeafVector[CurrNode.SuffixIdx] = &CurrNode;
418596f483aSJessica Paquette     }
419596f483aSJessica Paquette   }
420596f483aSJessica Paquette 
421596f483aSJessica Paquette   /// \brief Construct the suffix tree for the prefix of the input ending at
422596f483aSJessica Paquette   /// \p EndIdx.
423596f483aSJessica Paquette   ///
424596f483aSJessica Paquette   /// Used to construct the full suffix tree iteratively. At the end of each
425596f483aSJessica Paquette   /// step, the constructed suffix tree is either a valid suffix tree, or a
426596f483aSJessica Paquette   /// suffix tree with implicit suffixes. At the end of the final step, the
427596f483aSJessica Paquette   /// suffix tree is a valid tree.
428596f483aSJessica Paquette   ///
429596f483aSJessica Paquette   /// \param EndIdx The end index of the current prefix in the main string.
430596f483aSJessica Paquette   /// \param SuffixesToAdd The number of suffixes that must be added
431596f483aSJessica Paquette   /// to complete the suffix tree at the current phase.
432596f483aSJessica Paquette   ///
433596f483aSJessica Paquette   /// \returns The number of suffixes that have not been added at the end of
434596f483aSJessica Paquette   /// this step.
435596f483aSJessica Paquette   unsigned extend(size_t EndIdx, size_t SuffixesToAdd) {
436596f483aSJessica Paquette     SuffixTreeNode *NeedsLink = nullptr;
437596f483aSJessica Paquette 
438596f483aSJessica Paquette     while (SuffixesToAdd > 0) {
439596f483aSJessica Paquette 
440596f483aSJessica Paquette       // Are we waiting to add anything other than just the last character?
441596f483aSJessica Paquette       if (Active.Len == 0) {
442596f483aSJessica Paquette         // If not, then say the active index is the end index.
443596f483aSJessica Paquette         Active.Idx = EndIdx;
444596f483aSJessica Paquette       }
445596f483aSJessica Paquette 
446596f483aSJessica Paquette       assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
447596f483aSJessica Paquette 
448596f483aSJessica Paquette       // The first character in the current substring we're looking at.
449596f483aSJessica Paquette       unsigned FirstChar = Str[Active.Idx];
450596f483aSJessica Paquette 
451596f483aSJessica Paquette       // Have we inserted anything starting with FirstChar at the current node?
452596f483aSJessica Paquette       if (Active.Node->Children.count(FirstChar) == 0) {
453596f483aSJessica Paquette         // If not, then we can just insert a leaf and move too the next step.
454596f483aSJessica Paquette         insertLeaf(*Active.Node, EndIdx, FirstChar);
455596f483aSJessica Paquette 
456596f483aSJessica Paquette         // The active node is an internal node, and we visited it, so it must
457596f483aSJessica Paquette         // need a link if it doesn't have one.
458596f483aSJessica Paquette         if (NeedsLink) {
459596f483aSJessica Paquette           NeedsLink->Link = Active.Node;
460596f483aSJessica Paquette           NeedsLink = nullptr;
461596f483aSJessica Paquette         }
462596f483aSJessica Paquette       } else {
463596f483aSJessica Paquette         // There's a match with FirstChar, so look for the point in the tree to
464596f483aSJessica Paquette         // insert a new node.
465596f483aSJessica Paquette         SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
466596f483aSJessica Paquette 
467596f483aSJessica Paquette         size_t SubstringLen = NextNode->size();
468596f483aSJessica Paquette 
469596f483aSJessica Paquette         // Is the current suffix we're trying to insert longer than the size of
470596f483aSJessica Paquette         // the child we want to move to?
471596f483aSJessica Paquette         if (Active.Len >= SubstringLen) {
472596f483aSJessica Paquette           // If yes, then consume the characters we've seen and move to the next
473596f483aSJessica Paquette           // node.
474596f483aSJessica Paquette           Active.Idx += SubstringLen;
475596f483aSJessica Paquette           Active.Len -= SubstringLen;
476596f483aSJessica Paquette           Active.Node = NextNode;
477596f483aSJessica Paquette           continue;
478596f483aSJessica Paquette         }
479596f483aSJessica Paquette 
480596f483aSJessica Paquette         // Otherwise, the suffix we're trying to insert must be contained in the
481596f483aSJessica Paquette         // next node we want to move to.
482596f483aSJessica Paquette         unsigned LastChar = Str[EndIdx];
483596f483aSJessica Paquette 
484596f483aSJessica Paquette         // Is the string we're trying to insert a substring of the next node?
485596f483aSJessica Paquette         if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
486596f483aSJessica Paquette           // If yes, then we're done for this step. Remember our insertion point
487596f483aSJessica Paquette           // and move to the next end index. At this point, we have an implicit
488596f483aSJessica Paquette           // suffix tree.
489596f483aSJessica Paquette           if (NeedsLink && !Active.Node->isRoot()) {
490596f483aSJessica Paquette             NeedsLink->Link = Active.Node;
491596f483aSJessica Paquette             NeedsLink = nullptr;
492596f483aSJessica Paquette           }
493596f483aSJessica Paquette 
494596f483aSJessica Paquette           Active.Len++;
495596f483aSJessica Paquette           break;
496596f483aSJessica Paquette         }
497596f483aSJessica Paquette 
498596f483aSJessica Paquette         // The string we're trying to insert isn't a substring of the next node,
499596f483aSJessica Paquette         // but matches up to a point. Split the node.
500596f483aSJessica Paquette         //
501596f483aSJessica Paquette         // For example, say we ended our search at a node n and we're trying to
502596f483aSJessica Paquette         // insert ABD. Then we'll create a new node s for AB, reduce n to just
503596f483aSJessica Paquette         // representing C, and insert a new leaf node l to represent d. This
504596f483aSJessica Paquette         // allows us to ensure that if n was a leaf, it remains a leaf.
505596f483aSJessica Paquette         //
506596f483aSJessica Paquette         //   | ABC  ---split--->  | AB
507596f483aSJessica Paquette         //   n                    s
508596f483aSJessica Paquette         //                     C / \ D
509596f483aSJessica Paquette         //                      n   l
510596f483aSJessica Paquette 
511596f483aSJessica Paquette         // The node s from the diagram
512596f483aSJessica Paquette         SuffixTreeNode *SplitNode =
51378681be2SJessica Paquette             insertInternalNode(Active.Node, NextNode->StartIdx,
51478681be2SJessica Paquette                                NextNode->StartIdx + Active.Len - 1, FirstChar);
515596f483aSJessica Paquette 
516596f483aSJessica Paquette         // Insert the new node representing the new substring into the tree as
517596f483aSJessica Paquette         // a child of the split node. This is the node l from the diagram.
518596f483aSJessica Paquette         insertLeaf(*SplitNode, EndIdx, LastChar);
519596f483aSJessica Paquette 
520596f483aSJessica Paquette         // Make the old node a child of the split node and update its start
521596f483aSJessica Paquette         // index. This is the node n from the diagram.
522596f483aSJessica Paquette         NextNode->StartIdx += Active.Len;
523596f483aSJessica Paquette         NextNode->Parent = SplitNode;
524596f483aSJessica Paquette         SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
525596f483aSJessica Paquette 
526596f483aSJessica Paquette         // SplitNode is an internal node, update the suffix link.
527596f483aSJessica Paquette         if (NeedsLink)
528596f483aSJessica Paquette           NeedsLink->Link = SplitNode;
529596f483aSJessica Paquette 
530596f483aSJessica Paquette         NeedsLink = SplitNode;
531596f483aSJessica Paquette       }
532596f483aSJessica Paquette 
533596f483aSJessica Paquette       // We've added something new to the tree, so there's one less suffix to
534596f483aSJessica Paquette       // add.
535596f483aSJessica Paquette       SuffixesToAdd--;
536596f483aSJessica Paquette 
537596f483aSJessica Paquette       if (Active.Node->isRoot()) {
538596f483aSJessica Paquette         if (Active.Len > 0) {
539596f483aSJessica Paquette           Active.Len--;
540596f483aSJessica Paquette           Active.Idx = EndIdx - SuffixesToAdd + 1;
541596f483aSJessica Paquette         }
542596f483aSJessica Paquette       } else {
543596f483aSJessica Paquette         // Start the next phase at the next smallest suffix.
544596f483aSJessica Paquette         Active.Node = Active.Node->Link;
545596f483aSJessica Paquette       }
546596f483aSJessica Paquette     }
547596f483aSJessica Paquette 
548596f483aSJessica Paquette     return SuffixesToAdd;
549596f483aSJessica Paquette   }
550596f483aSJessica Paquette 
551596f483aSJessica Paquette public:
552596f483aSJessica Paquette   /// Construct a suffix tree from a sequence of unsigned integers.
553596f483aSJessica Paquette   ///
554596f483aSJessica Paquette   /// \param Str The string to construct the suffix tree for.
555596f483aSJessica Paquette   SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
556596f483aSJessica Paquette     Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
557596f483aSJessica Paquette     Root->IsInTree = true;
558596f483aSJessica Paquette     Active.Node = Root;
559596f483aSJessica Paquette     LeafVector = std::vector<SuffixTreeNode *>(Str.size());
560596f483aSJessica Paquette 
561596f483aSJessica Paquette     // Keep track of the number of suffixes we have to add of the current
562596f483aSJessica Paquette     // prefix.
563596f483aSJessica Paquette     size_t SuffixesToAdd = 0;
564596f483aSJessica Paquette     Active.Node = Root;
565596f483aSJessica Paquette 
566596f483aSJessica Paquette     // Construct the suffix tree iteratively on each prefix of the string.
567596f483aSJessica Paquette     // PfxEndIdx is the end index of the current prefix.
568596f483aSJessica Paquette     // End is one past the last element in the string.
569596f483aSJessica Paquette     for (size_t PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) {
570596f483aSJessica Paquette       SuffixesToAdd++;
571596f483aSJessica Paquette       LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
572596f483aSJessica Paquette       SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
573596f483aSJessica Paquette     }
574596f483aSJessica Paquette 
575596f483aSJessica Paquette     // Set the suffix indices of each leaf.
576596f483aSJessica Paquette     assert(Root && "Root node can't be nullptr!");
577596f483aSJessica Paquette     setSuffixIndices(*Root, 0);
578596f483aSJessica Paquette   }
579596f483aSJessica Paquette };
580596f483aSJessica Paquette 
581596f483aSJessica Paquette /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings.
582596f483aSJessica Paquette struct InstructionMapper {
583596f483aSJessica Paquette 
584596f483aSJessica Paquette   /// \brief The next available integer to assign to a \p MachineInstr that
585596f483aSJessica Paquette   /// cannot be outlined.
586596f483aSJessica Paquette   ///
587596f483aSJessica Paquette   /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
588596f483aSJessica Paquette   unsigned IllegalInstrNumber = -3;
589596f483aSJessica Paquette 
590596f483aSJessica Paquette   /// \brief The next available integer to assign to a \p MachineInstr that can
591596f483aSJessica Paquette   /// be outlined.
592596f483aSJessica Paquette   unsigned LegalInstrNumber = 0;
593596f483aSJessica Paquette 
594596f483aSJessica Paquette   /// Correspondence from \p MachineInstrs to unsigned integers.
595596f483aSJessica Paquette   DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
596596f483aSJessica Paquette       InstructionIntegerMap;
597596f483aSJessica Paquette 
598596f483aSJessica Paquette   /// Corresponcence from unsigned integers to \p MachineInstrs.
599596f483aSJessica Paquette   /// Inverse of \p InstructionIntegerMap.
600596f483aSJessica Paquette   DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
601596f483aSJessica Paquette 
602596f483aSJessica Paquette   /// The vector of unsigned integers that the module is mapped to.
603596f483aSJessica Paquette   std::vector<unsigned> UnsignedVec;
604596f483aSJessica Paquette 
605596f483aSJessica Paquette   /// \brief Stores the location of the instruction associated with the integer
606596f483aSJessica Paquette   /// at index i in \p UnsignedVec for each index i.
607596f483aSJessica Paquette   std::vector<MachineBasicBlock::iterator> InstrList;
608596f483aSJessica Paquette 
609596f483aSJessica Paquette   /// \brief Maps \p *It to a legal integer.
610596f483aSJessica Paquette   ///
611596f483aSJessica Paquette   /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
612596f483aSJessica Paquette   /// \p IntegerInstructionMap, and \p LegalInstrNumber.
613596f483aSJessica Paquette   ///
614596f483aSJessica Paquette   /// \returns The integer that \p *It was mapped to.
615596f483aSJessica Paquette   unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
616596f483aSJessica Paquette 
617596f483aSJessica Paquette     // Get the integer for this instruction or give it the current
618596f483aSJessica Paquette     // LegalInstrNumber.
619596f483aSJessica Paquette     InstrList.push_back(It);
620596f483aSJessica Paquette     MachineInstr &MI = *It;
621596f483aSJessica Paquette     bool WasInserted;
622596f483aSJessica Paquette     DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
623596f483aSJessica Paquette         ResultIt;
624596f483aSJessica Paquette     std::tie(ResultIt, WasInserted) =
625596f483aSJessica Paquette         InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
626596f483aSJessica Paquette     unsigned MINumber = ResultIt->second;
627596f483aSJessica Paquette 
628596f483aSJessica Paquette     // There was an insertion.
629596f483aSJessica Paquette     if (WasInserted) {
630596f483aSJessica Paquette       LegalInstrNumber++;
631596f483aSJessica Paquette       IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
632596f483aSJessica Paquette     }
633596f483aSJessica Paquette 
634596f483aSJessica Paquette     UnsignedVec.push_back(MINumber);
635596f483aSJessica Paquette 
636596f483aSJessica Paquette     // Make sure we don't overflow or use any integers reserved by the DenseMap.
637596f483aSJessica Paquette     if (LegalInstrNumber >= IllegalInstrNumber)
638596f483aSJessica Paquette       report_fatal_error("Instruction mapping overflow!");
639596f483aSJessica Paquette 
64078681be2SJessica Paquette     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
64178681be2SJessica Paquette            "Tried to assign DenseMap tombstone or empty key to instruction.");
64278681be2SJessica Paquette     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
64378681be2SJessica Paquette            "Tried to assign DenseMap tombstone or empty key to instruction.");
644596f483aSJessica Paquette 
645596f483aSJessica Paquette     return MINumber;
646596f483aSJessica Paquette   }
647596f483aSJessica Paquette 
648596f483aSJessica Paquette   /// Maps \p *It to an illegal integer.
649596f483aSJessica Paquette   ///
650596f483aSJessica Paquette   /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
651596f483aSJessica Paquette   ///
652596f483aSJessica Paquette   /// \returns The integer that \p *It was mapped to.
653596f483aSJessica Paquette   unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
654596f483aSJessica Paquette     unsigned MINumber = IllegalInstrNumber;
655596f483aSJessica Paquette 
656596f483aSJessica Paquette     InstrList.push_back(It);
657596f483aSJessica Paquette     UnsignedVec.push_back(IllegalInstrNumber);
658596f483aSJessica Paquette     IllegalInstrNumber--;
659596f483aSJessica Paquette 
660596f483aSJessica Paquette     assert(LegalInstrNumber < IllegalInstrNumber &&
661596f483aSJessica Paquette            "Instruction mapping overflow!");
662596f483aSJessica Paquette 
66378681be2SJessica Paquette     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
664596f483aSJessica Paquette            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
665596f483aSJessica Paquette 
66678681be2SJessica Paquette     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
667596f483aSJessica Paquette            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
668596f483aSJessica Paquette 
669596f483aSJessica Paquette     return MINumber;
670596f483aSJessica Paquette   }
671596f483aSJessica Paquette 
672596f483aSJessica Paquette   /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
673596f483aSJessica Paquette   /// and appends it to \p UnsignedVec and \p InstrList.
674596f483aSJessica Paquette   ///
675596f483aSJessica Paquette   /// Two instructions are assigned the same integer if they are identical.
676596f483aSJessica Paquette   /// If an instruction is deemed unsafe to outline, then it will be assigned an
677596f483aSJessica Paquette   /// unique integer. The resulting mapping is placed into a suffix tree and
678596f483aSJessica Paquette   /// queried for candidates.
679596f483aSJessica Paquette   ///
680596f483aSJessica Paquette   /// \param MBB The \p MachineBasicBlock to be translated into integers.
681596f483aSJessica Paquette   /// \param TRI \p TargetRegisterInfo for the module.
682596f483aSJessica Paquette   /// \param TII \p TargetInstrInfo for the module.
683596f483aSJessica Paquette   void convertToUnsignedVec(MachineBasicBlock &MBB,
684596f483aSJessica Paquette                             const TargetRegisterInfo &TRI,
685596f483aSJessica Paquette                             const TargetInstrInfo &TII) {
686596f483aSJessica Paquette     for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et;
687596f483aSJessica Paquette          It++) {
688596f483aSJessica Paquette 
689596f483aSJessica Paquette       // Keep track of where this instruction is in the module.
690596f483aSJessica Paquette       switch (TII.getOutliningType(*It)) {
691596f483aSJessica Paquette       case TargetInstrInfo::MachineOutlinerInstrType::Illegal:
692596f483aSJessica Paquette         mapToIllegalUnsigned(It);
693596f483aSJessica Paquette         break;
694596f483aSJessica Paquette 
695596f483aSJessica Paquette       case TargetInstrInfo::MachineOutlinerInstrType::Legal:
696596f483aSJessica Paquette         mapToLegalUnsigned(It);
697596f483aSJessica Paquette         break;
698596f483aSJessica Paquette 
699596f483aSJessica Paquette       case TargetInstrInfo::MachineOutlinerInstrType::Invisible:
700596f483aSJessica Paquette         break;
701596f483aSJessica Paquette       }
702596f483aSJessica Paquette     }
703596f483aSJessica Paquette 
704596f483aSJessica Paquette     // After we're done every insertion, uniquely terminate this part of the
705596f483aSJessica Paquette     // "string". This makes sure we won't match across basic block or function
706596f483aSJessica Paquette     // boundaries since the "end" is encoded uniquely and thus appears in no
707596f483aSJessica Paquette     // repeated substring.
708596f483aSJessica Paquette     InstrList.push_back(MBB.end());
709596f483aSJessica Paquette     UnsignedVec.push_back(IllegalInstrNumber);
710596f483aSJessica Paquette     IllegalInstrNumber--;
711596f483aSJessica Paquette   }
712596f483aSJessica Paquette 
713596f483aSJessica Paquette   InstructionMapper() {
714596f483aSJessica Paquette     // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
715596f483aSJessica Paquette     // changed.
716596f483aSJessica Paquette     assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
717596f483aSJessica Paquette            "DenseMapInfo<unsigned>'s empty key isn't -1!");
718596f483aSJessica Paquette     assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
719596f483aSJessica Paquette            "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
720596f483aSJessica Paquette   }
721596f483aSJessica Paquette };
722596f483aSJessica Paquette 
723596f483aSJessica Paquette /// \brief An interprocedural pass which finds repeated sequences of
724596f483aSJessica Paquette /// instructions and replaces them with calls to functions.
725596f483aSJessica Paquette ///
726596f483aSJessica Paquette /// Each instruction is mapped to an unsigned integer and placed in a string.
727596f483aSJessica Paquette /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
728596f483aSJessica Paquette /// is then repeatedly queried for repeated sequences of instructions. Each
729596f483aSJessica Paquette /// non-overlapping repeated sequence is then placed in its own
730596f483aSJessica Paquette /// \p MachineFunction and each instance is then replaced with a call to that
731596f483aSJessica Paquette /// function.
732596f483aSJessica Paquette struct MachineOutliner : public ModulePass {
733596f483aSJessica Paquette 
734596f483aSJessica Paquette   static char ID;
735596f483aSJessica Paquette 
736596f483aSJessica Paquette   StringRef getPassName() const override { return "Machine Outliner"; }
737596f483aSJessica Paquette 
738596f483aSJessica Paquette   void getAnalysisUsage(AnalysisUsage &AU) const override {
739596f483aSJessica Paquette     AU.addRequired<MachineModuleInfo>();
740596f483aSJessica Paquette     AU.addPreserved<MachineModuleInfo>();
741596f483aSJessica Paquette     AU.setPreservesAll();
742596f483aSJessica Paquette     ModulePass::getAnalysisUsage(AU);
743596f483aSJessica Paquette   }
744596f483aSJessica Paquette 
745596f483aSJessica Paquette   MachineOutliner() : ModulePass(ID) {
746596f483aSJessica Paquette     initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
747596f483aSJessica Paquette   }
748596f483aSJessica Paquette 
74978681be2SJessica Paquette   /// Find all repeated substrings that satisfy the outlining cost model.
75078681be2SJessica Paquette   ///
75178681be2SJessica Paquette   /// If a substring appears at least twice, then it must be represented by
75278681be2SJessica Paquette   /// an internal node which appears in at least two suffixes. Each suffix is
75378681be2SJessica Paquette   /// represented by a leaf node. To do this, we visit each internal node in
75478681be2SJessica Paquette   /// the tree, using the leaf children of each internal node. If an internal
75578681be2SJessica Paquette   /// node represents a beneficial substring, then we use each of its leaf
75678681be2SJessica Paquette   /// children to find the locations of its substring.
75778681be2SJessica Paquette   ///
75878681be2SJessica Paquette   /// \param ST A suffix tree to query.
75978681be2SJessica Paquette   /// \param TII TargetInstrInfo for the target.
76078681be2SJessica Paquette   /// \param Mapper Contains outlining mapping information.
76178681be2SJessica Paquette   /// \param[out] CandidateList Filled with candidates representing each
76278681be2SJessica Paquette   /// beneficial substring.
76378681be2SJessica Paquette   /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each
76478681be2SJessica Paquette   /// type of candidate.
76578681be2SJessica Paquette   ///
76678681be2SJessica Paquette   /// \returns The length of the longest candidate found.
76778681be2SJessica Paquette   size_t findCandidates(SuffixTree &ST, const TargetInstrInfo &TII,
76878681be2SJessica Paquette                         InstructionMapper &Mapper,
76978681be2SJessica Paquette                         std::vector<Candidate> &CandidateList,
77078681be2SJessica Paquette                         std::vector<OutlinedFunction> &FunctionList);
77178681be2SJessica Paquette 
772596f483aSJessica Paquette   /// \brief Replace the sequences of instructions represented by the
773596f483aSJessica Paquette   /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
774596f483aSJessica Paquette   /// described in \p FunctionList.
775596f483aSJessica Paquette   ///
776596f483aSJessica Paquette   /// \param M The module we are outlining from.
777596f483aSJessica Paquette   /// \param CandidateList A list of candidates to be outlined.
778596f483aSJessica Paquette   /// \param FunctionList A list of functions to be inserted into the module.
779596f483aSJessica Paquette   /// \param Mapper Contains the instruction mappings for the module.
780596f483aSJessica Paquette   bool outline(Module &M, const ArrayRef<Candidate> &CandidateList,
781596f483aSJessica Paquette                std::vector<OutlinedFunction> &FunctionList,
782596f483aSJessica Paquette                InstructionMapper &Mapper);
783596f483aSJessica Paquette 
784596f483aSJessica Paquette   /// Creates a function for \p OF and inserts it into the module.
785596f483aSJessica Paquette   MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
786596f483aSJessica Paquette                                           InstructionMapper &Mapper);
787596f483aSJessica Paquette 
788596f483aSJessica Paquette   /// Find potential outlining candidates and store them in \p CandidateList.
789596f483aSJessica Paquette   ///
790596f483aSJessica Paquette   /// For each type of potential candidate, also build an \p OutlinedFunction
791596f483aSJessica Paquette   /// struct containing the information to build the function for that
792596f483aSJessica Paquette   /// candidate.
793596f483aSJessica Paquette   ///
794596f483aSJessica Paquette   /// \param[out] CandidateList Filled with outlining candidates for the module.
795596f483aSJessica Paquette   /// \param[out] FunctionList Filled with functions corresponding to each type
796596f483aSJessica Paquette   /// of \p Candidate.
797596f483aSJessica Paquette   /// \param ST The suffix tree for the module.
798596f483aSJessica Paquette   /// \param TII TargetInstrInfo for the module.
799596f483aSJessica Paquette   ///
800596f483aSJessica Paquette   /// \returns The length of the longest candidate found. 0 if there are none.
801596f483aSJessica Paquette   unsigned buildCandidateList(std::vector<Candidate> &CandidateList,
802596f483aSJessica Paquette                               std::vector<OutlinedFunction> &FunctionList,
80378681be2SJessica Paquette                               SuffixTree &ST, InstructionMapper &Mapper,
804c984e213SJessica Paquette                               const TargetInstrInfo &TII);
805596f483aSJessica Paquette 
806596f483aSJessica Paquette   /// \brief Remove any overlapping candidates that weren't handled by the
807596f483aSJessica Paquette   /// suffix tree's pruning method.
808596f483aSJessica Paquette   ///
809596f483aSJessica Paquette   /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
810596f483aSJessica Paquette   /// If a short candidate is chosen for outlining, then a longer candidate
811596f483aSJessica Paquette   /// which has that short candidate as a suffix is chosen, the tree's pruning
812596f483aSJessica Paquette   /// method will not find it. Thus, we need to prune before outlining as well.
813596f483aSJessica Paquette   ///
814596f483aSJessica Paquette   /// \param[in,out] CandidateList A list of outlining candidates.
815596f483aSJessica Paquette   /// \param[in,out] FunctionList A list of functions to be outlined.
816*809d708bSJessica Paquette   /// \param Mapper Contains instruction mapping info for outlining.
817596f483aSJessica Paquette   /// \param MaxCandidateLen The length of the longest candidate.
818596f483aSJessica Paquette   /// \param TII TargetInstrInfo for the module.
819596f483aSJessica Paquette   void pruneOverlaps(std::vector<Candidate> &CandidateList,
820596f483aSJessica Paquette                      std::vector<OutlinedFunction> &FunctionList,
821*809d708bSJessica Paquette                      InstructionMapper &Mapper, unsigned MaxCandidateLen,
822*809d708bSJessica Paquette                      const TargetInstrInfo &TII);
823596f483aSJessica Paquette 
824596f483aSJessica Paquette   /// Construct a suffix tree on the instructions in \p M and outline repeated
825596f483aSJessica Paquette   /// strings from that tree.
826596f483aSJessica Paquette   bool runOnModule(Module &M) override;
827596f483aSJessica Paquette };
828596f483aSJessica Paquette 
829596f483aSJessica Paquette } // Anonymous namespace.
830596f483aSJessica Paquette 
831596f483aSJessica Paquette char MachineOutliner::ID = 0;
832596f483aSJessica Paquette 
833596f483aSJessica Paquette namespace llvm {
834596f483aSJessica Paquette ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); }
83578681be2SJessica Paquette } // namespace llvm
83678681be2SJessica Paquette 
83778681be2SJessica Paquette INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
83878681be2SJessica Paquette                 false)
83978681be2SJessica Paquette 
84078681be2SJessica Paquette size_t
84178681be2SJessica Paquette MachineOutliner::findCandidates(SuffixTree &ST, const TargetInstrInfo &TII,
84278681be2SJessica Paquette                                 InstructionMapper &Mapper,
84378681be2SJessica Paquette                                 std::vector<Candidate> &CandidateList,
84478681be2SJessica Paquette                                 std::vector<OutlinedFunction> &FunctionList) {
84578681be2SJessica Paquette 
84678681be2SJessica Paquette   CandidateList.clear();
84778681be2SJessica Paquette   FunctionList.clear();
84878681be2SJessica Paquette   size_t FnIdx = 0;
84978681be2SJessica Paquette   size_t MaxLen = 0;
85078681be2SJessica Paquette 
85178681be2SJessica Paquette   // FIXME: Visit internal nodes instead of leaves.
85278681be2SJessica Paquette   for (SuffixTreeNode *Leaf : ST.LeafVector) {
85378681be2SJessica Paquette     assert(Leaf && "Leaves in LeafVector cannot be null!");
85478681be2SJessica Paquette     if (!Leaf->IsInTree)
85578681be2SJessica Paquette       continue;
85678681be2SJessica Paquette 
85778681be2SJessica Paquette     assert(Leaf->Parent && "All leaves must have parents!");
85878681be2SJessica Paquette     SuffixTreeNode &Parent = *(Leaf->Parent);
85978681be2SJessica Paquette 
86078681be2SJessica Paquette     // If it doesn't appear enough, or we already outlined from it, skip it.
86178681be2SJessica Paquette     if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree)
86278681be2SJessica Paquette       continue;
86378681be2SJessica Paquette 
864*809d708bSJessica Paquette     // Figure out if this candidate is beneficial.
86578681be2SJessica Paquette     size_t StringLen = Leaf->ConcatLen - Leaf->size();
866*809d708bSJessica Paquette     size_t CallOverhead = 0;
867*809d708bSJessica Paquette     size_t FrameOverhead = 0;
868*809d708bSJessica Paquette     size_t SequenceOverhead = StringLen;
86978681be2SJessica Paquette 
870*809d708bSJessica Paquette     // Figure out the call overhead for each instance of the sequence.
871*809d708bSJessica Paquette     for (auto &ChildPair : Parent.Children) {
872*809d708bSJessica Paquette       SuffixTreeNode *M = ChildPair.second;
87378681be2SJessica Paquette 
874*809d708bSJessica Paquette       if (M && M->IsInTree && M->isLeaf()) {
875*809d708bSJessica Paquette         // Each sequence is over [StartIt, EndIt].
876*809d708bSJessica Paquette         MachineBasicBlock::iterator StartIt = Mapper.InstrList[M->SuffixIdx];
877*809d708bSJessica Paquette         MachineBasicBlock::iterator EndIt =
878*809d708bSJessica Paquette             Mapper.InstrList[M->SuffixIdx + StringLen - 1];
879*809d708bSJessica Paquette         CallOverhead += TII.getOutliningCallOverhead(StartIt, EndIt);
880*809d708bSJessica Paquette       }
881*809d708bSJessica Paquette     }
882*809d708bSJessica Paquette 
883*809d708bSJessica Paquette     // Figure out how many instructions it'll take to construct an outlined
884*809d708bSJessica Paquette     // function frame for this sequence.
885*809d708bSJessica Paquette     MachineBasicBlock::iterator StartIt = Mapper.InstrList[Leaf->SuffixIdx];
886*809d708bSJessica Paquette     MachineBasicBlock::iterator EndIt =
887*809d708bSJessica Paquette         Mapper.InstrList[Leaf->SuffixIdx + StringLen - 1];
888*809d708bSJessica Paquette     FrameOverhead = TII.getOutliningFrameOverhead(StartIt, EndIt);
889*809d708bSJessica Paquette 
890*809d708bSJessica Paquette     size_t OutliningCost = CallOverhead + FrameOverhead + SequenceOverhead;
891*809d708bSJessica Paquette     size_t NotOutliningCost = SequenceOverhead * Parent.OccurrenceCount;
892*809d708bSJessica Paquette 
893*809d708bSJessica Paquette     if (NotOutliningCost <= OutliningCost)
89478681be2SJessica Paquette       continue;
89578681be2SJessica Paquette 
896*809d708bSJessica Paquette     size_t Benefit = NotOutliningCost - OutliningCost;
897*809d708bSJessica Paquette 
89878681be2SJessica Paquette     if (StringLen > MaxLen)
89978681be2SJessica Paquette       MaxLen = StringLen;
90078681be2SJessica Paquette 
90178681be2SJessica Paquette     unsigned OccurrenceCount = 0;
90278681be2SJessica Paquette     for (auto &ChildPair : Parent.Children) {
90378681be2SJessica Paquette       SuffixTreeNode *M = ChildPair.second;
90478681be2SJessica Paquette 
90578681be2SJessica Paquette       // Is it a leaf? If so, we have an occurrence of this candidate.
90678681be2SJessica Paquette       if (M && M->IsInTree && M->isLeaf()) {
90778681be2SJessica Paquette         OccurrenceCount++;
90878681be2SJessica Paquette         CandidateList.emplace_back(M->SuffixIdx, StringLen, FnIdx);
90978681be2SJessica Paquette         CandidateList.back().Benefit = Benefit;
91078681be2SJessica Paquette         M->IsInTree = false;
91178681be2SJessica Paquette       }
912596f483aSJessica Paquette     }
913596f483aSJessica Paquette 
91478681be2SJessica Paquette     // Save the function for the new candidate sequence.
91578681be2SJessica Paquette     std::vector<unsigned> CandidateSequence;
91678681be2SJessica Paquette     for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++)
91778681be2SJessica Paquette       CandidateSequence.push_back(ST.Str[i]);
91878681be2SJessica Paquette 
91978681be2SJessica Paquette     FunctionList.emplace_back(FnIdx, OccurrenceCount, CandidateSequence,
92078681be2SJessica Paquette                               Benefit, false);
92178681be2SJessica Paquette 
92278681be2SJessica Paquette     // Move to the next function.
92378681be2SJessica Paquette     FnIdx++;
92478681be2SJessica Paquette     Parent.IsInTree = false;
92578681be2SJessica Paquette   }
92678681be2SJessica Paquette 
92778681be2SJessica Paquette   return MaxLen;
92878681be2SJessica Paquette }
929596f483aSJessica Paquette 
930596f483aSJessica Paquette void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList,
931596f483aSJessica Paquette                                     std::vector<OutlinedFunction> &FunctionList,
932*809d708bSJessica Paquette                                     InstructionMapper &Mapper,
933596f483aSJessica Paquette                                     unsigned MaxCandidateLen,
934596f483aSJessica Paquette                                     const TargetInstrInfo &TII) {
935acffa28cSJessica Paquette   // TODO: Experiment with interval trees or other interval-checking structures
936acffa28cSJessica Paquette   // to lower the time complexity of this function.
937acffa28cSJessica Paquette   // TODO: Can we do better than the simple greedy choice?
938acffa28cSJessica Paquette   // Check for overlaps in the range.
939acffa28cSJessica Paquette   // This is O(MaxCandidateLen * CandidateList.size()).
940596f483aSJessica Paquette   for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
941596f483aSJessica Paquette        It++) {
942596f483aSJessica Paquette     Candidate &C1 = *It;
943596f483aSJessica Paquette     OutlinedFunction &F1 = FunctionList[C1.FunctionIdx];
944596f483aSJessica Paquette 
945596f483aSJessica Paquette     // If we removed this candidate, skip it.
946596f483aSJessica Paquette     if (!C1.InCandidateList)
947596f483aSJessica Paquette       continue;
948596f483aSJessica Paquette 
949acffa28cSJessica Paquette     // Is it still worth it to outline C1?
950acffa28cSJessica Paquette     if (F1.Benefit < 1 || F1.OccurrenceCount < 2) {
951acffa28cSJessica Paquette       assert(F1.OccurrenceCount > 0 &&
952acffa28cSJessica Paquette              "Can't remove OutlinedFunction with no occurrences!");
953acffa28cSJessica Paquette       F1.OccurrenceCount--;
954596f483aSJessica Paquette       C1.InCandidateList = false;
955596f483aSJessica Paquette       continue;
956596f483aSJessica Paquette     }
957596f483aSJessica Paquette 
958596f483aSJessica Paquette     // The minimum start index of any candidate that could overlap with this
959596f483aSJessica Paquette     // one.
960596f483aSJessica Paquette     unsigned FarthestPossibleIdx = 0;
961596f483aSJessica Paquette 
962596f483aSJessica Paquette     // Either the index is 0, or it's at most MaxCandidateLen indices away.
963596f483aSJessica Paquette     if (C1.StartIdx > MaxCandidateLen)
964596f483aSJessica Paquette       FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen;
965596f483aSJessica Paquette 
966acffa28cSJessica Paquette     // Compare against the candidates in the list that start at at most
967acffa28cSJessica Paquette     // FarthestPossibleIdx indices away from C1. There are at most
968acffa28cSJessica Paquette     // MaxCandidateLen of these.
969596f483aSJessica Paquette     for (auto Sit = It + 1; Sit != Et; Sit++) {
970596f483aSJessica Paquette       Candidate &C2 = *Sit;
971596f483aSJessica Paquette       OutlinedFunction &F2 = FunctionList[C2.FunctionIdx];
972596f483aSJessica Paquette 
973596f483aSJessica Paquette       // Is this candidate too far away to overlap?
974596f483aSJessica Paquette       if (C2.StartIdx < FarthestPossibleIdx)
975596f483aSJessica Paquette         break;
976596f483aSJessica Paquette 
977596f483aSJessica Paquette       // Did we already remove this candidate in a previous step?
978596f483aSJessica Paquette       if (!C2.InCandidateList)
979596f483aSJessica Paquette         continue;
980596f483aSJessica Paquette 
981596f483aSJessica Paquette       // Is the function beneficial to outline?
982596f483aSJessica Paquette       if (F2.OccurrenceCount < 2 || F2.Benefit < 1) {
983596f483aSJessica Paquette         // If not, remove this candidate and move to the next one.
984acffa28cSJessica Paquette         assert(F2.OccurrenceCount > 0 &&
985acffa28cSJessica Paquette                "Can't remove OutlinedFunction with no occurrences!");
986acffa28cSJessica Paquette         F2.OccurrenceCount--;
987596f483aSJessica Paquette         C2.InCandidateList = false;
988596f483aSJessica Paquette         continue;
989596f483aSJessica Paquette       }
990596f483aSJessica Paquette 
991596f483aSJessica Paquette       size_t C2End = C2.StartIdx + C2.Len - 1;
992596f483aSJessica Paquette 
993596f483aSJessica Paquette       // Do C1 and C2 overlap?
994596f483aSJessica Paquette       //
995596f483aSJessica Paquette       // Not overlapping:
996596f483aSJessica Paquette       // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
997596f483aSJessica Paquette       //
998596f483aSJessica Paquette       // We sorted our candidate list so C2Start <= C1Start. We know that
999596f483aSJessica Paquette       // C2End > C2Start since each candidate has length >= 2. Therefore, all we
1000596f483aSJessica Paquette       // have to check is C2End < C2Start to see if we overlap.
1001596f483aSJessica Paquette       if (C2End < C1.StartIdx)
1002596f483aSJessica Paquette         continue;
1003596f483aSJessica Paquette 
1004acffa28cSJessica Paquette       // C1 and C2 overlap.
1005acffa28cSJessica Paquette       // We need to choose the better of the two.
1006acffa28cSJessica Paquette       //
1007acffa28cSJessica Paquette       // Approximate this by picking the one which would have saved us the
1008acffa28cSJessica Paquette       // most instructions before any pruning.
1009acffa28cSJessica Paquette       if (C1.Benefit >= C2.Benefit) {
1010596f483aSJessica Paquette 
1011acffa28cSJessica Paquette         // C1 is better, so remove C2 and update C2's OutlinedFunction to
1012acffa28cSJessica Paquette         // reflect the removal.
1013acffa28cSJessica Paquette         assert(F2.OccurrenceCount > 0 &&
1014acffa28cSJessica Paquette                "Can't remove OutlinedFunction with no occurrences!");
1015596f483aSJessica Paquette         F2.OccurrenceCount--;
1016*809d708bSJessica Paquette 
1017*809d708bSJessica Paquette         // Remove the call overhead from the removed sequence.
1018*809d708bSJessica Paquette         MachineBasicBlock::iterator StartIt = Mapper.InstrList[C2.StartIdx];
1019*809d708bSJessica Paquette         MachineBasicBlock::iterator EndIt =
1020*809d708bSJessica Paquette             Mapper.InstrList[C2.StartIdx + C2.Len - 1];
1021*809d708bSJessica Paquette         F2.Benefit += TII.getOutliningCallOverhead(StartIt, EndIt);
1022*809d708bSJessica Paquette         // Add back one instance of the sequence.
1023*809d708bSJessica Paquette 
1024*809d708bSJessica Paquette         if (F2.Sequence.size() > F2.Benefit)
1025*809d708bSJessica Paquette           F2.Benefit = 0;
1026*809d708bSJessica Paquette         else
1027*809d708bSJessica Paquette           F2.Benefit -= F2.Sequence.size();
1028596f483aSJessica Paquette 
1029596f483aSJessica Paquette         C2.InCandidateList = false;
1030596f483aSJessica Paquette 
103178681be2SJessica Paquette         DEBUG(dbgs() << "- Removed C2. \n";
103278681be2SJessica Paquette               dbgs() << "--- Num fns left for C2: " << F2.OccurrenceCount
103378681be2SJessica Paquette                      << "\n";
103478681be2SJessica Paquette               dbgs() << "--- C2's benefit: " << F2.Benefit << "\n";);
1035acffa28cSJessica Paquette 
1036acffa28cSJessica Paquette       } else {
1037acffa28cSJessica Paquette         // C2 is better, so remove C1 and update C1's OutlinedFunction to
1038acffa28cSJessica Paquette         // reflect the removal.
1039acffa28cSJessica Paquette         assert(F1.OccurrenceCount > 0 &&
1040acffa28cSJessica Paquette                "Can't remove OutlinedFunction with no occurrences!");
1041acffa28cSJessica Paquette         F1.OccurrenceCount--;
1042*809d708bSJessica Paquette 
1043*809d708bSJessica Paquette         // Remove the call overhead from the removed sequence.
1044*809d708bSJessica Paquette         MachineBasicBlock::iterator StartIt = Mapper.InstrList[C1.StartIdx];
1045*809d708bSJessica Paquette         MachineBasicBlock::iterator EndIt =
1046*809d708bSJessica Paquette             Mapper.InstrList[C1.StartIdx + C1.Len - 1];
1047*809d708bSJessica Paquette         F2.Benefit += TII.getOutliningCallOverhead(StartIt, EndIt);
1048*809d708bSJessica Paquette 
1049*809d708bSJessica Paquette         // Add back one instance of the sequence.
1050*809d708bSJessica Paquette         if (F1.Sequence.size() > F1.Benefit)
1051*809d708bSJessica Paquette           F1.Benefit = 0;
1052*809d708bSJessica Paquette         else
1053*809d708bSJessica Paquette           F1.Benefit -= F1.Sequence.size();
1054*809d708bSJessica Paquette 
1055acffa28cSJessica Paquette         C1.InCandidateList = false;
1056acffa28cSJessica Paquette 
105778681be2SJessica Paquette         DEBUG(dbgs() << "- Removed C1. \n";
105878681be2SJessica Paquette               dbgs() << "--- Num fns left for C1: " << F1.OccurrenceCount
105978681be2SJessica Paquette                      << "\n";
106078681be2SJessica Paquette               dbgs() << "--- C1's benefit: " << F1.Benefit << "\n";);
1061acffa28cSJessica Paquette 
1062acffa28cSJessica Paquette         // C1 is out, so we don't have to compare it against anyone else.
1063acffa28cSJessica Paquette         break;
1064acffa28cSJessica Paquette       }
1065596f483aSJessica Paquette     }
1066596f483aSJessica Paquette   }
1067596f483aSJessica Paquette }
1068596f483aSJessica Paquette 
1069596f483aSJessica Paquette unsigned
1070596f483aSJessica Paquette MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList,
1071596f483aSJessica Paquette                                     std::vector<OutlinedFunction> &FunctionList,
107278681be2SJessica Paquette                                     SuffixTree &ST, InstructionMapper &Mapper,
1073596f483aSJessica Paquette                                     const TargetInstrInfo &TII) {
1074596f483aSJessica Paquette 
1075596f483aSJessica Paquette   std::vector<unsigned> CandidateSequence; // Current outlining candidate.
1076acffa28cSJessica Paquette   size_t MaxCandidateLen = 0;              // Length of the longest candidate.
1077596f483aSJessica Paquette 
107878681be2SJessica Paquette   MaxCandidateLen =
107978681be2SJessica Paquette       findCandidates(ST, TII, Mapper, CandidateList, FunctionList);
1080596f483aSJessica Paquette 
1081acffa28cSJessica Paquette   for (auto &OF : FunctionList)
108278681be2SJessica Paquette     OF.IsTailCall =
108378681be2SJessica Paquette         Mapper.IntegerInstructionMap[OF.Sequence.back()]->isTerminator();
1084596f483aSJessica Paquette 
1085596f483aSJessica Paquette   // Sort the candidates in decending order. This will simplify the outlining
1086596f483aSJessica Paquette   // process when we have to remove the candidates from the mapping by
1087596f483aSJessica Paquette   // allowing us to cut them out without keeping track of an offset.
1088596f483aSJessica Paquette   std::stable_sort(CandidateList.begin(), CandidateList.end());
1089596f483aSJessica Paquette 
1090596f483aSJessica Paquette   return MaxCandidateLen;
1091596f483aSJessica Paquette }
1092596f483aSJessica Paquette 
1093596f483aSJessica Paquette MachineFunction *
1094596f483aSJessica Paquette MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
1095596f483aSJessica Paquette                                         InstructionMapper &Mapper) {
1096596f483aSJessica Paquette 
1097596f483aSJessica Paquette   // Create the function name. This should be unique. For now, just hash the
1098596f483aSJessica Paquette   // module name and include it in the function name plus the number of this
1099596f483aSJessica Paquette   // function.
1100596f483aSJessica Paquette   std::ostringstream NameStream;
110178681be2SJessica Paquette   NameStream << "OUTLINED_FUNCTION_" << OF.Name;
1102596f483aSJessica Paquette 
1103596f483aSJessica Paquette   // Create the function using an IR-level function.
1104596f483aSJessica Paquette   LLVMContext &C = M.getContext();
1105596f483aSJessica Paquette   Function *F = dyn_cast<Function>(
110659a2d7b9SSerge Guelton       M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C)));
1107596f483aSJessica Paquette   assert(F && "Function was null!");
1108596f483aSJessica Paquette 
1109596f483aSJessica Paquette   // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1110596f483aSJessica Paquette   // which gives us better results when we outline from linkonceodr functions.
1111596f483aSJessica Paquette   F->setLinkage(GlobalValue::PrivateLinkage);
1112596f483aSJessica Paquette   F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1113596f483aSJessica Paquette 
1114596f483aSJessica Paquette   BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1115596f483aSJessica Paquette   IRBuilder<> Builder(EntryBB);
1116596f483aSJessica Paquette   Builder.CreateRetVoid();
1117596f483aSJessica Paquette 
1118596f483aSJessica Paquette   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
11197bda1958SMatthias Braun   MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
1120596f483aSJessica Paquette   MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1121596f483aSJessica Paquette   const TargetSubtargetInfo &STI = MF.getSubtarget();
1122596f483aSJessica Paquette   const TargetInstrInfo &TII = *STI.getInstrInfo();
1123596f483aSJessica Paquette 
1124596f483aSJessica Paquette   // Insert the new function into the module.
1125596f483aSJessica Paquette   MF.insert(MF.begin(), &MBB);
1126596f483aSJessica Paquette 
1127c984e213SJessica Paquette   TII.insertOutlinerPrologue(MBB, MF, OF.IsTailCall);
1128596f483aSJessica Paquette 
1129596f483aSJessica Paquette   // Copy over the instructions for the function using the integer mappings in
1130596f483aSJessica Paquette   // its sequence.
1131596f483aSJessica Paquette   for (unsigned Str : OF.Sequence) {
1132596f483aSJessica Paquette     MachineInstr *NewMI =
1133596f483aSJessica Paquette         MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
1134596f483aSJessica Paquette     NewMI->dropMemRefs();
1135596f483aSJessica Paquette 
1136596f483aSJessica Paquette     // Don't keep debug information for outlined instructions.
1137596f483aSJessica Paquette     // FIXME: This means outlined functions are currently undebuggable.
1138596f483aSJessica Paquette     NewMI->setDebugLoc(DebugLoc());
1139596f483aSJessica Paquette     MBB.insert(MBB.end(), NewMI);
1140596f483aSJessica Paquette   }
1141596f483aSJessica Paquette 
1142c984e213SJessica Paquette   TII.insertOutlinerEpilogue(MBB, MF, OF.IsTailCall);
1143596f483aSJessica Paquette 
1144596f483aSJessica Paquette   return &MF;
1145596f483aSJessica Paquette }
1146596f483aSJessica Paquette 
1147596f483aSJessica Paquette bool MachineOutliner::outline(Module &M,
1148596f483aSJessica Paquette                               const ArrayRef<Candidate> &CandidateList,
1149596f483aSJessica Paquette                               std::vector<OutlinedFunction> &FunctionList,
1150596f483aSJessica Paquette                               InstructionMapper &Mapper) {
1151596f483aSJessica Paquette 
1152596f483aSJessica Paquette   bool OutlinedSomething = false;
1153596f483aSJessica Paquette 
1154596f483aSJessica Paquette   // Replace the candidates with calls to their respective outlined functions.
1155596f483aSJessica Paquette   for (const Candidate &C : CandidateList) {
1156596f483aSJessica Paquette 
1157596f483aSJessica Paquette     // Was the candidate removed during pruneOverlaps?
1158596f483aSJessica Paquette     if (!C.InCandidateList)
1159596f483aSJessica Paquette       continue;
1160596f483aSJessica Paquette 
1161596f483aSJessica Paquette     // If not, then look at its OutlinedFunction.
1162596f483aSJessica Paquette     OutlinedFunction &OF = FunctionList[C.FunctionIdx];
1163596f483aSJessica Paquette 
1164596f483aSJessica Paquette     // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
1165596f483aSJessica Paquette     if (OF.OccurrenceCount < 2 || OF.Benefit < 1)
1166596f483aSJessica Paquette       continue;
1167596f483aSJessica Paquette 
1168596f483aSJessica Paquette     // If not, then outline it.
1169596f483aSJessica Paquette     assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
1170596f483aSJessica Paquette     MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent();
1171596f483aSJessica Paquette     MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx];
1172596f483aSJessica Paquette     unsigned EndIdx = C.StartIdx + C.Len - 1;
1173596f483aSJessica Paquette 
1174596f483aSJessica Paquette     assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
1175596f483aSJessica Paquette     MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1176596f483aSJessica Paquette     assert(EndIt != MBB->end() && "EndIt out of bounds!");
1177596f483aSJessica Paquette 
1178596f483aSJessica Paquette     EndIt++; // Erase needs one past the end index.
1179596f483aSJessica Paquette 
1180596f483aSJessica Paquette     // Does this candidate have a function yet?
1181acffa28cSJessica Paquette     if (!OF.MF) {
1182596f483aSJessica Paquette       OF.MF = createOutlinedFunction(M, OF, Mapper);
1183acffa28cSJessica Paquette       FunctionsCreated++;
1184acffa28cSJessica Paquette     }
1185596f483aSJessica Paquette 
1186596f483aSJessica Paquette     MachineFunction *MF = OF.MF;
1187596f483aSJessica Paquette     const TargetSubtargetInfo &STI = MF->getSubtarget();
1188596f483aSJessica Paquette     const TargetInstrInfo &TII = *STI.getInstrInfo();
1189596f483aSJessica Paquette 
1190596f483aSJessica Paquette     // Insert a call to the new function and erase the old sequence.
1191c984e213SJessica Paquette     TII.insertOutlinedCall(M, *MBB, StartIt, *MF, OF.IsTailCall);
1192596f483aSJessica Paquette     StartIt = Mapper.InstrList[C.StartIdx];
1193596f483aSJessica Paquette     MBB->erase(StartIt, EndIt);
1194596f483aSJessica Paquette 
1195596f483aSJessica Paquette     OutlinedSomething = true;
1196596f483aSJessica Paquette 
1197596f483aSJessica Paquette     // Statistics.
1198596f483aSJessica Paquette     NumOutlined++;
1199596f483aSJessica Paquette   }
1200596f483aSJessica Paquette 
120178681be2SJessica Paquette   DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
1202596f483aSJessica Paquette 
1203596f483aSJessica Paquette   return OutlinedSomething;
1204596f483aSJessica Paquette }
1205596f483aSJessica Paquette 
1206596f483aSJessica Paquette bool MachineOutliner::runOnModule(Module &M) {
1207596f483aSJessica Paquette 
1208596f483aSJessica Paquette   // Is there anything in the module at all?
1209596f483aSJessica Paquette   if (M.empty())
1210596f483aSJessica Paquette     return false;
1211596f483aSJessica Paquette 
1212596f483aSJessica Paquette   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
121378681be2SJessica Paquette   const TargetSubtargetInfo &STI =
121478681be2SJessica Paquette       MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget();
1215596f483aSJessica Paquette   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
1216596f483aSJessica Paquette   const TargetInstrInfo *TII = STI.getInstrInfo();
1217596f483aSJessica Paquette 
1218596f483aSJessica Paquette   InstructionMapper Mapper;
1219596f483aSJessica Paquette 
1220596f483aSJessica Paquette   // Build instruction mappings for each function in the module.
1221596f483aSJessica Paquette   for (Function &F : M) {
12227bda1958SMatthias Braun     MachineFunction &MF = MMI.getOrCreateMachineFunction(F);
1223596f483aSJessica Paquette 
1224596f483aSJessica Paquette     // Is the function empty? Safe to outline from?
1225596f483aSJessica Paquette     if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF))
1226596f483aSJessica Paquette       continue;
1227596f483aSJessica Paquette 
1228596f483aSJessica Paquette     // If it is, look at each MachineBasicBlock in the function.
1229596f483aSJessica Paquette     for (MachineBasicBlock &MBB : MF) {
1230596f483aSJessica Paquette 
1231596f483aSJessica Paquette       // Is there anything in MBB?
1232596f483aSJessica Paquette       if (MBB.empty())
1233596f483aSJessica Paquette         continue;
1234596f483aSJessica Paquette 
1235596f483aSJessica Paquette       // If yes, map it.
1236596f483aSJessica Paquette       Mapper.convertToUnsignedVec(MBB, *TRI, *TII);
1237596f483aSJessica Paquette     }
1238596f483aSJessica Paquette   }
1239596f483aSJessica Paquette 
1240596f483aSJessica Paquette   // Construct a suffix tree, use it to find candidates, and then outline them.
1241596f483aSJessica Paquette   SuffixTree ST(Mapper.UnsignedVec);
1242596f483aSJessica Paquette   std::vector<Candidate> CandidateList;
1243596f483aSJessica Paquette   std::vector<OutlinedFunction> FunctionList;
1244596f483aSJessica Paquette 
1245acffa28cSJessica Paquette   // Find all of the outlining candidates.
1246596f483aSJessica Paquette   unsigned MaxCandidateLen =
1247c984e213SJessica Paquette       buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII);
1248596f483aSJessica Paquette 
1249acffa28cSJessica Paquette   // Remove candidates that overlap with other candidates.
1250*809d708bSJessica Paquette   pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII);
1251acffa28cSJessica Paquette 
1252acffa28cSJessica Paquette   // Outline each of the candidates and return true if something was outlined.
1253596f483aSJessica Paquette   return outline(M, CandidateList, FunctionList, Mapper);
1254596f483aSJessica Paquette }
1255