1*596f483aSJessica Paquette //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2*596f483aSJessica Paquette //
3*596f483aSJessica Paquette //                     The LLVM Compiler Infrastructure
4*596f483aSJessica Paquette //
5*596f483aSJessica Paquette // This file is distributed under the University of Illinois Open Source
6*596f483aSJessica Paquette // License. See LICENSE.TXT for details.
7*596f483aSJessica Paquette //
8*596f483aSJessica Paquette //===----------------------------------------------------------------------===//
9*596f483aSJessica Paquette ///
10*596f483aSJessica Paquette /// \file
11*596f483aSJessica Paquette /// Replaces repeated sequences of instructions with function calls.
12*596f483aSJessica Paquette ///
13*596f483aSJessica Paquette /// This works by placing every instruction from every basic block in a
14*596f483aSJessica Paquette /// suffix tree, and repeatedly querying that tree for repeated sequences of
15*596f483aSJessica Paquette /// instructions. If a sequence of instructions appears often, then it ought
16*596f483aSJessica Paquette /// to be beneficial to pull out into a function.
17*596f483aSJessica Paquette ///
18*596f483aSJessica Paquette /// This was originally presented at the 2016 LLVM Developers' Meeting in the
19*596f483aSJessica Paquette /// talk "Reducing Code Size Using Outlining". For a high-level overview of
20*596f483aSJessica Paquette /// how this pass works, the talk is available on YouTube at
21*596f483aSJessica Paquette ///
22*596f483aSJessica Paquette /// https://www.youtube.com/watch?v=yorld-WSOeU
23*596f483aSJessica Paquette ///
24*596f483aSJessica Paquette /// The slides for the talk are available at
25*596f483aSJessica Paquette ///
26*596f483aSJessica Paquette /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
27*596f483aSJessica Paquette ///
28*596f483aSJessica Paquette /// The talk provides an overview of how the outliner finds candidates and
29*596f483aSJessica Paquette /// ultimately outlines them. It describes how the main data structure for this
30*596f483aSJessica Paquette /// pass, the suffix tree, is queried and purged for candidates. It also gives
31*596f483aSJessica Paquette /// a simplified suffix tree construction algorithm for suffix trees based off
32*596f483aSJessica Paquette /// of the algorithm actually used here, Ukkonen's algorithm.
33*596f483aSJessica Paquette ///
34*596f483aSJessica Paquette /// For the original RFC for this pass, please see
35*596f483aSJessica Paquette ///
36*596f483aSJessica Paquette /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
37*596f483aSJessica Paquette ///
38*596f483aSJessica Paquette /// For more information on the suffix tree data structure, please see
39*596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
40*596f483aSJessica Paquette ///
41*596f483aSJessica Paquette //===----------------------------------------------------------------------===//
42*596f483aSJessica Paquette #include "llvm/ADT/DenseMap.h"
43*596f483aSJessica Paquette #include "llvm/ADT/Statistic.h"
44*596f483aSJessica Paquette #include "llvm/ADT/Twine.h"
45*596f483aSJessica Paquette #include "llvm/CodeGen/MachineFrameInfo.h"
46*596f483aSJessica Paquette #include "llvm/CodeGen/MachineFunction.h"
47*596f483aSJessica Paquette #include "llvm/CodeGen/MachineInstrBuilder.h"
48*596f483aSJessica Paquette #include "llvm/CodeGen/MachineModuleInfo.h"
49*596f483aSJessica Paquette #include "llvm/CodeGen/Passes.h"
50*596f483aSJessica Paquette #include "llvm/IR/IRBuilder.h"
51*596f483aSJessica Paquette #include "llvm/Support/Allocator.h"
52*596f483aSJessica Paquette #include "llvm/Support/Debug.h"
53*596f483aSJessica Paquette #include "llvm/Support/raw_ostream.h"
54*596f483aSJessica Paquette #include "llvm/Target/TargetInstrInfo.h"
55*596f483aSJessica Paquette #include "llvm/Target/TargetMachine.h"
56*596f483aSJessica Paquette #include "llvm/Target/TargetRegisterInfo.h"
57*596f483aSJessica Paquette #include "llvm/Target/TargetSubtargetInfo.h"
58*596f483aSJessica Paquette #include <functional>
59*596f483aSJessica Paquette #include <map>
60*596f483aSJessica Paquette #include <sstream>
61*596f483aSJessica Paquette #include <tuple>
62*596f483aSJessica Paquette #include <vector>
63*596f483aSJessica Paquette 
64*596f483aSJessica Paquette #define DEBUG_TYPE "machine-outliner"
65*596f483aSJessica Paquette 
66*596f483aSJessica Paquette using namespace llvm;
67*596f483aSJessica Paquette 
68*596f483aSJessica Paquette STATISTIC(NumOutlined, "Number of candidates outlined");
69*596f483aSJessica Paquette STATISTIC(FunctionsCreated, "Number of functions created");
70*596f483aSJessica Paquette 
71*596f483aSJessica Paquette namespace {
72*596f483aSJessica Paquette 
73*596f483aSJessica Paquette /// Represents an undefined index in the suffix tree.
74*596f483aSJessica Paquette const size_t EmptyIdx = -1;
75*596f483aSJessica Paquette 
76*596f483aSJessica Paquette /// A node in a suffix tree which represents a substring or suffix.
77*596f483aSJessica Paquette ///
78*596f483aSJessica Paquette /// Each node has either no children or at least two children, with the root
79*596f483aSJessica Paquette /// being a exception in the empty tree.
80*596f483aSJessica Paquette ///
81*596f483aSJessica Paquette /// Children are represented as a map between unsigned integers and nodes. If
82*596f483aSJessica Paquette /// a node N has a child M on unsigned integer k, then the mapping represented
83*596f483aSJessica Paquette /// by N is a proper prefix of the mapping represented by M. Note that this,
84*596f483aSJessica Paquette /// although similar to a trie is somewhat different: each node stores a full
85*596f483aSJessica Paquette /// substring of the full mapping rather than a single character state.
86*596f483aSJessica Paquette ///
87*596f483aSJessica Paquette /// Each internal node contains a pointer to the internal node representing
88*596f483aSJessica Paquette /// the same string, but with the first character chopped off. This is stored
89*596f483aSJessica Paquette /// in \p Link. Each leaf node stores the start index of its respective
90*596f483aSJessica Paquette /// suffix in \p SuffixIdx.
91*596f483aSJessica Paquette struct SuffixTreeNode {
92*596f483aSJessica Paquette 
93*596f483aSJessica Paquette   /// The children of this node.
94*596f483aSJessica Paquette   ///
95*596f483aSJessica Paquette   /// A child existing on an unsigned integer implies that from the mapping
96*596f483aSJessica Paquette   /// represented by the current node, there is a way to reach another
97*596f483aSJessica Paquette   /// mapping by tacking that character on the end of the current string.
98*596f483aSJessica Paquette   DenseMap<unsigned, SuffixTreeNode *> Children;
99*596f483aSJessica Paquette 
100*596f483aSJessica Paquette   /// A flag set to false if the node has been pruned from the tree.
101*596f483aSJessica Paquette   bool IsInTree = true;
102*596f483aSJessica Paquette 
103*596f483aSJessica Paquette   /// The start index of this node's substring in the main string.
104*596f483aSJessica Paquette   size_t StartIdx = EmptyIdx;
105*596f483aSJessica Paquette 
106*596f483aSJessica Paquette   /// The end index of this node's substring in the main string.
107*596f483aSJessica Paquette   ///
108*596f483aSJessica Paquette   /// Every leaf node must have its \p EndIdx incremented at the end of every
109*596f483aSJessica Paquette   /// step in the construction algorithm. To avoid having to update O(N)
110*596f483aSJessica Paquette   /// nodes individually at the end of every step, the end index is stored
111*596f483aSJessica Paquette   /// as a pointer.
112*596f483aSJessica Paquette   size_t *EndIdx = nullptr;
113*596f483aSJessica Paquette 
114*596f483aSJessica Paquette   /// For leaves, the start index of the suffix represented by this node.
115*596f483aSJessica Paquette   ///
116*596f483aSJessica Paquette   /// For all other nodes, this is ignored.
117*596f483aSJessica Paquette   size_t SuffixIdx = EmptyIdx;
118*596f483aSJessica Paquette 
119*596f483aSJessica Paquette   /// \brief For internal nodes, a pointer to the internal node representing
120*596f483aSJessica Paquette   /// the same sequence with the first character chopped off.
121*596f483aSJessica Paquette   ///
122*596f483aSJessica Paquette   /// This has two major purposes in the suffix tree. The first is as a
123*596f483aSJessica Paquette   /// shortcut in Ukkonen's construction algorithm. One of the things that
124*596f483aSJessica Paquette   /// Ukkonen's algorithm does to achieve linear-time construction is
125*596f483aSJessica Paquette   /// keep track of which node the next insert should be at. This makes each
126*596f483aSJessica Paquette   /// insert O(1), and there are a total of O(N) inserts. The suffix link
127*596f483aSJessica Paquette   /// helps with inserting children of internal nodes.
128*596f483aSJessica Paquette   ///
129*596f483aSJessica Paquette   /// Say we add a child to an internal node with associated mapping S. The
130*596f483aSJessica Paquette   /// next insertion must be at the node representing S - its first character.
131*596f483aSJessica Paquette   /// This is given by the way that we iteratively build the tree in Ukkonen's
132*596f483aSJessica Paquette   /// algorithm. The main idea is to look at the suffixes of each prefix in the
133*596f483aSJessica Paquette   /// string, starting with the longest suffix of the prefix, and ending with
134*596f483aSJessica Paquette   /// the shortest. Therefore, if we keep pointers between such nodes, we can
135*596f483aSJessica Paquette   /// move to the next insertion point in O(1) time. If we don't, then we'd
136*596f483aSJessica Paquette   /// have to query from the root, which takes O(N) time. This would make the
137*596f483aSJessica Paquette   /// construction algorithm O(N^2) rather than O(N).
138*596f483aSJessica Paquette   ///
139*596f483aSJessica Paquette   /// The suffix link is also used during the tree pruning process to let us
140*596f483aSJessica Paquette   /// quickly throw out a bunch of potential overlaps. Say we have a sequence
141*596f483aSJessica Paquette   /// S we want to outline. Then each of its suffixes contribute to at least
142*596f483aSJessica Paquette   /// one overlapping case. Therefore, we can follow the suffix links
143*596f483aSJessica Paquette   /// starting at the node associated with S to the root and "delete" those
144*596f483aSJessica Paquette   /// nodes, save for the root. For each candidate, this removes
145*596f483aSJessica Paquette   /// O(|candidate|) overlaps from the search space. We don't actually
146*596f483aSJessica Paquette   /// completely invalidate these nodes though; doing that is far too
147*596f483aSJessica Paquette   /// aggressive. Consider the following pathological string:
148*596f483aSJessica Paquette   ///
149*596f483aSJessica Paquette   /// 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3
150*596f483aSJessica Paquette   ///
151*596f483aSJessica Paquette   /// If we, for the sake of example, outlined 1 2 3, then we would throw
152*596f483aSJessica Paquette   /// out all instances of 2 3. This isn't desirable. To get around this,
153*596f483aSJessica Paquette   /// when we visit a link node, we decrement its occurrence count by the
154*596f483aSJessica Paquette   /// number of sequences we outlined in the current step. In the pathological
155*596f483aSJessica Paquette   /// example, the 2 3 node would have an occurrence count of 8, while the
156*596f483aSJessica Paquette   /// 1 2 3 node would have an occurrence count of 2. Thus, the 2 3 node
157*596f483aSJessica Paquette   /// would survive to the next round allowing us to outline the extra
158*596f483aSJessica Paquette   /// instances of 2 3.
159*596f483aSJessica Paquette   SuffixTreeNode *Link = nullptr;
160*596f483aSJessica Paquette 
161*596f483aSJessica Paquette   /// The parent of this node. Every node except for the root has a parent.
162*596f483aSJessica Paquette   SuffixTreeNode *Parent = nullptr;
163*596f483aSJessica Paquette 
164*596f483aSJessica Paquette   /// The number of times this node's string appears in the tree.
165*596f483aSJessica Paquette   ///
166*596f483aSJessica Paquette   /// This is equal to the number of leaf children of the string. It represents
167*596f483aSJessica Paquette   /// the number of suffixes that the node's string is a prefix of.
168*596f483aSJessica Paquette   size_t OccurrenceCount = 0;
169*596f483aSJessica Paquette 
170*596f483aSJessica Paquette   /// Returns true if this node is a leaf.
171*596f483aSJessica Paquette   bool isLeaf() const { return SuffixIdx != EmptyIdx; }
172*596f483aSJessica Paquette 
173*596f483aSJessica Paquette   /// Returns true if this node is the root of its owning \p SuffixTree.
174*596f483aSJessica Paquette   bool isRoot() const { return StartIdx == EmptyIdx; }
175*596f483aSJessica Paquette 
176*596f483aSJessica Paquette   /// Return the number of elements in the substring associated with this node.
177*596f483aSJessica Paquette   size_t size() const {
178*596f483aSJessica Paquette 
179*596f483aSJessica Paquette     // Is it the root? If so, it's the empty string so return 0.
180*596f483aSJessica Paquette     if (isRoot())
181*596f483aSJessica Paquette       return 0;
182*596f483aSJessica Paquette 
183*596f483aSJessica Paquette     assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
184*596f483aSJessica Paquette 
185*596f483aSJessica Paquette     // Size = the number of elements in the string.
186*596f483aSJessica Paquette     // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
187*596f483aSJessica Paquette     return *EndIdx - StartIdx + 1;
188*596f483aSJessica Paquette   }
189*596f483aSJessica Paquette 
190*596f483aSJessica Paquette   SuffixTreeNode(size_t StartIdx, size_t *EndIdx, SuffixTreeNode *Link,
191*596f483aSJessica Paquette                  SuffixTreeNode *Parent)
192*596f483aSJessica Paquette       : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
193*596f483aSJessica Paquette 
194*596f483aSJessica Paquette   SuffixTreeNode() {}
195*596f483aSJessica Paquette };
196*596f483aSJessica Paquette 
197*596f483aSJessica Paquette /// A data structure for fast substring queries.
198*596f483aSJessica Paquette ///
199*596f483aSJessica Paquette /// Suffix trees represent the suffixes of their input strings in their leaves.
200*596f483aSJessica Paquette /// A suffix tree is a type of compressed trie structure where each node
201*596f483aSJessica Paquette /// represents an entire substring rather than a single character. Each leaf
202*596f483aSJessica Paquette /// of the tree is a suffix.
203*596f483aSJessica Paquette ///
204*596f483aSJessica Paquette /// A suffix tree can be seen as a type of state machine where each state is a
205*596f483aSJessica Paquette /// substring of the full string. The tree is structured so that, for a string
206*596f483aSJessica Paquette /// of length N, there are exactly N leaves in the tree. This structure allows
207*596f483aSJessica Paquette /// us to quickly find repeated substrings of the input string.
208*596f483aSJessica Paquette ///
209*596f483aSJessica Paquette /// In this implementation, a "string" is a vector of unsigned integers.
210*596f483aSJessica Paquette /// These integers may result from hashing some data type. A suffix tree can
211*596f483aSJessica Paquette /// contain 1 or many strings, which can then be queried as one large string.
212*596f483aSJessica Paquette ///
213*596f483aSJessica Paquette /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
214*596f483aSJessica Paquette /// suffix tree construction. Ukkonen's algorithm is explained in more detail
215*596f483aSJessica Paquette /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
216*596f483aSJessica Paquette /// paper is available at
217*596f483aSJessica Paquette ///
218*596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
219*596f483aSJessica Paquette class SuffixTree {
220*596f483aSJessica Paquette private:
221*596f483aSJessica Paquette   /// Each element is an integer representing an instruction in the module.
222*596f483aSJessica Paquette   ArrayRef<unsigned> Str;
223*596f483aSJessica Paquette 
224*596f483aSJessica Paquette   /// Maintains each node in the tree.
225*596f483aSJessica Paquette   BumpPtrAllocator NodeAllocator;
226*596f483aSJessica Paquette 
227*596f483aSJessica Paquette   /// The root of the suffix tree.
228*596f483aSJessica Paquette   ///
229*596f483aSJessica Paquette   /// The root represents the empty string. It is maintained by the
230*596f483aSJessica Paquette   /// \p NodeAllocator like every other node in the tree.
231*596f483aSJessica Paquette   SuffixTreeNode *Root = nullptr;
232*596f483aSJessica Paquette 
233*596f483aSJessica Paquette   /// Stores each leaf in the tree for better pruning.
234*596f483aSJessica Paquette   std::vector<SuffixTreeNode *> LeafVector;
235*596f483aSJessica Paquette 
236*596f483aSJessica Paquette   /// Maintains the end indices of the internal nodes in the tree.
237*596f483aSJessica Paquette   ///
238*596f483aSJessica Paquette   /// Each internal node is guaranteed to never have its end index change
239*596f483aSJessica Paquette   /// during the construction algorithm; however, leaves must be updated at
240*596f483aSJessica Paquette   /// every step. Therefore, we need to store leaf end indices by reference
241*596f483aSJessica Paquette   /// to avoid updating O(N) leaves at every step of construction. Thus,
242*596f483aSJessica Paquette   /// every internal node must be allocated its own end index.
243*596f483aSJessica Paquette   BumpPtrAllocator InternalEndIdxAllocator;
244*596f483aSJessica Paquette 
245*596f483aSJessica Paquette   /// The end index of each leaf in the tree.
246*596f483aSJessica Paquette   size_t LeafEndIdx = -1;
247*596f483aSJessica Paquette 
248*596f483aSJessica Paquette   /// \brief Helper struct which keeps track of the next insertion point in
249*596f483aSJessica Paquette   /// Ukkonen's algorithm.
250*596f483aSJessica Paquette   struct ActiveState {
251*596f483aSJessica Paquette     /// The next node to insert at.
252*596f483aSJessica Paquette     SuffixTreeNode *Node;
253*596f483aSJessica Paquette 
254*596f483aSJessica Paquette     /// The index of the first character in the substring currently being added.
255*596f483aSJessica Paquette     size_t Idx = EmptyIdx;
256*596f483aSJessica Paquette 
257*596f483aSJessica Paquette     /// The length of the substring we have to add at the current step.
258*596f483aSJessica Paquette     size_t Len = 0;
259*596f483aSJessica Paquette   };
260*596f483aSJessica Paquette 
261*596f483aSJessica Paquette   /// \brief The point the next insertion will take place at in the
262*596f483aSJessica Paquette   /// construction algorithm.
263*596f483aSJessica Paquette   ActiveState Active;
264*596f483aSJessica Paquette 
265*596f483aSJessica Paquette   /// Allocate a leaf node and add it to the tree.
266*596f483aSJessica Paquette   ///
267*596f483aSJessica Paquette   /// \param Parent The parent of this node.
268*596f483aSJessica Paquette   /// \param StartIdx The start index of this node's associated string.
269*596f483aSJessica Paquette   /// \param Edge The label on the edge leaving \p Parent to this node.
270*596f483aSJessica Paquette   ///
271*596f483aSJessica Paquette   /// \returns A pointer to the allocated leaf node.
272*596f483aSJessica Paquette   SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, size_t StartIdx,
273*596f483aSJessica Paquette                              unsigned Edge) {
274*596f483aSJessica Paquette 
275*596f483aSJessica Paquette     assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
276*596f483aSJessica Paquette 
277*596f483aSJessica Paquette     SuffixTreeNode *N = new (NodeAllocator) SuffixTreeNode(StartIdx,
278*596f483aSJessica Paquette                                                            &LeafEndIdx,
279*596f483aSJessica Paquette                                                            nullptr,
280*596f483aSJessica Paquette                                                            &Parent);
281*596f483aSJessica Paquette     Parent.Children[Edge] = N;
282*596f483aSJessica Paquette 
283*596f483aSJessica Paquette     return N;
284*596f483aSJessica Paquette   }
285*596f483aSJessica Paquette 
286*596f483aSJessica Paquette   /// Allocate an internal node and add it to the tree.
287*596f483aSJessica Paquette   ///
288*596f483aSJessica Paquette   /// \param Parent The parent of this node. Only null when allocating the root.
289*596f483aSJessica Paquette   /// \param StartIdx The start index of this node's associated string.
290*596f483aSJessica Paquette   /// \param EndIdx The end index of this node's associated string.
291*596f483aSJessica Paquette   /// \param Edge The label on the edge leaving \p Parent to this node.
292*596f483aSJessica Paquette   ///
293*596f483aSJessica Paquette   /// \returns A pointer to the allocated internal node.
294*596f483aSJessica Paquette   SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, size_t StartIdx,
295*596f483aSJessica Paquette                                      size_t EndIdx, unsigned Edge) {
296*596f483aSJessica Paquette 
297*596f483aSJessica Paquette     assert(StartIdx <= EndIdx && "String can't start after it ends!");
298*596f483aSJessica Paquette     assert(!(!Parent && StartIdx != EmptyIdx) &&
299*596f483aSJessica Paquette     "Non-root internal nodes must have parents!");
300*596f483aSJessica Paquette 
301*596f483aSJessica Paquette     size_t *E = new (InternalEndIdxAllocator) size_t(EndIdx);
302*596f483aSJessica Paquette     SuffixTreeNode *N = new (NodeAllocator) SuffixTreeNode(StartIdx,
303*596f483aSJessica Paquette                                                            E,
304*596f483aSJessica Paquette                                                            Root,
305*596f483aSJessica Paquette                                                            Parent);
306*596f483aSJessica Paquette     if (Parent)
307*596f483aSJessica Paquette       Parent->Children[Edge] = N;
308*596f483aSJessica Paquette 
309*596f483aSJessica Paquette     return N;
310*596f483aSJessica Paquette   }
311*596f483aSJessica Paquette 
312*596f483aSJessica Paquette   /// \brief Set the suffix indices of the leaves to the start indices of their
313*596f483aSJessica Paquette   /// respective suffixes. Also stores each leaf in \p LeafVector at its
314*596f483aSJessica Paquette   /// respective suffix index.
315*596f483aSJessica Paquette   ///
316*596f483aSJessica Paquette   /// \param[in] CurrNode The node currently being visited.
317*596f483aSJessica Paquette   /// \param CurrIdx The current index of the string being visited.
318*596f483aSJessica Paquette   void setSuffixIndices(SuffixTreeNode &CurrNode, size_t CurrIdx) {
319*596f483aSJessica Paquette 
320*596f483aSJessica Paquette     bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
321*596f483aSJessica Paquette 
322*596f483aSJessica Paquette     // Traverse the tree depth-first.
323*596f483aSJessica Paquette     for (auto &ChildPair : CurrNode.Children) {
324*596f483aSJessica Paquette       assert(ChildPair.second && "Node had a null child!");
325*596f483aSJessica Paquette       setSuffixIndices(*ChildPair.second,
326*596f483aSJessica Paquette                        CurrIdx + ChildPair.second->size());
327*596f483aSJessica Paquette     }
328*596f483aSJessica Paquette 
329*596f483aSJessica Paquette     // Is this node a leaf?
330*596f483aSJessica Paquette     if (IsLeaf) {
331*596f483aSJessica Paquette       // If yes, give it a suffix index and bump its parent's occurrence count.
332*596f483aSJessica Paquette       CurrNode.SuffixIdx = Str.size() - CurrIdx;
333*596f483aSJessica Paquette       assert(CurrNode.Parent && "CurrNode had no parent!");
334*596f483aSJessica Paquette       CurrNode.Parent->OccurrenceCount++;
335*596f483aSJessica Paquette 
336*596f483aSJessica Paquette       // Store the leaf in the leaf vector for pruning later.
337*596f483aSJessica Paquette       LeafVector[CurrNode.SuffixIdx] = &CurrNode;
338*596f483aSJessica Paquette     }
339*596f483aSJessica Paquette   }
340*596f483aSJessica Paquette 
341*596f483aSJessica Paquette   /// \brief Construct the suffix tree for the prefix of the input ending at
342*596f483aSJessica Paquette   /// \p EndIdx.
343*596f483aSJessica Paquette   ///
344*596f483aSJessica Paquette   /// Used to construct the full suffix tree iteratively. At the end of each
345*596f483aSJessica Paquette   /// step, the constructed suffix tree is either a valid suffix tree, or a
346*596f483aSJessica Paquette   /// suffix tree with implicit suffixes. At the end of the final step, the
347*596f483aSJessica Paquette   /// suffix tree is a valid tree.
348*596f483aSJessica Paquette   ///
349*596f483aSJessica Paquette   /// \param EndIdx The end index of the current prefix in the main string.
350*596f483aSJessica Paquette   /// \param SuffixesToAdd The number of suffixes that must be added
351*596f483aSJessica Paquette   /// to complete the suffix tree at the current phase.
352*596f483aSJessica Paquette   ///
353*596f483aSJessica Paquette   /// \returns The number of suffixes that have not been added at the end of
354*596f483aSJessica Paquette   /// this step.
355*596f483aSJessica Paquette   unsigned extend(size_t EndIdx, size_t SuffixesToAdd) {
356*596f483aSJessica Paquette     SuffixTreeNode *NeedsLink = nullptr;
357*596f483aSJessica Paquette 
358*596f483aSJessica Paquette     while (SuffixesToAdd > 0) {
359*596f483aSJessica Paquette 
360*596f483aSJessica Paquette       // Are we waiting to add anything other than just the last character?
361*596f483aSJessica Paquette       if (Active.Len == 0) {
362*596f483aSJessica Paquette         // If not, then say the active index is the end index.
363*596f483aSJessica Paquette         Active.Idx = EndIdx;
364*596f483aSJessica Paquette       }
365*596f483aSJessica Paquette 
366*596f483aSJessica Paquette       assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
367*596f483aSJessica Paquette 
368*596f483aSJessica Paquette       // The first character in the current substring we're looking at.
369*596f483aSJessica Paquette       unsigned FirstChar = Str[Active.Idx];
370*596f483aSJessica Paquette 
371*596f483aSJessica Paquette       // Have we inserted anything starting with FirstChar at the current node?
372*596f483aSJessica Paquette       if (Active.Node->Children.count(FirstChar) == 0) {
373*596f483aSJessica Paquette         // If not, then we can just insert a leaf and move too the next step.
374*596f483aSJessica Paquette         insertLeaf(*Active.Node, EndIdx, FirstChar);
375*596f483aSJessica Paquette 
376*596f483aSJessica Paquette         // The active node is an internal node, and we visited it, so it must
377*596f483aSJessica Paquette         // need a link if it doesn't have one.
378*596f483aSJessica Paquette         if (NeedsLink) {
379*596f483aSJessica Paquette           NeedsLink->Link = Active.Node;
380*596f483aSJessica Paquette           NeedsLink = nullptr;
381*596f483aSJessica Paquette         }
382*596f483aSJessica Paquette       } else {
383*596f483aSJessica Paquette         // There's a match with FirstChar, so look for the point in the tree to
384*596f483aSJessica Paquette         // insert a new node.
385*596f483aSJessica Paquette         SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
386*596f483aSJessica Paquette 
387*596f483aSJessica Paquette         size_t SubstringLen = NextNode->size();
388*596f483aSJessica Paquette 
389*596f483aSJessica Paquette         // Is the current suffix we're trying to insert longer than the size of
390*596f483aSJessica Paquette         // the child we want to move to?
391*596f483aSJessica Paquette         if (Active.Len >= SubstringLen) {
392*596f483aSJessica Paquette           // If yes, then consume the characters we've seen and move to the next
393*596f483aSJessica Paquette           // node.
394*596f483aSJessica Paquette           Active.Idx += SubstringLen;
395*596f483aSJessica Paquette           Active.Len -= SubstringLen;
396*596f483aSJessica Paquette           Active.Node = NextNode;
397*596f483aSJessica Paquette           continue;
398*596f483aSJessica Paquette         }
399*596f483aSJessica Paquette 
400*596f483aSJessica Paquette         // Otherwise, the suffix we're trying to insert must be contained in the
401*596f483aSJessica Paquette         // next node we want to move to.
402*596f483aSJessica Paquette         unsigned LastChar = Str[EndIdx];
403*596f483aSJessica Paquette 
404*596f483aSJessica Paquette         // Is the string we're trying to insert a substring of the next node?
405*596f483aSJessica Paquette         if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
406*596f483aSJessica Paquette           // If yes, then we're done for this step. Remember our insertion point
407*596f483aSJessica Paquette           // and move to the next end index. At this point, we have an implicit
408*596f483aSJessica Paquette           // suffix tree.
409*596f483aSJessica Paquette           if (NeedsLink && !Active.Node->isRoot()) {
410*596f483aSJessica Paquette             NeedsLink->Link = Active.Node;
411*596f483aSJessica Paquette             NeedsLink = nullptr;
412*596f483aSJessica Paquette           }
413*596f483aSJessica Paquette 
414*596f483aSJessica Paquette           Active.Len++;
415*596f483aSJessica Paquette           break;
416*596f483aSJessica Paquette         }
417*596f483aSJessica Paquette 
418*596f483aSJessica Paquette         // The string we're trying to insert isn't a substring of the next node,
419*596f483aSJessica Paquette         // but matches up to a point. Split the node.
420*596f483aSJessica Paquette         //
421*596f483aSJessica Paquette         // For example, say we ended our search at a node n and we're trying to
422*596f483aSJessica Paquette         // insert ABD. Then we'll create a new node s for AB, reduce n to just
423*596f483aSJessica Paquette         // representing C, and insert a new leaf node l to represent d. This
424*596f483aSJessica Paquette         // allows us to ensure that if n was a leaf, it remains a leaf.
425*596f483aSJessica Paquette         //
426*596f483aSJessica Paquette         //   | ABC  ---split--->  | AB
427*596f483aSJessica Paquette         //   n                    s
428*596f483aSJessica Paquette         //                     C / \ D
429*596f483aSJessica Paquette         //                      n   l
430*596f483aSJessica Paquette 
431*596f483aSJessica Paquette         // The node s from the diagram
432*596f483aSJessica Paquette         SuffixTreeNode *SplitNode =
433*596f483aSJessica Paquette             insertInternalNode(Active.Node,
434*596f483aSJessica Paquette                                NextNode->StartIdx,
435*596f483aSJessica Paquette                                NextNode->StartIdx + Active.Len - 1,
436*596f483aSJessica Paquette                                FirstChar);
437*596f483aSJessica Paquette 
438*596f483aSJessica Paquette         // Insert the new node representing the new substring into the tree as
439*596f483aSJessica Paquette         // a child of the split node. This is the node l from the diagram.
440*596f483aSJessica Paquette         insertLeaf(*SplitNode, EndIdx, LastChar);
441*596f483aSJessica Paquette 
442*596f483aSJessica Paquette         // Make the old node a child of the split node and update its start
443*596f483aSJessica Paquette         // index. This is the node n from the diagram.
444*596f483aSJessica Paquette         NextNode->StartIdx += Active.Len;
445*596f483aSJessica Paquette         NextNode->Parent = SplitNode;
446*596f483aSJessica Paquette         SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
447*596f483aSJessica Paquette 
448*596f483aSJessica Paquette         // SplitNode is an internal node, update the suffix link.
449*596f483aSJessica Paquette         if (NeedsLink)
450*596f483aSJessica Paquette           NeedsLink->Link = SplitNode;
451*596f483aSJessica Paquette 
452*596f483aSJessica Paquette         NeedsLink = SplitNode;
453*596f483aSJessica Paquette       }
454*596f483aSJessica Paquette 
455*596f483aSJessica Paquette       // We've added something new to the tree, so there's one less suffix to
456*596f483aSJessica Paquette       // add.
457*596f483aSJessica Paquette       SuffixesToAdd--;
458*596f483aSJessica Paquette 
459*596f483aSJessica Paquette       if (Active.Node->isRoot()) {
460*596f483aSJessica Paquette         if (Active.Len > 0) {
461*596f483aSJessica Paquette           Active.Len--;
462*596f483aSJessica Paquette           Active.Idx = EndIdx - SuffixesToAdd + 1;
463*596f483aSJessica Paquette         }
464*596f483aSJessica Paquette       } else {
465*596f483aSJessica Paquette         // Start the next phase at the next smallest suffix.
466*596f483aSJessica Paquette         Active.Node = Active.Node->Link;
467*596f483aSJessica Paquette       }
468*596f483aSJessica Paquette     }
469*596f483aSJessica Paquette 
470*596f483aSJessica Paquette     return SuffixesToAdd;
471*596f483aSJessica Paquette   }
472*596f483aSJessica Paquette 
473*596f483aSJessica Paquette   /// \brief Return the start index and length of a string which maximizes a
474*596f483aSJessica Paquette   /// benefit function by traversing the tree depth-first.
475*596f483aSJessica Paquette   ///
476*596f483aSJessica Paquette   /// Helper function for \p bestRepeatedSubstring.
477*596f483aSJessica Paquette   ///
478*596f483aSJessica Paquette   /// \param CurrNode The node currently being visited.
479*596f483aSJessica Paquette   /// \param CurrLen Length of the current string.
480*596f483aSJessica Paquette   /// \param[out] BestLen Length of the most beneficial substring.
481*596f483aSJessica Paquette   /// \param[out] MaxBenefit Benefit of the most beneficial substring.
482*596f483aSJessica Paquette   /// \param[out] BestStartIdx Start index of the most beneficial substring.
483*596f483aSJessica Paquette   /// \param BenefitFn The function the query should return a maximum string
484*596f483aSJessica Paquette   /// for.
485*596f483aSJessica Paquette   void findBest(SuffixTreeNode &CurrNode, size_t CurrLen, size_t &BestLen,
486*596f483aSJessica Paquette                 size_t &MaxBenefit, size_t &BestStartIdx,
487*596f483aSJessica Paquette                 const std::function<unsigned(SuffixTreeNode &, size_t CurrLen)>
488*596f483aSJessica Paquette                 &BenefitFn) {
489*596f483aSJessica Paquette 
490*596f483aSJessica Paquette     if (!CurrNode.IsInTree)
491*596f483aSJessica Paquette       return;
492*596f483aSJessica Paquette 
493*596f483aSJessica Paquette     // Can we traverse further down the tree?
494*596f483aSJessica Paquette     if (!CurrNode.isLeaf()) {
495*596f483aSJessica Paquette       // If yes, continue the traversal.
496*596f483aSJessica Paquette       for (auto &ChildPair : CurrNode.Children) {
497*596f483aSJessica Paquette         if (ChildPair.second && ChildPair.second->IsInTree)
498*596f483aSJessica Paquette           findBest(*ChildPair.second, CurrLen + ChildPair.second->size(),
499*596f483aSJessica Paquette                    BestLen, MaxBenefit, BestStartIdx, BenefitFn);
500*596f483aSJessica Paquette       }
501*596f483aSJessica Paquette     } else {
502*596f483aSJessica Paquette       // We hit a leaf.
503*596f483aSJessica Paquette       size_t StringLen = CurrLen - CurrNode.size();
504*596f483aSJessica Paquette       unsigned Benefit = BenefitFn(CurrNode, StringLen);
505*596f483aSJessica Paquette 
506*596f483aSJessica Paquette       // Did we do better than in the last step?
507*596f483aSJessica Paquette       if (Benefit <= MaxBenefit)
508*596f483aSJessica Paquette         return;
509*596f483aSJessica Paquette 
510*596f483aSJessica Paquette       // We did better, so update the best string.
511*596f483aSJessica Paquette       MaxBenefit = Benefit;
512*596f483aSJessica Paquette       BestStartIdx = CurrNode.SuffixIdx;
513*596f483aSJessica Paquette       BestLen = StringLen;
514*596f483aSJessica Paquette     }
515*596f483aSJessica Paquette   }
516*596f483aSJessica Paquette 
517*596f483aSJessica Paquette public:
518*596f483aSJessica Paquette 
519*596f483aSJessica Paquette   /// \brief Return a substring of the tree with maximum benefit if such a
520*596f483aSJessica Paquette   /// substring exists.
521*596f483aSJessica Paquette   ///
522*596f483aSJessica Paquette   /// Clears the input vector and fills it with a maximum substring or empty.
523*596f483aSJessica Paquette   ///
524*596f483aSJessica Paquette   /// \param[in,out] Best The most beneficial substring in the tree. Empty
525*596f483aSJessica Paquette   /// if it does not exist.
526*596f483aSJessica Paquette   /// \param BenefitFn The function the query should return a maximum string
527*596f483aSJessica Paquette   /// for.
528*596f483aSJessica Paquette   void bestRepeatedSubstring(std::vector<unsigned> &Best,
529*596f483aSJessica Paquette                  const std::function<unsigned(SuffixTreeNode &, size_t CurrLen)>
530*596f483aSJessica Paquette                  &BenefitFn) {
531*596f483aSJessica Paquette     Best.clear();
532*596f483aSJessica Paquette     size_t Length = 0;   // Becomes the length of the best substring.
533*596f483aSJessica Paquette     size_t Benefit = 0;  // Becomes the benefit of the best substring.
534*596f483aSJessica Paquette     size_t StartIdx = 0; // Becomes the start index of the best substring.
535*596f483aSJessica Paquette     findBest(*Root, 0, Length, Benefit, StartIdx, BenefitFn);
536*596f483aSJessica Paquette 
537*596f483aSJessica Paquette     for (size_t Idx = 0; Idx < Length; Idx++)
538*596f483aSJessica Paquette       Best.push_back(Str[Idx + StartIdx]);
539*596f483aSJessica Paquette   }
540*596f483aSJessica Paquette 
541*596f483aSJessica Paquette   /// Perform a depth-first search for \p QueryString on the suffix tree.
542*596f483aSJessica Paquette   ///
543*596f483aSJessica Paquette   /// \param QueryString The string to search for.
544*596f483aSJessica Paquette   /// \param CurrIdx The current index in \p QueryString that is being matched
545*596f483aSJessica Paquette   /// against.
546*596f483aSJessica Paquette   /// \param CurrNode The suffix tree node being searched in.
547*596f483aSJessica Paquette   ///
548*596f483aSJessica Paquette   /// \returns A \p SuffixTreeNode that \p QueryString appears in if such a
549*596f483aSJessica Paquette   /// node exists, and \p nullptr otherwise.
550*596f483aSJessica Paquette   SuffixTreeNode *findString(const std::vector<unsigned> &QueryString,
551*596f483aSJessica Paquette                              size_t &CurrIdx, SuffixTreeNode *CurrNode) {
552*596f483aSJessica Paquette 
553*596f483aSJessica Paquette     // The search ended at a nonexistent or pruned node. Quit.
554*596f483aSJessica Paquette     if (!CurrNode || !CurrNode->IsInTree)
555*596f483aSJessica Paquette       return nullptr;
556*596f483aSJessica Paquette 
557*596f483aSJessica Paquette     unsigned Edge = QueryString[CurrIdx]; // The edge we want to move on.
558*596f483aSJessica Paquette     SuffixTreeNode *NextNode = CurrNode->Children[Edge]; // Next node in query.
559*596f483aSJessica Paquette 
560*596f483aSJessica Paquette     if (CurrNode->isRoot()) {
561*596f483aSJessica Paquette       // If we're at the root we have to check if there's a child, and move to
562*596f483aSJessica Paquette       // that child. Don't consume the character since \p Root represents the
563*596f483aSJessica Paquette       // empty string.
564*596f483aSJessica Paquette       if (NextNode && NextNode->IsInTree)
565*596f483aSJessica Paquette         return findString(QueryString, CurrIdx, NextNode);
566*596f483aSJessica Paquette       return nullptr;
567*596f483aSJessica Paquette     }
568*596f483aSJessica Paquette 
569*596f483aSJessica Paquette     size_t StrIdx = CurrNode->StartIdx;
570*596f483aSJessica Paquette     size_t MaxIdx = QueryString.size();
571*596f483aSJessica Paquette     bool ContinueSearching = false;
572*596f483aSJessica Paquette 
573*596f483aSJessica Paquette     // Match as far as possible into the string. If there's a mismatch, quit.
574*596f483aSJessica Paquette     for (; CurrIdx < MaxIdx; CurrIdx++, StrIdx++) {
575*596f483aSJessica Paquette       Edge = QueryString[CurrIdx];
576*596f483aSJessica Paquette 
577*596f483aSJessica Paquette       // We matched perfectly, but still have a remainder to search.
578*596f483aSJessica Paquette       if (StrIdx > *(CurrNode->EndIdx)) {
579*596f483aSJessica Paquette         ContinueSearching = true;
580*596f483aSJessica Paquette         break;
581*596f483aSJessica Paquette       }
582*596f483aSJessica Paquette 
583*596f483aSJessica Paquette       if (Edge != Str[StrIdx])
584*596f483aSJessica Paquette         return nullptr;
585*596f483aSJessica Paquette     }
586*596f483aSJessica Paquette 
587*596f483aSJessica Paquette     NextNode = CurrNode->Children[Edge];
588*596f483aSJessica Paquette 
589*596f483aSJessica Paquette     // Move to the node which matches what we're looking for and continue
590*596f483aSJessica Paquette     // searching.
591*596f483aSJessica Paquette     if (ContinueSearching)
592*596f483aSJessica Paquette       return findString(QueryString, CurrIdx, NextNode);
593*596f483aSJessica Paquette 
594*596f483aSJessica Paquette     // We matched perfectly so we're done.
595*596f483aSJessica Paquette     return CurrNode;
596*596f483aSJessica Paquette   }
597*596f483aSJessica Paquette 
598*596f483aSJessica Paquette   /// \brief Remove a node from a tree and all nodes representing proper
599*596f483aSJessica Paquette   /// suffixes of that node's string.
600*596f483aSJessica Paquette   ///
601*596f483aSJessica Paquette   /// This is used in the outlining algorithm to reduce the number of
602*596f483aSJessica Paquette   /// overlapping candidates
603*596f483aSJessica Paquette   ///
604*596f483aSJessica Paquette   /// \param N The suffix tree node to start pruning from.
605*596f483aSJessica Paquette   /// \param Len The length of the string to be pruned.
606*596f483aSJessica Paquette   ///
607*596f483aSJessica Paquette   /// \returns True if this candidate didn't overlap with a previously chosen
608*596f483aSJessica Paquette   /// candidate.
609*596f483aSJessica Paquette   bool prune(SuffixTreeNode *N, size_t Len) {
610*596f483aSJessica Paquette 
611*596f483aSJessica Paquette     bool NoOverlap = true;
612*596f483aSJessica Paquette     std::vector<unsigned> IndicesToPrune;
613*596f483aSJessica Paquette 
614*596f483aSJessica Paquette     // Look at each of N's children.
615*596f483aSJessica Paquette     for (auto &ChildPair : N->Children) {
616*596f483aSJessica Paquette       SuffixTreeNode *M = ChildPair.second;
617*596f483aSJessica Paquette 
618*596f483aSJessica Paquette       // Is this a leaf child?
619*596f483aSJessica Paquette       if (M && M->IsInTree && M->isLeaf()) {
620*596f483aSJessica Paquette         // Save each leaf child's suffix indices and remove them from the tree.
621*596f483aSJessica Paquette         IndicesToPrune.push_back(M->SuffixIdx);
622*596f483aSJessica Paquette         M->IsInTree = false;
623*596f483aSJessica Paquette       }
624*596f483aSJessica Paquette     }
625*596f483aSJessica Paquette 
626*596f483aSJessica Paquette     // Remove each suffix we have to prune from the tree. Each of these will be
627*596f483aSJessica Paquette     // I + some offset for I in IndicesToPrune and some offset < Len.
628*596f483aSJessica Paquette     unsigned Offset = 1;
629*596f483aSJessica Paquette     for (unsigned CurrentSuffix = 1; CurrentSuffix < Len; CurrentSuffix++) {
630*596f483aSJessica Paquette       for (unsigned I : IndicesToPrune) {
631*596f483aSJessica Paquette 
632*596f483aSJessica Paquette         unsigned PruneIdx = I + Offset;
633*596f483aSJessica Paquette 
634*596f483aSJessica Paquette         // Is this index actually in the string?
635*596f483aSJessica Paquette         if (PruneIdx < LeafVector.size()) {
636*596f483aSJessica Paquette           // If yes, we have to try and prune it.
637*596f483aSJessica Paquette           // Was the current leaf already pruned by another candidate?
638*596f483aSJessica Paquette           if (LeafVector[PruneIdx]->IsInTree) {
639*596f483aSJessica Paquette             // If not, prune it.
640*596f483aSJessica Paquette             LeafVector[PruneIdx]->IsInTree = false;
641*596f483aSJessica Paquette           } else {
642*596f483aSJessica Paquette             // If yes, signify that we've found an overlap, but keep pruning.
643*596f483aSJessica Paquette             NoOverlap = false;
644*596f483aSJessica Paquette           }
645*596f483aSJessica Paquette 
646*596f483aSJessica Paquette           // Update the parent of the current leaf's occurrence count.
647*596f483aSJessica Paquette           SuffixTreeNode *Parent = LeafVector[PruneIdx]->Parent;
648*596f483aSJessica Paquette 
649*596f483aSJessica Paquette           // Is the parent still in the tree?
650*596f483aSJessica Paquette           if (Parent->OccurrenceCount > 0) {
651*596f483aSJessica Paquette             Parent->OccurrenceCount--;
652*596f483aSJessica Paquette             Parent->IsInTree = (Parent->OccurrenceCount > 1);
653*596f483aSJessica Paquette           }
654*596f483aSJessica Paquette         }
655*596f483aSJessica Paquette       }
656*596f483aSJessica Paquette 
657*596f483aSJessica Paquette       // Move to the next character in the string.
658*596f483aSJessica Paquette       Offset++;
659*596f483aSJessica Paquette     }
660*596f483aSJessica Paquette 
661*596f483aSJessica Paquette     // We know we can never outline anything which starts one index back from
662*596f483aSJessica Paquette     // the indices we want to outline. This is because our minimum outlining
663*596f483aSJessica Paquette     // length is always 2.
664*596f483aSJessica Paquette     for (unsigned I : IndicesToPrune) {
665*596f483aSJessica Paquette       if (I > 0) {
666*596f483aSJessica Paquette 
667*596f483aSJessica Paquette         unsigned PruneIdx = I-1;
668*596f483aSJessica Paquette         SuffixTreeNode *Parent = LeafVector[PruneIdx]->Parent;
669*596f483aSJessica Paquette 
670*596f483aSJessica Paquette         // Was the leaf one index back from I already pruned?
671*596f483aSJessica Paquette         if (LeafVector[PruneIdx]->IsInTree) {
672*596f483aSJessica Paquette           // If not, prune it.
673*596f483aSJessica Paquette           LeafVector[PruneIdx]->IsInTree = false;
674*596f483aSJessica Paquette         } else {
675*596f483aSJessica Paquette           // If yes, signify that we've found an overlap, but keep pruning.
676*596f483aSJessica Paquette           NoOverlap = false;
677*596f483aSJessica Paquette         }
678*596f483aSJessica Paquette 
679*596f483aSJessica Paquette         // Update the parent of the current leaf's occurrence count.
680*596f483aSJessica Paquette         if (Parent->OccurrenceCount > 0) {
681*596f483aSJessica Paquette           Parent->OccurrenceCount--;
682*596f483aSJessica Paquette           Parent->IsInTree = (Parent->OccurrenceCount > 1);
683*596f483aSJessica Paquette         }
684*596f483aSJessica Paquette       }
685*596f483aSJessica Paquette     }
686*596f483aSJessica Paquette 
687*596f483aSJessica Paquette     // Finally, remove N from the tree and set its occurrence count to 0.
688*596f483aSJessica Paquette     N->IsInTree = false;
689*596f483aSJessica Paquette     N->OccurrenceCount = 0;
690*596f483aSJessica Paquette 
691*596f483aSJessica Paquette     return NoOverlap;
692*596f483aSJessica Paquette   }
693*596f483aSJessica Paquette 
694*596f483aSJessica Paquette   /// \brief Find each occurrence of of a string in \p QueryString and prune
695*596f483aSJessica Paquette   /// their nodes.
696*596f483aSJessica Paquette   ///
697*596f483aSJessica Paquette   /// \param QueryString The string to search for.
698*596f483aSJessica Paquette   /// \param[out] Occurrences The start indices of each occurrence.
699*596f483aSJessica Paquette   ///
700*596f483aSJessica Paquette   /// \returns Whether or not the occurrence overlaps with a previous candidate.
701*596f483aSJessica Paquette   bool findOccurrencesAndPrune(const std::vector<unsigned> &QueryString,
702*596f483aSJessica Paquette                                std::vector<size_t> &Occurrences) {
703*596f483aSJessica Paquette     size_t Dummy = 0;
704*596f483aSJessica Paquette     SuffixTreeNode *N = findString(QueryString, Dummy, Root);
705*596f483aSJessica Paquette 
706*596f483aSJessica Paquette     if (!N || !N->IsInTree)
707*596f483aSJessica Paquette       return false;
708*596f483aSJessica Paquette 
709*596f483aSJessica Paquette     // If this is an internal node, occurrences are the number of leaf children
710*596f483aSJessica Paquette     // of the node.
711*596f483aSJessica Paquette     for (auto &ChildPair : N->Children) {
712*596f483aSJessica Paquette       SuffixTreeNode *M = ChildPair.second;
713*596f483aSJessica Paquette 
714*596f483aSJessica Paquette       // Is it a leaf? If so, we have an occurrence.
715*596f483aSJessica Paquette       if (M && M->IsInTree && M->isLeaf())
716*596f483aSJessica Paquette         Occurrences.push_back(M->SuffixIdx);
717*596f483aSJessica Paquette     }
718*596f483aSJessica Paquette 
719*596f483aSJessica Paquette     // If we're in a leaf, then this node is the only occurrence.
720*596f483aSJessica Paquette     if (N->isLeaf())
721*596f483aSJessica Paquette       Occurrences.push_back(N->SuffixIdx);
722*596f483aSJessica Paquette 
723*596f483aSJessica Paquette     return prune(N, QueryString.size());
724*596f483aSJessica Paquette   }
725*596f483aSJessica Paquette 
726*596f483aSJessica Paquette   /// Construct a suffix tree from a sequence of unsigned integers.
727*596f483aSJessica Paquette   ///
728*596f483aSJessica Paquette   /// \param Str The string to construct the suffix tree for.
729*596f483aSJessica Paquette   SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
730*596f483aSJessica Paquette     Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
731*596f483aSJessica Paquette     Root->IsInTree = true;
732*596f483aSJessica Paquette     Active.Node = Root;
733*596f483aSJessica Paquette     LeafVector = std::vector<SuffixTreeNode*>(Str.size());
734*596f483aSJessica Paquette 
735*596f483aSJessica Paquette     // Keep track of the number of suffixes we have to add of the current
736*596f483aSJessica Paquette     // prefix.
737*596f483aSJessica Paquette     size_t SuffixesToAdd = 0;
738*596f483aSJessica Paquette     Active.Node = Root;
739*596f483aSJessica Paquette 
740*596f483aSJessica Paquette     // Construct the suffix tree iteratively on each prefix of the string.
741*596f483aSJessica Paquette     // PfxEndIdx is the end index of the current prefix.
742*596f483aSJessica Paquette     // End is one past the last element in the string.
743*596f483aSJessica Paquette     for (size_t PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) {
744*596f483aSJessica Paquette       SuffixesToAdd++;
745*596f483aSJessica Paquette       LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
746*596f483aSJessica Paquette       SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
747*596f483aSJessica Paquette     }
748*596f483aSJessica Paquette 
749*596f483aSJessica Paquette     // Set the suffix indices of each leaf.
750*596f483aSJessica Paquette     assert(Root && "Root node can't be nullptr!");
751*596f483aSJessica Paquette     setSuffixIndices(*Root, 0);
752*596f483aSJessica Paquette   }
753*596f483aSJessica Paquette };
754*596f483aSJessica Paquette 
755*596f483aSJessica Paquette /// \brief An individual sequence of instructions to be replaced with a call to
756*596f483aSJessica Paquette /// an outlined function.
757*596f483aSJessica Paquette struct Candidate {
758*596f483aSJessica Paquette 
759*596f483aSJessica Paquette   /// Set to false if the candidate overlapped with another candidate.
760*596f483aSJessica Paquette   bool InCandidateList = true;
761*596f483aSJessica Paquette 
762*596f483aSJessica Paquette   /// The start index of this \p Candidate.
763*596f483aSJessica Paquette   size_t StartIdx;
764*596f483aSJessica Paquette 
765*596f483aSJessica Paquette   /// The number of instructions in this \p Candidate.
766*596f483aSJessica Paquette   size_t Len;
767*596f483aSJessica Paquette 
768*596f483aSJessica Paquette   /// The index of this \p Candidate's \p OutlinedFunction in the list of
769*596f483aSJessica Paquette   /// \p OutlinedFunctions.
770*596f483aSJessica Paquette   size_t FunctionIdx;
771*596f483aSJessica Paquette 
772*596f483aSJessica Paquette   Candidate(size_t StartIdx, size_t Len, size_t FunctionIdx)
773*596f483aSJessica Paquette       : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {}
774*596f483aSJessica Paquette 
775*596f483aSJessica Paquette   Candidate() {}
776*596f483aSJessica Paquette 
777*596f483aSJessica Paquette   /// \brief Used to ensure that \p Candidates are outlined in an order that
778*596f483aSJessica Paquette   /// preserves the start and end indices of other \p Candidates.
779*596f483aSJessica Paquette   bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; }
780*596f483aSJessica Paquette };
781*596f483aSJessica Paquette 
782*596f483aSJessica Paquette /// \brief The information necessary to create an outlined function for some
783*596f483aSJessica Paquette /// class of candidate.
784*596f483aSJessica Paquette struct OutlinedFunction {
785*596f483aSJessica Paquette 
786*596f483aSJessica Paquette   /// The actual outlined function created.
787*596f483aSJessica Paquette   /// This is initialized after we go through and create the actual function.
788*596f483aSJessica Paquette   MachineFunction *MF = nullptr;
789*596f483aSJessica Paquette 
790*596f483aSJessica Paquette   /// A number assigned to this function which appears at the end of its name.
791*596f483aSJessica Paquette   size_t Name;
792*596f483aSJessica Paquette 
793*596f483aSJessica Paquette   /// The number of times that this function has appeared.
794*596f483aSJessica Paquette   size_t OccurrenceCount = 0;
795*596f483aSJessica Paquette 
796*596f483aSJessica Paquette   /// \brief The sequence of integers corresponding to the instructions in this
797*596f483aSJessica Paquette   /// function.
798*596f483aSJessica Paquette   std::vector<unsigned> Sequence;
799*596f483aSJessica Paquette 
800*596f483aSJessica Paquette   /// The number of instructions this function would save.
801*596f483aSJessica Paquette   unsigned Benefit = 0;
802*596f483aSJessica Paquette 
803*596f483aSJessica Paquette   OutlinedFunction(size_t Name, size_t OccurrenceCount,
804*596f483aSJessica Paquette                    const std::vector<unsigned> &Sequence,
805*596f483aSJessica Paquette                    unsigned Benefit)
806*596f483aSJessica Paquette       : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence),
807*596f483aSJessica Paquette         Benefit(Benefit)
808*596f483aSJessica Paquette         {}
809*596f483aSJessica Paquette };
810*596f483aSJessica Paquette 
811*596f483aSJessica Paquette /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings.
812*596f483aSJessica Paquette struct InstructionMapper {
813*596f483aSJessica Paquette 
814*596f483aSJessica Paquette   /// \brief The next available integer to assign to a \p MachineInstr that
815*596f483aSJessica Paquette   /// cannot be outlined.
816*596f483aSJessica Paquette   ///
817*596f483aSJessica Paquette   /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
818*596f483aSJessica Paquette   unsigned IllegalInstrNumber = -3;
819*596f483aSJessica Paquette 
820*596f483aSJessica Paquette   /// \brief The next available integer to assign to a \p MachineInstr that can
821*596f483aSJessica Paquette   /// be outlined.
822*596f483aSJessica Paquette   unsigned LegalInstrNumber = 0;
823*596f483aSJessica Paquette 
824*596f483aSJessica Paquette   /// Correspondence from \p MachineInstrs to unsigned integers.
825*596f483aSJessica Paquette   DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
826*596f483aSJessica Paquette       InstructionIntegerMap;
827*596f483aSJessica Paquette 
828*596f483aSJessica Paquette   /// Corresponcence from unsigned integers to \p MachineInstrs.
829*596f483aSJessica Paquette   /// Inverse of \p InstructionIntegerMap.
830*596f483aSJessica Paquette   DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
831*596f483aSJessica Paquette 
832*596f483aSJessica Paquette   /// The vector of unsigned integers that the module is mapped to.
833*596f483aSJessica Paquette   std::vector<unsigned> UnsignedVec;
834*596f483aSJessica Paquette 
835*596f483aSJessica Paquette   /// \brief Stores the location of the instruction associated with the integer
836*596f483aSJessica Paquette   /// at index i in \p UnsignedVec for each index i.
837*596f483aSJessica Paquette   std::vector<MachineBasicBlock::iterator> InstrList;
838*596f483aSJessica Paquette 
839*596f483aSJessica Paquette   /// \brief Maps \p *It to a legal integer.
840*596f483aSJessica Paquette   ///
841*596f483aSJessica Paquette   /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
842*596f483aSJessica Paquette   /// \p IntegerInstructionMap, and \p LegalInstrNumber.
843*596f483aSJessica Paquette   ///
844*596f483aSJessica Paquette   /// \returns The integer that \p *It was mapped to.
845*596f483aSJessica Paquette   unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
846*596f483aSJessica Paquette 
847*596f483aSJessica Paquette     // Get the integer for this instruction or give it the current
848*596f483aSJessica Paquette     // LegalInstrNumber.
849*596f483aSJessica Paquette     InstrList.push_back(It);
850*596f483aSJessica Paquette     MachineInstr &MI = *It;
851*596f483aSJessica Paquette     bool WasInserted;
852*596f483aSJessica Paquette     DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
853*596f483aSJessica Paquette     ResultIt;
854*596f483aSJessica Paquette     std::tie(ResultIt, WasInserted) =
855*596f483aSJessica Paquette     InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
856*596f483aSJessica Paquette     unsigned MINumber = ResultIt->second;
857*596f483aSJessica Paquette 
858*596f483aSJessica Paquette     // There was an insertion.
859*596f483aSJessica Paquette     if (WasInserted) {
860*596f483aSJessica Paquette       LegalInstrNumber++;
861*596f483aSJessica Paquette       IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
862*596f483aSJessica Paquette     }
863*596f483aSJessica Paquette 
864*596f483aSJessica Paquette     UnsignedVec.push_back(MINumber);
865*596f483aSJessica Paquette 
866*596f483aSJessica Paquette     // Make sure we don't overflow or use any integers reserved by the DenseMap.
867*596f483aSJessica Paquette     if (LegalInstrNumber >= IllegalInstrNumber)
868*596f483aSJessica Paquette       report_fatal_error("Instruction mapping overflow!");
869*596f483aSJessica Paquette 
870*596f483aSJessica Paquette     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey()
871*596f483aSJessica Paquette           && "Tried to assign DenseMap tombstone or empty key to instruction.");
872*596f483aSJessica Paquette     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey()
873*596f483aSJessica Paquette           && "Tried to assign DenseMap tombstone or empty key to instruction.");
874*596f483aSJessica Paquette 
875*596f483aSJessica Paquette     return MINumber;
876*596f483aSJessica Paquette   }
877*596f483aSJessica Paquette 
878*596f483aSJessica Paquette   /// Maps \p *It to an illegal integer.
879*596f483aSJessica Paquette   ///
880*596f483aSJessica Paquette   /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
881*596f483aSJessica Paquette   ///
882*596f483aSJessica Paquette   /// \returns The integer that \p *It was mapped to.
883*596f483aSJessica Paquette   unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
884*596f483aSJessica Paquette     unsigned MINumber = IllegalInstrNumber;
885*596f483aSJessica Paquette 
886*596f483aSJessica Paquette     InstrList.push_back(It);
887*596f483aSJessica Paquette     UnsignedVec.push_back(IllegalInstrNumber);
888*596f483aSJessica Paquette     IllegalInstrNumber--;
889*596f483aSJessica Paquette 
890*596f483aSJessica Paquette     assert(LegalInstrNumber < IllegalInstrNumber &&
891*596f483aSJessica Paquette            "Instruction mapping overflow!");
892*596f483aSJessica Paquette 
893*596f483aSJessica Paquette     assert(IllegalInstrNumber !=
894*596f483aSJessica Paquette       DenseMapInfo<unsigned>::getEmptyKey() &&
895*596f483aSJessica Paquette       "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
896*596f483aSJessica Paquette 
897*596f483aSJessica Paquette     assert(IllegalInstrNumber !=
898*596f483aSJessica Paquette       DenseMapInfo<unsigned>::getTombstoneKey() &&
899*596f483aSJessica Paquette       "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
900*596f483aSJessica Paquette 
901*596f483aSJessica Paquette     return MINumber;
902*596f483aSJessica Paquette   }
903*596f483aSJessica Paquette 
904*596f483aSJessica Paquette   /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
905*596f483aSJessica Paquette   /// and appends it to \p UnsignedVec and \p InstrList.
906*596f483aSJessica Paquette   ///
907*596f483aSJessica Paquette   /// Two instructions are assigned the same integer if they are identical.
908*596f483aSJessica Paquette   /// If an instruction is deemed unsafe to outline, then it will be assigned an
909*596f483aSJessica Paquette   /// unique integer. The resulting mapping is placed into a suffix tree and
910*596f483aSJessica Paquette   /// queried for candidates.
911*596f483aSJessica Paquette   ///
912*596f483aSJessica Paquette   /// \param MBB The \p MachineBasicBlock to be translated into integers.
913*596f483aSJessica Paquette   /// \param TRI \p TargetRegisterInfo for the module.
914*596f483aSJessica Paquette   /// \param TII \p TargetInstrInfo for the module.
915*596f483aSJessica Paquette   void convertToUnsignedVec(MachineBasicBlock &MBB,
916*596f483aSJessica Paquette                             const TargetRegisterInfo &TRI,
917*596f483aSJessica Paquette                             const TargetInstrInfo &TII) {
918*596f483aSJessica Paquette     for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et;
919*596f483aSJessica Paquette          It++) {
920*596f483aSJessica Paquette 
921*596f483aSJessica Paquette       // Keep track of where this instruction is in the module.
922*596f483aSJessica Paquette       switch(TII.getOutliningType(*It)) {
923*596f483aSJessica Paquette         case TargetInstrInfo::MachineOutlinerInstrType::Illegal:
924*596f483aSJessica Paquette           mapToIllegalUnsigned(It);
925*596f483aSJessica Paquette           break;
926*596f483aSJessica Paquette 
927*596f483aSJessica Paquette         case TargetInstrInfo::MachineOutlinerInstrType::Legal:
928*596f483aSJessica Paquette           mapToLegalUnsigned(It);
929*596f483aSJessica Paquette           break;
930*596f483aSJessica Paquette 
931*596f483aSJessica Paquette         case TargetInstrInfo::MachineOutlinerInstrType::Invisible:
932*596f483aSJessica Paquette           break;
933*596f483aSJessica Paquette       }
934*596f483aSJessica Paquette     }
935*596f483aSJessica Paquette 
936*596f483aSJessica Paquette     // After we're done every insertion, uniquely terminate this part of the
937*596f483aSJessica Paquette     // "string". This makes sure we won't match across basic block or function
938*596f483aSJessica Paquette     // boundaries since the "end" is encoded uniquely and thus appears in no
939*596f483aSJessica Paquette     // repeated substring.
940*596f483aSJessica Paquette     InstrList.push_back(MBB.end());
941*596f483aSJessica Paquette     UnsignedVec.push_back(IllegalInstrNumber);
942*596f483aSJessica Paquette     IllegalInstrNumber--;
943*596f483aSJessica Paquette   }
944*596f483aSJessica Paquette 
945*596f483aSJessica Paquette   InstructionMapper() {
946*596f483aSJessica Paquette     // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
947*596f483aSJessica Paquette     // changed.
948*596f483aSJessica Paquette     assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
949*596f483aSJessica Paquette                 "DenseMapInfo<unsigned>'s empty key isn't -1!");
950*596f483aSJessica Paquette     assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
951*596f483aSJessica Paquette                 "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
952*596f483aSJessica Paquette   }
953*596f483aSJessica Paquette };
954*596f483aSJessica Paquette 
955*596f483aSJessica Paquette /// \brief An interprocedural pass which finds repeated sequences of
956*596f483aSJessica Paquette /// instructions and replaces them with calls to functions.
957*596f483aSJessica Paquette ///
958*596f483aSJessica Paquette /// Each instruction is mapped to an unsigned integer and placed in a string.
959*596f483aSJessica Paquette /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
960*596f483aSJessica Paquette /// is then repeatedly queried for repeated sequences of instructions. Each
961*596f483aSJessica Paquette /// non-overlapping repeated sequence is then placed in its own
962*596f483aSJessica Paquette /// \p MachineFunction and each instance is then replaced with a call to that
963*596f483aSJessica Paquette /// function.
964*596f483aSJessica Paquette struct MachineOutliner : public ModulePass {
965*596f483aSJessica Paquette 
966*596f483aSJessica Paquette   static char ID;
967*596f483aSJessica Paquette 
968*596f483aSJessica Paquette   StringRef getPassName() const override { return "Machine Outliner"; }
969*596f483aSJessica Paquette 
970*596f483aSJessica Paquette   void getAnalysisUsage(AnalysisUsage &AU) const override {
971*596f483aSJessica Paquette     AU.addRequired<MachineModuleInfo>();
972*596f483aSJessica Paquette     AU.addPreserved<MachineModuleInfo>();
973*596f483aSJessica Paquette     AU.setPreservesAll();
974*596f483aSJessica Paquette     ModulePass::getAnalysisUsage(AU);
975*596f483aSJessica Paquette   }
976*596f483aSJessica Paquette 
977*596f483aSJessica Paquette   MachineOutliner() : ModulePass(ID) {
978*596f483aSJessica Paquette     initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
979*596f483aSJessica Paquette   }
980*596f483aSJessica Paquette 
981*596f483aSJessica Paquette   /// \brief Replace the sequences of instructions represented by the
982*596f483aSJessica Paquette   /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
983*596f483aSJessica Paquette   /// described in \p FunctionList.
984*596f483aSJessica Paquette   ///
985*596f483aSJessica Paquette   /// \param M The module we are outlining from.
986*596f483aSJessica Paquette   /// \param CandidateList A list of candidates to be outlined.
987*596f483aSJessica Paquette   /// \param FunctionList A list of functions to be inserted into the module.
988*596f483aSJessica Paquette   /// \param Mapper Contains the instruction mappings for the module.
989*596f483aSJessica Paquette   bool outline(Module &M, const ArrayRef<Candidate> &CandidateList,
990*596f483aSJessica Paquette                std::vector<OutlinedFunction> &FunctionList,
991*596f483aSJessica Paquette                InstructionMapper &Mapper);
992*596f483aSJessica Paquette 
993*596f483aSJessica Paquette   /// Creates a function for \p OF and inserts it into the module.
994*596f483aSJessica Paquette   MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
995*596f483aSJessica Paquette                                           InstructionMapper &Mapper);
996*596f483aSJessica Paquette 
997*596f483aSJessica Paquette   /// Find potential outlining candidates and store them in \p CandidateList.
998*596f483aSJessica Paquette   ///
999*596f483aSJessica Paquette   /// For each type of potential candidate, also build an \p OutlinedFunction
1000*596f483aSJessica Paquette   /// struct containing the information to build the function for that
1001*596f483aSJessica Paquette   /// candidate.
1002*596f483aSJessica Paquette   ///
1003*596f483aSJessica Paquette   /// \param[out] CandidateList Filled with outlining candidates for the module.
1004*596f483aSJessica Paquette   /// \param[out] FunctionList Filled with functions corresponding to each type
1005*596f483aSJessica Paquette   /// of \p Candidate.
1006*596f483aSJessica Paquette   /// \param ST The suffix tree for the module.
1007*596f483aSJessica Paquette   /// \param TII TargetInstrInfo for the module.
1008*596f483aSJessica Paquette   ///
1009*596f483aSJessica Paquette   /// \returns The length of the longest candidate found. 0 if there are none.
1010*596f483aSJessica Paquette   unsigned buildCandidateList(std::vector<Candidate> &CandidateList,
1011*596f483aSJessica Paquette                               std::vector<OutlinedFunction> &FunctionList,
1012*596f483aSJessica Paquette                               SuffixTree &ST, const TargetInstrInfo &TII);
1013*596f483aSJessica Paquette 
1014*596f483aSJessica Paquette   /// \brief Remove any overlapping candidates that weren't handled by the
1015*596f483aSJessica Paquette   /// suffix tree's pruning method.
1016*596f483aSJessica Paquette   ///
1017*596f483aSJessica Paquette   /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
1018*596f483aSJessica Paquette   /// If a short candidate is chosen for outlining, then a longer candidate
1019*596f483aSJessica Paquette   /// which has that short candidate as a suffix is chosen, the tree's pruning
1020*596f483aSJessica Paquette   /// method will not find it. Thus, we need to prune before outlining as well.
1021*596f483aSJessica Paquette   ///
1022*596f483aSJessica Paquette   /// \param[in,out] CandidateList A list of outlining candidates.
1023*596f483aSJessica Paquette   /// \param[in,out] FunctionList A list of functions to be outlined.
1024*596f483aSJessica Paquette   /// \param MaxCandidateLen The length of the longest candidate.
1025*596f483aSJessica Paquette   /// \param TII TargetInstrInfo for the module.
1026*596f483aSJessica Paquette   void pruneOverlaps(std::vector<Candidate> &CandidateList,
1027*596f483aSJessica Paquette                      std::vector<OutlinedFunction> &FunctionList,
1028*596f483aSJessica Paquette                      unsigned MaxCandidateLen,
1029*596f483aSJessica Paquette                      const TargetInstrInfo &TII);
1030*596f483aSJessica Paquette 
1031*596f483aSJessica Paquette   /// Construct a suffix tree on the instructions in \p M and outline repeated
1032*596f483aSJessica Paquette   /// strings from that tree.
1033*596f483aSJessica Paquette   bool runOnModule(Module &M) override;
1034*596f483aSJessica Paquette };
1035*596f483aSJessica Paquette 
1036*596f483aSJessica Paquette } // Anonymous namespace.
1037*596f483aSJessica Paquette 
1038*596f483aSJessica Paquette char MachineOutliner::ID = 0;
1039*596f483aSJessica Paquette 
1040*596f483aSJessica Paquette namespace llvm {
1041*596f483aSJessica Paquette ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); }
1042*596f483aSJessica Paquette }
1043*596f483aSJessica Paquette 
1044*596f483aSJessica Paquette INITIALIZE_PASS(MachineOutliner, "machine-outliner",
1045*596f483aSJessica Paquette                 "Machine Function Outliner", false, false)
1046*596f483aSJessica Paquette 
1047*596f483aSJessica Paquette void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList,
1048*596f483aSJessica Paquette                                     std::vector<OutlinedFunction> &FunctionList,
1049*596f483aSJessica Paquette                                     unsigned MaxCandidateLen,
1050*596f483aSJessica Paquette                                     const TargetInstrInfo &TII) {
1051*596f483aSJessica Paquette 
1052*596f483aSJessica Paquette   // Check for overlaps in the range. This is O(n^2) worst case, but we can
1053*596f483aSJessica Paquette   // alleviate that somewhat by bounding our search space using the start
1054*596f483aSJessica Paquette   // index of our first candidate and the maximum distance an overlapping
1055*596f483aSJessica Paquette   // candidate could have from the first candidate.
1056*596f483aSJessica Paquette   for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
1057*596f483aSJessica Paquette        It++) {
1058*596f483aSJessica Paquette     Candidate &C1 = *It;
1059*596f483aSJessica Paquette     OutlinedFunction &F1 = FunctionList[C1.FunctionIdx];
1060*596f483aSJessica Paquette 
1061*596f483aSJessica Paquette     // If we removed this candidate, skip it.
1062*596f483aSJessica Paquette     if (!C1.InCandidateList)
1063*596f483aSJessica Paquette       continue;
1064*596f483aSJessica Paquette 
1065*596f483aSJessica Paquette     // If the candidate's function isn't good to outline anymore, then
1066*596f483aSJessica Paquette     // remove the candidate and skip it.
1067*596f483aSJessica Paquette     if (F1.OccurrenceCount < 2 || F1.Benefit < 1) {
1068*596f483aSJessica Paquette       C1.InCandidateList = false;
1069*596f483aSJessica Paquette       continue;
1070*596f483aSJessica Paquette     }
1071*596f483aSJessica Paquette 
1072*596f483aSJessica Paquette     // The minimum start index of any candidate that could overlap with this
1073*596f483aSJessica Paquette     // one.
1074*596f483aSJessica Paquette     unsigned FarthestPossibleIdx = 0;
1075*596f483aSJessica Paquette 
1076*596f483aSJessica Paquette     // Either the index is 0, or it's at most MaxCandidateLen indices away.
1077*596f483aSJessica Paquette     if (C1.StartIdx > MaxCandidateLen)
1078*596f483aSJessica Paquette       FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen;
1079*596f483aSJessica Paquette 
1080*596f483aSJessica Paquette     // Compare against the other candidates in the list.
1081*596f483aSJessica Paquette     // This is at most MaxCandidateLen/2 other candidates.
1082*596f483aSJessica Paquette     // This is because each candidate has to be at least 2 indices away.
1083*596f483aSJessica Paquette     // = O(n * MaxCandidateLen/2) comparisons
1084*596f483aSJessica Paquette     //
1085*596f483aSJessica Paquette     // On average, the maximum length of a candidate is quite small; a fraction
1086*596f483aSJessica Paquette     // of the total module length in terms of instructions. If the maximum
1087*596f483aSJessica Paquette     // candidate length is large, then there are fewer possible candidates to
1088*596f483aSJessica Paquette     // compare against in the first place.
1089*596f483aSJessica Paquette     for (auto Sit = It + 1; Sit != Et; Sit++) {
1090*596f483aSJessica Paquette       Candidate &C2 = *Sit;
1091*596f483aSJessica Paquette       OutlinedFunction &F2 = FunctionList[C2.FunctionIdx];
1092*596f483aSJessica Paquette 
1093*596f483aSJessica Paquette       // Is this candidate too far away to overlap?
1094*596f483aSJessica Paquette       // NOTE: This will be true in
1095*596f483aSJessica Paquette       //    O(max(FarthestPossibleIdx/2, #Candidates remaining)) steps
1096*596f483aSJessica Paquette       // for every candidate.
1097*596f483aSJessica Paquette       if (C2.StartIdx < FarthestPossibleIdx)
1098*596f483aSJessica Paquette         break;
1099*596f483aSJessica Paquette 
1100*596f483aSJessica Paquette       // Did we already remove this candidate in a previous step?
1101*596f483aSJessica Paquette       if (!C2.InCandidateList)
1102*596f483aSJessica Paquette         continue;
1103*596f483aSJessica Paquette 
1104*596f483aSJessica Paquette       // Is the function beneficial to outline?
1105*596f483aSJessica Paquette       if (F2.OccurrenceCount < 2 || F2.Benefit < 1) {
1106*596f483aSJessica Paquette         // If not, remove this candidate and move to the next one.
1107*596f483aSJessica Paquette         C2.InCandidateList = false;
1108*596f483aSJessica Paquette         continue;
1109*596f483aSJessica Paquette       }
1110*596f483aSJessica Paquette 
1111*596f483aSJessica Paquette       size_t C2End = C2.StartIdx + C2.Len - 1;
1112*596f483aSJessica Paquette 
1113*596f483aSJessica Paquette       // Do C1 and C2 overlap?
1114*596f483aSJessica Paquette       //
1115*596f483aSJessica Paquette       // Not overlapping:
1116*596f483aSJessica Paquette       // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
1117*596f483aSJessica Paquette       //
1118*596f483aSJessica Paquette       // We sorted our candidate list so C2Start <= C1Start. We know that
1119*596f483aSJessica Paquette       // C2End > C2Start since each candidate has length >= 2. Therefore, all we
1120*596f483aSJessica Paquette       // have to check is C2End < C2Start to see if we overlap.
1121*596f483aSJessica Paquette       if (C2End < C1.StartIdx)
1122*596f483aSJessica Paquette         continue;
1123*596f483aSJessica Paquette 
1124*596f483aSJessica Paquette       // C2 overlaps with C1. Because we pruned the tree already, the only way
1125*596f483aSJessica Paquette       // this can happen is if C1 is a proper suffix of C2. Thus, we must have
1126*596f483aSJessica Paquette       // found C1 first during our query, so it must have benefit greater or
1127*596f483aSJessica Paquette       // equal to C2. Greedily pick C1 as the candidate to keep and toss out C2.
1128*596f483aSJessica Paquette       DEBUG (
1129*596f483aSJessica Paquette             size_t C1End = C1.StartIdx + C1.Len - 1;
1130*596f483aSJessica Paquette             dbgs() << "- Found an overlap to purge.\n";
1131*596f483aSJessica Paquette             dbgs() << "--- C1 :[" << C1.StartIdx << ", " << C1End << "]\n";
1132*596f483aSJessica Paquette             dbgs() << "--- C2 :[" << C2.StartIdx << ", " << C2End << "]\n";
1133*596f483aSJessica Paquette             );
1134*596f483aSJessica Paquette 
1135*596f483aSJessica Paquette       // Update the function's occurrence count and benefit to reflec that C2
1136*596f483aSJessica Paquette       // is being removed.
1137*596f483aSJessica Paquette       F2.OccurrenceCount--;
1138*596f483aSJessica Paquette       F2.Benefit = TII.getOutliningBenefit(F2.Sequence.size(),
1139*596f483aSJessica Paquette                                            F2.OccurrenceCount
1140*596f483aSJessica Paquette                                            );
1141*596f483aSJessica Paquette 
1142*596f483aSJessica Paquette       // Mark C2 as not in the list.
1143*596f483aSJessica Paquette       C2.InCandidateList = false;
1144*596f483aSJessica Paquette 
1145*596f483aSJessica Paquette       DEBUG (
1146*596f483aSJessica Paquette             dbgs() << "- Removed C2. \n";
1147*596f483aSJessica Paquette             dbgs() << "--- Num fns left for C2: " << F2.OccurrenceCount << "\n";
1148*596f483aSJessica Paquette             dbgs() << "--- C2's benefit: " << F2.Benefit << "\n";
1149*596f483aSJessica Paquette             );
1150*596f483aSJessica Paquette     }
1151*596f483aSJessica Paquette   }
1152*596f483aSJessica Paquette }
1153*596f483aSJessica Paquette 
1154*596f483aSJessica Paquette unsigned
1155*596f483aSJessica Paquette MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList,
1156*596f483aSJessica Paquette                                     std::vector<OutlinedFunction> &FunctionList,
1157*596f483aSJessica Paquette                                     SuffixTree &ST,
1158*596f483aSJessica Paquette                                     const TargetInstrInfo &TII) {
1159*596f483aSJessica Paquette 
1160*596f483aSJessica Paquette   std::vector<unsigned> CandidateSequence; // Current outlining candidate.
1161*596f483aSJessica Paquette   unsigned MaxCandidateLen = 0; // Length of the longest candidate.
1162*596f483aSJessica Paquette 
1163*596f483aSJessica Paquette   // Function for maximizing query in the suffix tree.
1164*596f483aSJessica Paquette   // This allows us to define more fine-grained types of things to outline in
1165*596f483aSJessica Paquette   // the target without putting target-specific info in the suffix tree.
1166*596f483aSJessica Paquette   auto BenefitFn = [&TII](const SuffixTreeNode &Curr, size_t StringLen) {
1167*596f483aSJessica Paquette 
1168*596f483aSJessica Paquette     // Any leaf whose parent is the root only has one occurrence.
1169*596f483aSJessica Paquette     if (Curr.Parent->isRoot())
1170*596f483aSJessica Paquette       return 0u;
1171*596f483aSJessica Paquette 
1172*596f483aSJessica Paquette     // Anything with length < 2 will never be beneficial on any target.
1173*596f483aSJessica Paquette     if (StringLen < 2)
1174*596f483aSJessica Paquette       return 0u;
1175*596f483aSJessica Paquette 
1176*596f483aSJessica Paquette     size_t Occurrences = Curr.Parent->OccurrenceCount;
1177*596f483aSJessica Paquette 
1178*596f483aSJessica Paquette     // Anything with fewer than 2 occurrences will never be beneficial on any
1179*596f483aSJessica Paquette     // target.
1180*596f483aSJessica Paquette     if (Occurrences < 2)
1181*596f483aSJessica Paquette       return 0u;
1182*596f483aSJessica Paquette 
1183*596f483aSJessica Paquette     return TII.getOutliningBenefit(StringLen, Occurrences);
1184*596f483aSJessica Paquette   };
1185*596f483aSJessica Paquette 
1186*596f483aSJessica Paquette   // Repeatedly query the suffix tree for the substring that maximizes
1187*596f483aSJessica Paquette   // BenefitFn. Find the occurrences of that string, prune the tree, and store
1188*596f483aSJessica Paquette   // each occurrence as a candidate.
1189*596f483aSJessica Paquette   for (ST.bestRepeatedSubstring(CandidateSequence, BenefitFn);
1190*596f483aSJessica Paquette        CandidateSequence.size() > 1;
1191*596f483aSJessica Paquette        ST.bestRepeatedSubstring(CandidateSequence, BenefitFn)) {
1192*596f483aSJessica Paquette 
1193*596f483aSJessica Paquette     std::vector<size_t> Occurrences;
1194*596f483aSJessica Paquette 
1195*596f483aSJessica Paquette     bool GotNonOverlappingCandidate =
1196*596f483aSJessica Paquette         ST.findOccurrencesAndPrune(CandidateSequence, Occurrences);
1197*596f483aSJessica Paquette 
1198*596f483aSJessica Paquette     // Is the candidate we found known to overlap with something we already
1199*596f483aSJessica Paquette     // outlined?
1200*596f483aSJessica Paquette     if (!GotNonOverlappingCandidate)
1201*596f483aSJessica Paquette       continue;
1202*596f483aSJessica Paquette 
1203*596f483aSJessica Paquette     // Is this candidate the longest so far?
1204*596f483aSJessica Paquette     if (CandidateSequence.size() > MaxCandidateLen)
1205*596f483aSJessica Paquette       MaxCandidateLen = CandidateSequence.size();
1206*596f483aSJessica Paquette 
1207*596f483aSJessica Paquette     // Keep track of the benefit of outlining this candidate in its
1208*596f483aSJessica Paquette     // OutlinedFunction.
1209*596f483aSJessica Paquette     unsigned FnBenefit = TII.getOutliningBenefit(CandidateSequence.size(),
1210*596f483aSJessica Paquette                                                  Occurrences.size()
1211*596f483aSJessica Paquette                                                  );
1212*596f483aSJessica Paquette 
1213*596f483aSJessica Paquette     assert(FnBenefit > 0 && "Function cannot be unbeneficial!");
1214*596f483aSJessica Paquette 
1215*596f483aSJessica Paquette     // Save an OutlinedFunction for this candidate.
1216*596f483aSJessica Paquette     FunctionList.emplace_back(
1217*596f483aSJessica Paquette         FunctionList.size(), // Number of this function.
1218*596f483aSJessica Paquette         Occurrences.size(),  // Number of occurrences.
1219*596f483aSJessica Paquette         CandidateSequence,   // Sequence to outline.
1220*596f483aSJessica Paquette         FnBenefit            // Instructions saved by outlining this function.
1221*596f483aSJessica Paquette         );
1222*596f483aSJessica Paquette 
1223*596f483aSJessica Paquette     // Save each of the occurrences of the candidate so we can outline them.
1224*596f483aSJessica Paquette     for (size_t &Occ : Occurrences)
1225*596f483aSJessica Paquette       CandidateList.emplace_back(
1226*596f483aSJessica Paquette           Occ,                      // Starting idx in that MBB.
1227*596f483aSJessica Paquette           CandidateSequence.size(), // Candidate length.
1228*596f483aSJessica Paquette           FunctionList.size() - 1   // Idx of the corresponding function.
1229*596f483aSJessica Paquette           );
1230*596f483aSJessica Paquette 
1231*596f483aSJessica Paquette     FunctionsCreated++;
1232*596f483aSJessica Paquette   }
1233*596f483aSJessica Paquette 
1234*596f483aSJessica Paquette   // Sort the candidates in decending order. This will simplify the outlining
1235*596f483aSJessica Paquette   // process when we have to remove the candidates from the mapping by
1236*596f483aSJessica Paquette   // allowing us to cut them out without keeping track of an offset.
1237*596f483aSJessica Paquette   std::stable_sort(CandidateList.begin(), CandidateList.end());
1238*596f483aSJessica Paquette 
1239*596f483aSJessica Paquette   return MaxCandidateLen;
1240*596f483aSJessica Paquette }
1241*596f483aSJessica Paquette 
1242*596f483aSJessica Paquette MachineFunction *
1243*596f483aSJessica Paquette MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
1244*596f483aSJessica Paquette   InstructionMapper &Mapper) {
1245*596f483aSJessica Paquette 
1246*596f483aSJessica Paquette   // Create the function name. This should be unique. For now, just hash the
1247*596f483aSJessica Paquette   // module name and include it in the function name plus the number of this
1248*596f483aSJessica Paquette   // function.
1249*596f483aSJessica Paquette   std::ostringstream NameStream;
1250*596f483aSJessica Paquette   NameStream << "OUTLINED_FUNCTION" << "_" << OF.Name;
1251*596f483aSJessica Paquette 
1252*596f483aSJessica Paquette   // Create the function using an IR-level function.
1253*596f483aSJessica Paquette   LLVMContext &C = M.getContext();
1254*596f483aSJessica Paquette   Function *F = dyn_cast<Function>(
1255*596f483aSJessica Paquette       M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C), NULL));
1256*596f483aSJessica Paquette   assert(F && "Function was null!");
1257*596f483aSJessica Paquette 
1258*596f483aSJessica Paquette   // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1259*596f483aSJessica Paquette   // which gives us better results when we outline from linkonceodr functions.
1260*596f483aSJessica Paquette   F->setLinkage(GlobalValue::PrivateLinkage);
1261*596f483aSJessica Paquette   F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1262*596f483aSJessica Paquette 
1263*596f483aSJessica Paquette   BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1264*596f483aSJessica Paquette   IRBuilder<> Builder(EntryBB);
1265*596f483aSJessica Paquette   Builder.CreateRetVoid();
1266*596f483aSJessica Paquette 
1267*596f483aSJessica Paquette   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1268*596f483aSJessica Paquette   MachineFunction &MF = MMI.getMachineFunction(*F);
1269*596f483aSJessica Paquette   MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1270*596f483aSJessica Paquette   const TargetSubtargetInfo &STI = MF.getSubtarget();
1271*596f483aSJessica Paquette   const TargetInstrInfo &TII = *STI.getInstrInfo();
1272*596f483aSJessica Paquette 
1273*596f483aSJessica Paquette   // Insert the new function into the module.
1274*596f483aSJessica Paquette   MF.insert(MF.begin(), &MBB);
1275*596f483aSJessica Paquette 
1276*596f483aSJessica Paquette   TII.insertOutlinerPrologue(MBB, MF);
1277*596f483aSJessica Paquette 
1278*596f483aSJessica Paquette   // Copy over the instructions for the function using the integer mappings in
1279*596f483aSJessica Paquette   // its sequence.
1280*596f483aSJessica Paquette   for (unsigned Str : OF.Sequence) {
1281*596f483aSJessica Paquette     MachineInstr *NewMI =
1282*596f483aSJessica Paquette         MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
1283*596f483aSJessica Paquette     NewMI->dropMemRefs();
1284*596f483aSJessica Paquette 
1285*596f483aSJessica Paquette     // Don't keep debug information for outlined instructions.
1286*596f483aSJessica Paquette     // FIXME: This means outlined functions are currently undebuggable.
1287*596f483aSJessica Paquette     NewMI->setDebugLoc(DebugLoc());
1288*596f483aSJessica Paquette     MBB.insert(MBB.end(), NewMI);
1289*596f483aSJessica Paquette   }
1290*596f483aSJessica Paquette 
1291*596f483aSJessica Paquette   TII.insertOutlinerEpilogue(MBB, MF);
1292*596f483aSJessica Paquette 
1293*596f483aSJessica Paquette   return &MF;
1294*596f483aSJessica Paquette }
1295*596f483aSJessica Paquette 
1296*596f483aSJessica Paquette bool MachineOutliner::outline(Module &M,
1297*596f483aSJessica Paquette                               const ArrayRef<Candidate> &CandidateList,
1298*596f483aSJessica Paquette                               std::vector<OutlinedFunction> &FunctionList,
1299*596f483aSJessica Paquette                               InstructionMapper &Mapper) {
1300*596f483aSJessica Paquette 
1301*596f483aSJessica Paquette   bool OutlinedSomething = false;
1302*596f483aSJessica Paquette 
1303*596f483aSJessica Paquette   // Replace the candidates with calls to their respective outlined functions.
1304*596f483aSJessica Paquette   for (const Candidate &C : CandidateList) {
1305*596f483aSJessica Paquette 
1306*596f483aSJessica Paquette     // Was the candidate removed during pruneOverlaps?
1307*596f483aSJessica Paquette     if (!C.InCandidateList)
1308*596f483aSJessica Paquette       continue;
1309*596f483aSJessica Paquette 
1310*596f483aSJessica Paquette     // If not, then look at its OutlinedFunction.
1311*596f483aSJessica Paquette     OutlinedFunction &OF = FunctionList[C.FunctionIdx];
1312*596f483aSJessica Paquette 
1313*596f483aSJessica Paquette     // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
1314*596f483aSJessica Paquette     if (OF.OccurrenceCount < 2 || OF.Benefit < 1)
1315*596f483aSJessica Paquette       continue;
1316*596f483aSJessica Paquette 
1317*596f483aSJessica Paquette     // If not, then outline it.
1318*596f483aSJessica Paquette     assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
1319*596f483aSJessica Paquette     MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent();
1320*596f483aSJessica Paquette     MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx];
1321*596f483aSJessica Paquette     unsigned EndIdx = C.StartIdx + C.Len - 1;
1322*596f483aSJessica Paquette 
1323*596f483aSJessica Paquette     assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
1324*596f483aSJessica Paquette     MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1325*596f483aSJessica Paquette     assert(EndIt != MBB->end() && "EndIt out of bounds!");
1326*596f483aSJessica Paquette 
1327*596f483aSJessica Paquette     EndIt++; // Erase needs one past the end index.
1328*596f483aSJessica Paquette 
1329*596f483aSJessica Paquette     // Does this candidate have a function yet?
1330*596f483aSJessica Paquette     if (!OF.MF)
1331*596f483aSJessica Paquette       OF.MF = createOutlinedFunction(M, OF, Mapper);
1332*596f483aSJessica Paquette 
1333*596f483aSJessica Paquette     MachineFunction *MF = OF.MF;
1334*596f483aSJessica Paquette     const TargetSubtargetInfo &STI = MF->getSubtarget();
1335*596f483aSJessica Paquette     const TargetInstrInfo &TII = *STI.getInstrInfo();
1336*596f483aSJessica Paquette 
1337*596f483aSJessica Paquette     // Insert a call to the new function and erase the old sequence.
1338*596f483aSJessica Paquette     TII.insertOutlinedCall(M, *MBB, StartIt, *MF);
1339*596f483aSJessica Paquette     StartIt = Mapper.InstrList[C.StartIdx];
1340*596f483aSJessica Paquette     MBB->erase(StartIt, EndIt);
1341*596f483aSJessica Paquette 
1342*596f483aSJessica Paquette     OutlinedSomething = true;
1343*596f483aSJessica Paquette 
1344*596f483aSJessica Paquette     // Statistics.
1345*596f483aSJessica Paquette     NumOutlined++;
1346*596f483aSJessica Paquette   }
1347*596f483aSJessica Paquette 
1348*596f483aSJessica Paquette   DEBUG (
1349*596f483aSJessica Paquette     dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";
1350*596f483aSJessica Paquette   );
1351*596f483aSJessica Paquette 
1352*596f483aSJessica Paquette   return OutlinedSomething;
1353*596f483aSJessica Paquette }
1354*596f483aSJessica Paquette 
1355*596f483aSJessica Paquette bool MachineOutliner::runOnModule(Module &M) {
1356*596f483aSJessica Paquette 
1357*596f483aSJessica Paquette   // Is there anything in the module at all?
1358*596f483aSJessica Paquette   if (M.empty())
1359*596f483aSJessica Paquette     return false;
1360*596f483aSJessica Paquette 
1361*596f483aSJessica Paquette   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1362*596f483aSJessica Paquette   const TargetSubtargetInfo &STI = MMI.getMachineFunction(*M.begin())
1363*596f483aSJessica Paquette                                       .getSubtarget();
1364*596f483aSJessica Paquette   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
1365*596f483aSJessica Paquette   const TargetInstrInfo *TII = STI.getInstrInfo();
1366*596f483aSJessica Paquette 
1367*596f483aSJessica Paquette   InstructionMapper Mapper;
1368*596f483aSJessica Paquette 
1369*596f483aSJessica Paquette   // Build instruction mappings for each function in the module.
1370*596f483aSJessica Paquette   for (Function &F : M) {
1371*596f483aSJessica Paquette     MachineFunction &MF = MMI.getMachineFunction(F);
1372*596f483aSJessica Paquette 
1373*596f483aSJessica Paquette     // Is the function empty? Safe to outline from?
1374*596f483aSJessica Paquette     if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF))
1375*596f483aSJessica Paquette       continue;
1376*596f483aSJessica Paquette 
1377*596f483aSJessica Paquette     // If it is, look at each MachineBasicBlock in the function.
1378*596f483aSJessica Paquette     for (MachineBasicBlock &MBB : MF) {
1379*596f483aSJessica Paquette 
1380*596f483aSJessica Paquette       // Is there anything in MBB?
1381*596f483aSJessica Paquette       if (MBB.empty())
1382*596f483aSJessica Paquette         continue;
1383*596f483aSJessica Paquette 
1384*596f483aSJessica Paquette       // If yes, map it.
1385*596f483aSJessica Paquette       Mapper.convertToUnsignedVec(MBB, *TRI, *TII);
1386*596f483aSJessica Paquette     }
1387*596f483aSJessica Paquette   }
1388*596f483aSJessica Paquette 
1389*596f483aSJessica Paquette   // Construct a suffix tree, use it to find candidates, and then outline them.
1390*596f483aSJessica Paquette   SuffixTree ST(Mapper.UnsignedVec);
1391*596f483aSJessica Paquette   std::vector<Candidate> CandidateList;
1392*596f483aSJessica Paquette   std::vector<OutlinedFunction> FunctionList;
1393*596f483aSJessica Paquette 
1394*596f483aSJessica Paquette   unsigned MaxCandidateLen =
1395*596f483aSJessica Paquette       buildCandidateList(CandidateList, FunctionList, ST, *TII);
1396*596f483aSJessica Paquette 
1397*596f483aSJessica Paquette   pruneOverlaps(CandidateList, FunctionList, MaxCandidateLen, *TII);
1398*596f483aSJessica Paquette   return outline(M, CandidateList, FunctionList, Mapper);
1399*596f483aSJessica Paquette }
1400