1596f483aSJessica Paquette //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2596f483aSJessica Paquette // 3596f483aSJessica Paquette // The LLVM Compiler Infrastructure 4596f483aSJessica Paquette // 5596f483aSJessica Paquette // This file is distributed under the University of Illinois Open Source 6596f483aSJessica Paquette // License. See LICENSE.TXT for details. 7596f483aSJessica Paquette // 8596f483aSJessica Paquette //===----------------------------------------------------------------------===// 9596f483aSJessica Paquette /// 10596f483aSJessica Paquette /// \file 11596f483aSJessica Paquette /// Replaces repeated sequences of instructions with function calls. 12596f483aSJessica Paquette /// 13596f483aSJessica Paquette /// This works by placing every instruction from every basic block in a 14596f483aSJessica Paquette /// suffix tree, and repeatedly querying that tree for repeated sequences of 15596f483aSJessica Paquette /// instructions. If a sequence of instructions appears often, then it ought 16596f483aSJessica Paquette /// to be beneficial to pull out into a function. 17596f483aSJessica Paquette /// 184cf187b5SJessica Paquette /// The MachineOutliner communicates with a given target using hooks defined in 194cf187b5SJessica Paquette /// TargetInstrInfo.h. The target supplies the outliner with information on how 204cf187b5SJessica Paquette /// a specific sequence of instructions should be outlined. This information 214cf187b5SJessica Paquette /// is used to deduce the number of instructions necessary to 224cf187b5SJessica Paquette /// 234cf187b5SJessica Paquette /// * Create an outlined function 244cf187b5SJessica Paquette /// * Call that outlined function 254cf187b5SJessica Paquette /// 264cf187b5SJessica Paquette /// Targets must implement 274cf187b5SJessica Paquette /// * getOutliningCandidateInfo 284cf187b5SJessica Paquette /// * insertOutlinerEpilogue 294cf187b5SJessica Paquette /// * insertOutlinedCall 304cf187b5SJessica Paquette /// * insertOutlinerPrologue 314cf187b5SJessica Paquette /// * isFunctionSafeToOutlineFrom 324cf187b5SJessica Paquette /// 334cf187b5SJessica Paquette /// in order to make use of the MachineOutliner. 344cf187b5SJessica Paquette /// 35596f483aSJessica Paquette /// This was originally presented at the 2016 LLVM Developers' Meeting in the 36596f483aSJessica Paquette /// talk "Reducing Code Size Using Outlining". For a high-level overview of 37596f483aSJessica Paquette /// how this pass works, the talk is available on YouTube at 38596f483aSJessica Paquette /// 39596f483aSJessica Paquette /// https://www.youtube.com/watch?v=yorld-WSOeU 40596f483aSJessica Paquette /// 41596f483aSJessica Paquette /// The slides for the talk are available at 42596f483aSJessica Paquette /// 43596f483aSJessica Paquette /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 44596f483aSJessica Paquette /// 45596f483aSJessica Paquette /// The talk provides an overview of how the outliner finds candidates and 46596f483aSJessica Paquette /// ultimately outlines them. It describes how the main data structure for this 47596f483aSJessica Paquette /// pass, the suffix tree, is queried and purged for candidates. It also gives 48596f483aSJessica Paquette /// a simplified suffix tree construction algorithm for suffix trees based off 49596f483aSJessica Paquette /// of the algorithm actually used here, Ukkonen's algorithm. 50596f483aSJessica Paquette /// 51596f483aSJessica Paquette /// For the original RFC for this pass, please see 52596f483aSJessica Paquette /// 53596f483aSJessica Paquette /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 54596f483aSJessica Paquette /// 55596f483aSJessica Paquette /// For more information on the suffix tree data structure, please see 56596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 57596f483aSJessica Paquette /// 58596f483aSJessica Paquette //===----------------------------------------------------------------------===// 59596f483aSJessica Paquette #include "llvm/ADT/DenseMap.h" 60596f483aSJessica Paquette #include "llvm/ADT/Statistic.h" 61596f483aSJessica Paquette #include "llvm/ADT/Twine.h" 62596f483aSJessica Paquette #include "llvm/CodeGen/MachineFrameInfo.h" 63596f483aSJessica Paquette #include "llvm/CodeGen/MachineFunction.h" 64596f483aSJessica Paquette #include "llvm/CodeGen/MachineInstrBuilder.h" 65596f483aSJessica Paquette #include "llvm/CodeGen/MachineModuleInfo.h" 66ffe4abc5SJessica Paquette #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 67596f483aSJessica Paquette #include "llvm/CodeGen/Passes.h" 68596f483aSJessica Paquette #include "llvm/IR/IRBuilder.h" 69596f483aSJessica Paquette #include "llvm/Support/Allocator.h" 70596f483aSJessica Paquette #include "llvm/Support/Debug.h" 71596f483aSJessica Paquette #include "llvm/Support/raw_ostream.h" 72596f483aSJessica Paquette #include "llvm/Target/TargetInstrInfo.h" 73596f483aSJessica Paquette #include "llvm/Target/TargetMachine.h" 74596f483aSJessica Paquette #include "llvm/Target/TargetRegisterInfo.h" 75596f483aSJessica Paquette #include "llvm/Target/TargetSubtargetInfo.h" 76596f483aSJessica Paquette #include <functional> 77596f483aSJessica Paquette #include <map> 78596f483aSJessica Paquette #include <sstream> 79596f483aSJessica Paquette #include <tuple> 80596f483aSJessica Paquette #include <vector> 81596f483aSJessica Paquette 82596f483aSJessica Paquette #define DEBUG_TYPE "machine-outliner" 83596f483aSJessica Paquette 84596f483aSJessica Paquette using namespace llvm; 85ffe4abc5SJessica Paquette using namespace ore; 86596f483aSJessica Paquette 87596f483aSJessica Paquette STATISTIC(NumOutlined, "Number of candidates outlined"); 88596f483aSJessica Paquette STATISTIC(FunctionsCreated, "Number of functions created"); 89596f483aSJessica Paquette 90596f483aSJessica Paquette namespace { 91596f483aSJessica Paquette 92acffa28cSJessica Paquette /// \brief An individual sequence of instructions to be replaced with a call to 93acffa28cSJessica Paquette /// an outlined function. 94acffa28cSJessica Paquette struct Candidate { 95c9ab4c26SJessica Paquette private: 96c9ab4c26SJessica Paquette /// The start index of this \p Candidate in the instruction list. 974cf187b5SJessica Paquette unsigned StartIdx; 98acffa28cSJessica Paquette 99acffa28cSJessica Paquette /// The number of instructions in this \p Candidate. 1004cf187b5SJessica Paquette unsigned Len; 101acffa28cSJessica Paquette 102c9ab4c26SJessica Paquette public: 103c9ab4c26SJessica Paquette /// Set to false if the candidate overlapped with another candidate. 104c9ab4c26SJessica Paquette bool InCandidateList = true; 105c9ab4c26SJessica Paquette 106c9ab4c26SJessica Paquette /// \brief The index of this \p Candidate's \p OutlinedFunction in the list of 107acffa28cSJessica Paquette /// \p OutlinedFunctions. 1084cf187b5SJessica Paquette unsigned FunctionIdx; 109acffa28cSJessica Paquette 1104cf187b5SJessica Paquette /// Contains all target-specific information for this \p Candidate. 1114cf187b5SJessica Paquette TargetInstrInfo::MachineOutlinerInfo MInfo; 112d87f5449SJessica Paquette 113c9ab4c26SJessica Paquette /// Return the number of instructions in this Candidate. 114*1934fd2cSJessica Paquette unsigned getLength() const { return Len; } 115c9ab4c26SJessica Paquette 116c9ab4c26SJessica Paquette /// Return the start index of this candidate. 117*1934fd2cSJessica Paquette unsigned getStartIdx() const { return StartIdx; } 118c9ab4c26SJessica Paquette 119c9ab4c26SJessica Paquette // Return the end index of this candidate. 120*1934fd2cSJessica Paquette unsigned getEndIdx() const { return StartIdx + Len - 1; } 121c9ab4c26SJessica Paquette 122acffa28cSJessica Paquette /// \brief The number of instructions that would be saved by outlining every 123acffa28cSJessica Paquette /// candidate of this type. 124acffa28cSJessica Paquette /// 125acffa28cSJessica Paquette /// This is a fixed value which is not updated during the candidate pruning 126acffa28cSJessica Paquette /// process. It is only used for deciding which candidate to keep if two 127acffa28cSJessica Paquette /// candidates overlap. The true benefit is stored in the OutlinedFunction 128acffa28cSJessica Paquette /// for some given candidate. 129acffa28cSJessica Paquette unsigned Benefit = 0; 130acffa28cSJessica Paquette 1314cf187b5SJessica Paquette Candidate(unsigned StartIdx, unsigned Len, unsigned FunctionIdx) 1324cf187b5SJessica Paquette : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {} 133acffa28cSJessica Paquette 134acffa28cSJessica Paquette Candidate() {} 135acffa28cSJessica Paquette 136acffa28cSJessica Paquette /// \brief Used to ensure that \p Candidates are outlined in an order that 137acffa28cSJessica Paquette /// preserves the start and end indices of other \p Candidates. 138c9ab4c26SJessica Paquette bool operator<(const Candidate &RHS) const { 139*1934fd2cSJessica Paquette return getStartIdx() > RHS.getStartIdx(); 140c9ab4c26SJessica Paquette } 141acffa28cSJessica Paquette }; 142acffa28cSJessica Paquette 143acffa28cSJessica Paquette /// \brief The information necessary to create an outlined function for some 144acffa28cSJessica Paquette /// class of candidate. 145acffa28cSJessica Paquette struct OutlinedFunction { 146acffa28cSJessica Paquette 14785af63d0SJessica Paquette private: 14885af63d0SJessica Paquette /// The number of candidates for this \p OutlinedFunction. 14985af63d0SJessica Paquette unsigned OccurrenceCount = 0; 15085af63d0SJessica Paquette 15185af63d0SJessica Paquette public: 152acffa28cSJessica Paquette /// The actual outlined function created. 153acffa28cSJessica Paquette /// This is initialized after we go through and create the actual function. 154acffa28cSJessica Paquette MachineFunction *MF = nullptr; 155acffa28cSJessica Paquette 1564cf187b5SJessica Paquette /// A number assigned to this function which appears at the end of its name. 1574cf187b5SJessica Paquette unsigned Name; 158acffa28cSJessica Paquette 159acffa28cSJessica Paquette /// \brief The sequence of integers corresponding to the instructions in this 160acffa28cSJessica Paquette /// function. 161acffa28cSJessica Paquette std::vector<unsigned> Sequence; 162acffa28cSJessica Paquette 1634cf187b5SJessica Paquette /// Contains all target-specific information for this \p OutlinedFunction. 1644cf187b5SJessica Paquette TargetInstrInfo::MachineOutlinerInfo MInfo; 165acffa28cSJessica Paquette 16685af63d0SJessica Paquette /// Return the number of candidates for this \p OutlinedFunction. 16760d31fc3SJessica Paquette unsigned getOccurrenceCount() { return OccurrenceCount; } 16885af63d0SJessica Paquette 16985af63d0SJessica Paquette /// Decrement the occurrence count of this OutlinedFunction and return the 17085af63d0SJessica Paquette /// new count. 17185af63d0SJessica Paquette unsigned decrement() { 17285af63d0SJessica Paquette assert(OccurrenceCount > 0 && "Can't decrement an empty function!"); 17385af63d0SJessica Paquette OccurrenceCount--; 17485af63d0SJessica Paquette return getOccurrenceCount(); 17585af63d0SJessica Paquette } 17685af63d0SJessica Paquette 177acc15e12SJessica Paquette /// \brief Return the number of instructions it would take to outline this 178acc15e12SJessica Paquette /// function. 179acc15e12SJessica Paquette unsigned getOutliningCost() { 180acc15e12SJessica Paquette return (OccurrenceCount * MInfo.CallOverhead) + Sequence.size() + 181acc15e12SJessica Paquette MInfo.FrameOverhead; 182acc15e12SJessica Paquette } 183acc15e12SJessica Paquette 184acc15e12SJessica Paquette /// \brief Return the number of instructions that would be saved by outlining 185acc15e12SJessica Paquette /// this function. 186acc15e12SJessica Paquette unsigned getBenefit() { 187acc15e12SJessica Paquette unsigned NotOutlinedCost = OccurrenceCount * Sequence.size(); 188acc15e12SJessica Paquette unsigned OutlinedCost = getOutliningCost(); 189acc15e12SJessica Paquette return (NotOutlinedCost < OutlinedCost) ? 0 190acc15e12SJessica Paquette : NotOutlinedCost - OutlinedCost; 191acc15e12SJessica Paquette } 192acc15e12SJessica Paquette 1934cf187b5SJessica Paquette OutlinedFunction(unsigned Name, unsigned OccurrenceCount, 194acc15e12SJessica Paquette const std::vector<unsigned> &Sequence, 1954cf187b5SJessica Paquette TargetInstrInfo::MachineOutlinerInfo &MInfo) 19685af63d0SJessica Paquette : OccurrenceCount(OccurrenceCount), Name(Name), Sequence(Sequence), 197acc15e12SJessica Paquette MInfo(MInfo) {} 198acffa28cSJessica Paquette }; 199acffa28cSJessica Paquette 200596f483aSJessica Paquette /// Represents an undefined index in the suffix tree. 2014cf187b5SJessica Paquette const unsigned EmptyIdx = -1; 202596f483aSJessica Paquette 203596f483aSJessica Paquette /// A node in a suffix tree which represents a substring or suffix. 204596f483aSJessica Paquette /// 205596f483aSJessica Paquette /// Each node has either no children or at least two children, with the root 206596f483aSJessica Paquette /// being a exception in the empty tree. 207596f483aSJessica Paquette /// 208596f483aSJessica Paquette /// Children are represented as a map between unsigned integers and nodes. If 209596f483aSJessica Paquette /// a node N has a child M on unsigned integer k, then the mapping represented 210596f483aSJessica Paquette /// by N is a proper prefix of the mapping represented by M. Note that this, 211596f483aSJessica Paquette /// although similar to a trie is somewhat different: each node stores a full 212596f483aSJessica Paquette /// substring of the full mapping rather than a single character state. 213596f483aSJessica Paquette /// 214596f483aSJessica Paquette /// Each internal node contains a pointer to the internal node representing 215596f483aSJessica Paquette /// the same string, but with the first character chopped off. This is stored 216596f483aSJessica Paquette /// in \p Link. Each leaf node stores the start index of its respective 217596f483aSJessica Paquette /// suffix in \p SuffixIdx. 218596f483aSJessica Paquette struct SuffixTreeNode { 219596f483aSJessica Paquette 220596f483aSJessica Paquette /// The children of this node. 221596f483aSJessica Paquette /// 222596f483aSJessica Paquette /// A child existing on an unsigned integer implies that from the mapping 223596f483aSJessica Paquette /// represented by the current node, there is a way to reach another 224596f483aSJessica Paquette /// mapping by tacking that character on the end of the current string. 225596f483aSJessica Paquette DenseMap<unsigned, SuffixTreeNode *> Children; 226596f483aSJessica Paquette 227596f483aSJessica Paquette /// A flag set to false if the node has been pruned from the tree. 228596f483aSJessica Paquette bool IsInTree = true; 229596f483aSJessica Paquette 230596f483aSJessica Paquette /// The start index of this node's substring in the main string. 2314cf187b5SJessica Paquette unsigned StartIdx = EmptyIdx; 232596f483aSJessica Paquette 233596f483aSJessica Paquette /// The end index of this node's substring in the main string. 234596f483aSJessica Paquette /// 235596f483aSJessica Paquette /// Every leaf node must have its \p EndIdx incremented at the end of every 236596f483aSJessica Paquette /// step in the construction algorithm. To avoid having to update O(N) 237596f483aSJessica Paquette /// nodes individually at the end of every step, the end index is stored 238596f483aSJessica Paquette /// as a pointer. 2394cf187b5SJessica Paquette unsigned *EndIdx = nullptr; 240596f483aSJessica Paquette 241596f483aSJessica Paquette /// For leaves, the start index of the suffix represented by this node. 242596f483aSJessica Paquette /// 243596f483aSJessica Paquette /// For all other nodes, this is ignored. 2444cf187b5SJessica Paquette unsigned SuffixIdx = EmptyIdx; 245596f483aSJessica Paquette 246596f483aSJessica Paquette /// \brief For internal nodes, a pointer to the internal node representing 247596f483aSJessica Paquette /// the same sequence with the first character chopped off. 248596f483aSJessica Paquette /// 2494602c343SJessica Paquette /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 250596f483aSJessica Paquette /// Ukkonen's algorithm does to achieve linear-time construction is 251596f483aSJessica Paquette /// keep track of which node the next insert should be at. This makes each 252596f483aSJessica Paquette /// insert O(1), and there are a total of O(N) inserts. The suffix link 253596f483aSJessica Paquette /// helps with inserting children of internal nodes. 254596f483aSJessica Paquette /// 255596f483aSJessica Paquette /// Say we add a child to an internal node with associated mapping S. The 256596f483aSJessica Paquette /// next insertion must be at the node representing S - its first character. 257596f483aSJessica Paquette /// This is given by the way that we iteratively build the tree in Ukkonen's 258596f483aSJessica Paquette /// algorithm. The main idea is to look at the suffixes of each prefix in the 259596f483aSJessica Paquette /// string, starting with the longest suffix of the prefix, and ending with 260596f483aSJessica Paquette /// the shortest. Therefore, if we keep pointers between such nodes, we can 261596f483aSJessica Paquette /// move to the next insertion point in O(1) time. If we don't, then we'd 262596f483aSJessica Paquette /// have to query from the root, which takes O(N) time. This would make the 263596f483aSJessica Paquette /// construction algorithm O(N^2) rather than O(N). 264596f483aSJessica Paquette SuffixTreeNode *Link = nullptr; 265596f483aSJessica Paquette 266596f483aSJessica Paquette /// The parent of this node. Every node except for the root has a parent. 267596f483aSJessica Paquette SuffixTreeNode *Parent = nullptr; 268596f483aSJessica Paquette 269596f483aSJessica Paquette /// The number of times this node's string appears in the tree. 270596f483aSJessica Paquette /// 271596f483aSJessica Paquette /// This is equal to the number of leaf children of the string. It represents 272596f483aSJessica Paquette /// the number of suffixes that the node's string is a prefix of. 2734cf187b5SJessica Paquette unsigned OccurrenceCount = 0; 274596f483aSJessica Paquette 275acffa28cSJessica Paquette /// The length of the string formed by concatenating the edge labels from the 276acffa28cSJessica Paquette /// root to this node. 2774cf187b5SJessica Paquette unsigned ConcatLen = 0; 278acffa28cSJessica Paquette 279596f483aSJessica Paquette /// Returns true if this node is a leaf. 280596f483aSJessica Paquette bool isLeaf() const { return SuffixIdx != EmptyIdx; } 281596f483aSJessica Paquette 282596f483aSJessica Paquette /// Returns true if this node is the root of its owning \p SuffixTree. 283596f483aSJessica Paquette bool isRoot() const { return StartIdx == EmptyIdx; } 284596f483aSJessica Paquette 285596f483aSJessica Paquette /// Return the number of elements in the substring associated with this node. 286596f483aSJessica Paquette size_t size() const { 287596f483aSJessica Paquette 288596f483aSJessica Paquette // Is it the root? If so, it's the empty string so return 0. 289596f483aSJessica Paquette if (isRoot()) 290596f483aSJessica Paquette return 0; 291596f483aSJessica Paquette 292596f483aSJessica Paquette assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 293596f483aSJessica Paquette 294596f483aSJessica Paquette // Size = the number of elements in the string. 295596f483aSJessica Paquette // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 296596f483aSJessica Paquette return *EndIdx - StartIdx + 1; 297596f483aSJessica Paquette } 298596f483aSJessica Paquette 2994cf187b5SJessica Paquette SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link, 300596f483aSJessica Paquette SuffixTreeNode *Parent) 301596f483aSJessica Paquette : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} 302596f483aSJessica Paquette 303596f483aSJessica Paquette SuffixTreeNode() {} 304596f483aSJessica Paquette }; 305596f483aSJessica Paquette 306596f483aSJessica Paquette /// A data structure for fast substring queries. 307596f483aSJessica Paquette /// 308596f483aSJessica Paquette /// Suffix trees represent the suffixes of their input strings in their leaves. 309596f483aSJessica Paquette /// A suffix tree is a type of compressed trie structure where each node 310596f483aSJessica Paquette /// represents an entire substring rather than a single character. Each leaf 311596f483aSJessica Paquette /// of the tree is a suffix. 312596f483aSJessica Paquette /// 313596f483aSJessica Paquette /// A suffix tree can be seen as a type of state machine where each state is a 314596f483aSJessica Paquette /// substring of the full string. The tree is structured so that, for a string 315596f483aSJessica Paquette /// of length N, there are exactly N leaves in the tree. This structure allows 316596f483aSJessica Paquette /// us to quickly find repeated substrings of the input string. 317596f483aSJessica Paquette /// 318596f483aSJessica Paquette /// In this implementation, a "string" is a vector of unsigned integers. 319596f483aSJessica Paquette /// These integers may result from hashing some data type. A suffix tree can 320596f483aSJessica Paquette /// contain 1 or many strings, which can then be queried as one large string. 321596f483aSJessica Paquette /// 322596f483aSJessica Paquette /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 323596f483aSJessica Paquette /// suffix tree construction. Ukkonen's algorithm is explained in more detail 324596f483aSJessica Paquette /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 325596f483aSJessica Paquette /// paper is available at 326596f483aSJessica Paquette /// 327596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 328596f483aSJessica Paquette class SuffixTree { 32978681be2SJessica Paquette public: 33078681be2SJessica Paquette /// Stores each leaf node in the tree. 33178681be2SJessica Paquette /// 33278681be2SJessica Paquette /// This is used for finding outlining candidates. 33378681be2SJessica Paquette std::vector<SuffixTreeNode *> LeafVector; 33478681be2SJessica Paquette 335596f483aSJessica Paquette /// Each element is an integer representing an instruction in the module. 336596f483aSJessica Paquette ArrayRef<unsigned> Str; 337596f483aSJessica Paquette 33878681be2SJessica Paquette private: 339596f483aSJessica Paquette /// Maintains each node in the tree. 340d4cb9c6dSJessica Paquette SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 341596f483aSJessica Paquette 342596f483aSJessica Paquette /// The root of the suffix tree. 343596f483aSJessica Paquette /// 344596f483aSJessica Paquette /// The root represents the empty string. It is maintained by the 345596f483aSJessica Paquette /// \p NodeAllocator like every other node in the tree. 346596f483aSJessica Paquette SuffixTreeNode *Root = nullptr; 347596f483aSJessica Paquette 348596f483aSJessica Paquette /// Maintains the end indices of the internal nodes in the tree. 349596f483aSJessica Paquette /// 350596f483aSJessica Paquette /// Each internal node is guaranteed to never have its end index change 351596f483aSJessica Paquette /// during the construction algorithm; however, leaves must be updated at 352596f483aSJessica Paquette /// every step. Therefore, we need to store leaf end indices by reference 353596f483aSJessica Paquette /// to avoid updating O(N) leaves at every step of construction. Thus, 354596f483aSJessica Paquette /// every internal node must be allocated its own end index. 355596f483aSJessica Paquette BumpPtrAllocator InternalEndIdxAllocator; 356596f483aSJessica Paquette 357596f483aSJessica Paquette /// The end index of each leaf in the tree. 3584cf187b5SJessica Paquette unsigned LeafEndIdx = -1; 359596f483aSJessica Paquette 360596f483aSJessica Paquette /// \brief Helper struct which keeps track of the next insertion point in 361596f483aSJessica Paquette /// Ukkonen's algorithm. 362596f483aSJessica Paquette struct ActiveState { 363596f483aSJessica Paquette /// The next node to insert at. 364596f483aSJessica Paquette SuffixTreeNode *Node; 365596f483aSJessica Paquette 366596f483aSJessica Paquette /// The index of the first character in the substring currently being added. 3674cf187b5SJessica Paquette unsigned Idx = EmptyIdx; 368596f483aSJessica Paquette 369596f483aSJessica Paquette /// The length of the substring we have to add at the current step. 3704cf187b5SJessica Paquette unsigned Len = 0; 371596f483aSJessica Paquette }; 372596f483aSJessica Paquette 373596f483aSJessica Paquette /// \brief The point the next insertion will take place at in the 374596f483aSJessica Paquette /// construction algorithm. 375596f483aSJessica Paquette ActiveState Active; 376596f483aSJessica Paquette 377596f483aSJessica Paquette /// Allocate a leaf node and add it to the tree. 378596f483aSJessica Paquette /// 379596f483aSJessica Paquette /// \param Parent The parent of this node. 380596f483aSJessica Paquette /// \param StartIdx The start index of this node's associated string. 381596f483aSJessica Paquette /// \param Edge The label on the edge leaving \p Parent to this node. 382596f483aSJessica Paquette /// 383596f483aSJessica Paquette /// \returns A pointer to the allocated leaf node. 3844cf187b5SJessica Paquette SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, 385596f483aSJessica Paquette unsigned Edge) { 386596f483aSJessica Paquette 387596f483aSJessica Paquette assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 388596f483aSJessica Paquette 38978681be2SJessica Paquette SuffixTreeNode *N = new (NodeAllocator.Allocate()) 39078681be2SJessica Paquette SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent); 391596f483aSJessica Paquette Parent.Children[Edge] = N; 392596f483aSJessica Paquette 393596f483aSJessica Paquette return N; 394596f483aSJessica Paquette } 395596f483aSJessica Paquette 396596f483aSJessica Paquette /// Allocate an internal node and add it to the tree. 397596f483aSJessica Paquette /// 398596f483aSJessica Paquette /// \param Parent The parent of this node. Only null when allocating the root. 399596f483aSJessica Paquette /// \param StartIdx The start index of this node's associated string. 400596f483aSJessica Paquette /// \param EndIdx The end index of this node's associated string. 401596f483aSJessica Paquette /// \param Edge The label on the edge leaving \p Parent to this node. 402596f483aSJessica Paquette /// 403596f483aSJessica Paquette /// \returns A pointer to the allocated internal node. 4044cf187b5SJessica Paquette SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, 4054cf187b5SJessica Paquette unsigned EndIdx, unsigned Edge) { 406596f483aSJessica Paquette 407596f483aSJessica Paquette assert(StartIdx <= EndIdx && "String can't start after it ends!"); 408596f483aSJessica Paquette assert(!(!Parent && StartIdx != EmptyIdx) && 409596f483aSJessica Paquette "Non-root internal nodes must have parents!"); 410596f483aSJessica Paquette 4114cf187b5SJessica Paquette unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); 41278681be2SJessica Paquette SuffixTreeNode *N = new (NodeAllocator.Allocate()) 41378681be2SJessica Paquette SuffixTreeNode(StartIdx, E, Root, Parent); 414596f483aSJessica Paquette if (Parent) 415596f483aSJessica Paquette Parent->Children[Edge] = N; 416596f483aSJessica Paquette 417596f483aSJessica Paquette return N; 418596f483aSJessica Paquette } 419596f483aSJessica Paquette 420596f483aSJessica Paquette /// \brief Set the suffix indices of the leaves to the start indices of their 421596f483aSJessica Paquette /// respective suffixes. Also stores each leaf in \p LeafVector at its 422596f483aSJessica Paquette /// respective suffix index. 423596f483aSJessica Paquette /// 424596f483aSJessica Paquette /// \param[in] CurrNode The node currently being visited. 425596f483aSJessica Paquette /// \param CurrIdx The current index of the string being visited. 4264cf187b5SJessica Paquette void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) { 427596f483aSJessica Paquette 428596f483aSJessica Paquette bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 429596f483aSJessica Paquette 430acffa28cSJessica Paquette // Store the length of the concatenation of all strings from the root to 431acffa28cSJessica Paquette // this node. 432acffa28cSJessica Paquette if (!CurrNode.isRoot()) { 433acffa28cSJessica Paquette if (CurrNode.ConcatLen == 0) 434acffa28cSJessica Paquette CurrNode.ConcatLen = CurrNode.size(); 435acffa28cSJessica Paquette 436acffa28cSJessica Paquette if (CurrNode.Parent) 437acffa28cSJessica Paquette CurrNode.ConcatLen += CurrNode.Parent->ConcatLen; 438acffa28cSJessica Paquette } 439acffa28cSJessica Paquette 440596f483aSJessica Paquette // Traverse the tree depth-first. 441596f483aSJessica Paquette for (auto &ChildPair : CurrNode.Children) { 442596f483aSJessica Paquette assert(ChildPair.second && "Node had a null child!"); 44378681be2SJessica Paquette setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size()); 444596f483aSJessica Paquette } 445596f483aSJessica Paquette 446596f483aSJessica Paquette // Is this node a leaf? 447596f483aSJessica Paquette if (IsLeaf) { 448596f483aSJessica Paquette // If yes, give it a suffix index and bump its parent's occurrence count. 449596f483aSJessica Paquette CurrNode.SuffixIdx = Str.size() - CurrIdx; 450596f483aSJessica Paquette assert(CurrNode.Parent && "CurrNode had no parent!"); 451596f483aSJessica Paquette CurrNode.Parent->OccurrenceCount++; 452596f483aSJessica Paquette 453596f483aSJessica Paquette // Store the leaf in the leaf vector for pruning later. 454596f483aSJessica Paquette LeafVector[CurrNode.SuffixIdx] = &CurrNode; 455596f483aSJessica Paquette } 456596f483aSJessica Paquette } 457596f483aSJessica Paquette 458596f483aSJessica Paquette /// \brief Construct the suffix tree for the prefix of the input ending at 459596f483aSJessica Paquette /// \p EndIdx. 460596f483aSJessica Paquette /// 461596f483aSJessica Paquette /// Used to construct the full suffix tree iteratively. At the end of each 462596f483aSJessica Paquette /// step, the constructed suffix tree is either a valid suffix tree, or a 463596f483aSJessica Paquette /// suffix tree with implicit suffixes. At the end of the final step, the 464596f483aSJessica Paquette /// suffix tree is a valid tree. 465596f483aSJessica Paquette /// 466596f483aSJessica Paquette /// \param EndIdx The end index of the current prefix in the main string. 467596f483aSJessica Paquette /// \param SuffixesToAdd The number of suffixes that must be added 468596f483aSJessica Paquette /// to complete the suffix tree at the current phase. 469596f483aSJessica Paquette /// 470596f483aSJessica Paquette /// \returns The number of suffixes that have not been added at the end of 471596f483aSJessica Paquette /// this step. 4724cf187b5SJessica Paquette unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { 473596f483aSJessica Paquette SuffixTreeNode *NeedsLink = nullptr; 474596f483aSJessica Paquette 475596f483aSJessica Paquette while (SuffixesToAdd > 0) { 476596f483aSJessica Paquette 477596f483aSJessica Paquette // Are we waiting to add anything other than just the last character? 478596f483aSJessica Paquette if (Active.Len == 0) { 479596f483aSJessica Paquette // If not, then say the active index is the end index. 480596f483aSJessica Paquette Active.Idx = EndIdx; 481596f483aSJessica Paquette } 482596f483aSJessica Paquette 483596f483aSJessica Paquette assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 484596f483aSJessica Paquette 485596f483aSJessica Paquette // The first character in the current substring we're looking at. 486596f483aSJessica Paquette unsigned FirstChar = Str[Active.Idx]; 487596f483aSJessica Paquette 488596f483aSJessica Paquette // Have we inserted anything starting with FirstChar at the current node? 489596f483aSJessica Paquette if (Active.Node->Children.count(FirstChar) == 0) { 490596f483aSJessica Paquette // If not, then we can just insert a leaf and move too the next step. 491596f483aSJessica Paquette insertLeaf(*Active.Node, EndIdx, FirstChar); 492596f483aSJessica Paquette 493596f483aSJessica Paquette // The active node is an internal node, and we visited it, so it must 494596f483aSJessica Paquette // need a link if it doesn't have one. 495596f483aSJessica Paquette if (NeedsLink) { 496596f483aSJessica Paquette NeedsLink->Link = Active.Node; 497596f483aSJessica Paquette NeedsLink = nullptr; 498596f483aSJessica Paquette } 499596f483aSJessica Paquette } else { 500596f483aSJessica Paquette // There's a match with FirstChar, so look for the point in the tree to 501596f483aSJessica Paquette // insert a new node. 502596f483aSJessica Paquette SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 503596f483aSJessica Paquette 5044cf187b5SJessica Paquette unsigned SubstringLen = NextNode->size(); 505596f483aSJessica Paquette 506596f483aSJessica Paquette // Is the current suffix we're trying to insert longer than the size of 507596f483aSJessica Paquette // the child we want to move to? 508596f483aSJessica Paquette if (Active.Len >= SubstringLen) { 509596f483aSJessica Paquette // If yes, then consume the characters we've seen and move to the next 510596f483aSJessica Paquette // node. 511596f483aSJessica Paquette Active.Idx += SubstringLen; 512596f483aSJessica Paquette Active.Len -= SubstringLen; 513596f483aSJessica Paquette Active.Node = NextNode; 514596f483aSJessica Paquette continue; 515596f483aSJessica Paquette } 516596f483aSJessica Paquette 517596f483aSJessica Paquette // Otherwise, the suffix we're trying to insert must be contained in the 518596f483aSJessica Paquette // next node we want to move to. 519596f483aSJessica Paquette unsigned LastChar = Str[EndIdx]; 520596f483aSJessica Paquette 521596f483aSJessica Paquette // Is the string we're trying to insert a substring of the next node? 522596f483aSJessica Paquette if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 523596f483aSJessica Paquette // If yes, then we're done for this step. Remember our insertion point 524596f483aSJessica Paquette // and move to the next end index. At this point, we have an implicit 525596f483aSJessica Paquette // suffix tree. 526596f483aSJessica Paquette if (NeedsLink && !Active.Node->isRoot()) { 527596f483aSJessica Paquette NeedsLink->Link = Active.Node; 528596f483aSJessica Paquette NeedsLink = nullptr; 529596f483aSJessica Paquette } 530596f483aSJessica Paquette 531596f483aSJessica Paquette Active.Len++; 532596f483aSJessica Paquette break; 533596f483aSJessica Paquette } 534596f483aSJessica Paquette 535596f483aSJessica Paquette // The string we're trying to insert isn't a substring of the next node, 536596f483aSJessica Paquette // but matches up to a point. Split the node. 537596f483aSJessica Paquette // 538596f483aSJessica Paquette // For example, say we ended our search at a node n and we're trying to 539596f483aSJessica Paquette // insert ABD. Then we'll create a new node s for AB, reduce n to just 540596f483aSJessica Paquette // representing C, and insert a new leaf node l to represent d. This 541596f483aSJessica Paquette // allows us to ensure that if n was a leaf, it remains a leaf. 542596f483aSJessica Paquette // 543596f483aSJessica Paquette // | ABC ---split---> | AB 544596f483aSJessica Paquette // n s 545596f483aSJessica Paquette // C / \ D 546596f483aSJessica Paquette // n l 547596f483aSJessica Paquette 548596f483aSJessica Paquette // The node s from the diagram 549596f483aSJessica Paquette SuffixTreeNode *SplitNode = 55078681be2SJessica Paquette insertInternalNode(Active.Node, NextNode->StartIdx, 55178681be2SJessica Paquette NextNode->StartIdx + Active.Len - 1, FirstChar); 552596f483aSJessica Paquette 553596f483aSJessica Paquette // Insert the new node representing the new substring into the tree as 554596f483aSJessica Paquette // a child of the split node. This is the node l from the diagram. 555596f483aSJessica Paquette insertLeaf(*SplitNode, EndIdx, LastChar); 556596f483aSJessica Paquette 557596f483aSJessica Paquette // Make the old node a child of the split node and update its start 558596f483aSJessica Paquette // index. This is the node n from the diagram. 559596f483aSJessica Paquette NextNode->StartIdx += Active.Len; 560596f483aSJessica Paquette NextNode->Parent = SplitNode; 561596f483aSJessica Paquette SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 562596f483aSJessica Paquette 563596f483aSJessica Paquette // SplitNode is an internal node, update the suffix link. 564596f483aSJessica Paquette if (NeedsLink) 565596f483aSJessica Paquette NeedsLink->Link = SplitNode; 566596f483aSJessica Paquette 567596f483aSJessica Paquette NeedsLink = SplitNode; 568596f483aSJessica Paquette } 569596f483aSJessica Paquette 570596f483aSJessica Paquette // We've added something new to the tree, so there's one less suffix to 571596f483aSJessica Paquette // add. 572596f483aSJessica Paquette SuffixesToAdd--; 573596f483aSJessica Paquette 574596f483aSJessica Paquette if (Active.Node->isRoot()) { 575596f483aSJessica Paquette if (Active.Len > 0) { 576596f483aSJessica Paquette Active.Len--; 577596f483aSJessica Paquette Active.Idx = EndIdx - SuffixesToAdd + 1; 578596f483aSJessica Paquette } 579596f483aSJessica Paquette } else { 580596f483aSJessica Paquette // Start the next phase at the next smallest suffix. 581596f483aSJessica Paquette Active.Node = Active.Node->Link; 582596f483aSJessica Paquette } 583596f483aSJessica Paquette } 584596f483aSJessica Paquette 585596f483aSJessica Paquette return SuffixesToAdd; 586596f483aSJessica Paquette } 587596f483aSJessica Paquette 588596f483aSJessica Paquette public: 589596f483aSJessica Paquette /// Construct a suffix tree from a sequence of unsigned integers. 590596f483aSJessica Paquette /// 591596f483aSJessica Paquette /// \param Str The string to construct the suffix tree for. 592596f483aSJessica Paquette SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 593596f483aSJessica Paquette Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 594596f483aSJessica Paquette Root->IsInTree = true; 595596f483aSJessica Paquette Active.Node = Root; 596596f483aSJessica Paquette LeafVector = std::vector<SuffixTreeNode *>(Str.size()); 597596f483aSJessica Paquette 598596f483aSJessica Paquette // Keep track of the number of suffixes we have to add of the current 599596f483aSJessica Paquette // prefix. 6004cf187b5SJessica Paquette unsigned SuffixesToAdd = 0; 601596f483aSJessica Paquette Active.Node = Root; 602596f483aSJessica Paquette 603596f483aSJessica Paquette // Construct the suffix tree iteratively on each prefix of the string. 604596f483aSJessica Paquette // PfxEndIdx is the end index of the current prefix. 605596f483aSJessica Paquette // End is one past the last element in the string. 6064cf187b5SJessica Paquette for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; 6074cf187b5SJessica Paquette PfxEndIdx++) { 608596f483aSJessica Paquette SuffixesToAdd++; 609596f483aSJessica Paquette LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 610596f483aSJessica Paquette SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 611596f483aSJessica Paquette } 612596f483aSJessica Paquette 613596f483aSJessica Paquette // Set the suffix indices of each leaf. 614596f483aSJessica Paquette assert(Root && "Root node can't be nullptr!"); 615596f483aSJessica Paquette setSuffixIndices(*Root, 0); 616596f483aSJessica Paquette } 617596f483aSJessica Paquette }; 618596f483aSJessica Paquette 619596f483aSJessica Paquette /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings. 620596f483aSJessica Paquette struct InstructionMapper { 621596f483aSJessica Paquette 622596f483aSJessica Paquette /// \brief The next available integer to assign to a \p MachineInstr that 623596f483aSJessica Paquette /// cannot be outlined. 624596f483aSJessica Paquette /// 625596f483aSJessica Paquette /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 626596f483aSJessica Paquette unsigned IllegalInstrNumber = -3; 627596f483aSJessica Paquette 628596f483aSJessica Paquette /// \brief The next available integer to assign to a \p MachineInstr that can 629596f483aSJessica Paquette /// be outlined. 630596f483aSJessica Paquette unsigned LegalInstrNumber = 0; 631596f483aSJessica Paquette 632596f483aSJessica Paquette /// Correspondence from \p MachineInstrs to unsigned integers. 633596f483aSJessica Paquette DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 634596f483aSJessica Paquette InstructionIntegerMap; 635596f483aSJessica Paquette 636596f483aSJessica Paquette /// Corresponcence from unsigned integers to \p MachineInstrs. 637596f483aSJessica Paquette /// Inverse of \p InstructionIntegerMap. 638596f483aSJessica Paquette DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; 639596f483aSJessica Paquette 640596f483aSJessica Paquette /// The vector of unsigned integers that the module is mapped to. 641596f483aSJessica Paquette std::vector<unsigned> UnsignedVec; 642596f483aSJessica Paquette 643596f483aSJessica Paquette /// \brief Stores the location of the instruction associated with the integer 644596f483aSJessica Paquette /// at index i in \p UnsignedVec for each index i. 645596f483aSJessica Paquette std::vector<MachineBasicBlock::iterator> InstrList; 646596f483aSJessica Paquette 647596f483aSJessica Paquette /// \brief Maps \p *It to a legal integer. 648596f483aSJessica Paquette /// 649596f483aSJessica Paquette /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, 650596f483aSJessica Paquette /// \p IntegerInstructionMap, and \p LegalInstrNumber. 651596f483aSJessica Paquette /// 652596f483aSJessica Paquette /// \returns The integer that \p *It was mapped to. 653596f483aSJessica Paquette unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { 654596f483aSJessica Paquette 655596f483aSJessica Paquette // Get the integer for this instruction or give it the current 656596f483aSJessica Paquette // LegalInstrNumber. 657596f483aSJessica Paquette InstrList.push_back(It); 658596f483aSJessica Paquette MachineInstr &MI = *It; 659596f483aSJessica Paquette bool WasInserted; 660596f483aSJessica Paquette DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 661596f483aSJessica Paquette ResultIt; 662596f483aSJessica Paquette std::tie(ResultIt, WasInserted) = 663596f483aSJessica Paquette InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 664596f483aSJessica Paquette unsigned MINumber = ResultIt->second; 665596f483aSJessica Paquette 666596f483aSJessica Paquette // There was an insertion. 667596f483aSJessica Paquette if (WasInserted) { 668596f483aSJessica Paquette LegalInstrNumber++; 669596f483aSJessica Paquette IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); 670596f483aSJessica Paquette } 671596f483aSJessica Paquette 672596f483aSJessica Paquette UnsignedVec.push_back(MINumber); 673596f483aSJessica Paquette 674596f483aSJessica Paquette // Make sure we don't overflow or use any integers reserved by the DenseMap. 675596f483aSJessica Paquette if (LegalInstrNumber >= IllegalInstrNumber) 676596f483aSJessica Paquette report_fatal_error("Instruction mapping overflow!"); 677596f483aSJessica Paquette 67878681be2SJessica Paquette assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 67978681be2SJessica Paquette "Tried to assign DenseMap tombstone or empty key to instruction."); 68078681be2SJessica Paquette assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 68178681be2SJessica Paquette "Tried to assign DenseMap tombstone or empty key to instruction."); 682596f483aSJessica Paquette 683596f483aSJessica Paquette return MINumber; 684596f483aSJessica Paquette } 685596f483aSJessica Paquette 686596f483aSJessica Paquette /// Maps \p *It to an illegal integer. 687596f483aSJessica Paquette /// 688596f483aSJessica Paquette /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. 689596f483aSJessica Paquette /// 690596f483aSJessica Paquette /// \returns The integer that \p *It was mapped to. 691596f483aSJessica Paquette unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { 692596f483aSJessica Paquette unsigned MINumber = IllegalInstrNumber; 693596f483aSJessica Paquette 694596f483aSJessica Paquette InstrList.push_back(It); 695596f483aSJessica Paquette UnsignedVec.push_back(IllegalInstrNumber); 696596f483aSJessica Paquette IllegalInstrNumber--; 697596f483aSJessica Paquette 698596f483aSJessica Paquette assert(LegalInstrNumber < IllegalInstrNumber && 699596f483aSJessica Paquette "Instruction mapping overflow!"); 700596f483aSJessica Paquette 70178681be2SJessica Paquette assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 702596f483aSJessica Paquette "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 703596f483aSJessica Paquette 70478681be2SJessica Paquette assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 705596f483aSJessica Paquette "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 706596f483aSJessica Paquette 707596f483aSJessica Paquette return MINumber; 708596f483aSJessica Paquette } 709596f483aSJessica Paquette 710596f483aSJessica Paquette /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 711596f483aSJessica Paquette /// and appends it to \p UnsignedVec and \p InstrList. 712596f483aSJessica Paquette /// 713596f483aSJessica Paquette /// Two instructions are assigned the same integer if they are identical. 714596f483aSJessica Paquette /// If an instruction is deemed unsafe to outline, then it will be assigned an 715596f483aSJessica Paquette /// unique integer. The resulting mapping is placed into a suffix tree and 716596f483aSJessica Paquette /// queried for candidates. 717596f483aSJessica Paquette /// 718596f483aSJessica Paquette /// \param MBB The \p MachineBasicBlock to be translated into integers. 719596f483aSJessica Paquette /// \param TRI \p TargetRegisterInfo for the module. 720596f483aSJessica Paquette /// \param TII \p TargetInstrInfo for the module. 721596f483aSJessica Paquette void convertToUnsignedVec(MachineBasicBlock &MBB, 722596f483aSJessica Paquette const TargetRegisterInfo &TRI, 723596f483aSJessica Paquette const TargetInstrInfo &TII) { 724596f483aSJessica Paquette for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et; 725596f483aSJessica Paquette It++) { 726596f483aSJessica Paquette 727596f483aSJessica Paquette // Keep track of where this instruction is in the module. 728596f483aSJessica Paquette switch (TII.getOutliningType(*It)) { 729596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Illegal: 730596f483aSJessica Paquette mapToIllegalUnsigned(It); 731596f483aSJessica Paquette break; 732596f483aSJessica Paquette 733596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Legal: 734596f483aSJessica Paquette mapToLegalUnsigned(It); 735596f483aSJessica Paquette break; 736596f483aSJessica Paquette 737596f483aSJessica Paquette case TargetInstrInfo::MachineOutlinerInstrType::Invisible: 738596f483aSJessica Paquette break; 739596f483aSJessica Paquette } 740596f483aSJessica Paquette } 741596f483aSJessica Paquette 742596f483aSJessica Paquette // After we're done every insertion, uniquely terminate this part of the 743596f483aSJessica Paquette // "string". This makes sure we won't match across basic block or function 744596f483aSJessica Paquette // boundaries since the "end" is encoded uniquely and thus appears in no 745596f483aSJessica Paquette // repeated substring. 746596f483aSJessica Paquette InstrList.push_back(MBB.end()); 747596f483aSJessica Paquette UnsignedVec.push_back(IllegalInstrNumber); 748596f483aSJessica Paquette IllegalInstrNumber--; 749596f483aSJessica Paquette } 750596f483aSJessica Paquette 751596f483aSJessica Paquette InstructionMapper() { 752596f483aSJessica Paquette // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 753596f483aSJessica Paquette // changed. 754596f483aSJessica Paquette assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 755596f483aSJessica Paquette "DenseMapInfo<unsigned>'s empty key isn't -1!"); 756596f483aSJessica Paquette assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 757596f483aSJessica Paquette "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 758596f483aSJessica Paquette } 759596f483aSJessica Paquette }; 760596f483aSJessica Paquette 761596f483aSJessica Paquette /// \brief An interprocedural pass which finds repeated sequences of 762596f483aSJessica Paquette /// instructions and replaces them with calls to functions. 763596f483aSJessica Paquette /// 764596f483aSJessica Paquette /// Each instruction is mapped to an unsigned integer and placed in a string. 765596f483aSJessica Paquette /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 766596f483aSJessica Paquette /// is then repeatedly queried for repeated sequences of instructions. Each 767596f483aSJessica Paquette /// non-overlapping repeated sequence is then placed in its own 768596f483aSJessica Paquette /// \p MachineFunction and each instance is then replaced with a call to that 769596f483aSJessica Paquette /// function. 770596f483aSJessica Paquette struct MachineOutliner : public ModulePass { 771596f483aSJessica Paquette 772596f483aSJessica Paquette static char ID; 773596f483aSJessica Paquette 77413593843SJessica Paquette /// \brief Set to true if the outliner should consider functions with 77513593843SJessica Paquette /// linkonceodr linkage. 77613593843SJessica Paquette bool OutlineFromLinkOnceODRs = false; 77713593843SJessica Paquette 778596f483aSJessica Paquette StringRef getPassName() const override { return "Machine Outliner"; } 779596f483aSJessica Paquette 780596f483aSJessica Paquette void getAnalysisUsage(AnalysisUsage &AU) const override { 781596f483aSJessica Paquette AU.addRequired<MachineModuleInfo>(); 782596f483aSJessica Paquette AU.addPreserved<MachineModuleInfo>(); 783596f483aSJessica Paquette AU.setPreservesAll(); 784596f483aSJessica Paquette ModulePass::getAnalysisUsage(AU); 785596f483aSJessica Paquette } 786596f483aSJessica Paquette 787c9ab4c26SJessica Paquette MachineOutliner(bool OutlineFromLinkOnceODRs = false) 788c9ab4c26SJessica Paquette : ModulePass(ID), OutlineFromLinkOnceODRs(OutlineFromLinkOnceODRs) { 789596f483aSJessica Paquette initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 790596f483aSJessica Paquette } 791596f483aSJessica Paquette 79278681be2SJessica Paquette /// Find all repeated substrings that satisfy the outlining cost model. 79378681be2SJessica Paquette /// 79478681be2SJessica Paquette /// If a substring appears at least twice, then it must be represented by 79578681be2SJessica Paquette /// an internal node which appears in at least two suffixes. Each suffix is 79678681be2SJessica Paquette /// represented by a leaf node. To do this, we visit each internal node in 79778681be2SJessica Paquette /// the tree, using the leaf children of each internal node. If an internal 79878681be2SJessica Paquette /// node represents a beneficial substring, then we use each of its leaf 79978681be2SJessica Paquette /// children to find the locations of its substring. 80078681be2SJessica Paquette /// 80178681be2SJessica Paquette /// \param ST A suffix tree to query. 80278681be2SJessica Paquette /// \param TII TargetInstrInfo for the target. 80378681be2SJessica Paquette /// \param Mapper Contains outlining mapping information. 80478681be2SJessica Paquette /// \param[out] CandidateList Filled with candidates representing each 80578681be2SJessica Paquette /// beneficial substring. 80678681be2SJessica Paquette /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each 80778681be2SJessica Paquette /// type of candidate. 80878681be2SJessica Paquette /// 80978681be2SJessica Paquette /// \returns The length of the longest candidate found. 8104cf187b5SJessica Paquette unsigned findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 81178681be2SJessica Paquette InstructionMapper &Mapper, 81278681be2SJessica Paquette std::vector<Candidate> &CandidateList, 81378681be2SJessica Paquette std::vector<OutlinedFunction> &FunctionList); 81478681be2SJessica Paquette 815596f483aSJessica Paquette /// \brief Replace the sequences of instructions represented by the 816596f483aSJessica Paquette /// \p Candidates in \p CandidateList with calls to \p MachineFunctions 817596f483aSJessica Paquette /// described in \p FunctionList. 818596f483aSJessica Paquette /// 819596f483aSJessica Paquette /// \param M The module we are outlining from. 820596f483aSJessica Paquette /// \param CandidateList A list of candidates to be outlined. 821596f483aSJessica Paquette /// \param FunctionList A list of functions to be inserted into the module. 822596f483aSJessica Paquette /// \param Mapper Contains the instruction mappings for the module. 823596f483aSJessica Paquette bool outline(Module &M, const ArrayRef<Candidate> &CandidateList, 824596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 825596f483aSJessica Paquette InstructionMapper &Mapper); 826596f483aSJessica Paquette 827596f483aSJessica Paquette /// Creates a function for \p OF and inserts it into the module. 828596f483aSJessica Paquette MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, 829596f483aSJessica Paquette InstructionMapper &Mapper); 830596f483aSJessica Paquette 831596f483aSJessica Paquette /// Find potential outlining candidates and store them in \p CandidateList. 832596f483aSJessica Paquette /// 833596f483aSJessica Paquette /// For each type of potential candidate, also build an \p OutlinedFunction 834596f483aSJessica Paquette /// struct containing the information to build the function for that 835596f483aSJessica Paquette /// candidate. 836596f483aSJessica Paquette /// 837596f483aSJessica Paquette /// \param[out] CandidateList Filled with outlining candidates for the module. 838596f483aSJessica Paquette /// \param[out] FunctionList Filled with functions corresponding to each type 839596f483aSJessica Paquette /// of \p Candidate. 840596f483aSJessica Paquette /// \param ST The suffix tree for the module. 841596f483aSJessica Paquette /// \param TII TargetInstrInfo for the module. 842596f483aSJessica Paquette /// 843596f483aSJessica Paquette /// \returns The length of the longest candidate found. 0 if there are none. 844596f483aSJessica Paquette unsigned buildCandidateList(std::vector<Candidate> &CandidateList, 845596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 84678681be2SJessica Paquette SuffixTree &ST, InstructionMapper &Mapper, 847c984e213SJessica Paquette const TargetInstrInfo &TII); 848596f483aSJessica Paquette 84960d31fc3SJessica Paquette /// Helper function for pruneOverlaps. 85060d31fc3SJessica Paquette /// Removes \p C from the candidate list, and updates its \p OutlinedFunction. 85160d31fc3SJessica Paquette void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList); 85260d31fc3SJessica Paquette 853596f483aSJessica Paquette /// \brief Remove any overlapping candidates that weren't handled by the 854596f483aSJessica Paquette /// suffix tree's pruning method. 855596f483aSJessica Paquette /// 856596f483aSJessica Paquette /// Pruning from the suffix tree doesn't necessarily remove all overlaps. 857596f483aSJessica Paquette /// If a short candidate is chosen for outlining, then a longer candidate 858596f483aSJessica Paquette /// which has that short candidate as a suffix is chosen, the tree's pruning 859596f483aSJessica Paquette /// method will not find it. Thus, we need to prune before outlining as well. 860596f483aSJessica Paquette /// 861596f483aSJessica Paquette /// \param[in,out] CandidateList A list of outlining candidates. 862596f483aSJessica Paquette /// \param[in,out] FunctionList A list of functions to be outlined. 863809d708bSJessica Paquette /// \param Mapper Contains instruction mapping info for outlining. 864596f483aSJessica Paquette /// \param MaxCandidateLen The length of the longest candidate. 865596f483aSJessica Paquette /// \param TII TargetInstrInfo for the module. 866596f483aSJessica Paquette void pruneOverlaps(std::vector<Candidate> &CandidateList, 867596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 868809d708bSJessica Paquette InstructionMapper &Mapper, unsigned MaxCandidateLen, 869809d708bSJessica Paquette const TargetInstrInfo &TII); 870596f483aSJessica Paquette 871596f483aSJessica Paquette /// Construct a suffix tree on the instructions in \p M and outline repeated 872596f483aSJessica Paquette /// strings from that tree. 873596f483aSJessica Paquette bool runOnModule(Module &M) override; 874596f483aSJessica Paquette }; 875596f483aSJessica Paquette 876596f483aSJessica Paquette } // Anonymous namespace. 877596f483aSJessica Paquette 878596f483aSJessica Paquette char MachineOutliner::ID = 0; 879596f483aSJessica Paquette 880596f483aSJessica Paquette namespace llvm { 88113593843SJessica Paquette ModulePass *createMachineOutlinerPass(bool OutlineFromLinkOnceODRs) { 88213593843SJessica Paquette return new MachineOutliner(OutlineFromLinkOnceODRs); 88313593843SJessica Paquette } 88413593843SJessica Paquette 88578681be2SJessica Paquette } // namespace llvm 88678681be2SJessica Paquette 88778681be2SJessica Paquette INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 88878681be2SJessica Paquette false) 88978681be2SJessica Paquette 8904cf187b5SJessica Paquette unsigned 89178681be2SJessica Paquette MachineOutliner::findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 89278681be2SJessica Paquette InstructionMapper &Mapper, 89378681be2SJessica Paquette std::vector<Candidate> &CandidateList, 89478681be2SJessica Paquette std::vector<OutlinedFunction> &FunctionList) { 89578681be2SJessica Paquette CandidateList.clear(); 89678681be2SJessica Paquette FunctionList.clear(); 8974cf187b5SJessica Paquette unsigned MaxLen = 0; 89878681be2SJessica Paquette 89978681be2SJessica Paquette // FIXME: Visit internal nodes instead of leaves. 90078681be2SJessica Paquette for (SuffixTreeNode *Leaf : ST.LeafVector) { 90178681be2SJessica Paquette assert(Leaf && "Leaves in LeafVector cannot be null!"); 90278681be2SJessica Paquette if (!Leaf->IsInTree) 90378681be2SJessica Paquette continue; 90478681be2SJessica Paquette 90578681be2SJessica Paquette assert(Leaf->Parent && "All leaves must have parents!"); 90678681be2SJessica Paquette SuffixTreeNode &Parent = *(Leaf->Parent); 90778681be2SJessica Paquette 90878681be2SJessica Paquette // If it doesn't appear enough, or we already outlined from it, skip it. 90978681be2SJessica Paquette if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree) 91078681be2SJessica Paquette continue; 91178681be2SJessica Paquette 912809d708bSJessica Paquette // Figure out if this candidate is beneficial. 9134cf187b5SJessica Paquette unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size(); 91495c1107fSJessica Paquette 91595c1107fSJessica Paquette // Too short to be beneficial; skip it. 91695c1107fSJessica Paquette // FIXME: This isn't necessarily true for, say, X86. If we factor in 91795c1107fSJessica Paquette // instruction lengths we need more information than this. 91895c1107fSJessica Paquette if (StringLen < 2) 91995c1107fSJessica Paquette continue; 92095c1107fSJessica Paquette 921d87f5449SJessica Paquette // If this is a beneficial class of candidate, then every one is stored in 922d87f5449SJessica Paquette // this vector. 923d87f5449SJessica Paquette std::vector<Candidate> CandidatesForRepeatedSeq; 924d87f5449SJessica Paquette 9254cf187b5SJessica Paquette // Describes the start and end point of each candidate. This allows the 9264cf187b5SJessica Paquette // target to infer some information about each occurrence of each repeated 9274cf187b5SJessica Paquette // sequence. 928d87f5449SJessica Paquette // FIXME: CandidatesForRepeatedSeq and this should be combined. 929d87f5449SJessica Paquette std::vector< 930d87f5449SJessica Paquette std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>> 9314cf187b5SJessica Paquette RepeatedSequenceLocs; 932d87f5449SJessica Paquette 933809d708bSJessica Paquette // Figure out the call overhead for each instance of the sequence. 934809d708bSJessica Paquette for (auto &ChildPair : Parent.Children) { 935809d708bSJessica Paquette SuffixTreeNode *M = ChildPair.second; 93678681be2SJessica Paquette 937809d708bSJessica Paquette if (M && M->IsInTree && M->isLeaf()) { 938809d708bSJessica Paquette // Each sequence is over [StartIt, EndIt]. 939809d708bSJessica Paquette MachineBasicBlock::iterator StartIt = Mapper.InstrList[M->SuffixIdx]; 940809d708bSJessica Paquette MachineBasicBlock::iterator EndIt = 941809d708bSJessica Paquette Mapper.InstrList[M->SuffixIdx + StringLen - 1]; 942d87f5449SJessica Paquette 943acc15e12SJessica Paquette CandidatesForRepeatedSeq.emplace_back(M->SuffixIdx, StringLen, 944acc15e12SJessica Paquette FunctionList.size()); 9454cf187b5SJessica Paquette RepeatedSequenceLocs.emplace_back(std::make_pair(StartIt, EndIt)); 946d87f5449SJessica Paquette 947d87f5449SJessica Paquette // Never visit this leaf again. 948d87f5449SJessica Paquette M->IsInTree = false; 949809d708bSJessica Paquette } 950809d708bSJessica Paquette } 951809d708bSJessica Paquette 952acc15e12SJessica Paquette // We've found something we might want to outline. 953acc15e12SJessica Paquette // Create an OutlinedFunction to store it and check if it'd be beneficial 954acc15e12SJessica Paquette // to outline. 9554cf187b5SJessica Paquette TargetInstrInfo::MachineOutlinerInfo MInfo = 9564cf187b5SJessica Paquette TII.getOutlininingCandidateInfo(RepeatedSequenceLocs); 957acc15e12SJessica Paquette std::vector<unsigned> Seq; 958acc15e12SJessica Paquette for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++) 959acc15e12SJessica Paquette Seq.push_back(ST.Str[i]); 960acc15e12SJessica Paquette OutlinedFunction OF(FunctionList.size(), Parent.OccurrenceCount, Seq, 961acc15e12SJessica Paquette MInfo); 962acc15e12SJessica Paquette unsigned Benefit = OF.getBenefit(); 963809d708bSJessica Paquette 964ffe4abc5SJessica Paquette // Is it better to outline this candidate than not? 965acc15e12SJessica Paquette if (Benefit < 1) { 966ffe4abc5SJessica Paquette // Outlining this candidate would take more instructions than not 967ffe4abc5SJessica Paquette // outlining. 968ffe4abc5SJessica Paquette // Emit a remark explaining why we didn't outline this candidate. 969ffe4abc5SJessica Paquette std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator> C = 9704cf187b5SJessica Paquette RepeatedSequenceLocs[0]; 9719590658fSVivek Pandya MachineOptimizationRemarkEmitter MORE( 9729590658fSVivek Pandya *(C.first->getParent()->getParent()), nullptr); 9739590658fSVivek Pandya MORE.emit([&]() { 974ffe4abc5SJessica Paquette MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", 975ffe4abc5SJessica Paquette C.first->getDebugLoc(), 976ffe4abc5SJessica Paquette C.first->getParent()); 977ffe4abc5SJessica Paquette R << "Did not outline " << NV("Length", StringLen) << " instructions" 9784cf187b5SJessica Paquette << " from " << NV("NumOccurrences", RepeatedSequenceLocs.size()) 979ffe4abc5SJessica Paquette << " locations." 980ffe4abc5SJessica Paquette << " Instructions from outlining all occurrences (" 981acc15e12SJessica Paquette << NV("OutliningCost", OF.getOutliningCost()) << ")" 982ffe4abc5SJessica Paquette << " >= Unoutlined instruction count (" 98385af63d0SJessica Paquette << NV("NotOutliningCost", StringLen * OF.getOccurrenceCount()) << ")" 984ffe4abc5SJessica Paquette << " (Also found at: "; 985ffe4abc5SJessica Paquette 986ffe4abc5SJessica Paquette // Tell the user the other places the candidate was found. 9874cf187b5SJessica Paquette for (unsigned i = 1, e = RepeatedSequenceLocs.size(); i < e; i++) { 988ffe4abc5SJessica Paquette R << NV((Twine("OtherStartLoc") + Twine(i)).str(), 9894cf187b5SJessica Paquette RepeatedSequenceLocs[i].first->getDebugLoc()); 990ffe4abc5SJessica Paquette if (i != e - 1) 991ffe4abc5SJessica Paquette R << ", "; 992ffe4abc5SJessica Paquette } 993ffe4abc5SJessica Paquette 994ffe4abc5SJessica Paquette R << ")"; 9959590658fSVivek Pandya return R; 9969590658fSVivek Pandya }); 997ffe4abc5SJessica Paquette 998ffe4abc5SJessica Paquette // Move to the next candidate. 99978681be2SJessica Paquette continue; 1000ffe4abc5SJessica Paquette } 100178681be2SJessica Paquette 100278681be2SJessica Paquette if (StringLen > MaxLen) 100378681be2SJessica Paquette MaxLen = StringLen; 100478681be2SJessica Paquette 1005d87f5449SJessica Paquette // At this point, the candidate class is seen as beneficial. Set their 1006d87f5449SJessica Paquette // benefit values and save them in the candidate list. 1007d87f5449SJessica Paquette for (Candidate &C : CandidatesForRepeatedSeq) { 1008d87f5449SJessica Paquette C.Benefit = Benefit; 10094cf187b5SJessica Paquette C.MInfo = MInfo; 1010d87f5449SJessica Paquette CandidateList.push_back(C); 1011596f483aSJessica Paquette } 1012596f483aSJessica Paquette 1013acc15e12SJessica Paquette FunctionList.push_back(OF); 101478681be2SJessica Paquette 101578681be2SJessica Paquette // Move to the next function. 101678681be2SJessica Paquette Parent.IsInTree = false; 101778681be2SJessica Paquette } 101878681be2SJessica Paquette 101978681be2SJessica Paquette return MaxLen; 102078681be2SJessica Paquette } 1021596f483aSJessica Paquette 102291999169SJessica Paquette // Remove C from the candidate space, and update its OutlinedFunction. 102360d31fc3SJessica Paquette void MachineOutliner::prune(Candidate &C, 102460d31fc3SJessica Paquette std::vector<OutlinedFunction> &FunctionList) { 102591999169SJessica Paquette // Get the OutlinedFunction associated with this Candidate. 102691999169SJessica Paquette OutlinedFunction &F = FunctionList[C.FunctionIdx]; 102791999169SJessica Paquette 102891999169SJessica Paquette // Update C's associated function's occurrence count. 102985af63d0SJessica Paquette F.decrement(); 103091999169SJessica Paquette 103191999169SJessica Paquette // Remove C from the CandidateList. 103291999169SJessica Paquette C.InCandidateList = false; 103391999169SJessica Paquette 103491999169SJessica Paquette DEBUG(dbgs() << "- Removed a Candidate \n"; 103585af63d0SJessica Paquette dbgs() << "--- Num fns left for candidate: " << F.getOccurrenceCount() 103691999169SJessica Paquette << "\n"; 1037acc15e12SJessica Paquette dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit() 103891999169SJessica Paquette << "\n";); 103960d31fc3SJessica Paquette } 104060d31fc3SJessica Paquette 104160d31fc3SJessica Paquette void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList, 104260d31fc3SJessica Paquette std::vector<OutlinedFunction> &FunctionList, 104360d31fc3SJessica Paquette InstructionMapper &Mapper, 104460d31fc3SJessica Paquette unsigned MaxCandidateLen, 104560d31fc3SJessica Paquette const TargetInstrInfo &TII) { 104660d31fc3SJessica Paquette 104760d31fc3SJessica Paquette // Return true if this candidate became unbeneficial for outlining in a 104860d31fc3SJessica Paquette // previous step. 104960d31fc3SJessica Paquette auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) { 105060d31fc3SJessica Paquette 105160d31fc3SJessica Paquette // Check if the candidate was removed in a previous step. 105260d31fc3SJessica Paquette if (!C.InCandidateList) 105360d31fc3SJessica Paquette return true; 105460d31fc3SJessica Paquette 105560d31fc3SJessica Paquette // C must be alive. Check if we should remove it. 105660d31fc3SJessica Paquette if (FunctionList[C.FunctionIdx].getBenefit() < 1) { 105760d31fc3SJessica Paquette prune(C, FunctionList); 105860d31fc3SJessica Paquette return true; 105960d31fc3SJessica Paquette } 106060d31fc3SJessica Paquette 106160d31fc3SJessica Paquette // C is in the list, and F is still beneficial. 106260d31fc3SJessica Paquette return false; 106391999169SJessica Paquette }; 106491999169SJessica Paquette 1065acffa28cSJessica Paquette // TODO: Experiment with interval trees or other interval-checking structures 1066acffa28cSJessica Paquette // to lower the time complexity of this function. 1067acffa28cSJessica Paquette // TODO: Can we do better than the simple greedy choice? 1068acffa28cSJessica Paquette // Check for overlaps in the range. 1069acffa28cSJessica Paquette // This is O(MaxCandidateLen * CandidateList.size()). 1070596f483aSJessica Paquette for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; 1071596f483aSJessica Paquette It++) { 1072596f483aSJessica Paquette Candidate &C1 = *It; 1073596f483aSJessica Paquette 107491999169SJessica Paquette // If C1 was already pruned, or its function is no longer beneficial for 107591999169SJessica Paquette // outlining, move to the next candidate. 107691999169SJessica Paquette if (ShouldSkipCandidate(C1)) 1077596f483aSJessica Paquette continue; 1078596f483aSJessica Paquette 1079596f483aSJessica Paquette // The minimum start index of any candidate that could overlap with this 1080596f483aSJessica Paquette // one. 1081596f483aSJessica Paquette unsigned FarthestPossibleIdx = 0; 1082596f483aSJessica Paquette 1083596f483aSJessica Paquette // Either the index is 0, or it's at most MaxCandidateLen indices away. 1084*1934fd2cSJessica Paquette if (C1.getStartIdx() > MaxCandidateLen) 1085*1934fd2cSJessica Paquette FarthestPossibleIdx = C1.getStartIdx() - MaxCandidateLen; 1086596f483aSJessica Paquette 1087acffa28cSJessica Paquette // Compare against the candidates in the list that start at at most 1088acffa28cSJessica Paquette // FarthestPossibleIdx indices away from C1. There are at most 1089acffa28cSJessica Paquette // MaxCandidateLen of these. 1090596f483aSJessica Paquette for (auto Sit = It + 1; Sit != Et; Sit++) { 1091596f483aSJessica Paquette Candidate &C2 = *Sit; 1092596f483aSJessica Paquette 1093596f483aSJessica Paquette // Is this candidate too far away to overlap? 1094*1934fd2cSJessica Paquette if (C2.getStartIdx() < FarthestPossibleIdx) 1095596f483aSJessica Paquette break; 1096596f483aSJessica Paquette 109791999169SJessica Paquette // If C2 was already pruned, or its function is no longer beneficial for 109891999169SJessica Paquette // outlining, move to the next candidate. 109991999169SJessica Paquette if (ShouldSkipCandidate(C2)) 1100596f483aSJessica Paquette continue; 1101596f483aSJessica Paquette 1102596f483aSJessica Paquette // Do C1 and C2 overlap? 1103596f483aSJessica Paquette // 1104596f483aSJessica Paquette // Not overlapping: 1105596f483aSJessica Paquette // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices 1106596f483aSJessica Paquette // 1107596f483aSJessica Paquette // We sorted our candidate list so C2Start <= C1Start. We know that 1108596f483aSJessica Paquette // C2End > C2Start since each candidate has length >= 2. Therefore, all we 1109596f483aSJessica Paquette // have to check is C2End < C2Start to see if we overlap. 1110*1934fd2cSJessica Paquette if (C2.getEndIdx() < C1.getStartIdx()) 1111596f483aSJessica Paquette continue; 1112596f483aSJessica Paquette 1113acffa28cSJessica Paquette // C1 and C2 overlap. 1114acffa28cSJessica Paquette // We need to choose the better of the two. 1115acffa28cSJessica Paquette // 1116acffa28cSJessica Paquette // Approximate this by picking the one which would have saved us the 1117acffa28cSJessica Paquette // most instructions before any pruning. 111860d31fc3SJessica Paquette 111960d31fc3SJessica Paquette // Is C2 a better candidate? 112060d31fc3SJessica Paquette if (C2.Benefit > C1.Benefit) { 112160d31fc3SJessica Paquette // Yes, so prune C1. Since C1 is dead, we don't have to compare it 112260d31fc3SJessica Paquette // against anything anymore, so break. 112360d31fc3SJessica Paquette prune(C1, FunctionList); 1124acffa28cSJessica Paquette break; 1125acffa28cSJessica Paquette } 112660d31fc3SJessica Paquette 112760d31fc3SJessica Paquette // Prune C2 and move on to the next candidate. 112860d31fc3SJessica Paquette prune(C2, FunctionList); 1129596f483aSJessica Paquette } 1130596f483aSJessica Paquette } 1131596f483aSJessica Paquette } 1132596f483aSJessica Paquette 1133596f483aSJessica Paquette unsigned 1134596f483aSJessica Paquette MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList, 1135596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 113678681be2SJessica Paquette SuffixTree &ST, InstructionMapper &Mapper, 1137596f483aSJessica Paquette const TargetInstrInfo &TII) { 1138596f483aSJessica Paquette 1139596f483aSJessica Paquette std::vector<unsigned> CandidateSequence; // Current outlining candidate. 11404cf187b5SJessica Paquette unsigned MaxCandidateLen = 0; // Length of the longest candidate. 1141596f483aSJessica Paquette 114278681be2SJessica Paquette MaxCandidateLen = 114378681be2SJessica Paquette findCandidates(ST, TII, Mapper, CandidateList, FunctionList); 1144596f483aSJessica Paquette 1145596f483aSJessica Paquette // Sort the candidates in decending order. This will simplify the outlining 1146596f483aSJessica Paquette // process when we have to remove the candidates from the mapping by 1147596f483aSJessica Paquette // allowing us to cut them out without keeping track of an offset. 1148596f483aSJessica Paquette std::stable_sort(CandidateList.begin(), CandidateList.end()); 1149596f483aSJessica Paquette 1150596f483aSJessica Paquette return MaxCandidateLen; 1151596f483aSJessica Paquette } 1152596f483aSJessica Paquette 1153596f483aSJessica Paquette MachineFunction * 1154596f483aSJessica Paquette MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, 1155596f483aSJessica Paquette InstructionMapper &Mapper) { 1156596f483aSJessica Paquette 1157596f483aSJessica Paquette // Create the function name. This should be unique. For now, just hash the 1158596f483aSJessica Paquette // module name and include it in the function name plus the number of this 1159596f483aSJessica Paquette // function. 1160596f483aSJessica Paquette std::ostringstream NameStream; 116178681be2SJessica Paquette NameStream << "OUTLINED_FUNCTION_" << OF.Name; 1162596f483aSJessica Paquette 1163596f483aSJessica Paquette // Create the function using an IR-level function. 1164596f483aSJessica Paquette LLVMContext &C = M.getContext(); 1165596f483aSJessica Paquette Function *F = dyn_cast<Function>( 116659a2d7b9SSerge Guelton M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C))); 1167596f483aSJessica Paquette assert(F && "Function was null!"); 1168596f483aSJessica Paquette 1169596f483aSJessica Paquette // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1170596f483aSJessica Paquette // which gives us better results when we outline from linkonceodr functions. 1171596f483aSJessica Paquette F->setLinkage(GlobalValue::PrivateLinkage); 1172596f483aSJessica Paquette F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1173596f483aSJessica Paquette 1174596f483aSJessica Paquette BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1175596f483aSJessica Paquette IRBuilder<> Builder(EntryBB); 1176596f483aSJessica Paquette Builder.CreateRetVoid(); 1177596f483aSJessica Paquette 1178596f483aSJessica Paquette MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 11797bda1958SMatthias Braun MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1180596f483aSJessica Paquette MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1181596f483aSJessica Paquette const TargetSubtargetInfo &STI = MF.getSubtarget(); 1182596f483aSJessica Paquette const TargetInstrInfo &TII = *STI.getInstrInfo(); 1183596f483aSJessica Paquette 1184596f483aSJessica Paquette // Insert the new function into the module. 1185596f483aSJessica Paquette MF.insert(MF.begin(), &MBB); 1186596f483aSJessica Paquette 11874cf187b5SJessica Paquette TII.insertOutlinerPrologue(MBB, MF, OF.MInfo); 1188596f483aSJessica Paquette 1189596f483aSJessica Paquette // Copy over the instructions for the function using the integer mappings in 1190596f483aSJessica Paquette // its sequence. 1191596f483aSJessica Paquette for (unsigned Str : OF.Sequence) { 1192596f483aSJessica Paquette MachineInstr *NewMI = 1193596f483aSJessica Paquette MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); 1194596f483aSJessica Paquette NewMI->dropMemRefs(); 1195596f483aSJessica Paquette 1196596f483aSJessica Paquette // Don't keep debug information for outlined instructions. 1197596f483aSJessica Paquette // FIXME: This means outlined functions are currently undebuggable. 1198596f483aSJessica Paquette NewMI->setDebugLoc(DebugLoc()); 1199596f483aSJessica Paquette MBB.insert(MBB.end(), NewMI); 1200596f483aSJessica Paquette } 1201596f483aSJessica Paquette 12024cf187b5SJessica Paquette TII.insertOutlinerEpilogue(MBB, MF, OF.MInfo); 1203596f483aSJessica Paquette 1204596f483aSJessica Paquette return &MF; 1205596f483aSJessica Paquette } 1206596f483aSJessica Paquette 1207596f483aSJessica Paquette bool MachineOutliner::outline(Module &M, 1208596f483aSJessica Paquette const ArrayRef<Candidate> &CandidateList, 1209596f483aSJessica Paquette std::vector<OutlinedFunction> &FunctionList, 1210596f483aSJessica Paquette InstructionMapper &Mapper) { 1211596f483aSJessica Paquette 1212596f483aSJessica Paquette bool OutlinedSomething = false; 1213596f483aSJessica Paquette // Replace the candidates with calls to their respective outlined functions. 1214596f483aSJessica Paquette for (const Candidate &C : CandidateList) { 1215596f483aSJessica Paquette 1216596f483aSJessica Paquette // Was the candidate removed during pruneOverlaps? 1217596f483aSJessica Paquette if (!C.InCandidateList) 1218596f483aSJessica Paquette continue; 1219596f483aSJessica Paquette 1220596f483aSJessica Paquette // If not, then look at its OutlinedFunction. 1221596f483aSJessica Paquette OutlinedFunction &OF = FunctionList[C.FunctionIdx]; 1222596f483aSJessica Paquette 1223596f483aSJessica Paquette // Was its OutlinedFunction made unbeneficial during pruneOverlaps? 122485af63d0SJessica Paquette if (OF.getBenefit() < 1) 1225596f483aSJessica Paquette continue; 1226596f483aSJessica Paquette 1227596f483aSJessica Paquette // If not, then outline it. 1228*1934fd2cSJessica Paquette assert(C.getStartIdx() < Mapper.InstrList.size() && 1229c9ab4c26SJessica Paquette "Candidate out of bounds!"); 1230*1934fd2cSJessica Paquette MachineBasicBlock *MBB = (*Mapper.InstrList[C.getStartIdx()]).getParent(); 1231*1934fd2cSJessica Paquette MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.getStartIdx()]; 1232*1934fd2cSJessica Paquette unsigned EndIdx = C.getEndIdx(); 1233596f483aSJessica Paquette 1234596f483aSJessica Paquette assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1235596f483aSJessica Paquette MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1236596f483aSJessica Paquette assert(EndIt != MBB->end() && "EndIt out of bounds!"); 1237596f483aSJessica Paquette 1238596f483aSJessica Paquette EndIt++; // Erase needs one past the end index. 1239596f483aSJessica Paquette 1240596f483aSJessica Paquette // Does this candidate have a function yet? 1241acffa28cSJessica Paquette if (!OF.MF) { 1242596f483aSJessica Paquette OF.MF = createOutlinedFunction(M, OF, Mapper); 1243acffa28cSJessica Paquette FunctionsCreated++; 1244acffa28cSJessica Paquette } 1245596f483aSJessica Paquette 1246596f483aSJessica Paquette MachineFunction *MF = OF.MF; 1247596f483aSJessica Paquette const TargetSubtargetInfo &STI = MF->getSubtarget(); 1248596f483aSJessica Paquette const TargetInstrInfo &TII = *STI.getInstrInfo(); 1249596f483aSJessica Paquette 1250596f483aSJessica Paquette // Insert a call to the new function and erase the old sequence. 12514cf187b5SJessica Paquette TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.MInfo); 1252*1934fd2cSJessica Paquette StartIt = Mapper.InstrList[C.getStartIdx()]; 1253596f483aSJessica Paquette MBB->erase(StartIt, EndIt); 1254596f483aSJessica Paquette 1255596f483aSJessica Paquette OutlinedSomething = true; 1256596f483aSJessica Paquette 1257596f483aSJessica Paquette // Statistics. 1258596f483aSJessica Paquette NumOutlined++; 1259596f483aSJessica Paquette } 1260596f483aSJessica Paquette 126178681be2SJessica Paquette DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1262596f483aSJessica Paquette 1263596f483aSJessica Paquette return OutlinedSomething; 1264596f483aSJessica Paquette } 1265596f483aSJessica Paquette 1266596f483aSJessica Paquette bool MachineOutliner::runOnModule(Module &M) { 1267596f483aSJessica Paquette 1268596f483aSJessica Paquette // Is there anything in the module at all? 1269596f483aSJessica Paquette if (M.empty()) 1270596f483aSJessica Paquette return false; 1271596f483aSJessica Paquette 1272596f483aSJessica Paquette MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 127378681be2SJessica Paquette const TargetSubtargetInfo &STI = 127478681be2SJessica Paquette MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget(); 1275596f483aSJessica Paquette const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 1276596f483aSJessica Paquette const TargetInstrInfo *TII = STI.getInstrInfo(); 1277596f483aSJessica Paquette 1278596f483aSJessica Paquette InstructionMapper Mapper; 1279596f483aSJessica Paquette 1280596f483aSJessica Paquette // Build instruction mappings for each function in the module. 1281596f483aSJessica Paquette for (Function &F : M) { 12827bda1958SMatthias Braun MachineFunction &MF = MMI.getOrCreateMachineFunction(F); 1283596f483aSJessica Paquette 1284596f483aSJessica Paquette // Is the function empty? Safe to outline from? 128513593843SJessica Paquette if (F.empty() || 128613593843SJessica Paquette !TII->isFunctionSafeToOutlineFrom(MF, OutlineFromLinkOnceODRs)) 1287596f483aSJessica Paquette continue; 1288596f483aSJessica Paquette 1289596f483aSJessica Paquette // If it is, look at each MachineBasicBlock in the function. 1290596f483aSJessica Paquette for (MachineBasicBlock &MBB : MF) { 1291596f483aSJessica Paquette 1292596f483aSJessica Paquette // Is there anything in MBB? 1293596f483aSJessica Paquette if (MBB.empty()) 1294596f483aSJessica Paquette continue; 1295596f483aSJessica Paquette 1296596f483aSJessica Paquette // If yes, map it. 1297596f483aSJessica Paquette Mapper.convertToUnsignedVec(MBB, *TRI, *TII); 1298596f483aSJessica Paquette } 1299596f483aSJessica Paquette } 1300596f483aSJessica Paquette 1301596f483aSJessica Paquette // Construct a suffix tree, use it to find candidates, and then outline them. 1302596f483aSJessica Paquette SuffixTree ST(Mapper.UnsignedVec); 1303596f483aSJessica Paquette std::vector<Candidate> CandidateList; 1304596f483aSJessica Paquette std::vector<OutlinedFunction> FunctionList; 1305596f483aSJessica Paquette 1306acffa28cSJessica Paquette // Find all of the outlining candidates. 1307596f483aSJessica Paquette unsigned MaxCandidateLen = 1308c984e213SJessica Paquette buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII); 1309596f483aSJessica Paquette 1310acffa28cSJessica Paquette // Remove candidates that overlap with other candidates. 1311809d708bSJessica Paquette pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII); 1312acffa28cSJessica Paquette 1313acffa28cSJessica Paquette // Outline each of the candidates and return true if something was outlined. 1314596f483aSJessica Paquette return outline(M, CandidateList, FunctionList, Mapper); 1315596f483aSJessica Paquette } 1316