1*596f483aSJessica Paquette //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2*596f483aSJessica Paquette // 3*596f483aSJessica Paquette // The LLVM Compiler Infrastructure 4*596f483aSJessica Paquette // 5*596f483aSJessica Paquette // This file is distributed under the University of Illinois Open Source 6*596f483aSJessica Paquette // License. See LICENSE.TXT for details. 7*596f483aSJessica Paquette // 8*596f483aSJessica Paquette //===----------------------------------------------------------------------===// 9*596f483aSJessica Paquette /// 10*596f483aSJessica Paquette /// \file 11*596f483aSJessica Paquette /// Replaces repeated sequences of instructions with function calls. 12*596f483aSJessica Paquette /// 13*596f483aSJessica Paquette /// This works by placing every instruction from every basic block in a 14*596f483aSJessica Paquette /// suffix tree, and repeatedly querying that tree for repeated sequences of 15*596f483aSJessica Paquette /// instructions. If a sequence of instructions appears often, then it ought 16*596f483aSJessica Paquette /// to be beneficial to pull out into a function. 17*596f483aSJessica Paquette /// 18*596f483aSJessica Paquette /// This was originally presented at the 2016 LLVM Developers' Meeting in the 19*596f483aSJessica Paquette /// talk "Reducing Code Size Using Outlining". For a high-level overview of 20*596f483aSJessica Paquette /// how this pass works, the talk is available on YouTube at 21*596f483aSJessica Paquette /// 22*596f483aSJessica Paquette /// https://www.youtube.com/watch?v=yorld-WSOeU 23*596f483aSJessica Paquette /// 24*596f483aSJessica Paquette /// The slides for the talk are available at 25*596f483aSJessica Paquette /// 26*596f483aSJessica Paquette /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 27*596f483aSJessica Paquette /// 28*596f483aSJessica Paquette /// The talk provides an overview of how the outliner finds candidates and 29*596f483aSJessica Paquette /// ultimately outlines them. It describes how the main data structure for this 30*596f483aSJessica Paquette /// pass, the suffix tree, is queried and purged for candidates. It also gives 31*596f483aSJessica Paquette /// a simplified suffix tree construction algorithm for suffix trees based off 32*596f483aSJessica Paquette /// of the algorithm actually used here, Ukkonen's algorithm. 33*596f483aSJessica Paquette /// 34*596f483aSJessica Paquette /// For the original RFC for this pass, please see 35*596f483aSJessica Paquette /// 36*596f483aSJessica Paquette /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 37*596f483aSJessica Paquette /// 38*596f483aSJessica Paquette /// For more information on the suffix tree data structure, please see 39*596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 40*596f483aSJessica Paquette /// 41*596f483aSJessica Paquette //===----------------------------------------------------------------------===// 42*596f483aSJessica Paquette #include "llvm/ADT/DenseMap.h" 43*596f483aSJessica Paquette #include "llvm/ADT/Statistic.h" 44*596f483aSJessica Paquette #include "llvm/ADT/Twine.h" 45*596f483aSJessica Paquette #include "llvm/CodeGen/MachineFrameInfo.h" 46*596f483aSJessica Paquette #include "llvm/CodeGen/MachineFunction.h" 47*596f483aSJessica Paquette #include "llvm/CodeGen/MachineInstrBuilder.h" 48*596f483aSJessica Paquette #include "llvm/CodeGen/MachineModuleInfo.h" 49*596f483aSJessica Paquette #include "llvm/CodeGen/Passes.h" 50*596f483aSJessica Paquette #include "llvm/IR/IRBuilder.h" 51*596f483aSJessica Paquette #include "llvm/Support/Allocator.h" 52*596f483aSJessica Paquette #include "llvm/Support/Debug.h" 53*596f483aSJessica Paquette #include "llvm/Support/raw_ostream.h" 54*596f483aSJessica Paquette #include "llvm/Target/TargetInstrInfo.h" 55*596f483aSJessica Paquette #include "llvm/Target/TargetMachine.h" 56*596f483aSJessica Paquette #include "llvm/Target/TargetRegisterInfo.h" 57*596f483aSJessica Paquette #include "llvm/Target/TargetSubtargetInfo.h" 58*596f483aSJessica Paquette #include <functional> 59*596f483aSJessica Paquette #include <map> 60*596f483aSJessica Paquette #include <sstream> 61*596f483aSJessica Paquette #include <tuple> 62*596f483aSJessica Paquette #include <vector> 63*596f483aSJessica Paquette 64*596f483aSJessica Paquette #define DEBUG_TYPE "machine-outliner" 65*596f483aSJessica Paquette 66*596f483aSJessica Paquette using namespace llvm; 67*596f483aSJessica Paquette 68*596f483aSJessica Paquette STATISTIC(NumOutlined, "Number of candidates outlined"); 69*596f483aSJessica Paquette STATISTIC(FunctionsCreated, "Number of functions created"); 70*596f483aSJessica Paquette 71*596f483aSJessica Paquette namespace { 72*596f483aSJessica Paquette 73*596f483aSJessica Paquette /// Represents an undefined index in the suffix tree. 74*596f483aSJessica Paquette const size_t EmptyIdx = -1; 75*596f483aSJessica Paquette 76*596f483aSJessica Paquette /// A node in a suffix tree which represents a substring or suffix. 77*596f483aSJessica Paquette /// 78*596f483aSJessica Paquette /// Each node has either no children or at least two children, with the root 79*596f483aSJessica Paquette /// being a exception in the empty tree. 80*596f483aSJessica Paquette /// 81*596f483aSJessica Paquette /// Children are represented as a map between unsigned integers and nodes. If 82*596f483aSJessica Paquette /// a node N has a child M on unsigned integer k, then the mapping represented 83*596f483aSJessica Paquette /// by N is a proper prefix of the mapping represented by M. Note that this, 84*596f483aSJessica Paquette /// although similar to a trie is somewhat different: each node stores a full 85*596f483aSJessica Paquette /// substring of the full mapping rather than a single character state. 86*596f483aSJessica Paquette /// 87*596f483aSJessica Paquette /// Each internal node contains a pointer to the internal node representing 88*596f483aSJessica Paquette /// the same string, but with the first character chopped off. This is stored 89*596f483aSJessica Paquette /// in \p Link. Each leaf node stores the start index of its respective 90*596f483aSJessica Paquette /// suffix in \p SuffixIdx. 91*596f483aSJessica Paquette struct SuffixTreeNode { 92*596f483aSJessica Paquette 93*596f483aSJessica Paquette /// The children of this node. 94*596f483aSJessica Paquette /// 95*596f483aSJessica Paquette /// A child existing on an unsigned integer implies that from the mapping 96*596f483aSJessica Paquette /// represented by the current node, there is a way to reach another 97*596f483aSJessica Paquette /// mapping by tacking that character on the end of the current string. 98*596f483aSJessica Paquette DenseMap<unsigned, SuffixTreeNode *> Children; 99*596f483aSJessica Paquette 100*596f483aSJessica Paquette /// A flag set to false if the node has been pruned from the tree. 101*596f483aSJessica Paquette bool IsInTree = true; 102*596f483aSJessica Paquette 103*596f483aSJessica Paquette /// The start index of this node's substring in the main string. 104*596f483aSJessica Paquette size_t StartIdx = EmptyIdx; 105*596f483aSJessica Paquette 106*596f483aSJessica Paquette /// The end index of this node's substring in the main string. 107*596f483aSJessica Paquette /// 108*596f483aSJessica Paquette /// Every leaf node must have its \p EndIdx incremented at the end of every 109*596f483aSJessica Paquette /// step in the construction algorithm. To avoid having to update O(N) 110*596f483aSJessica Paquette /// nodes individually at the end of every step, the end index is stored 111*596f483aSJessica Paquette /// as a pointer. 112*596f483aSJessica Paquette size_t *EndIdx = nullptr; 113*596f483aSJessica Paquette 114*596f483aSJessica Paquette /// For leaves, the start index of the suffix represented by this node. 115*596f483aSJessica Paquette /// 116*596f483aSJessica Paquette /// For all other nodes, this is ignored. 117*596f483aSJessica Paquette size_t SuffixIdx = EmptyIdx; 118*596f483aSJessica Paquette 119*596f483aSJessica Paquette /// \brief For internal nodes, a pointer to the internal node representing 120*596f483aSJessica Paquette /// the same sequence with the first character chopped off. 121*596f483aSJessica Paquette /// 122*596f483aSJessica Paquette /// This has two major purposes in the suffix tree. The first is as a 123*596f483aSJessica Paquette /// shortcut in Ukkonen's construction algorithm. One of the things that 124*596f483aSJessica Paquette /// Ukkonen's algorithm does to achieve linear-time construction is 125*596f483aSJessica Paquette /// keep track of which node the next insert should be at. This makes each 126*596f483aSJessica Paquette /// insert O(1), and there are a total of O(N) inserts. The suffix link 127*596f483aSJessica Paquette /// helps with inserting children of internal nodes. 128*596f483aSJessica Paquette /// 129*596f483aSJessica Paquette /// Say we add a child to an internal node with associated mapping S. The 130*596f483aSJessica Paquette /// next insertion must be at the node representing S - its first character. 131*596f483aSJessica Paquette /// This is given by the way that we iteratively build the tree in Ukkonen's 132*596f483aSJessica Paquette /// algorithm. The main idea is to look at the suffixes of each prefix in the 133*596f483aSJessica Paquette /// string, starting with the longest suffix of the prefix, and ending with 134*596f483aSJessica Paquette /// the shortest. Therefore, if we keep pointers between such nodes, we can 135*596f483aSJessica Paquette /// move to the next insertion point in O(1) time. If we don't, then we'd 136*596f483aSJessica Paquette /// have to query from the root, which takes O(N) time. This would make the 137*596f483aSJessica Paquette /// construction algorithm O(N^2) rather than O(N). 138*596f483aSJessica Paquette /// 139*596f483aSJessica Paquette /// The suffix link is also used during the tree pruning process to let us 140*596f483aSJessica Paquette /// quickly throw out a bunch of potential overlaps. Say we have a sequence 141*596f483aSJessica Paquette /// S we want to outline. Then each of its suffixes contribute to at least 142*596f483aSJessica Paquette /// one overlapping case. Therefore, we can follow the suffix links 143*596f483aSJessica Paquette /// starting at the node associated with S to the root and "delete" those 144*596f483aSJessica Paquette /// nodes, save for the root. For each candidate, this removes 145*596f483aSJessica Paquette /// O(|candidate|) overlaps from the search space. We don't actually 146*596f483aSJessica Paquette /// completely invalidate these nodes though; doing that is far too 147*596f483aSJessica Paquette /// aggressive. Consider the following pathological string: 148*596f483aSJessica Paquette /// 149*596f483aSJessica Paquette /// 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 150*596f483aSJessica Paquette /// 151*596f483aSJessica Paquette /// If we, for the sake of example, outlined 1 2 3, then we would throw 152*596f483aSJessica Paquette /// out all instances of 2 3. This isn't desirable. To get around this, 153*596f483aSJessica Paquette /// when we visit a link node, we decrement its occurrence count by the 154*596f483aSJessica Paquette /// number of sequences we outlined in the current step. In the pathological 155*596f483aSJessica Paquette /// example, the 2 3 node would have an occurrence count of 8, while the 156*596f483aSJessica Paquette /// 1 2 3 node would have an occurrence count of 2. Thus, the 2 3 node 157*596f483aSJessica Paquette /// would survive to the next round allowing us to outline the extra 158*596f483aSJessica Paquette /// instances of 2 3. 159*596f483aSJessica Paquette SuffixTreeNode *Link = nullptr; 160*596f483aSJessica Paquette 161*596f483aSJessica Paquette /// The parent of this node. Every node except for the root has a parent. 162*596f483aSJessica Paquette SuffixTreeNode *Parent = nullptr; 163*596f483aSJessica Paquette 164*596f483aSJessica Paquette /// The number of times this node's string appears in the tree. 165*596f483aSJessica Paquette /// 166*596f483aSJessica Paquette /// This is equal to the number of leaf children of the string. It represents 167*596f483aSJessica Paquette /// the number of suffixes that the node's string is a prefix of. 168*596f483aSJessica Paquette size_t OccurrenceCount = 0; 169*596f483aSJessica Paquette 170*596f483aSJessica Paquette /// Returns true if this node is a leaf. 171*596f483aSJessica Paquette bool isLeaf() const { return SuffixIdx != EmptyIdx; } 172*596f483aSJessica Paquette 173*596f483aSJessica Paquette /// Returns true if this node is the root of its owning \p SuffixTree. 174*596f483aSJessica Paquette bool isRoot() const { return StartIdx == EmptyIdx; } 175*596f483aSJessica Paquette 176*596f483aSJessica Paquette /// Return the number of elements in the substring associated with this node. 177*596f483aSJessica Paquette size_t size() const { 178*596f483aSJessica Paquette 179*596f483aSJessica Paquette // Is it the root? If so, it's the empty string so return 0. 180*596f483aSJessica Paquette if (isRoot()) 181*596f483aSJessica Paquette return 0; 182*596f483aSJessica Paquette 183*596f483aSJessica Paquette assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 184*596f483aSJessica Paquette 185*596f483aSJessica Paquette // Size = the number of elements in the string. 186*596f483aSJessica Paquette // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 187*596f483aSJessica Paquette return *EndIdx - StartIdx + 1; 188*596f483aSJessica Paquette } 189*596f483aSJessica Paquette 190*596f483aSJessica Paquette SuffixTreeNode(size_t StartIdx, size_t *EndIdx, SuffixTreeNode *Link, 191*596f483aSJessica Paquette SuffixTreeNode *Parent) 192*596f483aSJessica Paquette : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} 193*596f483aSJessica Paquette 194*596f483aSJessica Paquette SuffixTreeNode() {} 195*596f483aSJessica Paquette }; 196*596f483aSJessica Paquette 197*596f483aSJessica Paquette /// A data structure for fast substring queries. 198*596f483aSJessica Paquette /// 199*596f483aSJessica Paquette /// Suffix trees represent the suffixes of their input strings in their leaves. 200*596f483aSJessica Paquette /// A suffix tree is a type of compressed trie structure where each node 201*596f483aSJessica Paquette /// represents an entire substring rather than a single character. Each leaf 202*596f483aSJessica Paquette /// of the tree is a suffix. 203*596f483aSJessica Paquette /// 204*596f483aSJessica Paquette /// A suffix tree can be seen as a type of state machine where each state is a 205*596f483aSJessica Paquette /// substring of the full string. The tree is structured so that, for a string 206*596f483aSJessica Paquette /// of length N, there are exactly N leaves in the tree. This structure allows 207*596f483aSJessica Paquette /// us to quickly find repeated substrings of the input string. 208*596f483aSJessica Paquette /// 209*596f483aSJessica Paquette /// In this implementation, a "string" is a vector of unsigned integers. 210*596f483aSJessica Paquette /// These integers may result from hashing some data type. A suffix tree can 211*596f483aSJessica Paquette /// contain 1 or many strings, which can then be queried as one large string. 212*596f483aSJessica Paquette /// 213*596f483aSJessica Paquette /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 214*596f483aSJessica Paquette /// suffix tree construction. Ukkonen's algorithm is explained in more detail 215*596f483aSJessica Paquette /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 216*596f483aSJessica Paquette /// paper is available at 217*596f483aSJessica Paquette /// 218*596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 219*596f483aSJessica Paquette class SuffixTree { 220*596f483aSJessica Paquette private: 221*596f483aSJessica Paquette /// Each element is an integer representing an instruction in the module. 222*596f483aSJessica Paquette ArrayRef<unsigned> Str; 223*596f483aSJessica Paquette 224*596f483aSJessica Paquette /// Maintains each node in the tree. 225*596f483aSJessica Paquette BumpPtrAllocator NodeAllocator; 226*596f483aSJessica Paquette 227*596f483aSJessica Paquette /// The root of the suffix tree. 228*596f483aSJessica Paquette /// 229*596f483aSJessica Paquette /// The root represents the empty string. It is maintained by the 230*596f483aSJessica Paquette /// \p NodeAllocator like every other node in the tree. 231*596f483aSJessica Paquette SuffixTreeNode *Root = nullptr; 232*596f483aSJessica Paquette 233*596f483aSJessica Paquette /// Stores each leaf in the tree for better pruning. 234*596f483aSJessica Paquette std::vector<SuffixTreeNode *> LeafVector; 235*596f483aSJessica Paquette 236*596f483aSJessica Paquette /// Maintains the end indices of the internal nodes in the tree. 237*596f483aSJessica Paquette /// 238*596f483aSJessica Paquette /// Each internal node is guaranteed to never have its end index change 239*596f483aSJessica Paquette /// during the construction algorithm; however, leaves must be updated at 240*596f483aSJessica Paquette /// every step. Therefore, we need to store leaf end indices by reference 241*596f483aSJessica Paquette /// to avoid updating O(N) leaves at every step of construction. Thus, 242*596f483aSJessica Paquette /// every internal node must be allocated its own end index. 243*596f483aSJessica Paquette BumpPtrAllocator InternalEndIdxAllocator; 244*596f483aSJessica Paquette 245*596f483aSJessica Paquette /// The end index of each leaf in the tree. 246*596f483aSJessica Paquette size_t LeafEndIdx = -1; 247*596f483aSJessica Paquette 248*596f483aSJessica Paquette /// \brief Helper struct which keeps track of the next insertion point in 249*596f483aSJessica Paquette /// Ukkonen's algorithm. 250*596f483aSJessica Paquette struct ActiveState { 251*596f483aSJessica Paquette /// The next node to insert at. 252*596f483aSJessica Paquette SuffixTreeNode *Node; 253*596f483aSJessica Paquette 254*596f483aSJessica Paquette /// The index of the first character in the substring currently being added. 255*596f483aSJessica Paquette size_t Idx = EmptyIdx; 256*596f483aSJessica Paquette 257*596f483aSJessica Paquette /// The length of the substring we have to add at the current step. 258*596f483aSJessica Paquette size_t Len = 0; 259*596f483aSJessica Paquette }; 260*596f483aSJessica Paquette 261*596f483aSJessica Paquette /// \brief The point the next insertion will take place at in the 262*596f483aSJessica Paquette /// construction algorithm. 263*596f483aSJessica Paquette ActiveState Active; 264*596f483aSJessica Paquette 265*596f483aSJessica Paquette /// Allocate a leaf node and add it to the tree. 266*596f483aSJessica Paquette /// 267*596f483aSJessica Paquette /// \param Parent The parent of this node. 268*596f483aSJessica Paquette /// \param StartIdx The start index of this node's associated string. 269*596f483aSJessica Paquette /// \param Edge The label on the edge leaving \p Parent to this node. 270*596f483aSJessica Paquette /// 271*596f483aSJessica Paquette /// \returns A pointer to the allocated leaf node. 272*596f483aSJessica Paquette SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, size_t StartIdx, 273*596f483aSJessica Paquette unsigned Edge) { 274*596f483aSJessica Paquette 275*596f483aSJessica Paquette assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 276*596f483aSJessica Paquette 277*596f483aSJessica Paquette SuffixTreeNode *N = new (NodeAllocator) SuffixTreeNode(StartIdx, 278*596f483aSJessica Paquette &LeafEndIdx, 279*596f483aSJessica Paquette nullptr, 280*596f483aSJessica Paquette &Parent); 281*596f483aSJessica Paquette Parent.Children[Edge] = N; 282*596f483aSJessica Paquette 283*596f483aSJessica Paquette return N; 284*596f483aSJessica Paquette } 285*596f483aSJessica Paquette 286*596f483aSJessica Paquette /// Allocate an internal node and add it to the tree. 287*596f483aSJessica Paquette /// 288*596f483aSJessica Paquette /// \param Parent The parent of this node. Only null when allocating the root. 289*596f483aSJessica Paquette /// \param StartIdx The start index of this node's associated string. 290*596f483aSJessica Paquette /// \param EndIdx The end index of this node's associated string. 291*596f483aSJessica Paquette /// \param Edge The label on the edge leaving \p Parent to this node. 292*596f483aSJessica Paquette /// 293*596f483aSJessica Paquette /// \returns A pointer to the allocated internal node. 294*596f483aSJessica Paquette SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, size_t StartIdx, 295*596f483aSJessica Paquette size_t EndIdx, unsigned Edge) { 296*596f483aSJessica Paquette 297*596f483aSJessica Paquette assert(StartIdx <= EndIdx && "String can't start after it ends!"); 298*596f483aSJessica Paquette assert(!(!Parent && StartIdx != EmptyIdx) && 299*596f483aSJessica Paquette "Non-root internal nodes must have parents!"); 300*596f483aSJessica Paquette 301*596f483aSJessica Paquette size_t *E = new (InternalEndIdxAllocator) size_t(EndIdx); 302*596f483aSJessica Paquette SuffixTreeNode *N = new (NodeAllocator) SuffixTreeNode(StartIdx, 303*596f483aSJessica Paquette E, 304*596f483aSJessica Paquette Root, 305*596f483aSJessica Paquette Parent); 306*596f483aSJessica Paquette if (Parent) 307*596f483aSJessica Paquette Parent->Children[Edge] = N; 308*596f483aSJessica Paquette 309*596f483aSJessica Paquette return N; 310*596f483aSJessica Paquette } 311*596f483aSJessica Paquette 312*596f483aSJessica Paquette /// \brief Set the suffix indices of the leaves to the start indices of their 313*596f483aSJessica Paquette /// respective suffixes. Also stores each leaf in \p LeafVector at its 314*596f483aSJessica Paquette /// respective suffix index. 315*596f483aSJessica Paquette /// 316*596f483aSJessica Paquette /// \param[in] CurrNode The node currently being visited. 317*596f483aSJessica Paquette /// \param CurrIdx The current index of the string being visited. 318*596f483aSJessica Paquette void setSuffixIndices(SuffixTreeNode &CurrNode, size_t CurrIdx) { 319*596f483aSJessica Paquette 320*596f483aSJessica Paquette bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 321*596f483aSJessica Paquette 322*596f483aSJessica Paquette // Traverse the tree depth-first. 323*596f483aSJessica Paquette for (auto &ChildPair : CurrNode.Children) { 324*596f483aSJessica Paquette assert(ChildPair.second && "Node had a null child!"); 325*596f483aSJessica Paquette setSuffixIndices(*ChildPair.second, 326*596f483aSJessica Paquette CurrIdx + ChildPair.second->size()); 327*596f483aSJessica Paquette } 328*596f483aSJessica Paquette 329*596f483aSJessica Paquette // Is this node a leaf? 330*596f483aSJessica Paquette if (IsLeaf) { 331*596f483aSJessica Paquette // If yes, give it a suffix index and bump its parent's occurrence count. 332*596f483aSJessica Paquette CurrNode.SuffixIdx = Str.size() - CurrIdx; 333*596f483aSJessica Paquette assert(CurrNode.Parent && "CurrNode had no parent!"); 334*596f483aSJessica Paquette CurrNode.Parent->OccurrenceCount++; 335*596f483aSJessica Paquette 336*596f483aSJessica Paquette // Store the leaf in the leaf vector for pruning later. 337*596f483aSJessica Paquette LeafVector[CurrNode.SuffixIdx] = &CurrNode; 338*596f483aSJessica Paquette } 339*596f483aSJessica Paquette } 340*596f483aSJessica Paquette 341*596f483aSJessica Paquette /// \brief Construct the suffix tree for the prefix of the input ending at 342*596f483aSJessica Paquette /// \p EndIdx. 343*596f483aSJessica Paquette /// 344*596f483aSJessica Paquette /// Used to construct the full suffix tree iteratively. At the end of each 345*596f483aSJessica Paquette /// step, the constructed suffix tree is either a valid suffix tree, or a 346*596f483aSJessica Paquette /// suffix tree with implicit suffixes. At the end of the final step, the 347*596f483aSJessica Paquette /// suffix tree is a valid tree. 348*596f483aSJessica Paquette /// 349*596f483aSJessica Paquette /// \param EndIdx The end index of the current prefix in the main string. 350*596f483aSJessica Paquette /// \param SuffixesToAdd The number of suffixes that must be added 351*596f483aSJessica Paquette /// to complete the suffix tree at the current phase. 352*596f483aSJessica Paquette /// 353*596f483aSJessica Paquette /// \returns The number of suffixes that have not been added at the end of 354*596f483aSJessica Paquette /// this step. 355*596f483aSJessica Paquette unsigned extend(size_t EndIdx, size_t SuffixesToAdd) { 356*596f483aSJessica Paquette SuffixTreeNode *NeedsLink = nullptr; 357*596f483aSJessica Paquette 358*596f483aSJessica Paquette while (SuffixesToAdd > 0) { 359*596f483aSJessica Paquette 360*596f483aSJessica Paquette // Are we waiting to add anything other than just the last character? 361*596f483aSJessica Paquette if (Active.Len == 0) { 362*596f483aSJessica Paquette // If not, then say the active index is the end index. 363*596f483aSJessica Paquette Active.Idx = EndIdx; 364*596f483aSJessica Paquette } 365*596f483aSJessica Paquette 366*596f483aSJessica Paquette assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 367*596f483aSJessica Paquette 368*596f483aSJessica Paquette // The first character in the current substring we're looking at. 369*596f483aSJessica Paquette unsigned FirstChar = Str[Active.Idx]; 370*596f483aSJessica Paquette 371*596f483aSJessica Paquette // Have we inserted anything starting with FirstChar at the current node? 372*596f483aSJessica Paquette if (Active.Node->Children.count(FirstChar) == 0) { 373*596f483aSJessica Paquette // If not, then we can just insert a leaf and move too the next step. 374*596f483aSJessica Paquette insertLeaf(*Active.Node, EndIdx, FirstChar); 375*596f483aSJessica Paquette 376*596f483aSJessica Paquette // The active node is an internal node, and we visited it, so it must 377*596f483aSJessica Paquette // need a link if it doesn't have one. 378*596f483aSJessica Paquette if (NeedsLink) { 379*596f483aSJessica Paquette NeedsLink->Link = Active.Node; 380*596f483aSJessica Paquette NeedsLink = nullptr; 381*596f483aSJessica Paquette } 382*596f483aSJessica Paquette } else { 383*596f483aSJessica Paquette // There's a match with FirstChar, so look for the point in the tree to 384*596f483aSJessica Paquette // insert a new node. 385*596f483aSJessica Paquette SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 386*596f483aSJessica Paquette 387*596f483aSJessica Paquette size_t SubstringLen = NextNode->size(); 388*596f483aSJessica Paquette 389*596f483aSJessica Paquette // Is the current suffix we're trying to insert longer than the size of 390*596f483aSJessica Paquette // the child we want to move to? 391*596f483aSJessica Paquette if (Active.Len >= SubstringLen) { 392*596f483aSJessica Paquette // If yes, then consume the characters we've seen and move to the next 393*596f483aSJessica Paquette // node. 394*596f483aSJessica Paquette Active.Idx += SubstringLen; 395*596f483aSJessica Paquette Active.Len -= SubstringLen; 396*596f483aSJessica Paquette Active.Node = NextNode; 397*596f483aSJessica Paquette continue; 398*596f483aSJessica Paquette } 399*596f483aSJessica Paquette 400*596f483aSJessica Paquette // Otherwise, the suffix we're trying to insert must be contained in the 401*596f483aSJessica Paquette // next node we want to move to. 402*596f483aSJessica Paquette unsigned LastChar = Str[EndIdx]; 403*596f483aSJessica Paquette 404*596f483aSJessica Paquette // Is the string we're trying to insert a substring of the next node? 405*596f483aSJessica Paquette if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 406*596f483aSJessica Paquette // If yes, then we're done for this step. Remember our insertion point 407*596f483aSJessica Paquette // and move to the next end index. At this point, we have an implicit 408*596f483aSJessica Paquette // suffix tree. 409*596f483aSJessica Paquette if (NeedsLink && !Active.Node->isRoot()) { 410*596f483aSJessica Paquette NeedsLink->Link = Active.Node; 411*596f483aSJessica Paquette NeedsLink = nullptr; 412*596f483aSJessica Paquette } 413*596f483aSJessica Paquette 414*596f483aSJessica Paquette Active.Len++; 415*596f483aSJessica Paquette break; 416*596f483aSJessica Paquette } 417*596f483aSJessica Paquette 418*596f483aSJessica Paquette // The string we're trying to insert isn't a substring of the next node, 419*596f483aSJessica Paquette // but matches up to a point. Split the node. 420*596f483aSJessica Paquette // 421*596f483aSJessica Paquette // For example, say we ended our search at a node n and we're trying to 422*596f483aSJessica Paquette // insert ABD. Then we'll create a new node s for AB, reduce n to just 423*596f483aSJessica Paquette // representing C, and insert a new leaf node l to represent d. This 424*596f483aSJessica Paquette // allows us to ensure that if n was a leaf, it remains a leaf. 425*596f483aSJessica Paquette // 426*596f483aSJessica Paquette // | ABC ---split---> | AB 427*596f483aSJessica Paquette // n s 428*596f483aSJessica Paquette // C / \ D 429*596f483aSJessica Paquette // n l 430*596f483aSJessica Paquette 431*596f483aSJessica Paquette // The node s from the diagram 432*596f483aSJessica Paquette SuffixTreeNode *SplitNode = 433*596f483aSJessica Paquette insertInternalNode(Active.Node, 434*596f483aSJessica Paquette NextNode->StartIdx, 435*596f483aSJessica Paquette NextNode->StartIdx + Active.Len - 1, 436*596f483aSJessica Paquette FirstChar); 437*596f483aSJessica Paquette 438*596f483aSJessica Paquette // Insert the new node representing the new substring into the tree as 439*596f483aSJessica Paquette // a child of the split node. This is the node l from the diagram. 440*596f483aSJessica Paquette insertLeaf(*SplitNode, EndIdx, LastChar); 441*596f483aSJessica Paquette 442*596f483aSJessica Paquette // Make the old node a child of the split node and update its start 443*596f483aSJessica Paquette // index. This is the node n from the diagram. 444*596f483aSJessica Paquette NextNode->StartIdx += Active.Len; 445*596f483aSJessica Paquette NextNode->Parent = SplitNode; 446*596f483aSJessica Paquette SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 447*596f483aSJessica Paquette 448*596f483aSJessica Paquette // SplitNode is an internal node, update the suffix link. 449*596f483aSJessica Paquette if (NeedsLink) 450*596f483aSJessica Paquette NeedsLink->Link = SplitNode; 451*596f483aSJessica Paquette 452*596f483aSJessica Paquette NeedsLink = SplitNode; 453*596f483aSJessica Paquette } 454*596f483aSJessica Paquette 455*596f483aSJessica Paquette // We've added something new to the tree, so there's one less suffix to 456*596f483aSJessica Paquette // add. 457*596f483aSJessica Paquette SuffixesToAdd--; 458*596f483aSJessica Paquette 459*596f483aSJessica Paquette if (Active.Node->isRoot()) { 460*596f483aSJessica Paquette if (Active.Len > 0) { 461*596f483aSJessica Paquette Active.Len--; 462*596f483aSJessica Paquette Active.Idx = EndIdx - SuffixesToAdd + 1; 463*596f483aSJessica Paquette } 464*596f483aSJessica Paquette } else { 465*596f483aSJessica Paquette // Start the next phase at the next smallest suffix. 466*596f483aSJessica Paquette Active.Node = Active.Node->Link; 467*596f483aSJessica Paquette } 468*596f483aSJessica Paquette } 469*596f483aSJessica Paquette 470*596f483aSJessica Paquette return SuffixesToAdd; 471*596f483aSJessica Paquette } 472*596f483aSJessica Paquette 473*596f483aSJessica Paquette /// \brief Return the start index and length of a string which maximizes a 474*596f483aSJessica Paquette /// benefit function by traversing the tree depth-first. 475*596f483aSJessica Paquette /// 476*596f483aSJessica Paquette /// Helper function for \p bestRepeatedSubstring. 477*596f483aSJessica Paquette /// 478*596f483aSJessica Paquette /// \param CurrNode The node currently being visited. 479*596f483aSJessica Paquette /// \param CurrLen Length of the current string. 480*596f483aSJessica Paquette /// \param[out] BestLen Length of the most beneficial substring. 481*596f483aSJessica Paquette /// \param[out] MaxBenefit Benefit of the most beneficial substring. 482*596f483aSJessica Paquette /// \param[out] BestStartIdx Start index of the most beneficial substring. 483*596f483aSJessica Paquette /// \param BenefitFn The function the query should return a maximum string 484*596f483aSJessica Paquette /// for. 485*596f483aSJessica Paquette void findBest(SuffixTreeNode &CurrNode, size_t CurrLen, size_t &BestLen, 486*596f483aSJessica Paquette size_t &MaxBenefit, size_t &BestStartIdx, 487*596f483aSJessica Paquette const std::function<unsigned(SuffixTreeNode &, size_t CurrLen)> 488*596f483aSJessica Paquette &BenefitFn) { 489*596f483aSJessica Paquette 490*596f483aSJessica Paquette if (!CurrNode.IsInTree) 491*596f483aSJessica Paquette return; 492*596f483aSJessica Paquette 493*596f483aSJessica Paquette // Can we traverse further down the tree? 494*596f483aSJessica Paquette if (!CurrNode.isLeaf()) { 495*596f483aSJessica Paquette // If yes, continue the traversal. 496*596f483aSJessica Paquette for (auto &ChildPair : CurrNode.Children) { 497*596f483aSJessica Paquette if (ChildPair.second && ChildPair.second->IsInTree) 498*596f483aSJessica Paquette findBest(*ChildPair.second, CurrLen + ChildPair.second->size(), 499*596f483aSJessica Paquette BestLen, MaxBenefit, BestStartIdx, BenefitFn); 500*596f483aSJessica Paquette } 501*596f483aSJessica Paquette } else { 502*596f483aSJessica Paquette // We hit a leaf. 503*596f483aSJessica Paquette size_t StringLen = CurrLen - CurrNode.size(); 504*596f483aSJessica Paquette unsigned Benefit = BenefitFn(CurrNode, StringLen); 505*596f483aSJessica Paquette 506*596f483aSJessica Paquette // Did we do better than in the last step? 507*596f483aSJessica Paquette if (Benefit <= MaxBenefit) 508*596f483aSJessica Paquette return; 509*596f483aSJessica Paquette 510*596f483aSJessica Paquette // We did better, so update the best string. 511*596f483aSJessica Paquette MaxBenefit = Benefit; 512*596f483aSJessica Paquette BestStartIdx = CurrNode.SuffixIdx; 513*596f483aSJessica Paquette BestLen = StringLen; 514*596f483aSJessica Paquette } 515*596f483aSJessica Paquette } 516*596f483aSJessica Paquette 517*596f483aSJessica Paquette public: 518*596f483aSJessica Paquette 519*596f483aSJessica Paquette /// \brief Return a substring of the tree with maximum benefit if such a 520*596f483aSJessica Paquette /// substring exists. 521*596f483aSJessica Paquette /// 522*596f483aSJessica Paquette /// Clears the input vector and fills it with a maximum substring or empty. 523*596f483aSJessica Paquette /// 524*596f483aSJessica Paquette /// \param[in,out] Best The most beneficial substring in the tree. Empty 525*596f483aSJessica Paquette /// if it does not exist. 526*596f483aSJessica Paquette /// \param BenefitFn The function the query should return a maximum string 527*596f483aSJessica Paquette /// for. 528*596f483aSJessica Paquette void bestRepeatedSubstring(std::vector<unsigned> &Best, 529*596f483aSJessica Paquette const std::function<unsigned(SuffixTreeNode &, size_t CurrLen)> 530*596f483aSJessica Paquette &BenefitFn) { 531*596f483aSJessica Paquette Best.clear(); 532*596f483aSJessica Paquette size_t Length = 0; // Becomes the length of the best substring. 533*596f483aSJessica Paquette size_t Benefit = 0; // Becomes the benefit of the best substring. 534*596f483aSJessica Paquette size_t StartIdx = 0; // Becomes the start index of the best substring. 535*596f483aSJessica Paquette findBest(*Root, 0, Length, Benefit, StartIdx, BenefitFn); 536*596f483aSJessica Paquette 537*596f483aSJessica Paquette for (size_t Idx = 0; Idx < Length; Idx++) 538*596f483aSJessica Paquette Best.push_back(Str[Idx + StartIdx]); 539*596f483aSJessica Paquette } 540*596f483aSJessica Paquette 541*596f483aSJessica Paquette /// Perform a depth-first search for \p QueryString on the suffix tree. 542*596f483aSJessica Paquette /// 543*596f483aSJessica Paquette /// \param QueryString The string to search for. 544*596f483aSJessica Paquette /// \param CurrIdx The current index in \p QueryString that is being matched 545*596f483aSJessica Paquette /// against. 546*596f483aSJessica Paquette /// \param CurrNode The suffix tree node being searched in. 547*596f483aSJessica Paquette /// 548*596f483aSJessica Paquette /// \returns A \p SuffixTreeNode that \p QueryString appears in if such a 549*596f483aSJessica Paquette /// node exists, and \p nullptr otherwise. 550*596f483aSJessica Paquette SuffixTreeNode *findString(const std::vector<unsigned> &QueryString, 551*596f483aSJessica Paquette size_t &CurrIdx, SuffixTreeNode *CurrNode) { 552*596f483aSJessica Paquette 553*596f483aSJessica Paquette // The search ended at a nonexistent or pruned node. Quit. 554*596f483aSJessica Paquette if (!CurrNode || !CurrNode->IsInTree) 555*596f483aSJessica Paquette return nullptr; 556*596f483aSJessica Paquette 557*596f483aSJessica Paquette unsigned Edge = QueryString[CurrIdx]; // The edge we want to move on. 558*596f483aSJessica Paquette SuffixTreeNode *NextNode = CurrNode->Children[Edge]; // Next node in query. 559*596f483aSJessica Paquette 560*596f483aSJessica Paquette if (CurrNode->isRoot()) { 561*596f483aSJessica Paquette // If we're at the root we have to check if there's a child, and move to 562*596f483aSJessica Paquette // that child. Don't consume the character since \p Root represents the 563*596f483aSJessica Paquette // empty string. 564*596f483aSJessica Paquette if (NextNode && NextNode->IsInTree) 565*596f483aSJessica Paquette return findString(QueryString, CurrIdx, NextNode); 566*596f483aSJessica Paquette return nullptr; 567*596f483aSJessica Paquette } 568*596f483aSJessica Paquette 569*596f483aSJessica Paquette size_t StrIdx = CurrNode->StartIdx; 570*596f483aSJessica Paquette size_t MaxIdx = QueryString.size(); 571*596f483aSJessica Paquette bool ContinueSearching = false; 572*596f483aSJessica Paquette 573*596f483aSJessica Paquette // Match as far as possible into the string. If there's a mismatch, quit. 574*596f483aSJessica Paquette for (; CurrIdx < MaxIdx; CurrIdx++, StrIdx++) { 575*596f483aSJessica Paquette Edge = QueryString[CurrIdx]; 576*596f483aSJessica Paquette 577*596f483aSJessica Paquette // We matched perfectly, but still have a remainder to search. 578*596f483aSJessica Paquette if (StrIdx > *(CurrNode->EndIdx)) { 579*596f483aSJessica Paquette ContinueSearching = true; 580*596f483aSJessica Paquette break; 581*596f483aSJessica Paquette } 582*596f483aSJessica Paquette 583*596f483aSJessica Paquette if (Edge != Str[StrIdx]) 584*596f483aSJessica Paquette return nullptr; 585*596f483aSJessica Paquette } 586*596f483aSJessica Paquette 587*596f483aSJessica Paquette NextNode = CurrNode->Children[Edge]; 588*596f483aSJessica Paquette 589*596f483aSJessica Paquette // Move to the node which matches what we're looking for and continue 590*596f483aSJessica Paquette // searching. 591*596f483aSJessica Paquette if (ContinueSearching) 592*596f483aSJessica Paquette return findString(QueryString, CurrIdx, NextNode); 593*596f483aSJessica Paquette 594*596f483aSJessica Paquette // We matched perfectly so we're done. 595*596f483aSJessica Paquette return CurrNode; 596*596f483aSJessica Paquette } 597*596f483aSJessica Paquette 598*596f483aSJessica Paquette /// \brief Remove a node from a tree and all nodes representing proper 599*596f483aSJessica Paquette /// suffixes of that node's string. 600*596f483aSJessica Paquette /// 601*596f483aSJessica Paquette /// This is used in the outlining algorithm to reduce the number of 602*596f483aSJessica Paquette /// overlapping candidates 603*596f483aSJessica Paquette /// 604*596f483aSJessica Paquette /// \param N The suffix tree node to start pruning from. 605*596f483aSJessica Paquette /// \param Len The length of the string to be pruned. 606*596f483aSJessica Paquette /// 607*596f483aSJessica Paquette /// \returns True if this candidate didn't overlap with a previously chosen 608*596f483aSJessica Paquette /// candidate. 609*596f483aSJessica Paquette bool prune(SuffixTreeNode *N, size_t Len) { 610*596f483aSJessica Paquette 611*596f483aSJessica Paquette bool NoOverlap = true; 612*596f483aSJessica Paquette std::vector<unsigned> IndicesToPrune; 613*596f483aSJessica Paquette 614*596f483aSJessica Paquette // Look at each of N's children. 615*596f483aSJessica Paquette for (auto &ChildPair : N->Children) { 616*596f483aSJessica Paquette SuffixTreeNode *M = ChildPair.second; 617*596f483aSJessica Paquette 618*596f483aSJessica Paquette // Is this a leaf child? 619*596f483aSJessica Paquette if (M && M->IsInTree && M->isLeaf()) { 620*596f483aSJessica Paquette // Save each leaf child's suffix indices and remove them from the tree. 621*596f483aSJessica Paquette IndicesToPrune.push_back(M->SuffixIdx); 622*596f483aSJessica Paquette M->IsInTree = false; 623*596f483aSJessica Paquette } 624*596f483aSJessica Paquette } 625*596f483aSJessica Paquette 626*596f483aSJessica Paquette // Remove each suffix we have to prune from the tree. Each of these will be 627*596f483aSJessica Paquette // I + some offset for I in IndicesToPrune and some offset < Len. 628*596f483aSJessica Paquette unsigned Offset = 1; 629*596f483aSJessica Paquette for (unsigned CurrentSuffix = 1; CurrentSuffix < Len; CurrentSuffix++) { 630*596f483aSJessica Paquette for (unsigned I : IndicesToPrune) { 631*596f483aSJessica Paquette 632*596f483aSJessica Paquette unsigned PruneIdx = I + Offset; 633*596f483aSJessica Paquette 634*596f483aSJessica Paquette // Is this index actually in the string? 635*596f483aSJessica Paquette if (PruneIdx < LeafVector.size()) { 636*596f483aSJessica Paquette // If yes, we have to try and prune it. 637*596f483aSJessica Paquette // Was the current leaf already pruned by another candidate? 638*596f483aSJessica Paquette if (LeafVector[PruneIdx]->IsInTree) { 639*596f483aSJessica Paquette // If not, prune it. 640*596f483aSJessica Paquette LeafVector[PruneIdx]->IsInTree = false; 641*596f483aSJessica Paquette } else { 642*596f483aSJessica Paquette // If yes, signify that we've found an overlap, but keep pruning. 643*596f483aSJessica Paquette NoOverlap = false; 644*596f483aSJessica Paquette } 645*596f483aSJessica Paquette 646*596f483aSJessica Paquette // Update the parent of the current leaf's occurrence count. 647*596f483aSJessica Paquette SuffixTreeNode *Parent = LeafVector[PruneIdx]->Parent; 648*596f483aSJessica Paquette 649*596f483aSJessica Paquette // Is the parent still in the tree? 650*596f483aSJessica Paquette if (Parent->OccurrenceCount > 0) { 651*596f483aSJessica Paquette Parent->OccurrenceCount--; 652*596f483aSJessica Paquette Parent->IsInTree = (Parent->OccurrenceCount > 1); 653*596f483aSJessica Paquette } 654*596f483aSJessica Paquette } 655*596f483aSJessica Paquette } 656*596f483aSJessica Paquette 657*596f483aSJessica Paquette // Move to the next character in the string. 658*596f483aSJessica Paquette Offset++; 659*596f483aSJessica Paquette } 660*596f483aSJessica Paquette 661*596f483aSJessica Paquette // We know we can never outline anything which starts one index back from 662*596f483aSJessica Paquette // the indices we want to outline. This is because our minimum outlining 663*596f483aSJessica Paquette // length is always 2. 664*596f483aSJessica Paquette for (unsigned I : IndicesToPrune) { 665*596f483aSJessica Paquette if (I > 0) { 666*596f483aSJessica Paquette 667*596f483aSJessica Paquette unsigned PruneIdx = I-1; 668*596f483aSJessica Paquette SuffixTreeNode *Parent = LeafVector[PruneIdx]->Parent; 669*596f483aSJessica Paquette 670*596f483aSJessica Paquette // Was the leaf one index back from I already pruned? 671*596f483aSJessica Paquette if (LeafVector[PruneIdx]->IsInTree) { 672*596f483aSJessica Paquette // If not, prune it. 673*596f483aSJessica Paquette LeafVector[PruneIdx]->IsInTree = false; 674*596f483aSJessica Paquette } else { 675*596f483aSJessica Paquette // If yes, signify that we've found an overlap, but keep pruning. 676*596f483aSJessica Paquette NoOverlap = false; 677*596f483aSJessica Paquette } 678*596f483aSJessica Paquette 679*596f483aSJessica Paquette // Update the parent of the current leaf's occurrence count. 680*596f483aSJessica Paquette if (Parent->OccurrenceCount > 0) { 681*596f483aSJessica Paquette Parent->OccurrenceCount--; 682*596f483aSJessica Paquette Parent->IsInTree = (Parent->OccurrenceCount > 1); 683*596f483aSJessica Paquette } 684*596f483aSJessica Paquette } 685*596f483aSJessica Paquette } 686*596f483aSJessica Paquette 687*596f483aSJessica Paquette // Finally, remove N from the tree and set its occurrence count to 0. 688*596f483aSJessica Paquette N->IsInTree = false; 689*596f483aSJessica Paquette N->OccurrenceCount = 0; 690*596f483aSJessica Paquette 691*596f483aSJessica Paquette return NoOverlap; 692*596f483aSJessica Paquette } 693*596f483aSJessica Paquette 694*596f483aSJessica Paquette /// \brief Find each occurrence of of a string in \p QueryString and prune 695*596f483aSJessica Paquette /// their nodes. 696*596f483aSJessica Paquette /// 697*596f483aSJessica Paquette /// \param QueryString The string to search for. 698*596f483aSJessica Paquette /// \param[out] Occurrences The start indices of each occurrence. 699*596f483aSJessica Paquette /// 700*596f483aSJessica Paquette /// \returns Whether or not the occurrence overlaps with a previous candidate. 701*596f483aSJessica Paquette bool findOccurrencesAndPrune(const std::vector<unsigned> &QueryString, 702*596f483aSJessica Paquette std::vector<size_t> &Occurrences) { 703*596f483aSJessica Paquette size_t Dummy = 0; 704*596f483aSJessica Paquette SuffixTreeNode *N = findString(QueryString, Dummy, Root); 705*596f483aSJessica Paquette 706*596f483aSJessica Paquette if (!N || !N->IsInTree) 707*596f483aSJessica Paquette return false; 708*596f483aSJessica Paquette 709*596f483aSJessica Paquette // If this is an internal node, occurrences are the number of leaf children 710*596f483aSJessica Paquette // of the node. 711*596f483aSJessica Paquette for (auto &ChildPair : N->Children) { 712*596f483aSJessica Paquette SuffixTreeNode *M = ChildPair.second; 713*596f483aSJessica Paquette 714*596f483aSJessica Paquette // Is it a leaf? If so, we have an occurrence. 715*596f483aSJessica Paquette if (M && M->IsInTree && M->isLeaf()) 716*596f483aSJessica Paquette Occurrences.push_back(M->SuffixIdx); 717*596f483aSJessica Paquette } 718*596f483aSJessica Paquette 719*596f483aSJessica Paquette // If we're in a leaf, then this node is the only occurrence. 720*596f483aSJessica Paquette if (N->isLeaf()) 721*596f483aSJessica Paquette Occurrences.push_back(N->SuffixIdx); 722*596f483aSJessica Paquette 723*596f483aSJessica Paquette return prune(N, QueryString.size()); 724*596f483aSJessica Paquette } 725*596f483aSJessica Paquette 726*596f483aSJessica Paquette /// Construct a suffix tree from a sequence of unsigned integers. 727*596f483aSJessica Paquette /// 728*596f483aSJessica Paquette /// \param Str The string to construct the suffix tree for. 729*596f483aSJessica Paquette SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 730*596f483aSJessica Paquette Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 731*596f483aSJessica Paquette Root->IsInTree = true; 732*596f483aSJessica Paquette Active.Node = Root; 733*596f483aSJessica Paquette LeafVector = std::vector<SuffixTreeNode*>(Str.size()); 734*596f483aSJessica Paquette 735*596f483aSJessica Paquette // Keep track of the number of suffixes we have to add of the current 736*596f483aSJessica Paquette // prefix. 737*596f483aSJessica Paquette size_t SuffixesToAdd = 0; 738*596f483aSJessica Paquette Active.Node = Root; 739*596f483aSJessica Paquette 740*596f483aSJessica Paquette // Construct the suffix tree iteratively on each prefix of the string. 741*596f483aSJessica Paquette // PfxEndIdx is the end index of the current prefix. 742*596f483aSJessica Paquette // End is one past the last element in the string. 743*596f483aSJessica Paquette for (size_t PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) { 744*596f483aSJessica Paquette SuffixesToAdd++; 745*596f483aSJessica Paquette LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 746*596f483aSJessica Paquette SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 747*596f483aSJessica Paquette } 748*596f483aSJessica Paquette 749*596f483aSJessica Paquette // Set the suffix indices of each leaf. 750*596f483aSJessica Paquette assert(Root && "Root node can't be nullptr!"); 751*596f483aSJessica Paquette setSuffixIndices(*Root, 0); 752*596f483aSJessica Paquette } 753*596f483aSJessica Paquette }; 754*596f483aSJessica Paquette 755*596f483aSJessica Paquette /// \brief An individual sequence of instructions to be replaced with a call to 756*596f483aSJessica Paquette /// an outlined function. 757*596f483aSJessica Paquette struct Candidate { 758*596f483aSJessica Paquette 759*596f483aSJessica Paquette /// Set to false if the candidate overlapped with another candidate. 760*596f483aSJessica Paquette bool InCandidateList = true; 761*596f483aSJessica Paquette 762*596f483aSJessica Paquette /// The start index of this \p Candidate. 763*596f483aSJessica Paquette size_t StartIdx; 764*596f483aSJessica Paquette 765*596f483aSJessica Paquette /// The number of instructions in this \p Candidate. 766*596f483aSJessica Paquette size_t Len; 767*596f483aSJessica Paquette 768*596f483aSJessica Paquette /// The index of this \p Candidate's \p OutlinedFunction in the list of 769*596f483aSJessica Paquette /// \p OutlinedFunctions. 770*596f483aSJessica Paquette size_t FunctionIdx; 771*596f483aSJessica Paquette 772*596f483aSJessica Paquette Candidate(size_t StartIdx, size_t Len, size_t FunctionIdx) 773*596f483aSJessica Paquette : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {} 774*596f483aSJessica Paquette 775*596f483aSJessica Paquette Candidate() {} 776*596f483aSJessica Paquette 777*596f483aSJessica Paquette /// \brief Used to ensure that \p Candidates are outlined in an order that 778*596f483aSJessica Paquette /// preserves the start and end indices of other \p Candidates. 779*596f483aSJessica Paquette bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; } 780*596f483aSJessica Paquette }; 781*596f483aSJessica Paquette 782*596f483aSJessica Paquette /// \brief The information necessary to create an outlined function for some 783*596f483aSJessica Paquette /// class of candidate. 784*596f483aSJessica Paquette struct OutlinedFunction { 785*596f483aSJessica Paquette 786*596f483aSJessica Paquette /// The actual outlined function created. 787*596f483aSJessica Paquette /// This is initialized after we go through and create the actual function. 788*596f483aSJessica Paquette MachineFunction *MF = nullptr; 789*596f483aSJessica Paquette 790*596f483aSJessica Paquette /// A number assigned to this function which appears at the end of its name. 791*596f483aSJessica Paquette size_t Name; 792*596f483aSJessica Paquette 793*596f483aSJessica Paquette /// The number of times that this function has appeared. 794*596f483aSJessica Paquette size_t OccurrenceCount = 0; 795*596f483aSJessica Paquette 796*596f483aSJessica Paquette /// \brief The sequence of integers corresponding to the instructions in this 797*596f483aSJessica Paquette /// function. 798*596f483aSJessica Paquette std::vector<unsigned> Sequence; 799*596f483aSJessica Paquette 800*596f483aSJessica Paquette /// The number of instructions this function would save. 801*596f483aSJessica Paquette unsigned Benefit = 0; 802*596f483aSJessica Paquette 803*596f483aSJessica Paquette OutlinedFunction(size_t Name, size_t OccurrenceCount, 804*596f483aSJessica Paquette const std::vector<unsigned> &Sequence, 805*596f483aSJessica Paquette unsigned Benefit) 806*596f483aSJessica Paquette : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence), 807*596f483aSJessica Paquette Benefit(Benefit) 808*596f483aSJessica Paquette {} 809*596f483aSJessica Paquette }; 810*596f483aSJessica Paquette 811*596f483aSJessica Paquette /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings. 812*596f483aSJessica Paquette struct InstructionMapper { 813*596f483aSJessica Paquette 814*596f483aSJessica Paquette /// \brief The next available integer to assign to a \p MachineInstr that 815*596f483aSJessica Paquette /// cannot be outlined. 816*596f483aSJessica Paquette /// 817*596f483aSJessica Paquette /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 818*596f483aSJessica Paquette unsigned IllegalInstrNumber = -3; 819*596f483aSJessica Paquette 820*596f483aSJessica Paquette /// \brief The next available integer to assign to a \p MachineInstr that can 821*596f483aSJessica Paquette /// be outlined. 822*596f483aSJessica Paquette unsigned LegalInstrNumber = 0; 823*596f483aSJessica Paquette 824*596f483aSJessica Paquette /// Correspondence from \p MachineInstrs to unsigned integers. 825*596f483aSJessica Paquette DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 826*596f483aSJessica Paquette InstructionIntegerMap; 827*596f483aSJessica Paquette 828*596f483aSJessica Paquette /// Corresponcence from unsigned integers to \p MachineInstrs. 829*596f483aSJessica Paquette /// Inverse of \p InstructionIntegerMap. 830*596f483aSJessica Paquette DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; 831*596f483aSJessica Paquette 832*596f483aSJessica Paquette /// The vector of unsigned integers that the module is mapped to. 833*596f483aSJessica Paquette std::vector<unsigned> UnsignedVec; 834*596f483aSJessica Paquette 835*596f483aSJessica Paquette /// \brief Stores the location of the instruction associated with the integer 836*596f483aSJessica Paquette /// at index i in \p UnsignedVec for each index i. 837*596f483aSJessica Paquette std::vector<MachineBasicBlock::iterator> InstrList; 838*596f483aSJessica Paquette 839*596f483aSJessica Paquette /// \brief Maps \p *It to a legal integer. 840*596f483aSJessica Paquette /// 841*596f483aSJessica Paquette /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, 842*596f483aSJessica Paquette /// \p IntegerInstructionMap, and \p LegalInstrNumber. 843*596f483aSJessica Paquette /// 844*596f483aSJessica Paquette /// \returns The integer that \p *It was mapped to. 845*596f483aSJessica Paquette unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { 846*596f483aSJessica Paquette 847*596f483aSJessica Paquette // Get the integer for this instruction or give it the current 848*596f483aSJessica Paquette // LegalInstrNumber. 849*596f483aSJessica Paquette InstrList.push_back(It); 850*596f483aSJessica Paquette MachineInstr &MI = *It; 851*596f483aSJessica Paquette bool WasInserted; 852*596f483aSJessica Paquette DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 853*596f483aSJessica Paquette ResultIt; 854*596f483aSJessica Paquette std::tie(ResultIt, WasInserted) = 855*596f483aSJessica Paquette InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 856*596f483aSJessica Paquette unsigned MINumber = ResultIt->second; 857*596f483aSJessica Paquette 858*596f483aSJessica Paquette // There was an insertion. 859*596f483aSJessica Paquette if (WasInserted) { 860*596f483aSJessica Paquette LegalInstrNumber++; 861*596f483aSJessica Paquette IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); 862*596f483aSJessica Paquette } 863*596f483aSJessica Paquette 864*596f483aSJessica Paquette UnsignedVec.push_back(MINumber); 865*596f483aSJessica Paquette 866*596f483aSJessica Paquette // Make sure we don't overflow or use any integers reserved by the DenseMap. 867*596f483aSJessica Paquette if (LegalInstrNumber >= IllegalInstrNumber) 868*596f483aSJessica Paquette report_fatal_error("Instruction mapping overflow!"); 869*596f483aSJessica Paquette 870*596f483aSJessica Paquette assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() 871*596f483aSJessica Paquette && "Tried to assign DenseMap tombstone or empty key to instruction."); 872*596f483aSJessica Paquette assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() 873*596f483aSJessica Paquette && "Tried to assign DenseMap tombstone or empty key to instruction."); 874*596f483aSJessica Paquette 875*596f483aSJessica Paquette return MINumber; 876*596f483aSJessica Paquette } 877*596f483aSJessica Paquette 878*596f483aSJessica Paquette /// Maps \p *It to an illegal integer. 879*596f483aSJessica Paquette /// 880*596f483aSJessica Paquette /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. 881*596f483aSJessica Paquette /// 882*596f483aSJessica Paquette /// \returns The integer that \p *It was mapped to. 883*596f483aSJessica Paquette unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { 884*596f483aSJessica Paquette unsigned MINumber = IllegalInstrNumber; 885*596f483aSJessica Paquette 886*596f483aSJessica Paquette InstrList.push_back(It); 887*596f483aSJessica Paquette UnsignedVec.push_back(IllegalInstrNumber); 888*596f483aSJessica Paquette IllegalInstrNumber--; 889*596f483aSJessica Paquette 890*596f483aSJessica Paquette assert(LegalInstrNumber < IllegalInstrNumber && 891*596f483aSJessica Paquette "Instruction mapping overflow!"); 892*596f483aSJessica Paquette 893*596f483aSJessica Paquette assert(IllegalInstrNumber != 894*596f483aSJessica Paquette DenseMapInfo<unsigned>::getEmptyKey() && 895*596f483aSJessica Paquette "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 896*596f483aSJessica Paquette 897*596f483aSJessica Paquette assert(IllegalInstrNumber != 898*596f483aSJessica Paquette DenseMapInfo<unsigned>::getTombstoneKey() && 899*596f483aSJessica Paquette "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 900*596f483aSJessica Paquette 901*596f483aSJessica Paquette return MINumber; 902*596f483aSJessica Paquette } 903*596f483aSJessica Paquette 904*596f483aSJessica Paquette /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 905*596f483aSJessica Paquette /// and appends it to \p UnsignedVec and \p InstrList. 906*596f483aSJessica Paquette /// 907*596f483aSJessica Paquette /// Two instructions are assigned the same integer if they are identical. 908*596f483aSJessica Paquette /// If an instruction is deemed unsafe to outline, then it will be assigned an 909*596f483aSJessica Paquette /// unique integer. The resulting mapping is placed into a suffix tree and 910*596f483aSJessica Paquette /// queried for candidates. 911*596f483aSJessica Paquette /// 912*596f483aSJessica Paquette /// \param MBB The \p MachineBasicBlock to be translated into integers. 913*596f483aSJessica Paquette /// \param TRI \p TargetRegisterInfo for the module. 914*596f483aSJessica Paquette /// \param TII \p TargetInstrInfo for the module. 915*596f483aSJessica Paquette void convertToUnsignedVec(MachineBasicBlock &MBB, 916*596f483aSJessica Paquette const TargetRegisterInfo &TRI, 917*596f483aSJessica Paquette const TargetInstrInfo &TII) { 918*596f483aSJessica Paquette for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et; 919*596f483aSJessica Paquette It++) { 920*596f483aSJessica Paquette 921*596f483aSJessica Paquette // Keep track of where this instruction is in the module. 922*596f483aSJessica Paquette switch(TII.getOutliningType(*It)) { 923*596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Illegal: 924*596f483aSJessica Paquette mapToIllegalUnsigned(It); 925*596f483aSJessica Paquette break; 926*596f483aSJessica Paquette 927*596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Legal: 928*596f483aSJessica Paquette mapToLegalUnsigned(It); 929*596f483aSJessica Paquette break; 930*596f483aSJessica Paquette 931*596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Invisible: 932*596f483aSJessica Paquette break; 933*596f483aSJessica Paquette } 934*596f483aSJessica Paquette } 935*596f483aSJessica Paquette 936*596f483aSJessica Paquette // After we're done every insertion, uniquely terminate this part of the 937*596f483aSJessica Paquette // "string". This makes sure we won't match across basic block or function 938*596f483aSJessica Paquette // boundaries since the "end" is encoded uniquely and thus appears in no 939*596f483aSJessica Paquette // repeated substring. 940*596f483aSJessica Paquette InstrList.push_back(MBB.end()); 941*596f483aSJessica Paquette UnsignedVec.push_back(IllegalInstrNumber); 942*596f483aSJessica Paquette IllegalInstrNumber--; 943*596f483aSJessica Paquette } 944*596f483aSJessica Paquette 945*596f483aSJessica Paquette InstructionMapper() { 946*596f483aSJessica Paquette // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 947*596f483aSJessica Paquette // changed. 948*596f483aSJessica Paquette assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 949*596f483aSJessica Paquette "DenseMapInfo<unsigned>'s empty key isn't -1!"); 950*596f483aSJessica Paquette assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 951*596f483aSJessica Paquette "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 952*596f483aSJessica Paquette } 953*596f483aSJessica Paquette }; 954*596f483aSJessica Paquette 955*596f483aSJessica Paquette /// \brief An interprocedural pass which finds repeated sequences of 956*596f483aSJessica Paquette /// instructions and replaces them with calls to functions. 957*596f483aSJessica Paquette /// 958*596f483aSJessica Paquette /// Each instruction is mapped to an unsigned integer and placed in a string. 959*596f483aSJessica Paquette /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 960*596f483aSJessica Paquette /// is then repeatedly queried for repeated sequences of instructions. Each 961*596f483aSJessica Paquette /// non-overlapping repeated sequence is then placed in its own 962*596f483aSJessica Paquette /// \p MachineFunction and each instance is then replaced with a call to that 963*596f483aSJessica Paquette /// function. 964*596f483aSJessica Paquette struct MachineOutliner : public ModulePass { 965*596f483aSJessica Paquette 966*596f483aSJessica Paquette static char ID; 967*596f483aSJessica Paquette 968*596f483aSJessica Paquette StringRef getPassName() const override { return "Machine Outliner"; } 969*596f483aSJessica Paquette 970*596f483aSJessica Paquette void getAnalysisUsage(AnalysisUsage &AU) const override { 971*596f483aSJessica Paquette AU.addRequired<MachineModuleInfo>(); 972*596f483aSJessica Paquette AU.addPreserved<MachineModuleInfo>(); 973*596f483aSJessica Paquette AU.setPreservesAll(); 974*596f483aSJessica Paquette ModulePass::getAnalysisUsage(AU); 975*596f483aSJessica Paquette } 976*596f483aSJessica Paquette 977*596f483aSJessica Paquette MachineOutliner() : ModulePass(ID) { 978*596f483aSJessica Paquette initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 979*596f483aSJessica Paquette } 980*596f483aSJessica Paquette 981*596f483aSJessica Paquette /// \brief Replace the sequences of instructions represented by the 982*596f483aSJessica Paquette /// \p Candidates in \p CandidateList with calls to \p MachineFunctions 983*596f483aSJessica Paquette /// described in \p FunctionList. 984*596f483aSJessica Paquette /// 985*596f483aSJessica Paquette /// \param M The module we are outlining from. 986*596f483aSJessica Paquette /// \param CandidateList A list of candidates to be outlined. 987*596f483aSJessica Paquette /// \param FunctionList A list of functions to be inserted into the module. 988*596f483aSJessica Paquette /// \param Mapper Contains the instruction mappings for the module. 989*596f483aSJessica Paquette bool outline(Module &M, const ArrayRef<Candidate> &CandidateList, 990*596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 991*596f483aSJessica Paquette InstructionMapper &Mapper); 992*596f483aSJessica Paquette 993*596f483aSJessica Paquette /// Creates a function for \p OF and inserts it into the module. 994*596f483aSJessica Paquette MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, 995*596f483aSJessica Paquette InstructionMapper &Mapper); 996*596f483aSJessica Paquette 997*596f483aSJessica Paquette /// Find potential outlining candidates and store them in \p CandidateList. 998*596f483aSJessica Paquette /// 999*596f483aSJessica Paquette /// For each type of potential candidate, also build an \p OutlinedFunction 1000*596f483aSJessica Paquette /// struct containing the information to build the function for that 1001*596f483aSJessica Paquette /// candidate. 1002*596f483aSJessica Paquette /// 1003*596f483aSJessica Paquette /// \param[out] CandidateList Filled with outlining candidates for the module. 1004*596f483aSJessica Paquette /// \param[out] FunctionList Filled with functions corresponding to each type 1005*596f483aSJessica Paquette /// of \p Candidate. 1006*596f483aSJessica Paquette /// \param ST The suffix tree for the module. 1007*596f483aSJessica Paquette /// \param TII TargetInstrInfo for the module. 1008*596f483aSJessica Paquette /// 1009*596f483aSJessica Paquette /// \returns The length of the longest candidate found. 0 if there are none. 1010*596f483aSJessica Paquette unsigned buildCandidateList(std::vector<Candidate> &CandidateList, 1011*596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 1012*596f483aSJessica Paquette SuffixTree &ST, const TargetInstrInfo &TII); 1013*596f483aSJessica Paquette 1014*596f483aSJessica Paquette /// \brief Remove any overlapping candidates that weren't handled by the 1015*596f483aSJessica Paquette /// suffix tree's pruning method. 1016*596f483aSJessica Paquette /// 1017*596f483aSJessica Paquette /// Pruning from the suffix tree doesn't necessarily remove all overlaps. 1018*596f483aSJessica Paquette /// If a short candidate is chosen for outlining, then a longer candidate 1019*596f483aSJessica Paquette /// which has that short candidate as a suffix is chosen, the tree's pruning 1020*596f483aSJessica Paquette /// method will not find it. Thus, we need to prune before outlining as well. 1021*596f483aSJessica Paquette /// 1022*596f483aSJessica Paquette /// \param[in,out] CandidateList A list of outlining candidates. 1023*596f483aSJessica Paquette /// \param[in,out] FunctionList A list of functions to be outlined. 1024*596f483aSJessica Paquette /// \param MaxCandidateLen The length of the longest candidate. 1025*596f483aSJessica Paquette /// \param TII TargetInstrInfo for the module. 1026*596f483aSJessica Paquette void pruneOverlaps(std::vector<Candidate> &CandidateList, 1027*596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 1028*596f483aSJessica Paquette unsigned MaxCandidateLen, 1029*596f483aSJessica Paquette const TargetInstrInfo &TII); 1030*596f483aSJessica Paquette 1031*596f483aSJessica Paquette /// Construct a suffix tree on the instructions in \p M and outline repeated 1032*596f483aSJessica Paquette /// strings from that tree. 1033*596f483aSJessica Paquette bool runOnModule(Module &M) override; 1034*596f483aSJessica Paquette }; 1035*596f483aSJessica Paquette 1036*596f483aSJessica Paquette } // Anonymous namespace. 1037*596f483aSJessica Paquette 1038*596f483aSJessica Paquette char MachineOutliner::ID = 0; 1039*596f483aSJessica Paquette 1040*596f483aSJessica Paquette namespace llvm { 1041*596f483aSJessica Paquette ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); } 1042*596f483aSJessica Paquette } 1043*596f483aSJessica Paquette 1044*596f483aSJessica Paquette INITIALIZE_PASS(MachineOutliner, "machine-outliner", 1045*596f483aSJessica Paquette "Machine Function Outliner", false, false) 1046*596f483aSJessica Paquette 1047*596f483aSJessica Paquette void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList, 1048*596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 1049*596f483aSJessica Paquette unsigned MaxCandidateLen, 1050*596f483aSJessica Paquette const TargetInstrInfo &TII) { 1051*596f483aSJessica Paquette 1052*596f483aSJessica Paquette // Check for overlaps in the range. This is O(n^2) worst case, but we can 1053*596f483aSJessica Paquette // alleviate that somewhat by bounding our search space using the start 1054*596f483aSJessica Paquette // index of our first candidate and the maximum distance an overlapping 1055*596f483aSJessica Paquette // candidate could have from the first candidate. 1056*596f483aSJessica Paquette for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; 1057*596f483aSJessica Paquette It++) { 1058*596f483aSJessica Paquette Candidate &C1 = *It; 1059*596f483aSJessica Paquette OutlinedFunction &F1 = FunctionList[C1.FunctionIdx]; 1060*596f483aSJessica Paquette 1061*596f483aSJessica Paquette // If we removed this candidate, skip it. 1062*596f483aSJessica Paquette if (!C1.InCandidateList) 1063*596f483aSJessica Paquette continue; 1064*596f483aSJessica Paquette 1065*596f483aSJessica Paquette // If the candidate's function isn't good to outline anymore, then 1066*596f483aSJessica Paquette // remove the candidate and skip it. 1067*596f483aSJessica Paquette if (F1.OccurrenceCount < 2 || F1.Benefit < 1) { 1068*596f483aSJessica Paquette C1.InCandidateList = false; 1069*596f483aSJessica Paquette continue; 1070*596f483aSJessica Paquette } 1071*596f483aSJessica Paquette 1072*596f483aSJessica Paquette // The minimum start index of any candidate that could overlap with this 1073*596f483aSJessica Paquette // one. 1074*596f483aSJessica Paquette unsigned FarthestPossibleIdx = 0; 1075*596f483aSJessica Paquette 1076*596f483aSJessica Paquette // Either the index is 0, or it's at most MaxCandidateLen indices away. 1077*596f483aSJessica Paquette if (C1.StartIdx > MaxCandidateLen) 1078*596f483aSJessica Paquette FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen; 1079*596f483aSJessica Paquette 1080*596f483aSJessica Paquette // Compare against the other candidates in the list. 1081*596f483aSJessica Paquette // This is at most MaxCandidateLen/2 other candidates. 1082*596f483aSJessica Paquette // This is because each candidate has to be at least 2 indices away. 1083*596f483aSJessica Paquette // = O(n * MaxCandidateLen/2) comparisons 1084*596f483aSJessica Paquette // 1085*596f483aSJessica Paquette // On average, the maximum length of a candidate is quite small; a fraction 1086*596f483aSJessica Paquette // of the total module length in terms of instructions. If the maximum 1087*596f483aSJessica Paquette // candidate length is large, then there are fewer possible candidates to 1088*596f483aSJessica Paquette // compare against in the first place. 1089*596f483aSJessica Paquette for (auto Sit = It + 1; Sit != Et; Sit++) { 1090*596f483aSJessica Paquette Candidate &C2 = *Sit; 1091*596f483aSJessica Paquette OutlinedFunction &F2 = FunctionList[C2.FunctionIdx]; 1092*596f483aSJessica Paquette 1093*596f483aSJessica Paquette // Is this candidate too far away to overlap? 1094*596f483aSJessica Paquette // NOTE: This will be true in 1095*596f483aSJessica Paquette // O(max(FarthestPossibleIdx/2, #Candidates remaining)) steps 1096*596f483aSJessica Paquette // for every candidate. 1097*596f483aSJessica Paquette if (C2.StartIdx < FarthestPossibleIdx) 1098*596f483aSJessica Paquette break; 1099*596f483aSJessica Paquette 1100*596f483aSJessica Paquette // Did we already remove this candidate in a previous step? 1101*596f483aSJessica Paquette if (!C2.InCandidateList) 1102*596f483aSJessica Paquette continue; 1103*596f483aSJessica Paquette 1104*596f483aSJessica Paquette // Is the function beneficial to outline? 1105*596f483aSJessica Paquette if (F2.OccurrenceCount < 2 || F2.Benefit < 1) { 1106*596f483aSJessica Paquette // If not, remove this candidate and move to the next one. 1107*596f483aSJessica Paquette C2.InCandidateList = false; 1108*596f483aSJessica Paquette continue; 1109*596f483aSJessica Paquette } 1110*596f483aSJessica Paquette 1111*596f483aSJessica Paquette size_t C2End = C2.StartIdx + C2.Len - 1; 1112*596f483aSJessica Paquette 1113*596f483aSJessica Paquette // Do C1 and C2 overlap? 1114*596f483aSJessica Paquette // 1115*596f483aSJessica Paquette // Not overlapping: 1116*596f483aSJessica Paquette // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices 1117*596f483aSJessica Paquette // 1118*596f483aSJessica Paquette // We sorted our candidate list so C2Start <= C1Start. We know that 1119*596f483aSJessica Paquette // C2End > C2Start since each candidate has length >= 2. Therefore, all we 1120*596f483aSJessica Paquette // have to check is C2End < C2Start to see if we overlap. 1121*596f483aSJessica Paquette if (C2End < C1.StartIdx) 1122*596f483aSJessica Paquette continue; 1123*596f483aSJessica Paquette 1124*596f483aSJessica Paquette // C2 overlaps with C1. Because we pruned the tree already, the only way 1125*596f483aSJessica Paquette // this can happen is if C1 is a proper suffix of C2. Thus, we must have 1126*596f483aSJessica Paquette // found C1 first during our query, so it must have benefit greater or 1127*596f483aSJessica Paquette // equal to C2. Greedily pick C1 as the candidate to keep and toss out C2. 1128*596f483aSJessica Paquette DEBUG ( 1129*596f483aSJessica Paquette size_t C1End = C1.StartIdx + C1.Len - 1; 1130*596f483aSJessica Paquette dbgs() << "- Found an overlap to purge.\n"; 1131*596f483aSJessica Paquette dbgs() << "--- C1 :[" << C1.StartIdx << ", " << C1End << "]\n"; 1132*596f483aSJessica Paquette dbgs() << "--- C2 :[" << C2.StartIdx << ", " << C2End << "]\n"; 1133*596f483aSJessica Paquette ); 1134*596f483aSJessica Paquette 1135*596f483aSJessica Paquette // Update the function's occurrence count and benefit to reflec that C2 1136*596f483aSJessica Paquette // is being removed. 1137*596f483aSJessica Paquette F2.OccurrenceCount--; 1138*596f483aSJessica Paquette F2.Benefit = TII.getOutliningBenefit(F2.Sequence.size(), 1139*596f483aSJessica Paquette F2.OccurrenceCount 1140*596f483aSJessica Paquette ); 1141*596f483aSJessica Paquette 1142*596f483aSJessica Paquette // Mark C2 as not in the list. 1143*596f483aSJessica Paquette C2.InCandidateList = false; 1144*596f483aSJessica Paquette 1145*596f483aSJessica Paquette DEBUG ( 1146*596f483aSJessica Paquette dbgs() << "- Removed C2. \n"; 1147*596f483aSJessica Paquette dbgs() << "--- Num fns left for C2: " << F2.OccurrenceCount << "\n"; 1148*596f483aSJessica Paquette dbgs() << "--- C2's benefit: " << F2.Benefit << "\n"; 1149*596f483aSJessica Paquette ); 1150*596f483aSJessica Paquette } 1151*596f483aSJessica Paquette } 1152*596f483aSJessica Paquette } 1153*596f483aSJessica Paquette 1154*596f483aSJessica Paquette unsigned 1155*596f483aSJessica Paquette MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList, 1156*596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 1157*596f483aSJessica Paquette SuffixTree &ST, 1158*596f483aSJessica Paquette const TargetInstrInfo &TII) { 1159*596f483aSJessica Paquette 1160*596f483aSJessica Paquette std::vector<unsigned> CandidateSequence; // Current outlining candidate. 1161*596f483aSJessica Paquette unsigned MaxCandidateLen = 0; // Length of the longest candidate. 1162*596f483aSJessica Paquette 1163*596f483aSJessica Paquette // Function for maximizing query in the suffix tree. 1164*596f483aSJessica Paquette // This allows us to define more fine-grained types of things to outline in 1165*596f483aSJessica Paquette // the target without putting target-specific info in the suffix tree. 1166*596f483aSJessica Paquette auto BenefitFn = [&TII](const SuffixTreeNode &Curr, size_t StringLen) { 1167*596f483aSJessica Paquette 1168*596f483aSJessica Paquette // Any leaf whose parent is the root only has one occurrence. 1169*596f483aSJessica Paquette if (Curr.Parent->isRoot()) 1170*596f483aSJessica Paquette return 0u; 1171*596f483aSJessica Paquette 1172*596f483aSJessica Paquette // Anything with length < 2 will never be beneficial on any target. 1173*596f483aSJessica Paquette if (StringLen < 2) 1174*596f483aSJessica Paquette return 0u; 1175*596f483aSJessica Paquette 1176*596f483aSJessica Paquette size_t Occurrences = Curr.Parent->OccurrenceCount; 1177*596f483aSJessica Paquette 1178*596f483aSJessica Paquette // Anything with fewer than 2 occurrences will never be beneficial on any 1179*596f483aSJessica Paquette // target. 1180*596f483aSJessica Paquette if (Occurrences < 2) 1181*596f483aSJessica Paquette return 0u; 1182*596f483aSJessica Paquette 1183*596f483aSJessica Paquette return TII.getOutliningBenefit(StringLen, Occurrences); 1184*596f483aSJessica Paquette }; 1185*596f483aSJessica Paquette 1186*596f483aSJessica Paquette // Repeatedly query the suffix tree for the substring that maximizes 1187*596f483aSJessica Paquette // BenefitFn. Find the occurrences of that string, prune the tree, and store 1188*596f483aSJessica Paquette // each occurrence as a candidate. 1189*596f483aSJessica Paquette for (ST.bestRepeatedSubstring(CandidateSequence, BenefitFn); 1190*596f483aSJessica Paquette CandidateSequence.size() > 1; 1191*596f483aSJessica Paquette ST.bestRepeatedSubstring(CandidateSequence, BenefitFn)) { 1192*596f483aSJessica Paquette 1193*596f483aSJessica Paquette std::vector<size_t> Occurrences; 1194*596f483aSJessica Paquette 1195*596f483aSJessica Paquette bool GotNonOverlappingCandidate = 1196*596f483aSJessica Paquette ST.findOccurrencesAndPrune(CandidateSequence, Occurrences); 1197*596f483aSJessica Paquette 1198*596f483aSJessica Paquette // Is the candidate we found known to overlap with something we already 1199*596f483aSJessica Paquette // outlined? 1200*596f483aSJessica Paquette if (!GotNonOverlappingCandidate) 1201*596f483aSJessica Paquette continue; 1202*596f483aSJessica Paquette 1203*596f483aSJessica Paquette // Is this candidate the longest so far? 1204*596f483aSJessica Paquette if (CandidateSequence.size() > MaxCandidateLen) 1205*596f483aSJessica Paquette MaxCandidateLen = CandidateSequence.size(); 1206*596f483aSJessica Paquette 1207*596f483aSJessica Paquette // Keep track of the benefit of outlining this candidate in its 1208*596f483aSJessica Paquette // OutlinedFunction. 1209*596f483aSJessica Paquette unsigned FnBenefit = TII.getOutliningBenefit(CandidateSequence.size(), 1210*596f483aSJessica Paquette Occurrences.size() 1211*596f483aSJessica Paquette ); 1212*596f483aSJessica Paquette 1213*596f483aSJessica Paquette assert(FnBenefit > 0 && "Function cannot be unbeneficial!"); 1214*596f483aSJessica Paquette 1215*596f483aSJessica Paquette // Save an OutlinedFunction for this candidate. 1216*596f483aSJessica Paquette FunctionList.emplace_back( 1217*596f483aSJessica Paquette FunctionList.size(), // Number of this function. 1218*596f483aSJessica Paquette Occurrences.size(), // Number of occurrences. 1219*596f483aSJessica Paquette CandidateSequence, // Sequence to outline. 1220*596f483aSJessica Paquette FnBenefit // Instructions saved by outlining this function. 1221*596f483aSJessica Paquette ); 1222*596f483aSJessica Paquette 1223*596f483aSJessica Paquette // Save each of the occurrences of the candidate so we can outline them. 1224*596f483aSJessica Paquette for (size_t &Occ : Occurrences) 1225*596f483aSJessica Paquette CandidateList.emplace_back( 1226*596f483aSJessica Paquette Occ, // Starting idx in that MBB. 1227*596f483aSJessica Paquette CandidateSequence.size(), // Candidate length. 1228*596f483aSJessica Paquette FunctionList.size() - 1 // Idx of the corresponding function. 1229*596f483aSJessica Paquette ); 1230*596f483aSJessica Paquette 1231*596f483aSJessica Paquette FunctionsCreated++; 1232*596f483aSJessica Paquette } 1233*596f483aSJessica Paquette 1234*596f483aSJessica Paquette // Sort the candidates in decending order. This will simplify the outlining 1235*596f483aSJessica Paquette // process when we have to remove the candidates from the mapping by 1236*596f483aSJessica Paquette // allowing us to cut them out without keeping track of an offset. 1237*596f483aSJessica Paquette std::stable_sort(CandidateList.begin(), CandidateList.end()); 1238*596f483aSJessica Paquette 1239*596f483aSJessica Paquette return MaxCandidateLen; 1240*596f483aSJessica Paquette } 1241*596f483aSJessica Paquette 1242*596f483aSJessica Paquette MachineFunction * 1243*596f483aSJessica Paquette MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, 1244*596f483aSJessica Paquette InstructionMapper &Mapper) { 1245*596f483aSJessica Paquette 1246*596f483aSJessica Paquette // Create the function name. This should be unique. For now, just hash the 1247*596f483aSJessica Paquette // module name and include it in the function name plus the number of this 1248*596f483aSJessica Paquette // function. 1249*596f483aSJessica Paquette std::ostringstream NameStream; 1250*596f483aSJessica Paquette NameStream << "OUTLINED_FUNCTION" << "_" << OF.Name; 1251*596f483aSJessica Paquette 1252*596f483aSJessica Paquette // Create the function using an IR-level function. 1253*596f483aSJessica Paquette LLVMContext &C = M.getContext(); 1254*596f483aSJessica Paquette Function *F = dyn_cast<Function>( 1255*596f483aSJessica Paquette M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C), NULL)); 1256*596f483aSJessica Paquette assert(F && "Function was null!"); 1257*596f483aSJessica Paquette 1258*596f483aSJessica Paquette // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1259*596f483aSJessica Paquette // which gives us better results when we outline from linkonceodr functions. 1260*596f483aSJessica Paquette F->setLinkage(GlobalValue::PrivateLinkage); 1261*596f483aSJessica Paquette F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1262*596f483aSJessica Paquette 1263*596f483aSJessica Paquette BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1264*596f483aSJessica Paquette IRBuilder<> Builder(EntryBB); 1265*596f483aSJessica Paquette Builder.CreateRetVoid(); 1266*596f483aSJessica Paquette 1267*596f483aSJessica Paquette MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1268*596f483aSJessica Paquette MachineFunction &MF = MMI.getMachineFunction(*F); 1269*596f483aSJessica Paquette MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1270*596f483aSJessica Paquette const TargetSubtargetInfo &STI = MF.getSubtarget(); 1271*596f483aSJessica Paquette const TargetInstrInfo &TII = *STI.getInstrInfo(); 1272*596f483aSJessica Paquette 1273*596f483aSJessica Paquette // Insert the new function into the module. 1274*596f483aSJessica Paquette MF.insert(MF.begin(), &MBB); 1275*596f483aSJessica Paquette 1276*596f483aSJessica Paquette TII.insertOutlinerPrologue(MBB, MF); 1277*596f483aSJessica Paquette 1278*596f483aSJessica Paquette // Copy over the instructions for the function using the integer mappings in 1279*596f483aSJessica Paquette // its sequence. 1280*596f483aSJessica Paquette for (unsigned Str : OF.Sequence) { 1281*596f483aSJessica Paquette MachineInstr *NewMI = 1282*596f483aSJessica Paquette MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); 1283*596f483aSJessica Paquette NewMI->dropMemRefs(); 1284*596f483aSJessica Paquette 1285*596f483aSJessica Paquette // Don't keep debug information for outlined instructions. 1286*596f483aSJessica Paquette // FIXME: This means outlined functions are currently undebuggable. 1287*596f483aSJessica Paquette NewMI->setDebugLoc(DebugLoc()); 1288*596f483aSJessica Paquette MBB.insert(MBB.end(), NewMI); 1289*596f483aSJessica Paquette } 1290*596f483aSJessica Paquette 1291*596f483aSJessica Paquette TII.insertOutlinerEpilogue(MBB, MF); 1292*596f483aSJessica Paquette 1293*596f483aSJessica Paquette return &MF; 1294*596f483aSJessica Paquette } 1295*596f483aSJessica Paquette 1296*596f483aSJessica Paquette bool MachineOutliner::outline(Module &M, 1297*596f483aSJessica Paquette const ArrayRef<Candidate> &CandidateList, 1298*596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 1299*596f483aSJessica Paquette InstructionMapper &Mapper) { 1300*596f483aSJessica Paquette 1301*596f483aSJessica Paquette bool OutlinedSomething = false; 1302*596f483aSJessica Paquette 1303*596f483aSJessica Paquette // Replace the candidates with calls to their respective outlined functions. 1304*596f483aSJessica Paquette for (const Candidate &C : CandidateList) { 1305*596f483aSJessica Paquette 1306*596f483aSJessica Paquette // Was the candidate removed during pruneOverlaps? 1307*596f483aSJessica Paquette if (!C.InCandidateList) 1308*596f483aSJessica Paquette continue; 1309*596f483aSJessica Paquette 1310*596f483aSJessica Paquette // If not, then look at its OutlinedFunction. 1311*596f483aSJessica Paquette OutlinedFunction &OF = FunctionList[C.FunctionIdx]; 1312*596f483aSJessica Paquette 1313*596f483aSJessica Paquette // Was its OutlinedFunction made unbeneficial during pruneOverlaps? 1314*596f483aSJessica Paquette if (OF.OccurrenceCount < 2 || OF.Benefit < 1) 1315*596f483aSJessica Paquette continue; 1316*596f483aSJessica Paquette 1317*596f483aSJessica Paquette // If not, then outline it. 1318*596f483aSJessica Paquette assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1319*596f483aSJessica Paquette MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent(); 1320*596f483aSJessica Paquette MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx]; 1321*596f483aSJessica Paquette unsigned EndIdx = C.StartIdx + C.Len - 1; 1322*596f483aSJessica Paquette 1323*596f483aSJessica Paquette assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1324*596f483aSJessica Paquette MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1325*596f483aSJessica Paquette assert(EndIt != MBB->end() && "EndIt out of bounds!"); 1326*596f483aSJessica Paquette 1327*596f483aSJessica Paquette EndIt++; // Erase needs one past the end index. 1328*596f483aSJessica Paquette 1329*596f483aSJessica Paquette // Does this candidate have a function yet? 1330*596f483aSJessica Paquette if (!OF.MF) 1331*596f483aSJessica Paquette OF.MF = createOutlinedFunction(M, OF, Mapper); 1332*596f483aSJessica Paquette 1333*596f483aSJessica Paquette MachineFunction *MF = OF.MF; 1334*596f483aSJessica Paquette const TargetSubtargetInfo &STI = MF->getSubtarget(); 1335*596f483aSJessica Paquette const TargetInstrInfo &TII = *STI.getInstrInfo(); 1336*596f483aSJessica Paquette 1337*596f483aSJessica Paquette // Insert a call to the new function and erase the old sequence. 1338*596f483aSJessica Paquette TII.insertOutlinedCall(M, *MBB, StartIt, *MF); 1339*596f483aSJessica Paquette StartIt = Mapper.InstrList[C.StartIdx]; 1340*596f483aSJessica Paquette MBB->erase(StartIt, EndIt); 1341*596f483aSJessica Paquette 1342*596f483aSJessica Paquette OutlinedSomething = true; 1343*596f483aSJessica Paquette 1344*596f483aSJessica Paquette // Statistics. 1345*596f483aSJessica Paquette NumOutlined++; 1346*596f483aSJessica Paquette } 1347*596f483aSJessica Paquette 1348*596f483aSJessica Paquette DEBUG ( 1349*596f483aSJessica Paquette dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n"; 1350*596f483aSJessica Paquette ); 1351*596f483aSJessica Paquette 1352*596f483aSJessica Paquette return OutlinedSomething; 1353*596f483aSJessica Paquette } 1354*596f483aSJessica Paquette 1355*596f483aSJessica Paquette bool MachineOutliner::runOnModule(Module &M) { 1356*596f483aSJessica Paquette 1357*596f483aSJessica Paquette // Is there anything in the module at all? 1358*596f483aSJessica Paquette if (M.empty()) 1359*596f483aSJessica Paquette return false; 1360*596f483aSJessica Paquette 1361*596f483aSJessica Paquette MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1362*596f483aSJessica Paquette const TargetSubtargetInfo &STI = MMI.getMachineFunction(*M.begin()) 1363*596f483aSJessica Paquette .getSubtarget(); 1364*596f483aSJessica Paquette const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 1365*596f483aSJessica Paquette const TargetInstrInfo *TII = STI.getInstrInfo(); 1366*596f483aSJessica Paquette 1367*596f483aSJessica Paquette InstructionMapper Mapper; 1368*596f483aSJessica Paquette 1369*596f483aSJessica Paquette // Build instruction mappings for each function in the module. 1370*596f483aSJessica Paquette for (Function &F : M) { 1371*596f483aSJessica Paquette MachineFunction &MF = MMI.getMachineFunction(F); 1372*596f483aSJessica Paquette 1373*596f483aSJessica Paquette // Is the function empty? Safe to outline from? 1374*596f483aSJessica Paquette if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF)) 1375*596f483aSJessica Paquette continue; 1376*596f483aSJessica Paquette 1377*596f483aSJessica Paquette // If it is, look at each MachineBasicBlock in the function. 1378*596f483aSJessica Paquette for (MachineBasicBlock &MBB : MF) { 1379*596f483aSJessica Paquette 1380*596f483aSJessica Paquette // Is there anything in MBB? 1381*596f483aSJessica Paquette if (MBB.empty()) 1382*596f483aSJessica Paquette continue; 1383*596f483aSJessica Paquette 1384*596f483aSJessica Paquette // If yes, map it. 1385*596f483aSJessica Paquette Mapper.convertToUnsignedVec(MBB, *TRI, *TII); 1386*596f483aSJessica Paquette } 1387*596f483aSJessica Paquette } 1388*596f483aSJessica Paquette 1389*596f483aSJessica Paquette // Construct a suffix tree, use it to find candidates, and then outline them. 1390*596f483aSJessica Paquette SuffixTree ST(Mapper.UnsignedVec); 1391*596f483aSJessica Paquette std::vector<Candidate> CandidateList; 1392*596f483aSJessica Paquette std::vector<OutlinedFunction> FunctionList; 1393*596f483aSJessica Paquette 1394*596f483aSJessica Paquette unsigned MaxCandidateLen = 1395*596f483aSJessica Paquette buildCandidateList(CandidateList, FunctionList, ST, *TII); 1396*596f483aSJessica Paquette 1397*596f483aSJessica Paquette pruneOverlaps(CandidateList, FunctionList, MaxCandidateLen, *TII); 1398*596f483aSJessica Paquette return outline(M, CandidateList, FunctionList, Mapper); 1399*596f483aSJessica Paquette } 1400