1596f483aSJessica Paquette //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2596f483aSJessica Paquette //
3596f483aSJessica Paquette //                     The LLVM Compiler Infrastructure
4596f483aSJessica Paquette //
5596f483aSJessica Paquette // This file is distributed under the University of Illinois Open Source
6596f483aSJessica Paquette // License. See LICENSE.TXT for details.
7596f483aSJessica Paquette //
8596f483aSJessica Paquette //===----------------------------------------------------------------------===//
9596f483aSJessica Paquette ///
10596f483aSJessica Paquette /// \file
11596f483aSJessica Paquette /// Replaces repeated sequences of instructions with function calls.
12596f483aSJessica Paquette ///
13596f483aSJessica Paquette /// This works by placing every instruction from every basic block in a
14596f483aSJessica Paquette /// suffix tree, and repeatedly querying that tree for repeated sequences of
15596f483aSJessica Paquette /// instructions. If a sequence of instructions appears often, then it ought
16596f483aSJessica Paquette /// to be beneficial to pull out into a function.
17596f483aSJessica Paquette ///
184cf187b5SJessica Paquette /// The MachineOutliner communicates with a given target using hooks defined in
194cf187b5SJessica Paquette /// TargetInstrInfo.h. The target supplies the outliner with information on how
204cf187b5SJessica Paquette /// a specific sequence of instructions should be outlined. This information
214cf187b5SJessica Paquette /// is used to deduce the number of instructions necessary to
224cf187b5SJessica Paquette ///
234cf187b5SJessica Paquette /// * Create an outlined function
244cf187b5SJessica Paquette /// * Call that outlined function
254cf187b5SJessica Paquette ///
264cf187b5SJessica Paquette /// Targets must implement
274cf187b5SJessica Paquette ///   * getOutliningCandidateInfo
284cf187b5SJessica Paquette ///   * insertOutlinerEpilogue
294cf187b5SJessica Paquette ///   * insertOutlinedCall
304cf187b5SJessica Paquette ///   * insertOutlinerPrologue
314cf187b5SJessica Paquette ///   * isFunctionSafeToOutlineFrom
324cf187b5SJessica Paquette ///
334cf187b5SJessica Paquette /// in order to make use of the MachineOutliner.
344cf187b5SJessica Paquette ///
35596f483aSJessica Paquette /// This was originally presented at the 2016 LLVM Developers' Meeting in the
36596f483aSJessica Paquette /// talk "Reducing Code Size Using Outlining". For a high-level overview of
37596f483aSJessica Paquette /// how this pass works, the talk is available on YouTube at
38596f483aSJessica Paquette ///
39596f483aSJessica Paquette /// https://www.youtube.com/watch?v=yorld-WSOeU
40596f483aSJessica Paquette ///
41596f483aSJessica Paquette /// The slides for the talk are available at
42596f483aSJessica Paquette ///
43596f483aSJessica Paquette /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
44596f483aSJessica Paquette ///
45596f483aSJessica Paquette /// The talk provides an overview of how the outliner finds candidates and
46596f483aSJessica Paquette /// ultimately outlines them. It describes how the main data structure for this
47596f483aSJessica Paquette /// pass, the suffix tree, is queried and purged for candidates. It also gives
48596f483aSJessica Paquette /// a simplified suffix tree construction algorithm for suffix trees based off
49596f483aSJessica Paquette /// of the algorithm actually used here, Ukkonen's algorithm.
50596f483aSJessica Paquette ///
51596f483aSJessica Paquette /// For the original RFC for this pass, please see
52596f483aSJessica Paquette ///
53596f483aSJessica Paquette /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
54596f483aSJessica Paquette ///
55596f483aSJessica Paquette /// For more information on the suffix tree data structure, please see
56596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
57596f483aSJessica Paquette ///
58596f483aSJessica Paquette //===----------------------------------------------------------------------===//
59596f483aSJessica Paquette #include "llvm/ADT/DenseMap.h"
60596f483aSJessica Paquette #include "llvm/ADT/Statistic.h"
61596f483aSJessica Paquette #include "llvm/ADT/Twine.h"
62596f483aSJessica Paquette #include "llvm/CodeGen/MachineFunction.h"
63596f483aSJessica Paquette #include "llvm/CodeGen/MachineModuleInfo.h"
64ffe4abc5SJessica Paquette #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
65596f483aSJessica Paquette #include "llvm/CodeGen/Passes.h"
663f833edcSDavid Blaikie #include "llvm/CodeGen/TargetInstrInfo.h"
67b3bde2eaSDavid Blaikie #include "llvm/CodeGen/TargetRegisterInfo.h"
68b3bde2eaSDavid Blaikie #include "llvm/CodeGen/TargetSubtargetInfo.h"
69596f483aSJessica Paquette #include "llvm/IR/IRBuilder.h"
70596f483aSJessica Paquette #include "llvm/Support/Allocator.h"
71596f483aSJessica Paquette #include "llvm/Support/Debug.h"
72596f483aSJessica Paquette #include "llvm/Support/raw_ostream.h"
73596f483aSJessica Paquette #include <functional>
74596f483aSJessica Paquette #include <map>
75596f483aSJessica Paquette #include <sstream>
76596f483aSJessica Paquette #include <tuple>
77596f483aSJessica Paquette #include <vector>
78596f483aSJessica Paquette 
79596f483aSJessica Paquette #define DEBUG_TYPE "machine-outliner"
80596f483aSJessica Paquette 
81596f483aSJessica Paquette using namespace llvm;
82ffe4abc5SJessica Paquette using namespace ore;
83596f483aSJessica Paquette 
84596f483aSJessica Paquette STATISTIC(NumOutlined, "Number of candidates outlined");
85596f483aSJessica Paquette STATISTIC(FunctionsCreated, "Number of functions created");
86596f483aSJessica Paquette 
87596f483aSJessica Paquette namespace {
88596f483aSJessica Paquette 
89acffa28cSJessica Paquette /// \brief An individual sequence of instructions to be replaced with a call to
90acffa28cSJessica Paquette /// an outlined function.
91acffa28cSJessica Paquette struct Candidate {
92c9ab4c26SJessica Paquette private:
93c9ab4c26SJessica Paquette   /// The start index of this \p Candidate in the instruction list.
944cf187b5SJessica Paquette   unsigned StartIdx;
95acffa28cSJessica Paquette 
96acffa28cSJessica Paquette   /// The number of instructions in this \p Candidate.
974cf187b5SJessica Paquette   unsigned Len;
98acffa28cSJessica Paquette 
99c9ab4c26SJessica Paquette public:
100c9ab4c26SJessica Paquette   /// Set to false if the candidate overlapped with another candidate.
101c9ab4c26SJessica Paquette   bool InCandidateList = true;
102c9ab4c26SJessica Paquette 
103c9ab4c26SJessica Paquette   /// \brief The index of this \p Candidate's \p OutlinedFunction in the list of
104acffa28cSJessica Paquette   /// \p OutlinedFunctions.
1054cf187b5SJessica Paquette   unsigned FunctionIdx;
106acffa28cSJessica Paquette 
1074cf187b5SJessica Paquette   /// Contains all target-specific information for this \p Candidate.
1084cf187b5SJessica Paquette   TargetInstrInfo::MachineOutlinerInfo MInfo;
109d87f5449SJessica Paquette 
110c9ab4c26SJessica Paquette   /// Return the number of instructions in this Candidate.
1111934fd2cSJessica Paquette   unsigned getLength() const { return Len; }
112c9ab4c26SJessica Paquette 
113c9ab4c26SJessica Paquette   /// Return the start index of this candidate.
1141934fd2cSJessica Paquette   unsigned getStartIdx() const { return StartIdx; }
115c9ab4c26SJessica Paquette 
116c9ab4c26SJessica Paquette   // Return the end index of this candidate.
1171934fd2cSJessica Paquette   unsigned getEndIdx() const { return StartIdx + Len - 1; }
118c9ab4c26SJessica Paquette 
119acffa28cSJessica Paquette   /// \brief The number of instructions that would be saved by outlining every
120acffa28cSJessica Paquette   /// candidate of this type.
121acffa28cSJessica Paquette   ///
122acffa28cSJessica Paquette   /// This is a fixed value which is not updated during the candidate pruning
123acffa28cSJessica Paquette   /// process. It is only used for deciding which candidate to keep if two
124acffa28cSJessica Paquette   /// candidates overlap. The true benefit is stored in the OutlinedFunction
125acffa28cSJessica Paquette   /// for some given candidate.
126acffa28cSJessica Paquette   unsigned Benefit = 0;
127acffa28cSJessica Paquette 
1284cf187b5SJessica Paquette   Candidate(unsigned StartIdx, unsigned Len, unsigned FunctionIdx)
1294cf187b5SJessica Paquette       : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {}
130acffa28cSJessica Paquette 
131acffa28cSJessica Paquette   Candidate() {}
132acffa28cSJessica Paquette 
133acffa28cSJessica Paquette   /// \brief Used to ensure that \p Candidates are outlined in an order that
134acffa28cSJessica Paquette   /// preserves the start and end indices of other \p Candidates.
135c9ab4c26SJessica Paquette   bool operator<(const Candidate &RHS) const {
1361934fd2cSJessica Paquette     return getStartIdx() > RHS.getStartIdx();
137c9ab4c26SJessica Paquette   }
138acffa28cSJessica Paquette };
139acffa28cSJessica Paquette 
140acffa28cSJessica Paquette /// \brief The information necessary to create an outlined function for some
141acffa28cSJessica Paquette /// class of candidate.
142acffa28cSJessica Paquette struct OutlinedFunction {
143acffa28cSJessica Paquette 
14485af63d0SJessica Paquette private:
14585af63d0SJessica Paquette   /// The number of candidates for this \p OutlinedFunction.
14685af63d0SJessica Paquette   unsigned OccurrenceCount = 0;
14785af63d0SJessica Paquette 
14885af63d0SJessica Paquette public:
1499df7fde2SJessica Paquette   std::vector<std::shared_ptr<Candidate>> Candidates;
1509df7fde2SJessica Paquette 
151acffa28cSJessica Paquette   /// The actual outlined function created.
152acffa28cSJessica Paquette   /// This is initialized after we go through and create the actual function.
153acffa28cSJessica Paquette   MachineFunction *MF = nullptr;
154acffa28cSJessica Paquette 
1554cf187b5SJessica Paquette   /// A number assigned to this function which appears at the end of its name.
1564cf187b5SJessica Paquette   unsigned Name;
157acffa28cSJessica Paquette 
158acffa28cSJessica Paquette   /// \brief The sequence of integers corresponding to the instructions in this
159acffa28cSJessica Paquette   /// function.
160acffa28cSJessica Paquette   std::vector<unsigned> Sequence;
161acffa28cSJessica Paquette 
1624cf187b5SJessica Paquette   /// Contains all target-specific information for this \p OutlinedFunction.
1634cf187b5SJessica Paquette   TargetInstrInfo::MachineOutlinerInfo MInfo;
164acffa28cSJessica Paquette 
16585af63d0SJessica Paquette   /// Return the number of candidates for this \p OutlinedFunction.
16660d31fc3SJessica Paquette   unsigned getOccurrenceCount() { return OccurrenceCount; }
16785af63d0SJessica Paquette 
16885af63d0SJessica Paquette   /// Decrement the occurrence count of this OutlinedFunction and return the
16985af63d0SJessica Paquette   /// new count.
17085af63d0SJessica Paquette   unsigned decrement() {
17185af63d0SJessica Paquette     assert(OccurrenceCount > 0 && "Can't decrement an empty function!");
17285af63d0SJessica Paquette     OccurrenceCount--;
17385af63d0SJessica Paquette     return getOccurrenceCount();
17485af63d0SJessica Paquette   }
17585af63d0SJessica Paquette 
176acc15e12SJessica Paquette   /// \brief Return the number of instructions it would take to outline this
177acc15e12SJessica Paquette   /// function.
178acc15e12SJessica Paquette   unsigned getOutliningCost() {
179acc15e12SJessica Paquette     return (OccurrenceCount * MInfo.CallOverhead) + Sequence.size() +
180acc15e12SJessica Paquette            MInfo.FrameOverhead;
181acc15e12SJessica Paquette   }
182acc15e12SJessica Paquette 
183acc15e12SJessica Paquette   /// \brief Return the number of instructions that would be saved by outlining
184acc15e12SJessica Paquette   /// this function.
185acc15e12SJessica Paquette   unsigned getBenefit() {
186acc15e12SJessica Paquette     unsigned NotOutlinedCost = OccurrenceCount * Sequence.size();
187acc15e12SJessica Paquette     unsigned OutlinedCost = getOutliningCost();
188acc15e12SJessica Paquette     return (NotOutlinedCost < OutlinedCost) ? 0
189acc15e12SJessica Paquette                                             : NotOutlinedCost - OutlinedCost;
190acc15e12SJessica Paquette   }
191acc15e12SJessica Paquette 
1924cf187b5SJessica Paquette   OutlinedFunction(unsigned Name, unsigned OccurrenceCount,
193acc15e12SJessica Paquette                    const std::vector<unsigned> &Sequence,
1944cf187b5SJessica Paquette                    TargetInstrInfo::MachineOutlinerInfo &MInfo)
19585af63d0SJessica Paquette       : OccurrenceCount(OccurrenceCount), Name(Name), Sequence(Sequence),
196acc15e12SJessica Paquette         MInfo(MInfo) {}
197acffa28cSJessica Paquette };
198acffa28cSJessica Paquette 
199596f483aSJessica Paquette /// Represents an undefined index in the suffix tree.
2004cf187b5SJessica Paquette const unsigned EmptyIdx = -1;
201596f483aSJessica Paquette 
202596f483aSJessica Paquette /// A node in a suffix tree which represents a substring or suffix.
203596f483aSJessica Paquette ///
204596f483aSJessica Paquette /// Each node has either no children or at least two children, with the root
205596f483aSJessica Paquette /// being a exception in the empty tree.
206596f483aSJessica Paquette ///
207596f483aSJessica Paquette /// Children are represented as a map between unsigned integers and nodes. If
208596f483aSJessica Paquette /// a node N has a child M on unsigned integer k, then the mapping represented
209596f483aSJessica Paquette /// by N is a proper prefix of the mapping represented by M. Note that this,
210596f483aSJessica Paquette /// although similar to a trie is somewhat different: each node stores a full
211596f483aSJessica Paquette /// substring of the full mapping rather than a single character state.
212596f483aSJessica Paquette ///
213596f483aSJessica Paquette /// Each internal node contains a pointer to the internal node representing
214596f483aSJessica Paquette /// the same string, but with the first character chopped off. This is stored
215596f483aSJessica Paquette /// in \p Link. Each leaf node stores the start index of its respective
216596f483aSJessica Paquette /// suffix in \p SuffixIdx.
217596f483aSJessica Paquette struct SuffixTreeNode {
218596f483aSJessica Paquette 
219596f483aSJessica Paquette   /// The children of this node.
220596f483aSJessica Paquette   ///
221596f483aSJessica Paquette   /// A child existing on an unsigned integer implies that from the mapping
222596f483aSJessica Paquette   /// represented by the current node, there is a way to reach another
223596f483aSJessica Paquette   /// mapping by tacking that character on the end of the current string.
224596f483aSJessica Paquette   DenseMap<unsigned, SuffixTreeNode *> Children;
225596f483aSJessica Paquette 
226596f483aSJessica Paquette   /// A flag set to false if the node has been pruned from the tree.
227596f483aSJessica Paquette   bool IsInTree = true;
228596f483aSJessica Paquette 
229596f483aSJessica Paquette   /// The start index of this node's substring in the main string.
2304cf187b5SJessica Paquette   unsigned StartIdx = EmptyIdx;
231596f483aSJessica Paquette 
232596f483aSJessica Paquette   /// The end index of this node's substring in the main string.
233596f483aSJessica Paquette   ///
234596f483aSJessica Paquette   /// Every leaf node must have its \p EndIdx incremented at the end of every
235596f483aSJessica Paquette   /// step in the construction algorithm. To avoid having to update O(N)
236596f483aSJessica Paquette   /// nodes individually at the end of every step, the end index is stored
237596f483aSJessica Paquette   /// as a pointer.
2384cf187b5SJessica Paquette   unsigned *EndIdx = nullptr;
239596f483aSJessica Paquette 
240596f483aSJessica Paquette   /// For leaves, the start index of the suffix represented by this node.
241596f483aSJessica Paquette   ///
242596f483aSJessica Paquette   /// For all other nodes, this is ignored.
2434cf187b5SJessica Paquette   unsigned SuffixIdx = EmptyIdx;
244596f483aSJessica Paquette 
245596f483aSJessica Paquette   /// \brief For internal nodes, a pointer to the internal node representing
246596f483aSJessica Paquette   /// the same sequence with the first character chopped off.
247596f483aSJessica Paquette   ///
2484602c343SJessica Paquette   /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
249596f483aSJessica Paquette   /// Ukkonen's algorithm does to achieve linear-time construction is
250596f483aSJessica Paquette   /// keep track of which node the next insert should be at. This makes each
251596f483aSJessica Paquette   /// insert O(1), and there are a total of O(N) inserts. The suffix link
252596f483aSJessica Paquette   /// helps with inserting children of internal nodes.
253596f483aSJessica Paquette   ///
254596f483aSJessica Paquette   /// Say we add a child to an internal node with associated mapping S. The
255596f483aSJessica Paquette   /// next insertion must be at the node representing S - its first character.
256596f483aSJessica Paquette   /// This is given by the way that we iteratively build the tree in Ukkonen's
257596f483aSJessica Paquette   /// algorithm. The main idea is to look at the suffixes of each prefix in the
258596f483aSJessica Paquette   /// string, starting with the longest suffix of the prefix, and ending with
259596f483aSJessica Paquette   /// the shortest. Therefore, if we keep pointers between such nodes, we can
260596f483aSJessica Paquette   /// move to the next insertion point in O(1) time. If we don't, then we'd
261596f483aSJessica Paquette   /// have to query from the root, which takes O(N) time. This would make the
262596f483aSJessica Paquette   /// construction algorithm O(N^2) rather than O(N).
263596f483aSJessica Paquette   SuffixTreeNode *Link = nullptr;
264596f483aSJessica Paquette 
265596f483aSJessica Paquette   /// The parent of this node. Every node except for the root has a parent.
266596f483aSJessica Paquette   SuffixTreeNode *Parent = nullptr;
267596f483aSJessica Paquette 
268596f483aSJessica Paquette   /// The number of times this node's string appears in the tree.
269596f483aSJessica Paquette   ///
270596f483aSJessica Paquette   /// This is equal to the number of leaf children of the string. It represents
271596f483aSJessica Paquette   /// the number of suffixes that the node's string is a prefix of.
2724cf187b5SJessica Paquette   unsigned OccurrenceCount = 0;
273596f483aSJessica Paquette 
274acffa28cSJessica Paquette   /// The length of the string formed by concatenating the edge labels from the
275acffa28cSJessica Paquette   /// root to this node.
2764cf187b5SJessica Paquette   unsigned ConcatLen = 0;
277acffa28cSJessica Paquette 
278596f483aSJessica Paquette   /// Returns true if this node is a leaf.
279596f483aSJessica Paquette   bool isLeaf() const { return SuffixIdx != EmptyIdx; }
280596f483aSJessica Paquette 
281596f483aSJessica Paquette   /// Returns true if this node is the root of its owning \p SuffixTree.
282596f483aSJessica Paquette   bool isRoot() const { return StartIdx == EmptyIdx; }
283596f483aSJessica Paquette 
284596f483aSJessica Paquette   /// Return the number of elements in the substring associated with this node.
285596f483aSJessica Paquette   size_t size() const {
286596f483aSJessica Paquette 
287596f483aSJessica Paquette     // Is it the root? If so, it's the empty string so return 0.
288596f483aSJessica Paquette     if (isRoot())
289596f483aSJessica Paquette       return 0;
290596f483aSJessica Paquette 
291596f483aSJessica Paquette     assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
292596f483aSJessica Paquette 
293596f483aSJessica Paquette     // Size = the number of elements in the string.
294596f483aSJessica Paquette     // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
295596f483aSJessica Paquette     return *EndIdx - StartIdx + 1;
296596f483aSJessica Paquette   }
297596f483aSJessica Paquette 
2984cf187b5SJessica Paquette   SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link,
299596f483aSJessica Paquette                  SuffixTreeNode *Parent)
300596f483aSJessica Paquette       : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
301596f483aSJessica Paquette 
302596f483aSJessica Paquette   SuffixTreeNode() {}
303596f483aSJessica Paquette };
304596f483aSJessica Paquette 
305596f483aSJessica Paquette /// A data structure for fast substring queries.
306596f483aSJessica Paquette ///
307596f483aSJessica Paquette /// Suffix trees represent the suffixes of their input strings in their leaves.
308596f483aSJessica Paquette /// A suffix tree is a type of compressed trie structure where each node
309596f483aSJessica Paquette /// represents an entire substring rather than a single character. Each leaf
310596f483aSJessica Paquette /// of the tree is a suffix.
311596f483aSJessica Paquette ///
312596f483aSJessica Paquette /// A suffix tree can be seen as a type of state machine where each state is a
313596f483aSJessica Paquette /// substring of the full string. The tree is structured so that, for a string
314596f483aSJessica Paquette /// of length N, there are exactly N leaves in the tree. This structure allows
315596f483aSJessica Paquette /// us to quickly find repeated substrings of the input string.
316596f483aSJessica Paquette ///
317596f483aSJessica Paquette /// In this implementation, a "string" is a vector of unsigned integers.
318596f483aSJessica Paquette /// These integers may result from hashing some data type. A suffix tree can
319596f483aSJessica Paquette /// contain 1 or many strings, which can then be queried as one large string.
320596f483aSJessica Paquette ///
321596f483aSJessica Paquette /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
322596f483aSJessica Paquette /// suffix tree construction. Ukkonen's algorithm is explained in more detail
323596f483aSJessica Paquette /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
324596f483aSJessica Paquette /// paper is available at
325596f483aSJessica Paquette ///
326596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
327596f483aSJessica Paquette class SuffixTree {
32878681be2SJessica Paquette public:
32978681be2SJessica Paquette   /// Stores each leaf node in the tree.
33078681be2SJessica Paquette   ///
33178681be2SJessica Paquette   /// This is used for finding outlining candidates.
33278681be2SJessica Paquette   std::vector<SuffixTreeNode *> LeafVector;
33378681be2SJessica Paquette 
334596f483aSJessica Paquette   /// Each element is an integer representing an instruction in the module.
335596f483aSJessica Paquette   ArrayRef<unsigned> Str;
336596f483aSJessica Paquette 
33778681be2SJessica Paquette private:
338596f483aSJessica Paquette   /// Maintains each node in the tree.
339d4cb9c6dSJessica Paquette   SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
340596f483aSJessica Paquette 
341596f483aSJessica Paquette   /// The root of the suffix tree.
342596f483aSJessica Paquette   ///
343596f483aSJessica Paquette   /// The root represents the empty string. It is maintained by the
344596f483aSJessica Paquette   /// \p NodeAllocator like every other node in the tree.
345596f483aSJessica Paquette   SuffixTreeNode *Root = nullptr;
346596f483aSJessica Paquette 
347596f483aSJessica Paquette   /// Maintains the end indices of the internal nodes in the tree.
348596f483aSJessica Paquette   ///
349596f483aSJessica Paquette   /// Each internal node is guaranteed to never have its end index change
350596f483aSJessica Paquette   /// during the construction algorithm; however, leaves must be updated at
351596f483aSJessica Paquette   /// every step. Therefore, we need to store leaf end indices by reference
352596f483aSJessica Paquette   /// to avoid updating O(N) leaves at every step of construction. Thus,
353596f483aSJessica Paquette   /// every internal node must be allocated its own end index.
354596f483aSJessica Paquette   BumpPtrAllocator InternalEndIdxAllocator;
355596f483aSJessica Paquette 
356596f483aSJessica Paquette   /// The end index of each leaf in the tree.
3574cf187b5SJessica Paquette   unsigned LeafEndIdx = -1;
358596f483aSJessica Paquette 
359596f483aSJessica Paquette   /// \brief Helper struct which keeps track of the next insertion point in
360596f483aSJessica Paquette   /// Ukkonen's algorithm.
361596f483aSJessica Paquette   struct ActiveState {
362596f483aSJessica Paquette     /// The next node to insert at.
363596f483aSJessica Paquette     SuffixTreeNode *Node;
364596f483aSJessica Paquette 
365596f483aSJessica Paquette     /// The index of the first character in the substring currently being added.
3664cf187b5SJessica Paquette     unsigned Idx = EmptyIdx;
367596f483aSJessica Paquette 
368596f483aSJessica Paquette     /// The length of the substring we have to add at the current step.
3694cf187b5SJessica Paquette     unsigned Len = 0;
370596f483aSJessica Paquette   };
371596f483aSJessica Paquette 
372596f483aSJessica Paquette   /// \brief The point the next insertion will take place at in the
373596f483aSJessica Paquette   /// construction algorithm.
374596f483aSJessica Paquette   ActiveState Active;
375596f483aSJessica Paquette 
376596f483aSJessica Paquette   /// Allocate a leaf node and add it to the tree.
377596f483aSJessica Paquette   ///
378596f483aSJessica Paquette   /// \param Parent The parent of this node.
379596f483aSJessica Paquette   /// \param StartIdx The start index of this node's associated string.
380596f483aSJessica Paquette   /// \param Edge The label on the edge leaving \p Parent to this node.
381596f483aSJessica Paquette   ///
382596f483aSJessica Paquette   /// \returns A pointer to the allocated leaf node.
3834cf187b5SJessica Paquette   SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx,
384596f483aSJessica Paquette                              unsigned Edge) {
385596f483aSJessica Paquette 
386596f483aSJessica Paquette     assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
387596f483aSJessica Paquette 
38878681be2SJessica Paquette     SuffixTreeNode *N = new (NodeAllocator.Allocate())
38978681be2SJessica Paquette         SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent);
390596f483aSJessica Paquette     Parent.Children[Edge] = N;
391596f483aSJessica Paquette 
392596f483aSJessica Paquette     return N;
393596f483aSJessica Paquette   }
394596f483aSJessica Paquette 
395596f483aSJessica Paquette   /// Allocate an internal node and add it to the tree.
396596f483aSJessica Paquette   ///
397596f483aSJessica Paquette   /// \param Parent The parent of this node. Only null when allocating the root.
398596f483aSJessica Paquette   /// \param StartIdx The start index of this node's associated string.
399596f483aSJessica Paquette   /// \param EndIdx The end index of this node's associated string.
400596f483aSJessica Paquette   /// \param Edge The label on the edge leaving \p Parent to this node.
401596f483aSJessica Paquette   ///
402596f483aSJessica Paquette   /// \returns A pointer to the allocated internal node.
4034cf187b5SJessica Paquette   SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx,
4044cf187b5SJessica Paquette                                      unsigned EndIdx, unsigned Edge) {
405596f483aSJessica Paquette 
406596f483aSJessica Paquette     assert(StartIdx <= EndIdx && "String can't start after it ends!");
407596f483aSJessica Paquette     assert(!(!Parent && StartIdx != EmptyIdx) &&
408596f483aSJessica Paquette            "Non-root internal nodes must have parents!");
409596f483aSJessica Paquette 
4104cf187b5SJessica Paquette     unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx);
41178681be2SJessica Paquette     SuffixTreeNode *N = new (NodeAllocator.Allocate())
41278681be2SJessica Paquette         SuffixTreeNode(StartIdx, E, Root, Parent);
413596f483aSJessica Paquette     if (Parent)
414596f483aSJessica Paquette       Parent->Children[Edge] = N;
415596f483aSJessica Paquette 
416596f483aSJessica Paquette     return N;
417596f483aSJessica Paquette   }
418596f483aSJessica Paquette 
419596f483aSJessica Paquette   /// \brief Set the suffix indices of the leaves to the start indices of their
420596f483aSJessica Paquette   /// respective suffixes. Also stores each leaf in \p LeafVector at its
421596f483aSJessica Paquette   /// respective suffix index.
422596f483aSJessica Paquette   ///
423596f483aSJessica Paquette   /// \param[in] CurrNode The node currently being visited.
424596f483aSJessica Paquette   /// \param CurrIdx The current index of the string being visited.
4254cf187b5SJessica Paquette   void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) {
426596f483aSJessica Paquette 
427596f483aSJessica Paquette     bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
428596f483aSJessica Paquette 
429acffa28cSJessica Paquette     // Store the length of the concatenation of all strings from the root to
430acffa28cSJessica Paquette     // this node.
431acffa28cSJessica Paquette     if (!CurrNode.isRoot()) {
432acffa28cSJessica Paquette       if (CurrNode.ConcatLen == 0)
433acffa28cSJessica Paquette         CurrNode.ConcatLen = CurrNode.size();
434acffa28cSJessica Paquette 
435acffa28cSJessica Paquette       if (CurrNode.Parent)
436acffa28cSJessica Paquette         CurrNode.ConcatLen += CurrNode.Parent->ConcatLen;
437acffa28cSJessica Paquette     }
438acffa28cSJessica Paquette 
439596f483aSJessica Paquette     // Traverse the tree depth-first.
440596f483aSJessica Paquette     for (auto &ChildPair : CurrNode.Children) {
441596f483aSJessica Paquette       assert(ChildPair.second && "Node had a null child!");
44278681be2SJessica Paquette       setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size());
443596f483aSJessica Paquette     }
444596f483aSJessica Paquette 
445596f483aSJessica Paquette     // Is this node a leaf?
446596f483aSJessica Paquette     if (IsLeaf) {
447596f483aSJessica Paquette       // If yes, give it a suffix index and bump its parent's occurrence count.
448596f483aSJessica Paquette       CurrNode.SuffixIdx = Str.size() - CurrIdx;
449596f483aSJessica Paquette       assert(CurrNode.Parent && "CurrNode had no parent!");
450596f483aSJessica Paquette       CurrNode.Parent->OccurrenceCount++;
451596f483aSJessica Paquette 
452596f483aSJessica Paquette       // Store the leaf in the leaf vector for pruning later.
453596f483aSJessica Paquette       LeafVector[CurrNode.SuffixIdx] = &CurrNode;
454596f483aSJessica Paquette     }
455596f483aSJessica Paquette   }
456596f483aSJessica Paquette 
457596f483aSJessica Paquette   /// \brief Construct the suffix tree for the prefix of the input ending at
458596f483aSJessica Paquette   /// \p EndIdx.
459596f483aSJessica Paquette   ///
460596f483aSJessica Paquette   /// Used to construct the full suffix tree iteratively. At the end of each
461596f483aSJessica Paquette   /// step, the constructed suffix tree is either a valid suffix tree, or a
462596f483aSJessica Paquette   /// suffix tree with implicit suffixes. At the end of the final step, the
463596f483aSJessica Paquette   /// suffix tree is a valid tree.
464596f483aSJessica Paquette   ///
465596f483aSJessica Paquette   /// \param EndIdx The end index of the current prefix in the main string.
466596f483aSJessica Paquette   /// \param SuffixesToAdd The number of suffixes that must be added
467596f483aSJessica Paquette   /// to complete the suffix tree at the current phase.
468596f483aSJessica Paquette   ///
469596f483aSJessica Paquette   /// \returns The number of suffixes that have not been added at the end of
470596f483aSJessica Paquette   /// this step.
4714cf187b5SJessica Paquette   unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) {
472596f483aSJessica Paquette     SuffixTreeNode *NeedsLink = nullptr;
473596f483aSJessica Paquette 
474596f483aSJessica Paquette     while (SuffixesToAdd > 0) {
475596f483aSJessica Paquette 
476596f483aSJessica Paquette       // Are we waiting to add anything other than just the last character?
477596f483aSJessica Paquette       if (Active.Len == 0) {
478596f483aSJessica Paquette         // If not, then say the active index is the end index.
479596f483aSJessica Paquette         Active.Idx = EndIdx;
480596f483aSJessica Paquette       }
481596f483aSJessica Paquette 
482596f483aSJessica Paquette       assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
483596f483aSJessica Paquette 
484596f483aSJessica Paquette       // The first character in the current substring we're looking at.
485596f483aSJessica Paquette       unsigned FirstChar = Str[Active.Idx];
486596f483aSJessica Paquette 
487596f483aSJessica Paquette       // Have we inserted anything starting with FirstChar at the current node?
488596f483aSJessica Paquette       if (Active.Node->Children.count(FirstChar) == 0) {
489596f483aSJessica Paquette         // If not, then we can just insert a leaf and move too the next step.
490596f483aSJessica Paquette         insertLeaf(*Active.Node, EndIdx, FirstChar);
491596f483aSJessica Paquette 
492596f483aSJessica Paquette         // The active node is an internal node, and we visited it, so it must
493596f483aSJessica Paquette         // need a link if it doesn't have one.
494596f483aSJessica Paquette         if (NeedsLink) {
495596f483aSJessica Paquette           NeedsLink->Link = Active.Node;
496596f483aSJessica Paquette           NeedsLink = nullptr;
497596f483aSJessica Paquette         }
498596f483aSJessica Paquette       } else {
499596f483aSJessica Paquette         // There's a match with FirstChar, so look for the point in the tree to
500596f483aSJessica Paquette         // insert a new node.
501596f483aSJessica Paquette         SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
502596f483aSJessica Paquette 
5034cf187b5SJessica Paquette         unsigned SubstringLen = NextNode->size();
504596f483aSJessica Paquette 
505596f483aSJessica Paquette         // Is the current suffix we're trying to insert longer than the size of
506596f483aSJessica Paquette         // the child we want to move to?
507596f483aSJessica Paquette         if (Active.Len >= SubstringLen) {
508596f483aSJessica Paquette           // If yes, then consume the characters we've seen and move to the next
509596f483aSJessica Paquette           // node.
510596f483aSJessica Paquette           Active.Idx += SubstringLen;
511596f483aSJessica Paquette           Active.Len -= SubstringLen;
512596f483aSJessica Paquette           Active.Node = NextNode;
513596f483aSJessica Paquette           continue;
514596f483aSJessica Paquette         }
515596f483aSJessica Paquette 
516596f483aSJessica Paquette         // Otherwise, the suffix we're trying to insert must be contained in the
517596f483aSJessica Paquette         // next node we want to move to.
518596f483aSJessica Paquette         unsigned LastChar = Str[EndIdx];
519596f483aSJessica Paquette 
520596f483aSJessica Paquette         // Is the string we're trying to insert a substring of the next node?
521596f483aSJessica Paquette         if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
522596f483aSJessica Paquette           // If yes, then we're done for this step. Remember our insertion point
523596f483aSJessica Paquette           // and move to the next end index. At this point, we have an implicit
524596f483aSJessica Paquette           // suffix tree.
525596f483aSJessica Paquette           if (NeedsLink && !Active.Node->isRoot()) {
526596f483aSJessica Paquette             NeedsLink->Link = Active.Node;
527596f483aSJessica Paquette             NeedsLink = nullptr;
528596f483aSJessica Paquette           }
529596f483aSJessica Paquette 
530596f483aSJessica Paquette           Active.Len++;
531596f483aSJessica Paquette           break;
532596f483aSJessica Paquette         }
533596f483aSJessica Paquette 
534596f483aSJessica Paquette         // The string we're trying to insert isn't a substring of the next node,
535596f483aSJessica Paquette         // but matches up to a point. Split the node.
536596f483aSJessica Paquette         //
537596f483aSJessica Paquette         // For example, say we ended our search at a node n and we're trying to
538596f483aSJessica Paquette         // insert ABD. Then we'll create a new node s for AB, reduce n to just
539596f483aSJessica Paquette         // representing C, and insert a new leaf node l to represent d. This
540596f483aSJessica Paquette         // allows us to ensure that if n was a leaf, it remains a leaf.
541596f483aSJessica Paquette         //
542596f483aSJessica Paquette         //   | ABC  ---split--->  | AB
543596f483aSJessica Paquette         //   n                    s
544596f483aSJessica Paquette         //                     C / \ D
545596f483aSJessica Paquette         //                      n   l
546596f483aSJessica Paquette 
547596f483aSJessica Paquette         // The node s from the diagram
548596f483aSJessica Paquette         SuffixTreeNode *SplitNode =
54978681be2SJessica Paquette             insertInternalNode(Active.Node, NextNode->StartIdx,
55078681be2SJessica Paquette                                NextNode->StartIdx + Active.Len - 1, FirstChar);
551596f483aSJessica Paquette 
552596f483aSJessica Paquette         // Insert the new node representing the new substring into the tree as
553596f483aSJessica Paquette         // a child of the split node. This is the node l from the diagram.
554596f483aSJessica Paquette         insertLeaf(*SplitNode, EndIdx, LastChar);
555596f483aSJessica Paquette 
556596f483aSJessica Paquette         // Make the old node a child of the split node and update its start
557596f483aSJessica Paquette         // index. This is the node n from the diagram.
558596f483aSJessica Paquette         NextNode->StartIdx += Active.Len;
559596f483aSJessica Paquette         NextNode->Parent = SplitNode;
560596f483aSJessica Paquette         SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
561596f483aSJessica Paquette 
562596f483aSJessica Paquette         // SplitNode is an internal node, update the suffix link.
563596f483aSJessica Paquette         if (NeedsLink)
564596f483aSJessica Paquette           NeedsLink->Link = SplitNode;
565596f483aSJessica Paquette 
566596f483aSJessica Paquette         NeedsLink = SplitNode;
567596f483aSJessica Paquette       }
568596f483aSJessica Paquette 
569596f483aSJessica Paquette       // We've added something new to the tree, so there's one less suffix to
570596f483aSJessica Paquette       // add.
571596f483aSJessica Paquette       SuffixesToAdd--;
572596f483aSJessica Paquette 
573596f483aSJessica Paquette       if (Active.Node->isRoot()) {
574596f483aSJessica Paquette         if (Active.Len > 0) {
575596f483aSJessica Paquette           Active.Len--;
576596f483aSJessica Paquette           Active.Idx = EndIdx - SuffixesToAdd + 1;
577596f483aSJessica Paquette         }
578596f483aSJessica Paquette       } else {
579596f483aSJessica Paquette         // Start the next phase at the next smallest suffix.
580596f483aSJessica Paquette         Active.Node = Active.Node->Link;
581596f483aSJessica Paquette       }
582596f483aSJessica Paquette     }
583596f483aSJessica Paquette 
584596f483aSJessica Paquette     return SuffixesToAdd;
585596f483aSJessica Paquette   }
586596f483aSJessica Paquette 
587596f483aSJessica Paquette public:
588596f483aSJessica Paquette   /// Construct a suffix tree from a sequence of unsigned integers.
589596f483aSJessica Paquette   ///
590596f483aSJessica Paquette   /// \param Str The string to construct the suffix tree for.
591596f483aSJessica Paquette   SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
592596f483aSJessica Paquette     Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
593596f483aSJessica Paquette     Root->IsInTree = true;
594596f483aSJessica Paquette     Active.Node = Root;
595596f483aSJessica Paquette     LeafVector = std::vector<SuffixTreeNode *>(Str.size());
596596f483aSJessica Paquette 
597596f483aSJessica Paquette     // Keep track of the number of suffixes we have to add of the current
598596f483aSJessica Paquette     // prefix.
5994cf187b5SJessica Paquette     unsigned SuffixesToAdd = 0;
600596f483aSJessica Paquette     Active.Node = Root;
601596f483aSJessica Paquette 
602596f483aSJessica Paquette     // Construct the suffix tree iteratively on each prefix of the string.
603596f483aSJessica Paquette     // PfxEndIdx is the end index of the current prefix.
604596f483aSJessica Paquette     // End is one past the last element in the string.
6054cf187b5SJessica Paquette     for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End;
6064cf187b5SJessica Paquette          PfxEndIdx++) {
607596f483aSJessica Paquette       SuffixesToAdd++;
608596f483aSJessica Paquette       LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
609596f483aSJessica Paquette       SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
610596f483aSJessica Paquette     }
611596f483aSJessica Paquette 
612596f483aSJessica Paquette     // Set the suffix indices of each leaf.
613596f483aSJessica Paquette     assert(Root && "Root node can't be nullptr!");
614596f483aSJessica Paquette     setSuffixIndices(*Root, 0);
615596f483aSJessica Paquette   }
616596f483aSJessica Paquette };
617596f483aSJessica Paquette 
618596f483aSJessica Paquette /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings.
619596f483aSJessica Paquette struct InstructionMapper {
620596f483aSJessica Paquette 
621596f483aSJessica Paquette   /// \brief The next available integer to assign to a \p MachineInstr that
622596f483aSJessica Paquette   /// cannot be outlined.
623596f483aSJessica Paquette   ///
624596f483aSJessica Paquette   /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
625596f483aSJessica Paquette   unsigned IllegalInstrNumber = -3;
626596f483aSJessica Paquette 
627596f483aSJessica Paquette   /// \brief The next available integer to assign to a \p MachineInstr that can
628596f483aSJessica Paquette   /// be outlined.
629596f483aSJessica Paquette   unsigned LegalInstrNumber = 0;
630596f483aSJessica Paquette 
631596f483aSJessica Paquette   /// Correspondence from \p MachineInstrs to unsigned integers.
632596f483aSJessica Paquette   DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
633596f483aSJessica Paquette       InstructionIntegerMap;
634596f483aSJessica Paquette 
635596f483aSJessica Paquette   /// Corresponcence from unsigned integers to \p MachineInstrs.
636596f483aSJessica Paquette   /// Inverse of \p InstructionIntegerMap.
637596f483aSJessica Paquette   DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
638596f483aSJessica Paquette 
639596f483aSJessica Paquette   /// The vector of unsigned integers that the module is mapped to.
640596f483aSJessica Paquette   std::vector<unsigned> UnsignedVec;
641596f483aSJessica Paquette 
642596f483aSJessica Paquette   /// \brief Stores the location of the instruction associated with the integer
643596f483aSJessica Paquette   /// at index i in \p UnsignedVec for each index i.
644596f483aSJessica Paquette   std::vector<MachineBasicBlock::iterator> InstrList;
645596f483aSJessica Paquette 
646596f483aSJessica Paquette   /// \brief Maps \p *It to a legal integer.
647596f483aSJessica Paquette   ///
648596f483aSJessica Paquette   /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
649596f483aSJessica Paquette   /// \p IntegerInstructionMap, and \p LegalInstrNumber.
650596f483aSJessica Paquette   ///
651596f483aSJessica Paquette   /// \returns The integer that \p *It was mapped to.
652596f483aSJessica Paquette   unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
653596f483aSJessica Paquette 
654596f483aSJessica Paquette     // Get the integer for this instruction or give it the current
655596f483aSJessica Paquette     // LegalInstrNumber.
656596f483aSJessica Paquette     InstrList.push_back(It);
657596f483aSJessica Paquette     MachineInstr &MI = *It;
658596f483aSJessica Paquette     bool WasInserted;
659596f483aSJessica Paquette     DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
660596f483aSJessica Paquette         ResultIt;
661596f483aSJessica Paquette     std::tie(ResultIt, WasInserted) =
662596f483aSJessica Paquette         InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
663596f483aSJessica Paquette     unsigned MINumber = ResultIt->second;
664596f483aSJessica Paquette 
665596f483aSJessica Paquette     // There was an insertion.
666596f483aSJessica Paquette     if (WasInserted) {
667596f483aSJessica Paquette       LegalInstrNumber++;
668596f483aSJessica Paquette       IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
669596f483aSJessica Paquette     }
670596f483aSJessica Paquette 
671596f483aSJessica Paquette     UnsignedVec.push_back(MINumber);
672596f483aSJessica Paquette 
673596f483aSJessica Paquette     // Make sure we don't overflow or use any integers reserved by the DenseMap.
674596f483aSJessica Paquette     if (LegalInstrNumber >= IllegalInstrNumber)
675596f483aSJessica Paquette       report_fatal_error("Instruction mapping overflow!");
676596f483aSJessica Paquette 
67778681be2SJessica Paquette     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
67878681be2SJessica Paquette            "Tried to assign DenseMap tombstone or empty key to instruction.");
67978681be2SJessica Paquette     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
68078681be2SJessica Paquette            "Tried to assign DenseMap tombstone or empty key to instruction.");
681596f483aSJessica Paquette 
682596f483aSJessica Paquette     return MINumber;
683596f483aSJessica Paquette   }
684596f483aSJessica Paquette 
685596f483aSJessica Paquette   /// Maps \p *It to an illegal integer.
686596f483aSJessica Paquette   ///
687596f483aSJessica Paquette   /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
688596f483aSJessica Paquette   ///
689596f483aSJessica Paquette   /// \returns The integer that \p *It was mapped to.
690596f483aSJessica Paquette   unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
691596f483aSJessica Paquette     unsigned MINumber = IllegalInstrNumber;
692596f483aSJessica Paquette 
693596f483aSJessica Paquette     InstrList.push_back(It);
694596f483aSJessica Paquette     UnsignedVec.push_back(IllegalInstrNumber);
695596f483aSJessica Paquette     IllegalInstrNumber--;
696596f483aSJessica Paquette 
697596f483aSJessica Paquette     assert(LegalInstrNumber < IllegalInstrNumber &&
698596f483aSJessica Paquette            "Instruction mapping overflow!");
699596f483aSJessica Paquette 
70078681be2SJessica Paquette     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
701596f483aSJessica Paquette            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
702596f483aSJessica Paquette 
70378681be2SJessica Paquette     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
704596f483aSJessica Paquette            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
705596f483aSJessica Paquette 
706596f483aSJessica Paquette     return MINumber;
707596f483aSJessica Paquette   }
708596f483aSJessica Paquette 
709596f483aSJessica Paquette   /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
710596f483aSJessica Paquette   /// and appends it to \p UnsignedVec and \p InstrList.
711596f483aSJessica Paquette   ///
712596f483aSJessica Paquette   /// Two instructions are assigned the same integer if they are identical.
713596f483aSJessica Paquette   /// If an instruction is deemed unsafe to outline, then it will be assigned an
714596f483aSJessica Paquette   /// unique integer. The resulting mapping is placed into a suffix tree and
715596f483aSJessica Paquette   /// queried for candidates.
716596f483aSJessica Paquette   ///
717596f483aSJessica Paquette   /// \param MBB The \p MachineBasicBlock to be translated into integers.
718596f483aSJessica Paquette   /// \param TRI \p TargetRegisterInfo for the module.
719596f483aSJessica Paquette   /// \param TII \p TargetInstrInfo for the module.
720596f483aSJessica Paquette   void convertToUnsignedVec(MachineBasicBlock &MBB,
721596f483aSJessica Paquette                             const TargetRegisterInfo &TRI,
722596f483aSJessica Paquette                             const TargetInstrInfo &TII) {
7233291e735SJessica Paquette     unsigned Flags = TII.getMachineOutlinerMBBFlags(MBB);
7243291e735SJessica Paquette 
725596f483aSJessica Paquette     for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et;
726596f483aSJessica Paquette          It++) {
727596f483aSJessica Paquette 
728596f483aSJessica Paquette       // Keep track of where this instruction is in the module.
7293291e735SJessica Paquette       switch (TII.getOutliningType(It, Flags)) {
730596f483aSJessica Paquette       case TargetInstrInfo::MachineOutlinerInstrType::Illegal:
731596f483aSJessica Paquette         mapToIllegalUnsigned(It);
732596f483aSJessica Paquette         break;
733596f483aSJessica Paquette 
734596f483aSJessica Paquette       case TargetInstrInfo::MachineOutlinerInstrType::Legal:
735596f483aSJessica Paquette         mapToLegalUnsigned(It);
736596f483aSJessica Paquette         break;
737596f483aSJessica Paquette 
738596f483aSJessica Paquette       case TargetInstrInfo::MachineOutlinerInstrType::Invisible:
739596f483aSJessica Paquette         break;
740596f483aSJessica Paquette       }
741596f483aSJessica Paquette     }
742596f483aSJessica Paquette 
743596f483aSJessica Paquette     // After we're done every insertion, uniquely terminate this part of the
744596f483aSJessica Paquette     // "string". This makes sure we won't match across basic block or function
745596f483aSJessica Paquette     // boundaries since the "end" is encoded uniquely and thus appears in no
746596f483aSJessica Paquette     // repeated substring.
747596f483aSJessica Paquette     InstrList.push_back(MBB.end());
748596f483aSJessica Paquette     UnsignedVec.push_back(IllegalInstrNumber);
749596f483aSJessica Paquette     IllegalInstrNumber--;
750596f483aSJessica Paquette   }
751596f483aSJessica Paquette 
752596f483aSJessica Paquette   InstructionMapper() {
753596f483aSJessica Paquette     // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
754596f483aSJessica Paquette     // changed.
755596f483aSJessica Paquette     assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
756596f483aSJessica Paquette            "DenseMapInfo<unsigned>'s empty key isn't -1!");
757596f483aSJessica Paquette     assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
758596f483aSJessica Paquette            "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
759596f483aSJessica Paquette   }
760596f483aSJessica Paquette };
761596f483aSJessica Paquette 
762596f483aSJessica Paquette /// \brief An interprocedural pass which finds repeated sequences of
763596f483aSJessica Paquette /// instructions and replaces them with calls to functions.
764596f483aSJessica Paquette ///
765596f483aSJessica Paquette /// Each instruction is mapped to an unsigned integer and placed in a string.
766596f483aSJessica Paquette /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
767596f483aSJessica Paquette /// is then repeatedly queried for repeated sequences of instructions. Each
768596f483aSJessica Paquette /// non-overlapping repeated sequence is then placed in its own
769596f483aSJessica Paquette /// \p MachineFunction and each instance is then replaced with a call to that
770596f483aSJessica Paquette /// function.
771596f483aSJessica Paquette struct MachineOutliner : public ModulePass {
772596f483aSJessica Paquette 
773596f483aSJessica Paquette   static char ID;
774596f483aSJessica Paquette 
77513593843SJessica Paquette   /// \brief Set to true if the outliner should consider functions with
77613593843SJessica Paquette   /// linkonceodr linkage.
77713593843SJessica Paquette   bool OutlineFromLinkOnceODRs = false;
77813593843SJessica Paquette 
779596f483aSJessica Paquette   StringRef getPassName() const override { return "Machine Outliner"; }
780596f483aSJessica Paquette 
781596f483aSJessica Paquette   void getAnalysisUsage(AnalysisUsage &AU) const override {
782596f483aSJessica Paquette     AU.addRequired<MachineModuleInfo>();
783596f483aSJessica Paquette     AU.addPreserved<MachineModuleInfo>();
784596f483aSJessica Paquette     AU.setPreservesAll();
785596f483aSJessica Paquette     ModulePass::getAnalysisUsage(AU);
786596f483aSJessica Paquette   }
787596f483aSJessica Paquette 
788c9ab4c26SJessica Paquette   MachineOutliner(bool OutlineFromLinkOnceODRs = false)
789c9ab4c26SJessica Paquette       : ModulePass(ID), OutlineFromLinkOnceODRs(OutlineFromLinkOnceODRs) {
790596f483aSJessica Paquette     initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
791596f483aSJessica Paquette   }
792596f483aSJessica Paquette 
79378681be2SJessica Paquette   /// Find all repeated substrings that satisfy the outlining cost model.
79478681be2SJessica Paquette   ///
79578681be2SJessica Paquette   /// If a substring appears at least twice, then it must be represented by
79678681be2SJessica Paquette   /// an internal node which appears in at least two suffixes. Each suffix is
79778681be2SJessica Paquette   /// represented by a leaf node. To do this, we visit each internal node in
79878681be2SJessica Paquette   /// the tree, using the leaf children of each internal node. If an internal
79978681be2SJessica Paquette   /// node represents a beneficial substring, then we use each of its leaf
80078681be2SJessica Paquette   /// children to find the locations of its substring.
80178681be2SJessica Paquette   ///
80278681be2SJessica Paquette   /// \param ST A suffix tree to query.
80378681be2SJessica Paquette   /// \param TII TargetInstrInfo for the target.
80478681be2SJessica Paquette   /// \param Mapper Contains outlining mapping information.
80578681be2SJessica Paquette   /// \param[out] CandidateList Filled with candidates representing each
80678681be2SJessica Paquette   /// beneficial substring.
80778681be2SJessica Paquette   /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each
80878681be2SJessica Paquette   /// type of candidate.
80978681be2SJessica Paquette   ///
81078681be2SJessica Paquette   /// \returns The length of the longest candidate found.
8119df7fde2SJessica Paquette   unsigned
8129df7fde2SJessica Paquette   findCandidates(SuffixTree &ST, const TargetInstrInfo &TII,
81378681be2SJessica Paquette                  InstructionMapper &Mapper,
8149df7fde2SJessica Paquette                  std::vector<std::shared_ptr<Candidate>> &CandidateList,
81578681be2SJessica Paquette                  std::vector<OutlinedFunction> &FunctionList);
81678681be2SJessica Paquette 
817596f483aSJessica Paquette   /// \brief Replace the sequences of instructions represented by the
818596f483aSJessica Paquette   /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
819596f483aSJessica Paquette   /// described in \p FunctionList.
820596f483aSJessica Paquette   ///
821596f483aSJessica Paquette   /// \param M The module we are outlining from.
822596f483aSJessica Paquette   /// \param CandidateList A list of candidates to be outlined.
823596f483aSJessica Paquette   /// \param FunctionList A list of functions to be inserted into the module.
824596f483aSJessica Paquette   /// \param Mapper Contains the instruction mappings for the module.
8259df7fde2SJessica Paquette   bool outline(Module &M,
8269df7fde2SJessica Paquette                const ArrayRef<std::shared_ptr<Candidate>> &CandidateList,
827596f483aSJessica Paquette                std::vector<OutlinedFunction> &FunctionList,
828596f483aSJessica Paquette                InstructionMapper &Mapper);
829596f483aSJessica Paquette 
830596f483aSJessica Paquette   /// Creates a function for \p OF and inserts it into the module.
831596f483aSJessica Paquette   MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
832596f483aSJessica Paquette                                           InstructionMapper &Mapper);
833596f483aSJessica Paquette 
834596f483aSJessica Paquette   /// Find potential outlining candidates and store them in \p CandidateList.
835596f483aSJessica Paquette   ///
836596f483aSJessica Paquette   /// For each type of potential candidate, also build an \p OutlinedFunction
837596f483aSJessica Paquette   /// struct containing the information to build the function for that
838596f483aSJessica Paquette   /// candidate.
839596f483aSJessica Paquette   ///
840596f483aSJessica Paquette   /// \param[out] CandidateList Filled with outlining candidates for the module.
841596f483aSJessica Paquette   /// \param[out] FunctionList Filled with functions corresponding to each type
842596f483aSJessica Paquette   /// of \p Candidate.
843596f483aSJessica Paquette   /// \param ST The suffix tree for the module.
844596f483aSJessica Paquette   /// \param TII TargetInstrInfo for the module.
845596f483aSJessica Paquette   ///
846596f483aSJessica Paquette   /// \returns The length of the longest candidate found. 0 if there are none.
8479df7fde2SJessica Paquette   unsigned
8489df7fde2SJessica Paquette   buildCandidateList(std::vector<std::shared_ptr<Candidate>> &CandidateList,
849596f483aSJessica Paquette                      std::vector<OutlinedFunction> &FunctionList,
85078681be2SJessica Paquette                      SuffixTree &ST, InstructionMapper &Mapper,
851c984e213SJessica Paquette                      const TargetInstrInfo &TII);
852596f483aSJessica Paquette 
85360d31fc3SJessica Paquette   /// Helper function for pruneOverlaps.
85460d31fc3SJessica Paquette   /// Removes \p C from the candidate list, and updates its \p OutlinedFunction.
85560d31fc3SJessica Paquette   void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList);
85660d31fc3SJessica Paquette 
857596f483aSJessica Paquette   /// \brief Remove any overlapping candidates that weren't handled by the
858596f483aSJessica Paquette   /// suffix tree's pruning method.
859596f483aSJessica Paquette   ///
860596f483aSJessica Paquette   /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
861596f483aSJessica Paquette   /// If a short candidate is chosen for outlining, then a longer candidate
862596f483aSJessica Paquette   /// which has that short candidate as a suffix is chosen, the tree's pruning
863596f483aSJessica Paquette   /// method will not find it. Thus, we need to prune before outlining as well.
864596f483aSJessica Paquette   ///
865596f483aSJessica Paquette   /// \param[in,out] CandidateList A list of outlining candidates.
866596f483aSJessica Paquette   /// \param[in,out] FunctionList A list of functions to be outlined.
867809d708bSJessica Paquette   /// \param Mapper Contains instruction mapping info for outlining.
868596f483aSJessica Paquette   /// \param MaxCandidateLen The length of the longest candidate.
869596f483aSJessica Paquette   /// \param TII TargetInstrInfo for the module.
8709df7fde2SJessica Paquette   void pruneOverlaps(std::vector<std::shared_ptr<Candidate>> &CandidateList,
871596f483aSJessica Paquette                      std::vector<OutlinedFunction> &FunctionList,
872809d708bSJessica Paquette                      InstructionMapper &Mapper, unsigned MaxCandidateLen,
873809d708bSJessica Paquette                      const TargetInstrInfo &TII);
874596f483aSJessica Paquette 
875596f483aSJessica Paquette   /// Construct a suffix tree on the instructions in \p M and outline repeated
876596f483aSJessica Paquette   /// strings from that tree.
877596f483aSJessica Paquette   bool runOnModule(Module &M) override;
878596f483aSJessica Paquette };
879596f483aSJessica Paquette 
880596f483aSJessica Paquette } // Anonymous namespace.
881596f483aSJessica Paquette 
882596f483aSJessica Paquette char MachineOutliner::ID = 0;
883596f483aSJessica Paquette 
884596f483aSJessica Paquette namespace llvm {
88513593843SJessica Paquette ModulePass *createMachineOutlinerPass(bool OutlineFromLinkOnceODRs) {
88613593843SJessica Paquette   return new MachineOutliner(OutlineFromLinkOnceODRs);
88713593843SJessica Paquette }
88813593843SJessica Paquette 
88978681be2SJessica Paquette } // namespace llvm
89078681be2SJessica Paquette 
89178681be2SJessica Paquette INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
89278681be2SJessica Paquette                 false)
89378681be2SJessica Paquette 
8949df7fde2SJessica Paquette unsigned MachineOutliner::findCandidates(
8959df7fde2SJessica Paquette     SuffixTree &ST, const TargetInstrInfo &TII, InstructionMapper &Mapper,
8969df7fde2SJessica Paquette     std::vector<std::shared_ptr<Candidate>> &CandidateList,
89778681be2SJessica Paquette     std::vector<OutlinedFunction> &FunctionList) {
89878681be2SJessica Paquette   CandidateList.clear();
89978681be2SJessica Paquette   FunctionList.clear();
9004cf187b5SJessica Paquette   unsigned MaxLen = 0;
90178681be2SJessica Paquette 
90278681be2SJessica Paquette   // FIXME: Visit internal nodes instead of leaves.
90378681be2SJessica Paquette   for (SuffixTreeNode *Leaf : ST.LeafVector) {
90478681be2SJessica Paquette     assert(Leaf && "Leaves in LeafVector cannot be null!");
90578681be2SJessica Paquette     if (!Leaf->IsInTree)
90678681be2SJessica Paquette       continue;
90778681be2SJessica Paquette 
90878681be2SJessica Paquette     assert(Leaf->Parent && "All leaves must have parents!");
90978681be2SJessica Paquette     SuffixTreeNode &Parent = *(Leaf->Parent);
91078681be2SJessica Paquette 
91178681be2SJessica Paquette     // If it doesn't appear enough, or we already outlined from it, skip it.
91278681be2SJessica Paquette     if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree)
91378681be2SJessica Paquette       continue;
91478681be2SJessica Paquette 
915809d708bSJessica Paquette     // Figure out if this candidate is beneficial.
9164cf187b5SJessica Paquette     unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size();
91795c1107fSJessica Paquette 
91895c1107fSJessica Paquette     // Too short to be beneficial; skip it.
91995c1107fSJessica Paquette     // FIXME: This isn't necessarily true for, say, X86. If we factor in
92095c1107fSJessica Paquette     // instruction lengths we need more information than this.
92195c1107fSJessica Paquette     if (StringLen < 2)
92295c1107fSJessica Paquette       continue;
92395c1107fSJessica Paquette 
924d87f5449SJessica Paquette     // If this is a beneficial class of candidate, then every one is stored in
925d87f5449SJessica Paquette     // this vector.
926d87f5449SJessica Paquette     std::vector<Candidate> CandidatesForRepeatedSeq;
927d87f5449SJessica Paquette 
9284cf187b5SJessica Paquette     // Describes the start and end point of each candidate. This allows the
9294cf187b5SJessica Paquette     // target to infer some information about each occurrence of each repeated
9304cf187b5SJessica Paquette     // sequence.
931d87f5449SJessica Paquette     // FIXME: CandidatesForRepeatedSeq and this should be combined.
932d87f5449SJessica Paquette     std::vector<
933d87f5449SJessica Paquette         std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
9344cf187b5SJessica Paquette         RepeatedSequenceLocs;
935d87f5449SJessica Paquette 
936809d708bSJessica Paquette     // Figure out the call overhead for each instance of the sequence.
937809d708bSJessica Paquette     for (auto &ChildPair : Parent.Children) {
938809d708bSJessica Paquette       SuffixTreeNode *M = ChildPair.second;
93978681be2SJessica Paquette 
940809d708bSJessica Paquette       if (M && M->IsInTree && M->isLeaf()) {
941d87f5449SJessica Paquette         // Never visit this leaf again.
942d87f5449SJessica Paquette         M->IsInTree = false;
94352df8015SJessica Paquette         unsigned StartIdx = M->SuffixIdx;
94452df8015SJessica Paquette         unsigned EndIdx = StartIdx + StringLen - 1;
94552df8015SJessica Paquette 
94652df8015SJessica Paquette         // Trick: Discard some candidates that would be incompatible with the
94752df8015SJessica Paquette         // ones we've already found for this sequence. This will save us some
94852df8015SJessica Paquette         // work in candidate selection.
94952df8015SJessica Paquette         //
95052df8015SJessica Paquette         // If two candidates overlap, then we can't outline them both. This
95152df8015SJessica Paquette         // happens when we have candidates that look like, say
95252df8015SJessica Paquette         //
95352df8015SJessica Paquette         // AA (where each "A" is an instruction).
95452df8015SJessica Paquette         //
95552df8015SJessica Paquette         // We might have some portion of the module that looks like this:
95652df8015SJessica Paquette         // AAAAAA (6 A's)
95752df8015SJessica Paquette         //
95852df8015SJessica Paquette         // In this case, there are 5 different copies of "AA" in this range, but
95952df8015SJessica Paquette         // at most 3 can be outlined. If only outlining 3 of these is going to
96052df8015SJessica Paquette         // be unbeneficial, then we ought to not bother.
96152df8015SJessica Paquette         //
96252df8015SJessica Paquette         // Note that two things DON'T overlap when they look like this:
96352df8015SJessica Paquette         // start1...end1 .... start2...end2
96452df8015SJessica Paquette         // That is, one must either
96552df8015SJessica Paquette         // * End before the other starts
96652df8015SJessica Paquette         // * Start after the other ends
96752df8015SJessica Paquette         if (std::all_of(CandidatesForRepeatedSeq.begin(),
96852df8015SJessica Paquette                         CandidatesForRepeatedSeq.end(),
96952df8015SJessica Paquette                         [&StartIdx, &EndIdx](const Candidate &C) {
97052df8015SJessica Paquette                           return (EndIdx < C.getStartIdx() ||
97152df8015SJessica Paquette                                   StartIdx > C.getEndIdx());
97252df8015SJessica Paquette                         })) {
97352df8015SJessica Paquette           // It doesn't overlap with anything, so we can outline it.
97452df8015SJessica Paquette           // Each sequence is over [StartIt, EndIt].
97552df8015SJessica Paquette           MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx];
97652df8015SJessica Paquette           MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
97752df8015SJessica Paquette 
97852df8015SJessica Paquette           // Save the candidate and its location.
97952df8015SJessica Paquette           CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen,
98052df8015SJessica Paquette                                                 FunctionList.size());
98152df8015SJessica Paquette           RepeatedSequenceLocs.emplace_back(std::make_pair(StartIt, EndIt));
98252df8015SJessica Paquette         }
983809d708bSJessica Paquette       }
984809d708bSJessica Paquette     }
985809d708bSJessica Paquette 
986acc15e12SJessica Paquette     // We've found something we might want to outline.
987acc15e12SJessica Paquette     // Create an OutlinedFunction to store it and check if it'd be beneficial
988acc15e12SJessica Paquette     // to outline.
9894cf187b5SJessica Paquette     TargetInstrInfo::MachineOutlinerInfo MInfo =
9904cf187b5SJessica Paquette         TII.getOutlininingCandidateInfo(RepeatedSequenceLocs);
991acc15e12SJessica Paquette     std::vector<unsigned> Seq;
992acc15e12SJessica Paquette     for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++)
993acc15e12SJessica Paquette       Seq.push_back(ST.Str[i]);
99452df8015SJessica Paquette     OutlinedFunction OF(FunctionList.size(), CandidatesForRepeatedSeq.size(),
99552df8015SJessica Paquette                         Seq, MInfo);
996acc15e12SJessica Paquette     unsigned Benefit = OF.getBenefit();
997809d708bSJessica Paquette 
998ffe4abc5SJessica Paquette     // Is it better to outline this candidate than not?
999acc15e12SJessica Paquette     if (Benefit < 1) {
1000ffe4abc5SJessica Paquette       // Outlining this candidate would take more instructions than not
1001ffe4abc5SJessica Paquette       // outlining.
1002ffe4abc5SJessica Paquette       // Emit a remark explaining why we didn't outline this candidate.
1003ffe4abc5SJessica Paquette       std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator> C =
10044cf187b5SJessica Paquette           RepeatedSequenceLocs[0];
10059590658fSVivek Pandya       MachineOptimizationRemarkEmitter MORE(
10069590658fSVivek Pandya           *(C.first->getParent()->getParent()), nullptr);
10079590658fSVivek Pandya       MORE.emit([&]() {
1008ffe4abc5SJessica Paquette         MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
1009ffe4abc5SJessica Paquette                                           C.first->getDebugLoc(),
1010ffe4abc5SJessica Paquette                                           C.first->getParent());
1011ffe4abc5SJessica Paquette         R << "Did not outline " << NV("Length", StringLen) << " instructions"
10124cf187b5SJessica Paquette           << " from " << NV("NumOccurrences", RepeatedSequenceLocs.size())
1013ffe4abc5SJessica Paquette           << " locations."
1014ffe4abc5SJessica Paquette           << " Instructions from outlining all occurrences ("
1015acc15e12SJessica Paquette           << NV("OutliningCost", OF.getOutliningCost()) << ")"
1016ffe4abc5SJessica Paquette           << " >= Unoutlined instruction count ("
101785af63d0SJessica Paquette           << NV("NotOutliningCost", StringLen * OF.getOccurrenceCount()) << ")"
1018ffe4abc5SJessica Paquette           << " (Also found at: ";
1019ffe4abc5SJessica Paquette 
1020ffe4abc5SJessica Paquette         // Tell the user the other places the candidate was found.
10214cf187b5SJessica Paquette         for (unsigned i = 1, e = RepeatedSequenceLocs.size(); i < e; i++) {
1022ffe4abc5SJessica Paquette           R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
10234cf187b5SJessica Paquette                   RepeatedSequenceLocs[i].first->getDebugLoc());
1024ffe4abc5SJessica Paquette           if (i != e - 1)
1025ffe4abc5SJessica Paquette             R << ", ";
1026ffe4abc5SJessica Paquette         }
1027ffe4abc5SJessica Paquette 
1028ffe4abc5SJessica Paquette         R << ")";
10299590658fSVivek Pandya         return R;
10309590658fSVivek Pandya       });
1031ffe4abc5SJessica Paquette 
1032ffe4abc5SJessica Paquette       // Move to the next candidate.
103378681be2SJessica Paquette       continue;
1034ffe4abc5SJessica Paquette     }
103578681be2SJessica Paquette 
103678681be2SJessica Paquette     if (StringLen > MaxLen)
103778681be2SJessica Paquette       MaxLen = StringLen;
103878681be2SJessica Paquette 
1039d87f5449SJessica Paquette     // At this point, the candidate class is seen as beneficial. Set their
1040d87f5449SJessica Paquette     // benefit values and save them in the candidate list.
10419df7fde2SJessica Paquette     std::vector<std::shared_ptr<Candidate>> CandidatesForFn;
1042d87f5449SJessica Paquette     for (Candidate &C : CandidatesForRepeatedSeq) {
1043d87f5449SJessica Paquette       C.Benefit = Benefit;
10444cf187b5SJessica Paquette       C.MInfo = MInfo;
10459df7fde2SJessica Paquette       std::shared_ptr<Candidate> Cptr = std::make_shared<Candidate>(C);
10469df7fde2SJessica Paquette       CandidateList.push_back(Cptr);
10479df7fde2SJessica Paquette       CandidatesForFn.push_back(Cptr);
1048596f483aSJessica Paquette     }
1049596f483aSJessica Paquette 
1050acc15e12SJessica Paquette     FunctionList.push_back(OF);
10519df7fde2SJessica Paquette     FunctionList.back().Candidates = CandidatesForFn;
105278681be2SJessica Paquette 
105378681be2SJessica Paquette     // Move to the next function.
105478681be2SJessica Paquette     Parent.IsInTree = false;
105578681be2SJessica Paquette   }
105678681be2SJessica Paquette 
105778681be2SJessica Paquette   return MaxLen;
105878681be2SJessica Paquette }
1059596f483aSJessica Paquette 
106091999169SJessica Paquette // Remove C from the candidate space, and update its OutlinedFunction.
106160d31fc3SJessica Paquette void MachineOutliner::prune(Candidate &C,
106260d31fc3SJessica Paquette                             std::vector<OutlinedFunction> &FunctionList) {
106391999169SJessica Paquette   // Get the OutlinedFunction associated with this Candidate.
106491999169SJessica Paquette   OutlinedFunction &F = FunctionList[C.FunctionIdx];
106591999169SJessica Paquette 
106691999169SJessica Paquette   // Update C's associated function's occurrence count.
106785af63d0SJessica Paquette   F.decrement();
106891999169SJessica Paquette 
106991999169SJessica Paquette   // Remove C from the CandidateList.
107091999169SJessica Paquette   C.InCandidateList = false;
107191999169SJessica Paquette 
107291999169SJessica Paquette   DEBUG(dbgs() << "- Removed a Candidate \n";
107385af63d0SJessica Paquette         dbgs() << "--- Num fns left for candidate: " << F.getOccurrenceCount()
107491999169SJessica Paquette                << "\n";
1075acc15e12SJessica Paquette         dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit()
107691999169SJessica Paquette                << "\n";);
107760d31fc3SJessica Paquette }
107860d31fc3SJessica Paquette 
10799df7fde2SJessica Paquette void MachineOutliner::pruneOverlaps(
10809df7fde2SJessica Paquette     std::vector<std::shared_ptr<Candidate>> &CandidateList,
10819df7fde2SJessica Paquette     std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper,
10829df7fde2SJessica Paquette     unsigned MaxCandidateLen, const TargetInstrInfo &TII) {
108360d31fc3SJessica Paquette 
108460d31fc3SJessica Paquette   // Return true if this candidate became unbeneficial for outlining in a
108560d31fc3SJessica Paquette   // previous step.
108660d31fc3SJessica Paquette   auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) {
108760d31fc3SJessica Paquette 
108860d31fc3SJessica Paquette     // Check if the candidate was removed in a previous step.
108960d31fc3SJessica Paquette     if (!C.InCandidateList)
109060d31fc3SJessica Paquette       return true;
109160d31fc3SJessica Paquette 
109260d31fc3SJessica Paquette     // C must be alive. Check if we should remove it.
109360d31fc3SJessica Paquette     if (FunctionList[C.FunctionIdx].getBenefit() < 1) {
109460d31fc3SJessica Paquette       prune(C, FunctionList);
109560d31fc3SJessica Paquette       return true;
109660d31fc3SJessica Paquette     }
109760d31fc3SJessica Paquette 
109860d31fc3SJessica Paquette     // C is in the list, and F is still beneficial.
109960d31fc3SJessica Paquette     return false;
110091999169SJessica Paquette   };
110191999169SJessica Paquette 
1102acffa28cSJessica Paquette   // TODO: Experiment with interval trees or other interval-checking structures
1103acffa28cSJessica Paquette   // to lower the time complexity of this function.
1104acffa28cSJessica Paquette   // TODO: Can we do better than the simple greedy choice?
1105acffa28cSJessica Paquette   // Check for overlaps in the range.
1106acffa28cSJessica Paquette   // This is O(MaxCandidateLen * CandidateList.size()).
1107596f483aSJessica Paquette   for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
1108596f483aSJessica Paquette        It++) {
11099df7fde2SJessica Paquette     Candidate &C1 = **It;
1110596f483aSJessica Paquette 
111191999169SJessica Paquette     // If C1 was already pruned, or its function is no longer beneficial for
111291999169SJessica Paquette     // outlining, move to the next candidate.
111391999169SJessica Paquette     if (ShouldSkipCandidate(C1))
1114596f483aSJessica Paquette       continue;
1115596f483aSJessica Paquette 
1116596f483aSJessica Paquette     // The minimum start index of any candidate that could overlap with this
1117596f483aSJessica Paquette     // one.
1118596f483aSJessica Paquette     unsigned FarthestPossibleIdx = 0;
1119596f483aSJessica Paquette 
1120596f483aSJessica Paquette     // Either the index is 0, or it's at most MaxCandidateLen indices away.
11211934fd2cSJessica Paquette     if (C1.getStartIdx() > MaxCandidateLen)
11221934fd2cSJessica Paquette       FarthestPossibleIdx = C1.getStartIdx() - MaxCandidateLen;
1123596f483aSJessica Paquette 
1124acffa28cSJessica Paquette     // Compare against the candidates in the list that start at at most
1125acffa28cSJessica Paquette     // FarthestPossibleIdx indices away from C1. There are at most
1126acffa28cSJessica Paquette     // MaxCandidateLen of these.
1127596f483aSJessica Paquette     for (auto Sit = It + 1; Sit != Et; Sit++) {
11289df7fde2SJessica Paquette       Candidate &C2 = **Sit;
1129596f483aSJessica Paquette 
1130596f483aSJessica Paquette       // Is this candidate too far away to overlap?
11311934fd2cSJessica Paquette       if (C2.getStartIdx() < FarthestPossibleIdx)
1132596f483aSJessica Paquette         break;
1133596f483aSJessica Paquette 
113491999169SJessica Paquette       // If C2 was already pruned, or its function is no longer beneficial for
113591999169SJessica Paquette       // outlining, move to the next candidate.
113691999169SJessica Paquette       if (ShouldSkipCandidate(C2))
1137596f483aSJessica Paquette         continue;
1138596f483aSJessica Paquette 
1139596f483aSJessica Paquette       // Do C1 and C2 overlap?
1140596f483aSJessica Paquette       //
1141596f483aSJessica Paquette       // Not overlapping:
1142596f483aSJessica Paquette       // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
1143596f483aSJessica Paquette       //
1144596f483aSJessica Paquette       // We sorted our candidate list so C2Start <= C1Start. We know that
1145596f483aSJessica Paquette       // C2End > C2Start since each candidate has length >= 2. Therefore, all we
1146596f483aSJessica Paquette       // have to check is C2End < C2Start to see if we overlap.
11471934fd2cSJessica Paquette       if (C2.getEndIdx() < C1.getStartIdx())
1148596f483aSJessica Paquette         continue;
1149596f483aSJessica Paquette 
1150acffa28cSJessica Paquette       // C1 and C2 overlap.
1151acffa28cSJessica Paquette       // We need to choose the better of the two.
1152acffa28cSJessica Paquette       //
1153acffa28cSJessica Paquette       // Approximate this by picking the one which would have saved us the
1154acffa28cSJessica Paquette       // most instructions before any pruning.
115560d31fc3SJessica Paquette 
115660d31fc3SJessica Paquette       // Is C2 a better candidate?
115760d31fc3SJessica Paquette       if (C2.Benefit > C1.Benefit) {
115860d31fc3SJessica Paquette         // Yes, so prune C1. Since C1 is dead, we don't have to compare it
115960d31fc3SJessica Paquette         // against anything anymore, so break.
116060d31fc3SJessica Paquette         prune(C1, FunctionList);
1161acffa28cSJessica Paquette         break;
1162acffa28cSJessica Paquette       }
116360d31fc3SJessica Paquette 
116460d31fc3SJessica Paquette       // Prune C2 and move on to the next candidate.
116560d31fc3SJessica Paquette       prune(C2, FunctionList);
1166596f483aSJessica Paquette     }
1167596f483aSJessica Paquette   }
1168596f483aSJessica Paquette }
1169596f483aSJessica Paquette 
11709df7fde2SJessica Paquette unsigned MachineOutliner::buildCandidateList(
11719df7fde2SJessica Paquette     std::vector<std::shared_ptr<Candidate>> &CandidateList,
11729df7fde2SJessica Paquette     std::vector<OutlinedFunction> &FunctionList, SuffixTree &ST,
11739df7fde2SJessica Paquette     InstructionMapper &Mapper, const TargetInstrInfo &TII) {
1174596f483aSJessica Paquette 
1175596f483aSJessica Paquette   std::vector<unsigned> CandidateSequence; // Current outlining candidate.
11764cf187b5SJessica Paquette   unsigned MaxCandidateLen = 0;            // Length of the longest candidate.
1177596f483aSJessica Paquette 
117878681be2SJessica Paquette   MaxCandidateLen =
117978681be2SJessica Paquette       findCandidates(ST, TII, Mapper, CandidateList, FunctionList);
1180596f483aSJessica Paquette 
1181596f483aSJessica Paquette   // Sort the candidates in decending order. This will simplify the outlining
1182596f483aSJessica Paquette   // process when we have to remove the candidates from the mapping by
1183596f483aSJessica Paquette   // allowing us to cut them out without keeping track of an offset.
11849df7fde2SJessica Paquette   std::stable_sort(
11859df7fde2SJessica Paquette       CandidateList.begin(), CandidateList.end(),
11869df7fde2SJessica Paquette       [](const std::shared_ptr<Candidate> &LHS,
11879df7fde2SJessica Paquette          const std::shared_ptr<Candidate> &RHS) { return *LHS < *RHS; });
1188596f483aSJessica Paquette 
1189596f483aSJessica Paquette   return MaxCandidateLen;
1190596f483aSJessica Paquette }
1191596f483aSJessica Paquette 
1192596f483aSJessica Paquette MachineFunction *
1193596f483aSJessica Paquette MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
1194596f483aSJessica Paquette                                         InstructionMapper &Mapper) {
1195596f483aSJessica Paquette 
1196596f483aSJessica Paquette   // Create the function name. This should be unique. For now, just hash the
1197596f483aSJessica Paquette   // module name and include it in the function name plus the number of this
1198596f483aSJessica Paquette   // function.
1199596f483aSJessica Paquette   std::ostringstream NameStream;
120078681be2SJessica Paquette   NameStream << "OUTLINED_FUNCTION_" << OF.Name;
1201596f483aSJessica Paquette 
1202596f483aSJessica Paquette   // Create the function using an IR-level function.
1203596f483aSJessica Paquette   LLVMContext &C = M.getContext();
1204596f483aSJessica Paquette   Function *F = dyn_cast<Function>(
120559a2d7b9SSerge Guelton       M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C)));
1206596f483aSJessica Paquette   assert(F && "Function was null!");
1207596f483aSJessica Paquette 
1208596f483aSJessica Paquette   // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1209596f483aSJessica Paquette   // which gives us better results when we outline from linkonceodr functions.
1210596f483aSJessica Paquette   F->setLinkage(GlobalValue::PrivateLinkage);
1211596f483aSJessica Paquette   F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1212596f483aSJessica Paquette 
1213596f483aSJessica Paquette   BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1214596f483aSJessica Paquette   IRBuilder<> Builder(EntryBB);
1215596f483aSJessica Paquette   Builder.CreateRetVoid();
1216596f483aSJessica Paquette 
1217596f483aSJessica Paquette   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
12187bda1958SMatthias Braun   MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
1219596f483aSJessica Paquette   MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1220596f483aSJessica Paquette   const TargetSubtargetInfo &STI = MF.getSubtarget();
1221596f483aSJessica Paquette   const TargetInstrInfo &TII = *STI.getInstrInfo();
1222596f483aSJessica Paquette 
1223596f483aSJessica Paquette   // Insert the new function into the module.
1224596f483aSJessica Paquette   MF.insert(MF.begin(), &MBB);
1225596f483aSJessica Paquette 
12264cf187b5SJessica Paquette   TII.insertOutlinerPrologue(MBB, MF, OF.MInfo);
1227596f483aSJessica Paquette 
1228596f483aSJessica Paquette   // Copy over the instructions for the function using the integer mappings in
1229596f483aSJessica Paquette   // its sequence.
1230596f483aSJessica Paquette   for (unsigned Str : OF.Sequence) {
1231596f483aSJessica Paquette     MachineInstr *NewMI =
1232596f483aSJessica Paquette         MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
1233596f483aSJessica Paquette     NewMI->dropMemRefs();
1234596f483aSJessica Paquette 
1235596f483aSJessica Paquette     // Don't keep debug information for outlined instructions.
1236596f483aSJessica Paquette     // FIXME: This means outlined functions are currently undebuggable.
1237596f483aSJessica Paquette     NewMI->setDebugLoc(DebugLoc());
1238596f483aSJessica Paquette     MBB.insert(MBB.end(), NewMI);
1239596f483aSJessica Paquette   }
1240596f483aSJessica Paquette 
12414cf187b5SJessica Paquette   TII.insertOutlinerEpilogue(MBB, MF, OF.MInfo);
1242596f483aSJessica Paquette   return &MF;
1243596f483aSJessica Paquette }
1244596f483aSJessica Paquette 
12459df7fde2SJessica Paquette bool MachineOutliner::outline(
12469df7fde2SJessica Paquette     Module &M, const ArrayRef<std::shared_ptr<Candidate>> &CandidateList,
12479df7fde2SJessica Paquette     std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper) {
1248596f483aSJessica Paquette 
1249596f483aSJessica Paquette   bool OutlinedSomething = false;
1250596f483aSJessica Paquette   // Replace the candidates with calls to their respective outlined functions.
12519df7fde2SJessica Paquette   for (const std::shared_ptr<Candidate> &Cptr : CandidateList) {
12529df7fde2SJessica Paquette     Candidate &C = *Cptr;
1253596f483aSJessica Paquette     // Was the candidate removed during pruneOverlaps?
1254596f483aSJessica Paquette     if (!C.InCandidateList)
1255596f483aSJessica Paquette       continue;
1256596f483aSJessica Paquette 
1257596f483aSJessica Paquette     // If not, then look at its OutlinedFunction.
1258596f483aSJessica Paquette     OutlinedFunction &OF = FunctionList[C.FunctionIdx];
1259596f483aSJessica Paquette 
1260596f483aSJessica Paquette     // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
126185af63d0SJessica Paquette     if (OF.getBenefit() < 1)
1262596f483aSJessica Paquette       continue;
1263596f483aSJessica Paquette 
1264596f483aSJessica Paquette     // If not, then outline it.
12651934fd2cSJessica Paquette     assert(C.getStartIdx() < Mapper.InstrList.size() &&
1266c9ab4c26SJessica Paquette            "Candidate out of bounds!");
12671934fd2cSJessica Paquette     MachineBasicBlock *MBB = (*Mapper.InstrList[C.getStartIdx()]).getParent();
12681934fd2cSJessica Paquette     MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.getStartIdx()];
12691934fd2cSJessica Paquette     unsigned EndIdx = C.getEndIdx();
1270596f483aSJessica Paquette 
1271596f483aSJessica Paquette     assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
1272596f483aSJessica Paquette     MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1273596f483aSJessica Paquette     assert(EndIt != MBB->end() && "EndIt out of bounds!");
1274596f483aSJessica Paquette 
1275596f483aSJessica Paquette     EndIt++; // Erase needs one past the end index.
1276596f483aSJessica Paquette 
1277596f483aSJessica Paquette     // Does this candidate have a function yet?
1278acffa28cSJessica Paquette     if (!OF.MF) {
1279596f483aSJessica Paquette       OF.MF = createOutlinedFunction(M, OF, Mapper);
12809df7fde2SJessica Paquette       MachineBasicBlock *MBB = &*OF.MF->begin();
12819df7fde2SJessica Paquette 
12829df7fde2SJessica Paquette       // Output a remark telling the user that an outlined function was created,
12839df7fde2SJessica Paquette       // and explaining where it came from.
12849df7fde2SJessica Paquette       MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr);
12859df7fde2SJessica Paquette       MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction",
12869df7fde2SJessica Paquette                                   MBB->findDebugLoc(MBB->begin()), MBB);
12879df7fde2SJessica Paquette       R << "Saved " << NV("OutliningBenefit", OF.getBenefit())
12889df7fde2SJessica Paquette         << " instructions by "
12899df7fde2SJessica Paquette         << "outlining " << NV("Length", OF.Sequence.size()) << " instructions "
12909df7fde2SJessica Paquette         << "from " << NV("NumOccurrences", OF.getOccurrenceCount())
12919df7fde2SJessica Paquette         << " locations. "
12929df7fde2SJessica Paquette         << "(Found at: ";
12939df7fde2SJessica Paquette 
12949df7fde2SJessica Paquette       // Tell the user the other places the candidate was found.
12959df7fde2SJessica Paquette       for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) {
12969df7fde2SJessica Paquette 
12979df7fde2SJessica Paquette         // Skip over things that were pruned.
12989df7fde2SJessica Paquette         if (!OF.Candidates[i]->InCandidateList)
12999df7fde2SJessica Paquette           continue;
13009df7fde2SJessica Paquette 
13019df7fde2SJessica Paquette         R << NV(
13029df7fde2SJessica Paquette             (Twine("StartLoc") + Twine(i)).str(),
13039df7fde2SJessica Paquette             Mapper.InstrList[OF.Candidates[i]->getStartIdx()]->getDebugLoc());
13049df7fde2SJessica Paquette         if (i != e - 1)
13059df7fde2SJessica Paquette           R << ", ";
13069df7fde2SJessica Paquette       }
13079df7fde2SJessica Paquette 
13089df7fde2SJessica Paquette       R << ")";
13099df7fde2SJessica Paquette 
13109df7fde2SJessica Paquette       MORE.emit(R);
1311acffa28cSJessica Paquette       FunctionsCreated++;
1312acffa28cSJessica Paquette     }
1313596f483aSJessica Paquette 
1314596f483aSJessica Paquette     MachineFunction *MF = OF.MF;
1315596f483aSJessica Paquette     const TargetSubtargetInfo &STI = MF->getSubtarget();
1316596f483aSJessica Paquette     const TargetInstrInfo &TII = *STI.getInstrInfo();
1317596f483aSJessica Paquette 
1318596f483aSJessica Paquette     // Insert a call to the new function and erase the old sequence.
13194cf187b5SJessica Paquette     TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.MInfo);
13201934fd2cSJessica Paquette     StartIt = Mapper.InstrList[C.getStartIdx()];
1321596f483aSJessica Paquette     MBB->erase(StartIt, EndIt);
1322596f483aSJessica Paquette 
1323596f483aSJessica Paquette     OutlinedSomething = true;
1324596f483aSJessica Paquette 
1325596f483aSJessica Paquette     // Statistics.
1326596f483aSJessica Paquette     NumOutlined++;
1327596f483aSJessica Paquette   }
1328596f483aSJessica Paquette 
132978681be2SJessica Paquette   DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
1330596f483aSJessica Paquette 
1331596f483aSJessica Paquette   return OutlinedSomething;
1332596f483aSJessica Paquette }
1333596f483aSJessica Paquette 
1334596f483aSJessica Paquette bool MachineOutliner::runOnModule(Module &M) {
1335596f483aSJessica Paquette 
1336596f483aSJessica Paquette   // Is there anything in the module at all?
1337596f483aSJessica Paquette   if (M.empty())
1338596f483aSJessica Paquette     return false;
1339596f483aSJessica Paquette 
1340596f483aSJessica Paquette   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
134178681be2SJessica Paquette   const TargetSubtargetInfo &STI =
134278681be2SJessica Paquette       MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget();
1343596f483aSJessica Paquette   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
1344596f483aSJessica Paquette   const TargetInstrInfo *TII = STI.getInstrInfo();
1345596f483aSJessica Paquette 
1346596f483aSJessica Paquette   InstructionMapper Mapper;
1347596f483aSJessica Paquette 
1348596f483aSJessica Paquette   // Build instruction mappings for each function in the module.
1349596f483aSJessica Paquette   for (Function &F : M) {
13507bda1958SMatthias Braun     MachineFunction &MF = MMI.getOrCreateMachineFunction(F);
1351596f483aSJessica Paquette 
1352596f483aSJessica Paquette     // Is the function empty? Safe to outline from?
135313593843SJessica Paquette     if (F.empty() ||
135413593843SJessica Paquette         !TII->isFunctionSafeToOutlineFrom(MF, OutlineFromLinkOnceODRs))
1355596f483aSJessica Paquette       continue;
1356596f483aSJessica Paquette 
1357596f483aSJessica Paquette     // If it is, look at each MachineBasicBlock in the function.
1358596f483aSJessica Paquette     for (MachineBasicBlock &MBB : MF) {
1359596f483aSJessica Paquette 
1360*757e1203SJessica Paquette       // Is there anything in MBB? And is it the target of an indirect branch?
1361*757e1203SJessica Paquette       if (MBB.empty() || MBB.hasAddressTaken())
1362596f483aSJessica Paquette         continue;
1363596f483aSJessica Paquette 
1364596f483aSJessica Paquette       // If yes, map it.
1365596f483aSJessica Paquette       Mapper.convertToUnsignedVec(MBB, *TRI, *TII);
1366596f483aSJessica Paquette     }
1367596f483aSJessica Paquette   }
1368596f483aSJessica Paquette 
1369596f483aSJessica Paquette   // Construct a suffix tree, use it to find candidates, and then outline them.
1370596f483aSJessica Paquette   SuffixTree ST(Mapper.UnsignedVec);
13719df7fde2SJessica Paquette   std::vector<std::shared_ptr<Candidate>> CandidateList;
1372596f483aSJessica Paquette   std::vector<OutlinedFunction> FunctionList;
1373596f483aSJessica Paquette 
1374acffa28cSJessica Paquette   // Find all of the outlining candidates.
1375596f483aSJessica Paquette   unsigned MaxCandidateLen =
1376c984e213SJessica Paquette       buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII);
1377596f483aSJessica Paquette 
1378acffa28cSJessica Paquette   // Remove candidates that overlap with other candidates.
1379809d708bSJessica Paquette   pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII);
1380acffa28cSJessica Paquette 
1381acffa28cSJessica Paquette   // Outline each of the candidates and return true if something was outlined.
1382596f483aSJessica Paquette   return outline(M, CandidateList, FunctionList, Mapper);
1383596f483aSJessica Paquette }
1384