1596f483aSJessica Paquette //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2596f483aSJessica Paquette //
3596f483aSJessica Paquette //                     The LLVM Compiler Infrastructure
4596f483aSJessica Paquette //
5596f483aSJessica Paquette // This file is distributed under the University of Illinois Open Source
6596f483aSJessica Paquette // License. See LICENSE.TXT for details.
7596f483aSJessica Paquette //
8596f483aSJessica Paquette //===----------------------------------------------------------------------===//
9596f483aSJessica Paquette ///
10596f483aSJessica Paquette /// \file
11596f483aSJessica Paquette /// Replaces repeated sequences of instructions with function calls.
12596f483aSJessica Paquette ///
13596f483aSJessica Paquette /// This works by placing every instruction from every basic block in a
14596f483aSJessica Paquette /// suffix tree, and repeatedly querying that tree for repeated sequences of
15596f483aSJessica Paquette /// instructions. If a sequence of instructions appears often, then it ought
16596f483aSJessica Paquette /// to be beneficial to pull out into a function.
17596f483aSJessica Paquette ///
184cf187b5SJessica Paquette /// The MachineOutliner communicates with a given target using hooks defined in
194cf187b5SJessica Paquette /// TargetInstrInfo.h. The target supplies the outliner with information on how
204cf187b5SJessica Paquette /// a specific sequence of instructions should be outlined. This information
214cf187b5SJessica Paquette /// is used to deduce the number of instructions necessary to
224cf187b5SJessica Paquette ///
234cf187b5SJessica Paquette /// * Create an outlined function
244cf187b5SJessica Paquette /// * Call that outlined function
254cf187b5SJessica Paquette ///
264cf187b5SJessica Paquette /// Targets must implement
274cf187b5SJessica Paquette ///   * getOutliningCandidateInfo
284cf187b5SJessica Paquette ///   * insertOutlinerEpilogue
294cf187b5SJessica Paquette ///   * insertOutlinedCall
304cf187b5SJessica Paquette ///   * insertOutlinerPrologue
314cf187b5SJessica Paquette ///   * isFunctionSafeToOutlineFrom
324cf187b5SJessica Paquette ///
334cf187b5SJessica Paquette /// in order to make use of the MachineOutliner.
344cf187b5SJessica Paquette ///
35596f483aSJessica Paquette /// This was originally presented at the 2016 LLVM Developers' Meeting in the
36596f483aSJessica Paquette /// talk "Reducing Code Size Using Outlining". For a high-level overview of
37596f483aSJessica Paquette /// how this pass works, the talk is available on YouTube at
38596f483aSJessica Paquette ///
39596f483aSJessica Paquette /// https://www.youtube.com/watch?v=yorld-WSOeU
40596f483aSJessica Paquette ///
41596f483aSJessica Paquette /// The slides for the talk are available at
42596f483aSJessica Paquette ///
43596f483aSJessica Paquette /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
44596f483aSJessica Paquette ///
45596f483aSJessica Paquette /// The talk provides an overview of how the outliner finds candidates and
46596f483aSJessica Paquette /// ultimately outlines them. It describes how the main data structure for this
47596f483aSJessica Paquette /// pass, the suffix tree, is queried and purged for candidates. It also gives
48596f483aSJessica Paquette /// a simplified suffix tree construction algorithm for suffix trees based off
49596f483aSJessica Paquette /// of the algorithm actually used here, Ukkonen's algorithm.
50596f483aSJessica Paquette ///
51596f483aSJessica Paquette /// For the original RFC for this pass, please see
52596f483aSJessica Paquette ///
53596f483aSJessica Paquette /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
54596f483aSJessica Paquette ///
55596f483aSJessica Paquette /// For more information on the suffix tree data structure, please see
56596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
57596f483aSJessica Paquette ///
58596f483aSJessica Paquette //===----------------------------------------------------------------------===//
59596f483aSJessica Paquette #include "llvm/ADT/DenseMap.h"
60596f483aSJessica Paquette #include "llvm/ADT/Statistic.h"
61596f483aSJessica Paquette #include "llvm/ADT/Twine.h"
62596f483aSJessica Paquette #include "llvm/CodeGen/MachineFrameInfo.h"
63596f483aSJessica Paquette #include "llvm/CodeGen/MachineFunction.h"
64596f483aSJessica Paquette #include "llvm/CodeGen/MachineInstrBuilder.h"
65596f483aSJessica Paquette #include "llvm/CodeGen/MachineModuleInfo.h"
66ffe4abc5SJessica Paquette #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
67596f483aSJessica Paquette #include "llvm/CodeGen/Passes.h"
68596f483aSJessica Paquette #include "llvm/IR/IRBuilder.h"
69596f483aSJessica Paquette #include "llvm/Support/Allocator.h"
70596f483aSJessica Paquette #include "llvm/Support/Debug.h"
71596f483aSJessica Paquette #include "llvm/Support/raw_ostream.h"
72596f483aSJessica Paquette #include "llvm/Target/TargetInstrInfo.h"
73596f483aSJessica Paquette #include "llvm/Target/TargetMachine.h"
74596f483aSJessica Paquette #include "llvm/Target/TargetRegisterInfo.h"
75596f483aSJessica Paquette #include "llvm/Target/TargetSubtargetInfo.h"
76596f483aSJessica Paquette #include <functional>
77596f483aSJessica Paquette #include <map>
78596f483aSJessica Paquette #include <sstream>
79596f483aSJessica Paquette #include <tuple>
80596f483aSJessica Paquette #include <vector>
81596f483aSJessica Paquette 
82596f483aSJessica Paquette #define DEBUG_TYPE "machine-outliner"
83596f483aSJessica Paquette 
84596f483aSJessica Paquette using namespace llvm;
85ffe4abc5SJessica Paquette using namespace ore;
86596f483aSJessica Paquette 
87596f483aSJessica Paquette STATISTIC(NumOutlined, "Number of candidates outlined");
88596f483aSJessica Paquette STATISTIC(FunctionsCreated, "Number of functions created");
89596f483aSJessica Paquette 
90596f483aSJessica Paquette namespace {
91596f483aSJessica Paquette 
92acffa28cSJessica Paquette /// \brief An individual sequence of instructions to be replaced with a call to
93acffa28cSJessica Paquette /// an outlined function.
94acffa28cSJessica Paquette struct Candidate {
95c9ab4c26SJessica Paquette private:
96c9ab4c26SJessica Paquette   /// The start index of this \p Candidate in the instruction list.
974cf187b5SJessica Paquette   unsigned StartIdx;
98acffa28cSJessica Paquette 
99acffa28cSJessica Paquette   /// The number of instructions in this \p Candidate.
1004cf187b5SJessica Paquette   unsigned Len;
101acffa28cSJessica Paquette 
102c9ab4c26SJessica Paquette public:
103c9ab4c26SJessica Paquette   /// Set to false if the candidate overlapped with another candidate.
104c9ab4c26SJessica Paquette   bool InCandidateList = true;
105c9ab4c26SJessica Paquette 
106c9ab4c26SJessica Paquette   /// \brief The index of this \p Candidate's \p OutlinedFunction in the list of
107acffa28cSJessica Paquette   /// \p OutlinedFunctions.
1084cf187b5SJessica Paquette   unsigned FunctionIdx;
109acffa28cSJessica Paquette 
1104cf187b5SJessica Paquette   /// Contains all target-specific information for this \p Candidate.
1114cf187b5SJessica Paquette   TargetInstrInfo::MachineOutlinerInfo MInfo;
112d87f5449SJessica Paquette 
113c9ab4c26SJessica Paquette   /// Return the number of instructions in this Candidate.
114*1934fd2cSJessica Paquette   unsigned getLength() const { return Len; }
115c9ab4c26SJessica Paquette 
116c9ab4c26SJessica Paquette   /// Return the start index of this candidate.
117*1934fd2cSJessica Paquette   unsigned getStartIdx() const { return StartIdx; }
118c9ab4c26SJessica Paquette 
119c9ab4c26SJessica Paquette   // Return the end index of this candidate.
120*1934fd2cSJessica Paquette   unsigned getEndIdx() const { return StartIdx + Len - 1; }
121c9ab4c26SJessica Paquette 
122acffa28cSJessica Paquette   /// \brief The number of instructions that would be saved by outlining every
123acffa28cSJessica Paquette   /// candidate of this type.
124acffa28cSJessica Paquette   ///
125acffa28cSJessica Paquette   /// This is a fixed value which is not updated during the candidate pruning
126acffa28cSJessica Paquette   /// process. It is only used for deciding which candidate to keep if two
127acffa28cSJessica Paquette   /// candidates overlap. The true benefit is stored in the OutlinedFunction
128acffa28cSJessica Paquette   /// for some given candidate.
129acffa28cSJessica Paquette   unsigned Benefit = 0;
130acffa28cSJessica Paquette 
1314cf187b5SJessica Paquette   Candidate(unsigned StartIdx, unsigned Len, unsigned FunctionIdx)
1324cf187b5SJessica Paquette       : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {}
133acffa28cSJessica Paquette 
134acffa28cSJessica Paquette   Candidate() {}
135acffa28cSJessica Paquette 
136acffa28cSJessica Paquette   /// \brief Used to ensure that \p Candidates are outlined in an order that
137acffa28cSJessica Paquette   /// preserves the start and end indices of other \p Candidates.
138c9ab4c26SJessica Paquette   bool operator<(const Candidate &RHS) const {
139*1934fd2cSJessica Paquette     return getStartIdx() > RHS.getStartIdx();
140c9ab4c26SJessica Paquette   }
141acffa28cSJessica Paquette };
142acffa28cSJessica Paquette 
143acffa28cSJessica Paquette /// \brief The information necessary to create an outlined function for some
144acffa28cSJessica Paquette /// class of candidate.
145acffa28cSJessica Paquette struct OutlinedFunction {
146acffa28cSJessica Paquette 
14785af63d0SJessica Paquette private:
14885af63d0SJessica Paquette   /// The number of candidates for this \p OutlinedFunction.
14985af63d0SJessica Paquette   unsigned OccurrenceCount = 0;
15085af63d0SJessica Paquette 
15185af63d0SJessica Paquette public:
152acffa28cSJessica Paquette   /// The actual outlined function created.
153acffa28cSJessica Paquette   /// This is initialized after we go through and create the actual function.
154acffa28cSJessica Paquette   MachineFunction *MF = nullptr;
155acffa28cSJessica Paquette 
1564cf187b5SJessica Paquette   /// A number assigned to this function which appears at the end of its name.
1574cf187b5SJessica Paquette   unsigned Name;
158acffa28cSJessica Paquette 
159acffa28cSJessica Paquette   /// \brief The sequence of integers corresponding to the instructions in this
160acffa28cSJessica Paquette   /// function.
161acffa28cSJessica Paquette   std::vector<unsigned> Sequence;
162acffa28cSJessica Paquette 
1634cf187b5SJessica Paquette   /// Contains all target-specific information for this \p OutlinedFunction.
1644cf187b5SJessica Paquette   TargetInstrInfo::MachineOutlinerInfo MInfo;
165acffa28cSJessica Paquette 
16685af63d0SJessica Paquette   /// Return the number of candidates for this \p OutlinedFunction.
16760d31fc3SJessica Paquette   unsigned getOccurrenceCount() { return OccurrenceCount; }
16885af63d0SJessica Paquette 
16985af63d0SJessica Paquette   /// Decrement the occurrence count of this OutlinedFunction and return the
17085af63d0SJessica Paquette   /// new count.
17185af63d0SJessica Paquette   unsigned decrement() {
17285af63d0SJessica Paquette     assert(OccurrenceCount > 0 && "Can't decrement an empty function!");
17385af63d0SJessica Paquette     OccurrenceCount--;
17485af63d0SJessica Paquette     return getOccurrenceCount();
17585af63d0SJessica Paquette   }
17685af63d0SJessica Paquette 
177acc15e12SJessica Paquette   /// \brief Return the number of instructions it would take to outline this
178acc15e12SJessica Paquette   /// function.
179acc15e12SJessica Paquette   unsigned getOutliningCost() {
180acc15e12SJessica Paquette     return (OccurrenceCount * MInfo.CallOverhead) + Sequence.size() +
181acc15e12SJessica Paquette            MInfo.FrameOverhead;
182acc15e12SJessica Paquette   }
183acc15e12SJessica Paquette 
184acc15e12SJessica Paquette   /// \brief Return the number of instructions that would be saved by outlining
185acc15e12SJessica Paquette   /// this function.
186acc15e12SJessica Paquette   unsigned getBenefit() {
187acc15e12SJessica Paquette     unsigned NotOutlinedCost = OccurrenceCount * Sequence.size();
188acc15e12SJessica Paquette     unsigned OutlinedCost = getOutliningCost();
189acc15e12SJessica Paquette     return (NotOutlinedCost < OutlinedCost) ? 0
190acc15e12SJessica Paquette                                             : NotOutlinedCost - OutlinedCost;
191acc15e12SJessica Paquette   }
192acc15e12SJessica Paquette 
1934cf187b5SJessica Paquette   OutlinedFunction(unsigned Name, unsigned OccurrenceCount,
194acc15e12SJessica Paquette                    const std::vector<unsigned> &Sequence,
1954cf187b5SJessica Paquette                    TargetInstrInfo::MachineOutlinerInfo &MInfo)
19685af63d0SJessica Paquette       : OccurrenceCount(OccurrenceCount), Name(Name), Sequence(Sequence),
197acc15e12SJessica Paquette         MInfo(MInfo) {}
198acffa28cSJessica Paquette };
199acffa28cSJessica Paquette 
200596f483aSJessica Paquette /// Represents an undefined index in the suffix tree.
2014cf187b5SJessica Paquette const unsigned EmptyIdx = -1;
202596f483aSJessica Paquette 
203596f483aSJessica Paquette /// A node in a suffix tree which represents a substring or suffix.
204596f483aSJessica Paquette ///
205596f483aSJessica Paquette /// Each node has either no children or at least two children, with the root
206596f483aSJessica Paquette /// being a exception in the empty tree.
207596f483aSJessica Paquette ///
208596f483aSJessica Paquette /// Children are represented as a map between unsigned integers and nodes. If
209596f483aSJessica Paquette /// a node N has a child M on unsigned integer k, then the mapping represented
210596f483aSJessica Paquette /// by N is a proper prefix of the mapping represented by M. Note that this,
211596f483aSJessica Paquette /// although similar to a trie is somewhat different: each node stores a full
212596f483aSJessica Paquette /// substring of the full mapping rather than a single character state.
213596f483aSJessica Paquette ///
214596f483aSJessica Paquette /// Each internal node contains a pointer to the internal node representing
215596f483aSJessica Paquette /// the same string, but with the first character chopped off. This is stored
216596f483aSJessica Paquette /// in \p Link. Each leaf node stores the start index of its respective
217596f483aSJessica Paquette /// suffix in \p SuffixIdx.
218596f483aSJessica Paquette struct SuffixTreeNode {
219596f483aSJessica Paquette 
220596f483aSJessica Paquette   /// The children of this node.
221596f483aSJessica Paquette   ///
222596f483aSJessica Paquette   /// A child existing on an unsigned integer implies that from the mapping
223596f483aSJessica Paquette   /// represented by the current node, there is a way to reach another
224596f483aSJessica Paquette   /// mapping by tacking that character on the end of the current string.
225596f483aSJessica Paquette   DenseMap<unsigned, SuffixTreeNode *> Children;
226596f483aSJessica Paquette 
227596f483aSJessica Paquette   /// A flag set to false if the node has been pruned from the tree.
228596f483aSJessica Paquette   bool IsInTree = true;
229596f483aSJessica Paquette 
230596f483aSJessica Paquette   /// The start index of this node's substring in the main string.
2314cf187b5SJessica Paquette   unsigned StartIdx = EmptyIdx;
232596f483aSJessica Paquette 
233596f483aSJessica Paquette   /// The end index of this node's substring in the main string.
234596f483aSJessica Paquette   ///
235596f483aSJessica Paquette   /// Every leaf node must have its \p EndIdx incremented at the end of every
236596f483aSJessica Paquette   /// step in the construction algorithm. To avoid having to update O(N)
237596f483aSJessica Paquette   /// nodes individually at the end of every step, the end index is stored
238596f483aSJessica Paquette   /// as a pointer.
2394cf187b5SJessica Paquette   unsigned *EndIdx = nullptr;
240596f483aSJessica Paquette 
241596f483aSJessica Paquette   /// For leaves, the start index of the suffix represented by this node.
242596f483aSJessica Paquette   ///
243596f483aSJessica Paquette   /// For all other nodes, this is ignored.
2444cf187b5SJessica Paquette   unsigned SuffixIdx = EmptyIdx;
245596f483aSJessica Paquette 
246596f483aSJessica Paquette   /// \brief For internal nodes, a pointer to the internal node representing
247596f483aSJessica Paquette   /// the same sequence with the first character chopped off.
248596f483aSJessica Paquette   ///
2494602c343SJessica Paquette   /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
250596f483aSJessica Paquette   /// Ukkonen's algorithm does to achieve linear-time construction is
251596f483aSJessica Paquette   /// keep track of which node the next insert should be at. This makes each
252596f483aSJessica Paquette   /// insert O(1), and there are a total of O(N) inserts. The suffix link
253596f483aSJessica Paquette   /// helps with inserting children of internal nodes.
254596f483aSJessica Paquette   ///
255596f483aSJessica Paquette   /// Say we add a child to an internal node with associated mapping S. The
256596f483aSJessica Paquette   /// next insertion must be at the node representing S - its first character.
257596f483aSJessica Paquette   /// This is given by the way that we iteratively build the tree in Ukkonen's
258596f483aSJessica Paquette   /// algorithm. The main idea is to look at the suffixes of each prefix in the
259596f483aSJessica Paquette   /// string, starting with the longest suffix of the prefix, and ending with
260596f483aSJessica Paquette   /// the shortest. Therefore, if we keep pointers between such nodes, we can
261596f483aSJessica Paquette   /// move to the next insertion point in O(1) time. If we don't, then we'd
262596f483aSJessica Paquette   /// have to query from the root, which takes O(N) time. This would make the
263596f483aSJessica Paquette   /// construction algorithm O(N^2) rather than O(N).
264596f483aSJessica Paquette   SuffixTreeNode *Link = nullptr;
265596f483aSJessica Paquette 
266596f483aSJessica Paquette   /// The parent of this node. Every node except for the root has a parent.
267596f483aSJessica Paquette   SuffixTreeNode *Parent = nullptr;
268596f483aSJessica Paquette 
269596f483aSJessica Paquette   /// The number of times this node's string appears in the tree.
270596f483aSJessica Paquette   ///
271596f483aSJessica Paquette   /// This is equal to the number of leaf children of the string. It represents
272596f483aSJessica Paquette   /// the number of suffixes that the node's string is a prefix of.
2734cf187b5SJessica Paquette   unsigned OccurrenceCount = 0;
274596f483aSJessica Paquette 
275acffa28cSJessica Paquette   /// The length of the string formed by concatenating the edge labels from the
276acffa28cSJessica Paquette   /// root to this node.
2774cf187b5SJessica Paquette   unsigned ConcatLen = 0;
278acffa28cSJessica Paquette 
279596f483aSJessica Paquette   /// Returns true if this node is a leaf.
280596f483aSJessica Paquette   bool isLeaf() const { return SuffixIdx != EmptyIdx; }
281596f483aSJessica Paquette 
282596f483aSJessica Paquette   /// Returns true if this node is the root of its owning \p SuffixTree.
283596f483aSJessica Paquette   bool isRoot() const { return StartIdx == EmptyIdx; }
284596f483aSJessica Paquette 
285596f483aSJessica Paquette   /// Return the number of elements in the substring associated with this node.
286596f483aSJessica Paquette   size_t size() const {
287596f483aSJessica Paquette 
288596f483aSJessica Paquette     // Is it the root? If so, it's the empty string so return 0.
289596f483aSJessica Paquette     if (isRoot())
290596f483aSJessica Paquette       return 0;
291596f483aSJessica Paquette 
292596f483aSJessica Paquette     assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
293596f483aSJessica Paquette 
294596f483aSJessica Paquette     // Size = the number of elements in the string.
295596f483aSJessica Paquette     // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
296596f483aSJessica Paquette     return *EndIdx - StartIdx + 1;
297596f483aSJessica Paquette   }
298596f483aSJessica Paquette 
2994cf187b5SJessica Paquette   SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link,
300596f483aSJessica Paquette                  SuffixTreeNode *Parent)
301596f483aSJessica Paquette       : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
302596f483aSJessica Paquette 
303596f483aSJessica Paquette   SuffixTreeNode() {}
304596f483aSJessica Paquette };
305596f483aSJessica Paquette 
306596f483aSJessica Paquette /// A data structure for fast substring queries.
307596f483aSJessica Paquette ///
308596f483aSJessica Paquette /// Suffix trees represent the suffixes of their input strings in their leaves.
309596f483aSJessica Paquette /// A suffix tree is a type of compressed trie structure where each node
310596f483aSJessica Paquette /// represents an entire substring rather than a single character. Each leaf
311596f483aSJessica Paquette /// of the tree is a suffix.
312596f483aSJessica Paquette ///
313596f483aSJessica Paquette /// A suffix tree can be seen as a type of state machine where each state is a
314596f483aSJessica Paquette /// substring of the full string. The tree is structured so that, for a string
315596f483aSJessica Paquette /// of length N, there are exactly N leaves in the tree. This structure allows
316596f483aSJessica Paquette /// us to quickly find repeated substrings of the input string.
317596f483aSJessica Paquette ///
318596f483aSJessica Paquette /// In this implementation, a "string" is a vector of unsigned integers.
319596f483aSJessica Paquette /// These integers may result from hashing some data type. A suffix tree can
320596f483aSJessica Paquette /// contain 1 or many strings, which can then be queried as one large string.
321596f483aSJessica Paquette ///
322596f483aSJessica Paquette /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
323596f483aSJessica Paquette /// suffix tree construction. Ukkonen's algorithm is explained in more detail
324596f483aSJessica Paquette /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
325596f483aSJessica Paquette /// paper is available at
326596f483aSJessica Paquette ///
327596f483aSJessica Paquette /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
328596f483aSJessica Paquette class SuffixTree {
32978681be2SJessica Paquette public:
33078681be2SJessica Paquette   /// Stores each leaf node in the tree.
33178681be2SJessica Paquette   ///
33278681be2SJessica Paquette   /// This is used for finding outlining candidates.
33378681be2SJessica Paquette   std::vector<SuffixTreeNode *> LeafVector;
33478681be2SJessica Paquette 
335596f483aSJessica Paquette   /// Each element is an integer representing an instruction in the module.
336596f483aSJessica Paquette   ArrayRef<unsigned> Str;
337596f483aSJessica Paquette 
33878681be2SJessica Paquette private:
339596f483aSJessica Paquette   /// Maintains each node in the tree.
340d4cb9c6dSJessica Paquette   SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
341596f483aSJessica Paquette 
342596f483aSJessica Paquette   /// The root of the suffix tree.
343596f483aSJessica Paquette   ///
344596f483aSJessica Paquette   /// The root represents the empty string. It is maintained by the
345596f483aSJessica Paquette   /// \p NodeAllocator like every other node in the tree.
346596f483aSJessica Paquette   SuffixTreeNode *Root = nullptr;
347596f483aSJessica Paquette 
348596f483aSJessica Paquette   /// Maintains the end indices of the internal nodes in the tree.
349596f483aSJessica Paquette   ///
350596f483aSJessica Paquette   /// Each internal node is guaranteed to never have its end index change
351596f483aSJessica Paquette   /// during the construction algorithm; however, leaves must be updated at
352596f483aSJessica Paquette   /// every step. Therefore, we need to store leaf end indices by reference
353596f483aSJessica Paquette   /// to avoid updating O(N) leaves at every step of construction. Thus,
354596f483aSJessica Paquette   /// every internal node must be allocated its own end index.
355596f483aSJessica Paquette   BumpPtrAllocator InternalEndIdxAllocator;
356596f483aSJessica Paquette 
357596f483aSJessica Paquette   /// The end index of each leaf in the tree.
3584cf187b5SJessica Paquette   unsigned LeafEndIdx = -1;
359596f483aSJessica Paquette 
360596f483aSJessica Paquette   /// \brief Helper struct which keeps track of the next insertion point in
361596f483aSJessica Paquette   /// Ukkonen's algorithm.
362596f483aSJessica Paquette   struct ActiveState {
363596f483aSJessica Paquette     /// The next node to insert at.
364596f483aSJessica Paquette     SuffixTreeNode *Node;
365596f483aSJessica Paquette 
366596f483aSJessica Paquette     /// The index of the first character in the substring currently being added.
3674cf187b5SJessica Paquette     unsigned Idx = EmptyIdx;
368596f483aSJessica Paquette 
369596f483aSJessica Paquette     /// The length of the substring we have to add at the current step.
3704cf187b5SJessica Paquette     unsigned Len = 0;
371596f483aSJessica Paquette   };
372596f483aSJessica Paquette 
373596f483aSJessica Paquette   /// \brief The point the next insertion will take place at in the
374596f483aSJessica Paquette   /// construction algorithm.
375596f483aSJessica Paquette   ActiveState Active;
376596f483aSJessica Paquette 
377596f483aSJessica Paquette   /// Allocate a leaf node and add it to the tree.
378596f483aSJessica Paquette   ///
379596f483aSJessica Paquette   /// \param Parent The parent of this node.
380596f483aSJessica Paquette   /// \param StartIdx The start index of this node's associated string.
381596f483aSJessica Paquette   /// \param Edge The label on the edge leaving \p Parent to this node.
382596f483aSJessica Paquette   ///
383596f483aSJessica Paquette   /// \returns A pointer to the allocated leaf node.
3844cf187b5SJessica Paquette   SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx,
385596f483aSJessica Paquette                              unsigned Edge) {
386596f483aSJessica Paquette 
387596f483aSJessica Paquette     assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
388596f483aSJessica Paquette 
38978681be2SJessica Paquette     SuffixTreeNode *N = new (NodeAllocator.Allocate())
39078681be2SJessica Paquette         SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent);
391596f483aSJessica Paquette     Parent.Children[Edge] = N;
392596f483aSJessica Paquette 
393596f483aSJessica Paquette     return N;
394596f483aSJessica Paquette   }
395596f483aSJessica Paquette 
396596f483aSJessica Paquette   /// Allocate an internal node and add it to the tree.
397596f483aSJessica Paquette   ///
398596f483aSJessica Paquette   /// \param Parent The parent of this node. Only null when allocating the root.
399596f483aSJessica Paquette   /// \param StartIdx The start index of this node's associated string.
400596f483aSJessica Paquette   /// \param EndIdx The end index of this node's associated string.
401596f483aSJessica Paquette   /// \param Edge The label on the edge leaving \p Parent to this node.
402596f483aSJessica Paquette   ///
403596f483aSJessica Paquette   /// \returns A pointer to the allocated internal node.
4044cf187b5SJessica Paquette   SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx,
4054cf187b5SJessica Paquette                                      unsigned EndIdx, unsigned Edge) {
406596f483aSJessica Paquette 
407596f483aSJessica Paquette     assert(StartIdx <= EndIdx && "String can't start after it ends!");
408596f483aSJessica Paquette     assert(!(!Parent && StartIdx != EmptyIdx) &&
409596f483aSJessica Paquette            "Non-root internal nodes must have parents!");
410596f483aSJessica Paquette 
4114cf187b5SJessica Paquette     unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx);
41278681be2SJessica Paquette     SuffixTreeNode *N = new (NodeAllocator.Allocate())
41378681be2SJessica Paquette         SuffixTreeNode(StartIdx, E, Root, Parent);
414596f483aSJessica Paquette     if (Parent)
415596f483aSJessica Paquette       Parent->Children[Edge] = N;
416596f483aSJessica Paquette 
417596f483aSJessica Paquette     return N;
418596f483aSJessica Paquette   }
419596f483aSJessica Paquette 
420596f483aSJessica Paquette   /// \brief Set the suffix indices of the leaves to the start indices of their
421596f483aSJessica Paquette   /// respective suffixes. Also stores each leaf in \p LeafVector at its
422596f483aSJessica Paquette   /// respective suffix index.
423596f483aSJessica Paquette   ///
424596f483aSJessica Paquette   /// \param[in] CurrNode The node currently being visited.
425596f483aSJessica Paquette   /// \param CurrIdx The current index of the string being visited.
4264cf187b5SJessica Paquette   void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) {
427596f483aSJessica Paquette 
428596f483aSJessica Paquette     bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
429596f483aSJessica Paquette 
430acffa28cSJessica Paquette     // Store the length of the concatenation of all strings from the root to
431acffa28cSJessica Paquette     // this node.
432acffa28cSJessica Paquette     if (!CurrNode.isRoot()) {
433acffa28cSJessica Paquette       if (CurrNode.ConcatLen == 0)
434acffa28cSJessica Paquette         CurrNode.ConcatLen = CurrNode.size();
435acffa28cSJessica Paquette 
436acffa28cSJessica Paquette       if (CurrNode.Parent)
437acffa28cSJessica Paquette         CurrNode.ConcatLen += CurrNode.Parent->ConcatLen;
438acffa28cSJessica Paquette     }
439acffa28cSJessica Paquette 
440596f483aSJessica Paquette     // Traverse the tree depth-first.
441596f483aSJessica Paquette     for (auto &ChildPair : CurrNode.Children) {
442596f483aSJessica Paquette       assert(ChildPair.second && "Node had a null child!");
44378681be2SJessica Paquette       setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size());
444596f483aSJessica Paquette     }
445596f483aSJessica Paquette 
446596f483aSJessica Paquette     // Is this node a leaf?
447596f483aSJessica Paquette     if (IsLeaf) {
448596f483aSJessica Paquette       // If yes, give it a suffix index and bump its parent's occurrence count.
449596f483aSJessica Paquette       CurrNode.SuffixIdx = Str.size() - CurrIdx;
450596f483aSJessica Paquette       assert(CurrNode.Parent && "CurrNode had no parent!");
451596f483aSJessica Paquette       CurrNode.Parent->OccurrenceCount++;
452596f483aSJessica Paquette 
453596f483aSJessica Paquette       // Store the leaf in the leaf vector for pruning later.
454596f483aSJessica Paquette       LeafVector[CurrNode.SuffixIdx] = &CurrNode;
455596f483aSJessica Paquette     }
456596f483aSJessica Paquette   }
457596f483aSJessica Paquette 
458596f483aSJessica Paquette   /// \brief Construct the suffix tree for the prefix of the input ending at
459596f483aSJessica Paquette   /// \p EndIdx.
460596f483aSJessica Paquette   ///
461596f483aSJessica Paquette   /// Used to construct the full suffix tree iteratively. At the end of each
462596f483aSJessica Paquette   /// step, the constructed suffix tree is either a valid suffix tree, or a
463596f483aSJessica Paquette   /// suffix tree with implicit suffixes. At the end of the final step, the
464596f483aSJessica Paquette   /// suffix tree is a valid tree.
465596f483aSJessica Paquette   ///
466596f483aSJessica Paquette   /// \param EndIdx The end index of the current prefix in the main string.
467596f483aSJessica Paquette   /// \param SuffixesToAdd The number of suffixes that must be added
468596f483aSJessica Paquette   /// to complete the suffix tree at the current phase.
469596f483aSJessica Paquette   ///
470596f483aSJessica Paquette   /// \returns The number of suffixes that have not been added at the end of
471596f483aSJessica Paquette   /// this step.
4724cf187b5SJessica Paquette   unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) {
473596f483aSJessica Paquette     SuffixTreeNode *NeedsLink = nullptr;
474596f483aSJessica Paquette 
475596f483aSJessica Paquette     while (SuffixesToAdd > 0) {
476596f483aSJessica Paquette 
477596f483aSJessica Paquette       // Are we waiting to add anything other than just the last character?
478596f483aSJessica Paquette       if (Active.Len == 0) {
479596f483aSJessica Paquette         // If not, then say the active index is the end index.
480596f483aSJessica Paquette         Active.Idx = EndIdx;
481596f483aSJessica Paquette       }
482596f483aSJessica Paquette 
483596f483aSJessica Paquette       assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
484596f483aSJessica Paquette 
485596f483aSJessica Paquette       // The first character in the current substring we're looking at.
486596f483aSJessica Paquette       unsigned FirstChar = Str[Active.Idx];
487596f483aSJessica Paquette 
488596f483aSJessica Paquette       // Have we inserted anything starting with FirstChar at the current node?
489596f483aSJessica Paquette       if (Active.Node->Children.count(FirstChar) == 0) {
490596f483aSJessica Paquette         // If not, then we can just insert a leaf and move too the next step.
491596f483aSJessica Paquette         insertLeaf(*Active.Node, EndIdx, FirstChar);
492596f483aSJessica Paquette 
493596f483aSJessica Paquette         // The active node is an internal node, and we visited it, so it must
494596f483aSJessica Paquette         // need a link if it doesn't have one.
495596f483aSJessica Paquette         if (NeedsLink) {
496596f483aSJessica Paquette           NeedsLink->Link = Active.Node;
497596f483aSJessica Paquette           NeedsLink = nullptr;
498596f483aSJessica Paquette         }
499596f483aSJessica Paquette       } else {
500596f483aSJessica Paquette         // There's a match with FirstChar, so look for the point in the tree to
501596f483aSJessica Paquette         // insert a new node.
502596f483aSJessica Paquette         SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
503596f483aSJessica Paquette 
5044cf187b5SJessica Paquette         unsigned SubstringLen = NextNode->size();
505596f483aSJessica Paquette 
506596f483aSJessica Paquette         // Is the current suffix we're trying to insert longer than the size of
507596f483aSJessica Paquette         // the child we want to move to?
508596f483aSJessica Paquette         if (Active.Len >= SubstringLen) {
509596f483aSJessica Paquette           // If yes, then consume the characters we've seen and move to the next
510596f483aSJessica Paquette           // node.
511596f483aSJessica Paquette           Active.Idx += SubstringLen;
512596f483aSJessica Paquette           Active.Len -= SubstringLen;
513596f483aSJessica Paquette           Active.Node = NextNode;
514596f483aSJessica Paquette           continue;
515596f483aSJessica Paquette         }
516596f483aSJessica Paquette 
517596f483aSJessica Paquette         // Otherwise, the suffix we're trying to insert must be contained in the
518596f483aSJessica Paquette         // next node we want to move to.
519596f483aSJessica Paquette         unsigned LastChar = Str[EndIdx];
520596f483aSJessica Paquette 
521596f483aSJessica Paquette         // Is the string we're trying to insert a substring of the next node?
522596f483aSJessica Paquette         if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
523596f483aSJessica Paquette           // If yes, then we're done for this step. Remember our insertion point
524596f483aSJessica Paquette           // and move to the next end index. At this point, we have an implicit
525596f483aSJessica Paquette           // suffix tree.
526596f483aSJessica Paquette           if (NeedsLink && !Active.Node->isRoot()) {
527596f483aSJessica Paquette             NeedsLink->Link = Active.Node;
528596f483aSJessica Paquette             NeedsLink = nullptr;
529596f483aSJessica Paquette           }
530596f483aSJessica Paquette 
531596f483aSJessica Paquette           Active.Len++;
532596f483aSJessica Paquette           break;
533596f483aSJessica Paquette         }
534596f483aSJessica Paquette 
535596f483aSJessica Paquette         // The string we're trying to insert isn't a substring of the next node,
536596f483aSJessica Paquette         // but matches up to a point. Split the node.
537596f483aSJessica Paquette         //
538596f483aSJessica Paquette         // For example, say we ended our search at a node n and we're trying to
539596f483aSJessica Paquette         // insert ABD. Then we'll create a new node s for AB, reduce n to just
540596f483aSJessica Paquette         // representing C, and insert a new leaf node l to represent d. This
541596f483aSJessica Paquette         // allows us to ensure that if n was a leaf, it remains a leaf.
542596f483aSJessica Paquette         //
543596f483aSJessica Paquette         //   | ABC  ---split--->  | AB
544596f483aSJessica Paquette         //   n                    s
545596f483aSJessica Paquette         //                     C / \ D
546596f483aSJessica Paquette         //                      n   l
547596f483aSJessica Paquette 
548596f483aSJessica Paquette         // The node s from the diagram
549596f483aSJessica Paquette         SuffixTreeNode *SplitNode =
55078681be2SJessica Paquette             insertInternalNode(Active.Node, NextNode->StartIdx,
55178681be2SJessica Paquette                                NextNode->StartIdx + Active.Len - 1, FirstChar);
552596f483aSJessica Paquette 
553596f483aSJessica Paquette         // Insert the new node representing the new substring into the tree as
554596f483aSJessica Paquette         // a child of the split node. This is the node l from the diagram.
555596f483aSJessica Paquette         insertLeaf(*SplitNode, EndIdx, LastChar);
556596f483aSJessica Paquette 
557596f483aSJessica Paquette         // Make the old node a child of the split node and update its start
558596f483aSJessica Paquette         // index. This is the node n from the diagram.
559596f483aSJessica Paquette         NextNode->StartIdx += Active.Len;
560596f483aSJessica Paquette         NextNode->Parent = SplitNode;
561596f483aSJessica Paquette         SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
562596f483aSJessica Paquette 
563596f483aSJessica Paquette         // SplitNode is an internal node, update the suffix link.
564596f483aSJessica Paquette         if (NeedsLink)
565596f483aSJessica Paquette           NeedsLink->Link = SplitNode;
566596f483aSJessica Paquette 
567596f483aSJessica Paquette         NeedsLink = SplitNode;
568596f483aSJessica Paquette       }
569596f483aSJessica Paquette 
570596f483aSJessica Paquette       // We've added something new to the tree, so there's one less suffix to
571596f483aSJessica Paquette       // add.
572596f483aSJessica Paquette       SuffixesToAdd--;
573596f483aSJessica Paquette 
574596f483aSJessica Paquette       if (Active.Node->isRoot()) {
575596f483aSJessica Paquette         if (Active.Len > 0) {
576596f483aSJessica Paquette           Active.Len--;
577596f483aSJessica Paquette           Active.Idx = EndIdx - SuffixesToAdd + 1;
578596f483aSJessica Paquette         }
579596f483aSJessica Paquette       } else {
580596f483aSJessica Paquette         // Start the next phase at the next smallest suffix.
581596f483aSJessica Paquette         Active.Node = Active.Node->Link;
582596f483aSJessica Paquette       }
583596f483aSJessica Paquette     }
584596f483aSJessica Paquette 
585596f483aSJessica Paquette     return SuffixesToAdd;
586596f483aSJessica Paquette   }
587596f483aSJessica Paquette 
588596f483aSJessica Paquette public:
589596f483aSJessica Paquette   /// Construct a suffix tree from a sequence of unsigned integers.
590596f483aSJessica Paquette   ///
591596f483aSJessica Paquette   /// \param Str The string to construct the suffix tree for.
592596f483aSJessica Paquette   SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
593596f483aSJessica Paquette     Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
594596f483aSJessica Paquette     Root->IsInTree = true;
595596f483aSJessica Paquette     Active.Node = Root;
596596f483aSJessica Paquette     LeafVector = std::vector<SuffixTreeNode *>(Str.size());
597596f483aSJessica Paquette 
598596f483aSJessica Paquette     // Keep track of the number of suffixes we have to add of the current
599596f483aSJessica Paquette     // prefix.
6004cf187b5SJessica Paquette     unsigned SuffixesToAdd = 0;
601596f483aSJessica Paquette     Active.Node = Root;
602596f483aSJessica Paquette 
603596f483aSJessica Paquette     // Construct the suffix tree iteratively on each prefix of the string.
604596f483aSJessica Paquette     // PfxEndIdx is the end index of the current prefix.
605596f483aSJessica Paquette     // End is one past the last element in the string.
6064cf187b5SJessica Paquette     for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End;
6074cf187b5SJessica Paquette          PfxEndIdx++) {
608596f483aSJessica Paquette       SuffixesToAdd++;
609596f483aSJessica Paquette       LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
610596f483aSJessica Paquette       SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
611596f483aSJessica Paquette     }
612596f483aSJessica Paquette 
613596f483aSJessica Paquette     // Set the suffix indices of each leaf.
614596f483aSJessica Paquette     assert(Root && "Root node can't be nullptr!");
615596f483aSJessica Paquette     setSuffixIndices(*Root, 0);
616596f483aSJessica Paquette   }
617596f483aSJessica Paquette };
618596f483aSJessica Paquette 
619596f483aSJessica Paquette /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings.
620596f483aSJessica Paquette struct InstructionMapper {
621596f483aSJessica Paquette 
622596f483aSJessica Paquette   /// \brief The next available integer to assign to a \p MachineInstr that
623596f483aSJessica Paquette   /// cannot be outlined.
624596f483aSJessica Paquette   ///
625596f483aSJessica Paquette   /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
626596f483aSJessica Paquette   unsigned IllegalInstrNumber = -3;
627596f483aSJessica Paquette 
628596f483aSJessica Paquette   /// \brief The next available integer to assign to a \p MachineInstr that can
629596f483aSJessica Paquette   /// be outlined.
630596f483aSJessica Paquette   unsigned LegalInstrNumber = 0;
631596f483aSJessica Paquette 
632596f483aSJessica Paquette   /// Correspondence from \p MachineInstrs to unsigned integers.
633596f483aSJessica Paquette   DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
634596f483aSJessica Paquette       InstructionIntegerMap;
635596f483aSJessica Paquette 
636596f483aSJessica Paquette   /// Corresponcence from unsigned integers to \p MachineInstrs.
637596f483aSJessica Paquette   /// Inverse of \p InstructionIntegerMap.
638596f483aSJessica Paquette   DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
639596f483aSJessica Paquette 
640596f483aSJessica Paquette   /// The vector of unsigned integers that the module is mapped to.
641596f483aSJessica Paquette   std::vector<unsigned> UnsignedVec;
642596f483aSJessica Paquette 
643596f483aSJessica Paquette   /// \brief Stores the location of the instruction associated with the integer
644596f483aSJessica Paquette   /// at index i in \p UnsignedVec for each index i.
645596f483aSJessica Paquette   std::vector<MachineBasicBlock::iterator> InstrList;
646596f483aSJessica Paquette 
647596f483aSJessica Paquette   /// \brief Maps \p *It to a legal integer.
648596f483aSJessica Paquette   ///
649596f483aSJessica Paquette   /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
650596f483aSJessica Paquette   /// \p IntegerInstructionMap, and \p LegalInstrNumber.
651596f483aSJessica Paquette   ///
652596f483aSJessica Paquette   /// \returns The integer that \p *It was mapped to.
653596f483aSJessica Paquette   unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
654596f483aSJessica Paquette 
655596f483aSJessica Paquette     // Get the integer for this instruction or give it the current
656596f483aSJessica Paquette     // LegalInstrNumber.
657596f483aSJessica Paquette     InstrList.push_back(It);
658596f483aSJessica Paquette     MachineInstr &MI = *It;
659596f483aSJessica Paquette     bool WasInserted;
660596f483aSJessica Paquette     DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
661596f483aSJessica Paquette         ResultIt;
662596f483aSJessica Paquette     std::tie(ResultIt, WasInserted) =
663596f483aSJessica Paquette         InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
664596f483aSJessica Paquette     unsigned MINumber = ResultIt->second;
665596f483aSJessica Paquette 
666596f483aSJessica Paquette     // There was an insertion.
667596f483aSJessica Paquette     if (WasInserted) {
668596f483aSJessica Paquette       LegalInstrNumber++;
669596f483aSJessica Paquette       IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
670596f483aSJessica Paquette     }
671596f483aSJessica Paquette 
672596f483aSJessica Paquette     UnsignedVec.push_back(MINumber);
673596f483aSJessica Paquette 
674596f483aSJessica Paquette     // Make sure we don't overflow or use any integers reserved by the DenseMap.
675596f483aSJessica Paquette     if (LegalInstrNumber >= IllegalInstrNumber)
676596f483aSJessica Paquette       report_fatal_error("Instruction mapping overflow!");
677596f483aSJessica Paquette 
67878681be2SJessica Paquette     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
67978681be2SJessica Paquette            "Tried to assign DenseMap tombstone or empty key to instruction.");
68078681be2SJessica Paquette     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
68178681be2SJessica Paquette            "Tried to assign DenseMap tombstone or empty key to instruction.");
682596f483aSJessica Paquette 
683596f483aSJessica Paquette     return MINumber;
684596f483aSJessica Paquette   }
685596f483aSJessica Paquette 
686596f483aSJessica Paquette   /// Maps \p *It to an illegal integer.
687596f483aSJessica Paquette   ///
688596f483aSJessica Paquette   /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
689596f483aSJessica Paquette   ///
690596f483aSJessica Paquette   /// \returns The integer that \p *It was mapped to.
691596f483aSJessica Paquette   unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
692596f483aSJessica Paquette     unsigned MINumber = IllegalInstrNumber;
693596f483aSJessica Paquette 
694596f483aSJessica Paquette     InstrList.push_back(It);
695596f483aSJessica Paquette     UnsignedVec.push_back(IllegalInstrNumber);
696596f483aSJessica Paquette     IllegalInstrNumber--;
697596f483aSJessica Paquette 
698596f483aSJessica Paquette     assert(LegalInstrNumber < IllegalInstrNumber &&
699596f483aSJessica Paquette            "Instruction mapping overflow!");
700596f483aSJessica Paquette 
70178681be2SJessica Paquette     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
702596f483aSJessica Paquette            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
703596f483aSJessica Paquette 
70478681be2SJessica Paquette     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
705596f483aSJessica Paquette            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
706596f483aSJessica Paquette 
707596f483aSJessica Paquette     return MINumber;
708596f483aSJessica Paquette   }
709596f483aSJessica Paquette 
710596f483aSJessica Paquette   /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
711596f483aSJessica Paquette   /// and appends it to \p UnsignedVec and \p InstrList.
712596f483aSJessica Paquette   ///
713596f483aSJessica Paquette   /// Two instructions are assigned the same integer if they are identical.
714596f483aSJessica Paquette   /// If an instruction is deemed unsafe to outline, then it will be assigned an
715596f483aSJessica Paquette   /// unique integer. The resulting mapping is placed into a suffix tree and
716596f483aSJessica Paquette   /// queried for candidates.
717596f483aSJessica Paquette   ///
718596f483aSJessica Paquette   /// \param MBB The \p MachineBasicBlock to be translated into integers.
719596f483aSJessica Paquette   /// \param TRI \p TargetRegisterInfo for the module.
720596f483aSJessica Paquette   /// \param TII \p TargetInstrInfo for the module.
721596f483aSJessica Paquette   void convertToUnsignedVec(MachineBasicBlock &MBB,
722596f483aSJessica Paquette                             const TargetRegisterInfo &TRI,
723596f483aSJessica Paquette                             const TargetInstrInfo &TII) {
724596f483aSJessica Paquette     for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et;
725596f483aSJessica Paquette          It++) {
726596f483aSJessica Paquette 
727596f483aSJessica Paquette       // Keep track of where this instruction is in the module.
728596f483aSJessica Paquette       switch (TII.getOutliningType(*It)) {
729596f483aSJessica Paquette       case TargetInstrInfo::MachineOutlinerInstrType::Illegal:
730596f483aSJessica Paquette         mapToIllegalUnsigned(It);
731596f483aSJessica Paquette         break;
732596f483aSJessica Paquette 
733596f483aSJessica Paquette       case TargetInstrInfo::MachineOutlinerInstrType::Legal:
734596f483aSJessica Paquette         mapToLegalUnsigned(It);
735596f483aSJessica Paquette         break;
736596f483aSJessica Paquette 
737596f483aSJessica Paquette       case TargetInstrInfo::MachineOutlinerInstrType::Invisible:
738596f483aSJessica Paquette         break;
739596f483aSJessica Paquette       }
740596f483aSJessica Paquette     }
741596f483aSJessica Paquette 
742596f483aSJessica Paquette     // After we're done every insertion, uniquely terminate this part of the
743596f483aSJessica Paquette     // "string". This makes sure we won't match across basic block or function
744596f483aSJessica Paquette     // boundaries since the "end" is encoded uniquely and thus appears in no
745596f483aSJessica Paquette     // repeated substring.
746596f483aSJessica Paquette     InstrList.push_back(MBB.end());
747596f483aSJessica Paquette     UnsignedVec.push_back(IllegalInstrNumber);
748596f483aSJessica Paquette     IllegalInstrNumber--;
749596f483aSJessica Paquette   }
750596f483aSJessica Paquette 
751596f483aSJessica Paquette   InstructionMapper() {
752596f483aSJessica Paquette     // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
753596f483aSJessica Paquette     // changed.
754596f483aSJessica Paquette     assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
755596f483aSJessica Paquette            "DenseMapInfo<unsigned>'s empty key isn't -1!");
756596f483aSJessica Paquette     assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
757596f483aSJessica Paquette            "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
758596f483aSJessica Paquette   }
759596f483aSJessica Paquette };
760596f483aSJessica Paquette 
761596f483aSJessica Paquette /// \brief An interprocedural pass which finds repeated sequences of
762596f483aSJessica Paquette /// instructions and replaces them with calls to functions.
763596f483aSJessica Paquette ///
764596f483aSJessica Paquette /// Each instruction is mapped to an unsigned integer and placed in a string.
765596f483aSJessica Paquette /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
766596f483aSJessica Paquette /// is then repeatedly queried for repeated sequences of instructions. Each
767596f483aSJessica Paquette /// non-overlapping repeated sequence is then placed in its own
768596f483aSJessica Paquette /// \p MachineFunction and each instance is then replaced with a call to that
769596f483aSJessica Paquette /// function.
770596f483aSJessica Paquette struct MachineOutliner : public ModulePass {
771596f483aSJessica Paquette 
772596f483aSJessica Paquette   static char ID;
773596f483aSJessica Paquette 
77413593843SJessica Paquette   /// \brief Set to true if the outliner should consider functions with
77513593843SJessica Paquette   /// linkonceodr linkage.
77613593843SJessica Paquette   bool OutlineFromLinkOnceODRs = false;
77713593843SJessica Paquette 
778596f483aSJessica Paquette   StringRef getPassName() const override { return "Machine Outliner"; }
779596f483aSJessica Paquette 
780596f483aSJessica Paquette   void getAnalysisUsage(AnalysisUsage &AU) const override {
781596f483aSJessica Paquette     AU.addRequired<MachineModuleInfo>();
782596f483aSJessica Paquette     AU.addPreserved<MachineModuleInfo>();
783596f483aSJessica Paquette     AU.setPreservesAll();
784596f483aSJessica Paquette     ModulePass::getAnalysisUsage(AU);
785596f483aSJessica Paquette   }
786596f483aSJessica Paquette 
787c9ab4c26SJessica Paquette   MachineOutliner(bool OutlineFromLinkOnceODRs = false)
788c9ab4c26SJessica Paquette       : ModulePass(ID), OutlineFromLinkOnceODRs(OutlineFromLinkOnceODRs) {
789596f483aSJessica Paquette     initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
790596f483aSJessica Paquette   }
791596f483aSJessica Paquette 
79278681be2SJessica Paquette   /// Find all repeated substrings that satisfy the outlining cost model.
79378681be2SJessica Paquette   ///
79478681be2SJessica Paquette   /// If a substring appears at least twice, then it must be represented by
79578681be2SJessica Paquette   /// an internal node which appears in at least two suffixes. Each suffix is
79678681be2SJessica Paquette   /// represented by a leaf node. To do this, we visit each internal node in
79778681be2SJessica Paquette   /// the tree, using the leaf children of each internal node. If an internal
79878681be2SJessica Paquette   /// node represents a beneficial substring, then we use each of its leaf
79978681be2SJessica Paquette   /// children to find the locations of its substring.
80078681be2SJessica Paquette   ///
80178681be2SJessica Paquette   /// \param ST A suffix tree to query.
80278681be2SJessica Paquette   /// \param TII TargetInstrInfo for the target.
80378681be2SJessica Paquette   /// \param Mapper Contains outlining mapping information.
80478681be2SJessica Paquette   /// \param[out] CandidateList Filled with candidates representing each
80578681be2SJessica Paquette   /// beneficial substring.
80678681be2SJessica Paquette   /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each
80778681be2SJessica Paquette   /// type of candidate.
80878681be2SJessica Paquette   ///
80978681be2SJessica Paquette   /// \returns The length of the longest candidate found.
8104cf187b5SJessica Paquette   unsigned findCandidates(SuffixTree &ST, const TargetInstrInfo &TII,
81178681be2SJessica Paquette                           InstructionMapper &Mapper,
81278681be2SJessica Paquette                           std::vector<Candidate> &CandidateList,
81378681be2SJessica Paquette                           std::vector<OutlinedFunction> &FunctionList);
81478681be2SJessica Paquette 
815596f483aSJessica Paquette   /// \brief Replace the sequences of instructions represented by the
816596f483aSJessica Paquette   /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
817596f483aSJessica Paquette   /// described in \p FunctionList.
818596f483aSJessica Paquette   ///
819596f483aSJessica Paquette   /// \param M The module we are outlining from.
820596f483aSJessica Paquette   /// \param CandidateList A list of candidates to be outlined.
821596f483aSJessica Paquette   /// \param FunctionList A list of functions to be inserted into the module.
822596f483aSJessica Paquette   /// \param Mapper Contains the instruction mappings for the module.
823596f483aSJessica Paquette   bool outline(Module &M, const ArrayRef<Candidate> &CandidateList,
824596f483aSJessica Paquette                std::vector<OutlinedFunction> &FunctionList,
825596f483aSJessica Paquette                InstructionMapper &Mapper);
826596f483aSJessica Paquette 
827596f483aSJessica Paquette   /// Creates a function for \p OF and inserts it into the module.
828596f483aSJessica Paquette   MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
829596f483aSJessica Paquette                                           InstructionMapper &Mapper);
830596f483aSJessica Paquette 
831596f483aSJessica Paquette   /// Find potential outlining candidates and store them in \p CandidateList.
832596f483aSJessica Paquette   ///
833596f483aSJessica Paquette   /// For each type of potential candidate, also build an \p OutlinedFunction
834596f483aSJessica Paquette   /// struct containing the information to build the function for that
835596f483aSJessica Paquette   /// candidate.
836596f483aSJessica Paquette   ///
837596f483aSJessica Paquette   /// \param[out] CandidateList Filled with outlining candidates for the module.
838596f483aSJessica Paquette   /// \param[out] FunctionList Filled with functions corresponding to each type
839596f483aSJessica Paquette   /// of \p Candidate.
840596f483aSJessica Paquette   /// \param ST The suffix tree for the module.
841596f483aSJessica Paquette   /// \param TII TargetInstrInfo for the module.
842596f483aSJessica Paquette   ///
843596f483aSJessica Paquette   /// \returns The length of the longest candidate found. 0 if there are none.
844596f483aSJessica Paquette   unsigned buildCandidateList(std::vector<Candidate> &CandidateList,
845596f483aSJessica Paquette                               std::vector<OutlinedFunction> &FunctionList,
84678681be2SJessica Paquette                               SuffixTree &ST, InstructionMapper &Mapper,
847c984e213SJessica Paquette                               const TargetInstrInfo &TII);
848596f483aSJessica Paquette 
84960d31fc3SJessica Paquette   /// Helper function for pruneOverlaps.
85060d31fc3SJessica Paquette   /// Removes \p C from the candidate list, and updates its \p OutlinedFunction.
85160d31fc3SJessica Paquette   void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList);
85260d31fc3SJessica Paquette 
853596f483aSJessica Paquette   /// \brief Remove any overlapping candidates that weren't handled by the
854596f483aSJessica Paquette   /// suffix tree's pruning method.
855596f483aSJessica Paquette   ///
856596f483aSJessica Paquette   /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
857596f483aSJessica Paquette   /// If a short candidate is chosen for outlining, then a longer candidate
858596f483aSJessica Paquette   /// which has that short candidate as a suffix is chosen, the tree's pruning
859596f483aSJessica Paquette   /// method will not find it. Thus, we need to prune before outlining as well.
860596f483aSJessica Paquette   ///
861596f483aSJessica Paquette   /// \param[in,out] CandidateList A list of outlining candidates.
862596f483aSJessica Paquette   /// \param[in,out] FunctionList A list of functions to be outlined.
863809d708bSJessica Paquette   /// \param Mapper Contains instruction mapping info for outlining.
864596f483aSJessica Paquette   /// \param MaxCandidateLen The length of the longest candidate.
865596f483aSJessica Paquette   /// \param TII TargetInstrInfo for the module.
866596f483aSJessica Paquette   void pruneOverlaps(std::vector<Candidate> &CandidateList,
867596f483aSJessica Paquette                      std::vector<OutlinedFunction> &FunctionList,
868809d708bSJessica Paquette                      InstructionMapper &Mapper, unsigned MaxCandidateLen,
869809d708bSJessica Paquette                      const TargetInstrInfo &TII);
870596f483aSJessica Paquette 
871596f483aSJessica Paquette   /// Construct a suffix tree on the instructions in \p M and outline repeated
872596f483aSJessica Paquette   /// strings from that tree.
873596f483aSJessica Paquette   bool runOnModule(Module &M) override;
874596f483aSJessica Paquette };
875596f483aSJessica Paquette 
876596f483aSJessica Paquette } // Anonymous namespace.
877596f483aSJessica Paquette 
878596f483aSJessica Paquette char MachineOutliner::ID = 0;
879596f483aSJessica Paquette 
880596f483aSJessica Paquette namespace llvm {
88113593843SJessica Paquette ModulePass *createMachineOutlinerPass(bool OutlineFromLinkOnceODRs) {
88213593843SJessica Paquette   return new MachineOutliner(OutlineFromLinkOnceODRs);
88313593843SJessica Paquette }
88413593843SJessica Paquette 
88578681be2SJessica Paquette } // namespace llvm
88678681be2SJessica Paquette 
88778681be2SJessica Paquette INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
88878681be2SJessica Paquette                 false)
88978681be2SJessica Paquette 
8904cf187b5SJessica Paquette unsigned
89178681be2SJessica Paquette MachineOutliner::findCandidates(SuffixTree &ST, const TargetInstrInfo &TII,
89278681be2SJessica Paquette                                 InstructionMapper &Mapper,
89378681be2SJessica Paquette                                 std::vector<Candidate> &CandidateList,
89478681be2SJessica Paquette                                 std::vector<OutlinedFunction> &FunctionList) {
89578681be2SJessica Paquette   CandidateList.clear();
89678681be2SJessica Paquette   FunctionList.clear();
8974cf187b5SJessica Paquette   unsigned MaxLen = 0;
89878681be2SJessica Paquette 
89978681be2SJessica Paquette   // FIXME: Visit internal nodes instead of leaves.
90078681be2SJessica Paquette   for (SuffixTreeNode *Leaf : ST.LeafVector) {
90178681be2SJessica Paquette     assert(Leaf && "Leaves in LeafVector cannot be null!");
90278681be2SJessica Paquette     if (!Leaf->IsInTree)
90378681be2SJessica Paquette       continue;
90478681be2SJessica Paquette 
90578681be2SJessica Paquette     assert(Leaf->Parent && "All leaves must have parents!");
90678681be2SJessica Paquette     SuffixTreeNode &Parent = *(Leaf->Parent);
90778681be2SJessica Paquette 
90878681be2SJessica Paquette     // If it doesn't appear enough, or we already outlined from it, skip it.
90978681be2SJessica Paquette     if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree)
91078681be2SJessica Paquette       continue;
91178681be2SJessica Paquette 
912809d708bSJessica Paquette     // Figure out if this candidate is beneficial.
9134cf187b5SJessica Paquette     unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size();
91495c1107fSJessica Paquette 
91595c1107fSJessica Paquette     // Too short to be beneficial; skip it.
91695c1107fSJessica Paquette     // FIXME: This isn't necessarily true for, say, X86. If we factor in
91795c1107fSJessica Paquette     // instruction lengths we need more information than this.
91895c1107fSJessica Paquette     if (StringLen < 2)
91995c1107fSJessica Paquette       continue;
92095c1107fSJessica Paquette 
921d87f5449SJessica Paquette     // If this is a beneficial class of candidate, then every one is stored in
922d87f5449SJessica Paquette     // this vector.
923d87f5449SJessica Paquette     std::vector<Candidate> CandidatesForRepeatedSeq;
924d87f5449SJessica Paquette 
9254cf187b5SJessica Paquette     // Describes the start and end point of each candidate. This allows the
9264cf187b5SJessica Paquette     // target to infer some information about each occurrence of each repeated
9274cf187b5SJessica Paquette     // sequence.
928d87f5449SJessica Paquette     // FIXME: CandidatesForRepeatedSeq and this should be combined.
929d87f5449SJessica Paquette     std::vector<
930d87f5449SJessica Paquette         std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
9314cf187b5SJessica Paquette         RepeatedSequenceLocs;
932d87f5449SJessica Paquette 
933809d708bSJessica Paquette     // Figure out the call overhead for each instance of the sequence.
934809d708bSJessica Paquette     for (auto &ChildPair : Parent.Children) {
935809d708bSJessica Paquette       SuffixTreeNode *M = ChildPair.second;
93678681be2SJessica Paquette 
937809d708bSJessica Paquette       if (M && M->IsInTree && M->isLeaf()) {
938809d708bSJessica Paquette         // Each sequence is over [StartIt, EndIt].
939809d708bSJessica Paquette         MachineBasicBlock::iterator StartIt = Mapper.InstrList[M->SuffixIdx];
940809d708bSJessica Paquette         MachineBasicBlock::iterator EndIt =
941809d708bSJessica Paquette             Mapper.InstrList[M->SuffixIdx + StringLen - 1];
942d87f5449SJessica Paquette 
943acc15e12SJessica Paquette         CandidatesForRepeatedSeq.emplace_back(M->SuffixIdx, StringLen,
944acc15e12SJessica Paquette                                               FunctionList.size());
9454cf187b5SJessica Paquette         RepeatedSequenceLocs.emplace_back(std::make_pair(StartIt, EndIt));
946d87f5449SJessica Paquette 
947d87f5449SJessica Paquette         // Never visit this leaf again.
948d87f5449SJessica Paquette         M->IsInTree = false;
949809d708bSJessica Paquette       }
950809d708bSJessica Paquette     }
951809d708bSJessica Paquette 
952acc15e12SJessica Paquette     // We've found something we might want to outline.
953acc15e12SJessica Paquette     // Create an OutlinedFunction to store it and check if it'd be beneficial
954acc15e12SJessica Paquette     // to outline.
9554cf187b5SJessica Paquette     TargetInstrInfo::MachineOutlinerInfo MInfo =
9564cf187b5SJessica Paquette         TII.getOutlininingCandidateInfo(RepeatedSequenceLocs);
957acc15e12SJessica Paquette     std::vector<unsigned> Seq;
958acc15e12SJessica Paquette     for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++)
959acc15e12SJessica Paquette       Seq.push_back(ST.Str[i]);
960acc15e12SJessica Paquette     OutlinedFunction OF(FunctionList.size(), Parent.OccurrenceCount, Seq,
961acc15e12SJessica Paquette                         MInfo);
962acc15e12SJessica Paquette     unsigned Benefit = OF.getBenefit();
963809d708bSJessica Paquette 
964ffe4abc5SJessica Paquette     // Is it better to outline this candidate than not?
965acc15e12SJessica Paquette     if (Benefit < 1) {
966ffe4abc5SJessica Paquette       // Outlining this candidate would take more instructions than not
967ffe4abc5SJessica Paquette       // outlining.
968ffe4abc5SJessica Paquette       // Emit a remark explaining why we didn't outline this candidate.
969ffe4abc5SJessica Paquette       std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator> C =
9704cf187b5SJessica Paquette           RepeatedSequenceLocs[0];
9719590658fSVivek Pandya       MachineOptimizationRemarkEmitter MORE(
9729590658fSVivek Pandya           *(C.first->getParent()->getParent()), nullptr);
9739590658fSVivek Pandya       MORE.emit([&]() {
974ffe4abc5SJessica Paquette         MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
975ffe4abc5SJessica Paquette                                           C.first->getDebugLoc(),
976ffe4abc5SJessica Paquette                                           C.first->getParent());
977ffe4abc5SJessica Paquette         R << "Did not outline " << NV("Length", StringLen) << " instructions"
9784cf187b5SJessica Paquette           << " from " << NV("NumOccurrences", RepeatedSequenceLocs.size())
979ffe4abc5SJessica Paquette           << " locations."
980ffe4abc5SJessica Paquette           << " Instructions from outlining all occurrences ("
981acc15e12SJessica Paquette           << NV("OutliningCost", OF.getOutliningCost()) << ")"
982ffe4abc5SJessica Paquette           << " >= Unoutlined instruction count ("
98385af63d0SJessica Paquette           << NV("NotOutliningCost", StringLen * OF.getOccurrenceCount()) << ")"
984ffe4abc5SJessica Paquette           << " (Also found at: ";
985ffe4abc5SJessica Paquette 
986ffe4abc5SJessica Paquette         // Tell the user the other places the candidate was found.
9874cf187b5SJessica Paquette         for (unsigned i = 1, e = RepeatedSequenceLocs.size(); i < e; i++) {
988ffe4abc5SJessica Paquette           R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
9894cf187b5SJessica Paquette                   RepeatedSequenceLocs[i].first->getDebugLoc());
990ffe4abc5SJessica Paquette           if (i != e - 1)
991ffe4abc5SJessica Paquette             R << ", ";
992ffe4abc5SJessica Paquette         }
993ffe4abc5SJessica Paquette 
994ffe4abc5SJessica Paquette         R << ")";
9959590658fSVivek Pandya         return R;
9969590658fSVivek Pandya       });
997ffe4abc5SJessica Paquette 
998ffe4abc5SJessica Paquette       // Move to the next candidate.
99978681be2SJessica Paquette       continue;
1000ffe4abc5SJessica Paquette     }
100178681be2SJessica Paquette 
100278681be2SJessica Paquette     if (StringLen > MaxLen)
100378681be2SJessica Paquette       MaxLen = StringLen;
100478681be2SJessica Paquette 
1005d87f5449SJessica Paquette     // At this point, the candidate class is seen as beneficial. Set their
1006d87f5449SJessica Paquette     // benefit values and save them in the candidate list.
1007d87f5449SJessica Paquette     for (Candidate &C : CandidatesForRepeatedSeq) {
1008d87f5449SJessica Paquette       C.Benefit = Benefit;
10094cf187b5SJessica Paquette       C.MInfo = MInfo;
1010d87f5449SJessica Paquette       CandidateList.push_back(C);
1011596f483aSJessica Paquette     }
1012596f483aSJessica Paquette 
1013acc15e12SJessica Paquette     FunctionList.push_back(OF);
101478681be2SJessica Paquette 
101578681be2SJessica Paquette     // Move to the next function.
101678681be2SJessica Paquette     Parent.IsInTree = false;
101778681be2SJessica Paquette   }
101878681be2SJessica Paquette 
101978681be2SJessica Paquette   return MaxLen;
102078681be2SJessica Paquette }
1021596f483aSJessica Paquette 
102291999169SJessica Paquette // Remove C from the candidate space, and update its OutlinedFunction.
102360d31fc3SJessica Paquette void MachineOutliner::prune(Candidate &C,
102460d31fc3SJessica Paquette                             std::vector<OutlinedFunction> &FunctionList) {
102591999169SJessica Paquette   // Get the OutlinedFunction associated with this Candidate.
102691999169SJessica Paquette   OutlinedFunction &F = FunctionList[C.FunctionIdx];
102791999169SJessica Paquette 
102891999169SJessica Paquette   // Update C's associated function's occurrence count.
102985af63d0SJessica Paquette   F.decrement();
103091999169SJessica Paquette 
103191999169SJessica Paquette   // Remove C from the CandidateList.
103291999169SJessica Paquette   C.InCandidateList = false;
103391999169SJessica Paquette 
103491999169SJessica Paquette   DEBUG(dbgs() << "- Removed a Candidate \n";
103585af63d0SJessica Paquette         dbgs() << "--- Num fns left for candidate: " << F.getOccurrenceCount()
103691999169SJessica Paquette                << "\n";
1037acc15e12SJessica Paquette         dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit()
103891999169SJessica Paquette                << "\n";);
103960d31fc3SJessica Paquette }
104060d31fc3SJessica Paquette 
104160d31fc3SJessica Paquette void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList,
104260d31fc3SJessica Paquette                                     std::vector<OutlinedFunction> &FunctionList,
104360d31fc3SJessica Paquette                                     InstructionMapper &Mapper,
104460d31fc3SJessica Paquette                                     unsigned MaxCandidateLen,
104560d31fc3SJessica Paquette                                     const TargetInstrInfo &TII) {
104660d31fc3SJessica Paquette 
104760d31fc3SJessica Paquette   // Return true if this candidate became unbeneficial for outlining in a
104860d31fc3SJessica Paquette   // previous step.
104960d31fc3SJessica Paquette   auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) {
105060d31fc3SJessica Paquette 
105160d31fc3SJessica Paquette     // Check if the candidate was removed in a previous step.
105260d31fc3SJessica Paquette     if (!C.InCandidateList)
105360d31fc3SJessica Paquette       return true;
105460d31fc3SJessica Paquette 
105560d31fc3SJessica Paquette     // C must be alive. Check if we should remove it.
105660d31fc3SJessica Paquette     if (FunctionList[C.FunctionIdx].getBenefit() < 1) {
105760d31fc3SJessica Paquette       prune(C, FunctionList);
105860d31fc3SJessica Paquette       return true;
105960d31fc3SJessica Paquette     }
106060d31fc3SJessica Paquette 
106160d31fc3SJessica Paquette     // C is in the list, and F is still beneficial.
106260d31fc3SJessica Paquette     return false;
106391999169SJessica Paquette   };
106491999169SJessica Paquette 
1065acffa28cSJessica Paquette   // TODO: Experiment with interval trees or other interval-checking structures
1066acffa28cSJessica Paquette   // to lower the time complexity of this function.
1067acffa28cSJessica Paquette   // TODO: Can we do better than the simple greedy choice?
1068acffa28cSJessica Paquette   // Check for overlaps in the range.
1069acffa28cSJessica Paquette   // This is O(MaxCandidateLen * CandidateList.size()).
1070596f483aSJessica Paquette   for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
1071596f483aSJessica Paquette        It++) {
1072596f483aSJessica Paquette     Candidate &C1 = *It;
1073596f483aSJessica Paquette 
107491999169SJessica Paquette     // If C1 was already pruned, or its function is no longer beneficial for
107591999169SJessica Paquette     // outlining, move to the next candidate.
107691999169SJessica Paquette     if (ShouldSkipCandidate(C1))
1077596f483aSJessica Paquette       continue;
1078596f483aSJessica Paquette 
1079596f483aSJessica Paquette     // The minimum start index of any candidate that could overlap with this
1080596f483aSJessica Paquette     // one.
1081596f483aSJessica Paquette     unsigned FarthestPossibleIdx = 0;
1082596f483aSJessica Paquette 
1083596f483aSJessica Paquette     // Either the index is 0, or it's at most MaxCandidateLen indices away.
1084*1934fd2cSJessica Paquette     if (C1.getStartIdx() > MaxCandidateLen)
1085*1934fd2cSJessica Paquette       FarthestPossibleIdx = C1.getStartIdx() - MaxCandidateLen;
1086596f483aSJessica Paquette 
1087acffa28cSJessica Paquette     // Compare against the candidates in the list that start at at most
1088acffa28cSJessica Paquette     // FarthestPossibleIdx indices away from C1. There are at most
1089acffa28cSJessica Paquette     // MaxCandidateLen of these.
1090596f483aSJessica Paquette     for (auto Sit = It + 1; Sit != Et; Sit++) {
1091596f483aSJessica Paquette       Candidate &C2 = *Sit;
1092596f483aSJessica Paquette 
1093596f483aSJessica Paquette       // Is this candidate too far away to overlap?
1094*1934fd2cSJessica Paquette       if (C2.getStartIdx() < FarthestPossibleIdx)
1095596f483aSJessica Paquette         break;
1096596f483aSJessica Paquette 
109791999169SJessica Paquette       // If C2 was already pruned, or its function is no longer beneficial for
109891999169SJessica Paquette       // outlining, move to the next candidate.
109991999169SJessica Paquette       if (ShouldSkipCandidate(C2))
1100596f483aSJessica Paquette         continue;
1101596f483aSJessica Paquette 
1102596f483aSJessica Paquette       // Do C1 and C2 overlap?
1103596f483aSJessica Paquette       //
1104596f483aSJessica Paquette       // Not overlapping:
1105596f483aSJessica Paquette       // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
1106596f483aSJessica Paquette       //
1107596f483aSJessica Paquette       // We sorted our candidate list so C2Start <= C1Start. We know that
1108596f483aSJessica Paquette       // C2End > C2Start since each candidate has length >= 2. Therefore, all we
1109596f483aSJessica Paquette       // have to check is C2End < C2Start to see if we overlap.
1110*1934fd2cSJessica Paquette       if (C2.getEndIdx() < C1.getStartIdx())
1111596f483aSJessica Paquette         continue;
1112596f483aSJessica Paquette 
1113acffa28cSJessica Paquette       // C1 and C2 overlap.
1114acffa28cSJessica Paquette       // We need to choose the better of the two.
1115acffa28cSJessica Paquette       //
1116acffa28cSJessica Paquette       // Approximate this by picking the one which would have saved us the
1117acffa28cSJessica Paquette       // most instructions before any pruning.
111860d31fc3SJessica Paquette 
111960d31fc3SJessica Paquette       // Is C2 a better candidate?
112060d31fc3SJessica Paquette       if (C2.Benefit > C1.Benefit) {
112160d31fc3SJessica Paquette         // Yes, so prune C1. Since C1 is dead, we don't have to compare it
112260d31fc3SJessica Paquette         // against anything anymore, so break.
112360d31fc3SJessica Paquette         prune(C1, FunctionList);
1124acffa28cSJessica Paquette         break;
1125acffa28cSJessica Paquette       }
112660d31fc3SJessica Paquette 
112760d31fc3SJessica Paquette       // Prune C2 and move on to the next candidate.
112860d31fc3SJessica Paquette       prune(C2, FunctionList);
1129596f483aSJessica Paquette     }
1130596f483aSJessica Paquette   }
1131596f483aSJessica Paquette }
1132596f483aSJessica Paquette 
1133596f483aSJessica Paquette unsigned
1134596f483aSJessica Paquette MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList,
1135596f483aSJessica Paquette                                     std::vector<OutlinedFunction> &FunctionList,
113678681be2SJessica Paquette                                     SuffixTree &ST, InstructionMapper &Mapper,
1137596f483aSJessica Paquette                                     const TargetInstrInfo &TII) {
1138596f483aSJessica Paquette 
1139596f483aSJessica Paquette   std::vector<unsigned> CandidateSequence; // Current outlining candidate.
11404cf187b5SJessica Paquette   unsigned MaxCandidateLen = 0;            // Length of the longest candidate.
1141596f483aSJessica Paquette 
114278681be2SJessica Paquette   MaxCandidateLen =
114378681be2SJessica Paquette       findCandidates(ST, TII, Mapper, CandidateList, FunctionList);
1144596f483aSJessica Paquette 
1145596f483aSJessica Paquette   // Sort the candidates in decending order. This will simplify the outlining
1146596f483aSJessica Paquette   // process when we have to remove the candidates from the mapping by
1147596f483aSJessica Paquette   // allowing us to cut them out without keeping track of an offset.
1148596f483aSJessica Paquette   std::stable_sort(CandidateList.begin(), CandidateList.end());
1149596f483aSJessica Paquette 
1150596f483aSJessica Paquette   return MaxCandidateLen;
1151596f483aSJessica Paquette }
1152596f483aSJessica Paquette 
1153596f483aSJessica Paquette MachineFunction *
1154596f483aSJessica Paquette MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
1155596f483aSJessica Paquette                                         InstructionMapper &Mapper) {
1156596f483aSJessica Paquette 
1157596f483aSJessica Paquette   // Create the function name. This should be unique. For now, just hash the
1158596f483aSJessica Paquette   // module name and include it in the function name plus the number of this
1159596f483aSJessica Paquette   // function.
1160596f483aSJessica Paquette   std::ostringstream NameStream;
116178681be2SJessica Paquette   NameStream << "OUTLINED_FUNCTION_" << OF.Name;
1162596f483aSJessica Paquette 
1163596f483aSJessica Paquette   // Create the function using an IR-level function.
1164596f483aSJessica Paquette   LLVMContext &C = M.getContext();
1165596f483aSJessica Paquette   Function *F = dyn_cast<Function>(
116659a2d7b9SSerge Guelton       M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C)));
1167596f483aSJessica Paquette   assert(F && "Function was null!");
1168596f483aSJessica Paquette 
1169596f483aSJessica Paquette   // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1170596f483aSJessica Paquette   // which gives us better results when we outline from linkonceodr functions.
1171596f483aSJessica Paquette   F->setLinkage(GlobalValue::PrivateLinkage);
1172596f483aSJessica Paquette   F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1173596f483aSJessica Paquette 
1174596f483aSJessica Paquette   BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1175596f483aSJessica Paquette   IRBuilder<> Builder(EntryBB);
1176596f483aSJessica Paquette   Builder.CreateRetVoid();
1177596f483aSJessica Paquette 
1178596f483aSJessica Paquette   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
11797bda1958SMatthias Braun   MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
1180596f483aSJessica Paquette   MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1181596f483aSJessica Paquette   const TargetSubtargetInfo &STI = MF.getSubtarget();
1182596f483aSJessica Paquette   const TargetInstrInfo &TII = *STI.getInstrInfo();
1183596f483aSJessica Paquette 
1184596f483aSJessica Paquette   // Insert the new function into the module.
1185596f483aSJessica Paquette   MF.insert(MF.begin(), &MBB);
1186596f483aSJessica Paquette 
11874cf187b5SJessica Paquette   TII.insertOutlinerPrologue(MBB, MF, OF.MInfo);
1188596f483aSJessica Paquette 
1189596f483aSJessica Paquette   // Copy over the instructions for the function using the integer mappings in
1190596f483aSJessica Paquette   // its sequence.
1191596f483aSJessica Paquette   for (unsigned Str : OF.Sequence) {
1192596f483aSJessica Paquette     MachineInstr *NewMI =
1193596f483aSJessica Paquette         MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
1194596f483aSJessica Paquette     NewMI->dropMemRefs();
1195596f483aSJessica Paquette 
1196596f483aSJessica Paquette     // Don't keep debug information for outlined instructions.
1197596f483aSJessica Paquette     // FIXME: This means outlined functions are currently undebuggable.
1198596f483aSJessica Paquette     NewMI->setDebugLoc(DebugLoc());
1199596f483aSJessica Paquette     MBB.insert(MBB.end(), NewMI);
1200596f483aSJessica Paquette   }
1201596f483aSJessica Paquette 
12024cf187b5SJessica Paquette   TII.insertOutlinerEpilogue(MBB, MF, OF.MInfo);
1203596f483aSJessica Paquette 
1204596f483aSJessica Paquette   return &MF;
1205596f483aSJessica Paquette }
1206596f483aSJessica Paquette 
1207596f483aSJessica Paquette bool MachineOutliner::outline(Module &M,
1208596f483aSJessica Paquette                               const ArrayRef<Candidate> &CandidateList,
1209596f483aSJessica Paquette                               std::vector<OutlinedFunction> &FunctionList,
1210596f483aSJessica Paquette                               InstructionMapper &Mapper) {
1211596f483aSJessica Paquette 
1212596f483aSJessica Paquette   bool OutlinedSomething = false;
1213596f483aSJessica Paquette   // Replace the candidates with calls to their respective outlined functions.
1214596f483aSJessica Paquette   for (const Candidate &C : CandidateList) {
1215596f483aSJessica Paquette 
1216596f483aSJessica Paquette     // Was the candidate removed during pruneOverlaps?
1217596f483aSJessica Paquette     if (!C.InCandidateList)
1218596f483aSJessica Paquette       continue;
1219596f483aSJessica Paquette 
1220596f483aSJessica Paquette     // If not, then look at its OutlinedFunction.
1221596f483aSJessica Paquette     OutlinedFunction &OF = FunctionList[C.FunctionIdx];
1222596f483aSJessica Paquette 
1223596f483aSJessica Paquette     // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
122485af63d0SJessica Paquette     if (OF.getBenefit() < 1)
1225596f483aSJessica Paquette       continue;
1226596f483aSJessica Paquette 
1227596f483aSJessica Paquette     // If not, then outline it.
1228*1934fd2cSJessica Paquette     assert(C.getStartIdx() < Mapper.InstrList.size() &&
1229c9ab4c26SJessica Paquette            "Candidate out of bounds!");
1230*1934fd2cSJessica Paquette     MachineBasicBlock *MBB = (*Mapper.InstrList[C.getStartIdx()]).getParent();
1231*1934fd2cSJessica Paquette     MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.getStartIdx()];
1232*1934fd2cSJessica Paquette     unsigned EndIdx = C.getEndIdx();
1233596f483aSJessica Paquette 
1234596f483aSJessica Paquette     assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
1235596f483aSJessica Paquette     MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1236596f483aSJessica Paquette     assert(EndIt != MBB->end() && "EndIt out of bounds!");
1237596f483aSJessica Paquette 
1238596f483aSJessica Paquette     EndIt++; // Erase needs one past the end index.
1239596f483aSJessica Paquette 
1240596f483aSJessica Paquette     // Does this candidate have a function yet?
1241acffa28cSJessica Paquette     if (!OF.MF) {
1242596f483aSJessica Paquette       OF.MF = createOutlinedFunction(M, OF, Mapper);
1243acffa28cSJessica Paquette       FunctionsCreated++;
1244acffa28cSJessica Paquette     }
1245596f483aSJessica Paquette 
1246596f483aSJessica Paquette     MachineFunction *MF = OF.MF;
1247596f483aSJessica Paquette     const TargetSubtargetInfo &STI = MF->getSubtarget();
1248596f483aSJessica Paquette     const TargetInstrInfo &TII = *STI.getInstrInfo();
1249596f483aSJessica Paquette 
1250596f483aSJessica Paquette     // Insert a call to the new function and erase the old sequence.
12514cf187b5SJessica Paquette     TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.MInfo);
1252*1934fd2cSJessica Paquette     StartIt = Mapper.InstrList[C.getStartIdx()];
1253596f483aSJessica Paquette     MBB->erase(StartIt, EndIt);
1254596f483aSJessica Paquette 
1255596f483aSJessica Paquette     OutlinedSomething = true;
1256596f483aSJessica Paquette 
1257596f483aSJessica Paquette     // Statistics.
1258596f483aSJessica Paquette     NumOutlined++;
1259596f483aSJessica Paquette   }
1260596f483aSJessica Paquette 
126178681be2SJessica Paquette   DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
1262596f483aSJessica Paquette 
1263596f483aSJessica Paquette   return OutlinedSomething;
1264596f483aSJessica Paquette }
1265596f483aSJessica Paquette 
1266596f483aSJessica Paquette bool MachineOutliner::runOnModule(Module &M) {
1267596f483aSJessica Paquette 
1268596f483aSJessica Paquette   // Is there anything in the module at all?
1269596f483aSJessica Paquette   if (M.empty())
1270596f483aSJessica Paquette     return false;
1271596f483aSJessica Paquette 
1272596f483aSJessica Paquette   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
127378681be2SJessica Paquette   const TargetSubtargetInfo &STI =
127478681be2SJessica Paquette       MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget();
1275596f483aSJessica Paquette   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
1276596f483aSJessica Paquette   const TargetInstrInfo *TII = STI.getInstrInfo();
1277596f483aSJessica Paquette 
1278596f483aSJessica Paquette   InstructionMapper Mapper;
1279596f483aSJessica Paquette 
1280596f483aSJessica Paquette   // Build instruction mappings for each function in the module.
1281596f483aSJessica Paquette   for (Function &F : M) {
12827bda1958SMatthias Braun     MachineFunction &MF = MMI.getOrCreateMachineFunction(F);
1283596f483aSJessica Paquette 
1284596f483aSJessica Paquette     // Is the function empty? Safe to outline from?
128513593843SJessica Paquette     if (F.empty() ||
128613593843SJessica Paquette         !TII->isFunctionSafeToOutlineFrom(MF, OutlineFromLinkOnceODRs))
1287596f483aSJessica Paquette       continue;
1288596f483aSJessica Paquette 
1289596f483aSJessica Paquette     // If it is, look at each MachineBasicBlock in the function.
1290596f483aSJessica Paquette     for (MachineBasicBlock &MBB : MF) {
1291596f483aSJessica Paquette 
1292596f483aSJessica Paquette       // Is there anything in MBB?
1293596f483aSJessica Paquette       if (MBB.empty())
1294596f483aSJessica Paquette         continue;
1295596f483aSJessica Paquette 
1296596f483aSJessica Paquette       // If yes, map it.
1297596f483aSJessica Paquette       Mapper.convertToUnsignedVec(MBB, *TRI, *TII);
1298596f483aSJessica Paquette     }
1299596f483aSJessica Paquette   }
1300596f483aSJessica Paquette 
1301596f483aSJessica Paquette   // Construct a suffix tree, use it to find candidates, and then outline them.
1302596f483aSJessica Paquette   SuffixTree ST(Mapper.UnsignedVec);
1303596f483aSJessica Paquette   std::vector<Candidate> CandidateList;
1304596f483aSJessica Paquette   std::vector<OutlinedFunction> FunctionList;
1305596f483aSJessica Paquette 
1306acffa28cSJessica Paquette   // Find all of the outlining candidates.
1307596f483aSJessica Paquette   unsigned MaxCandidateLen =
1308c984e213SJessica Paquette       buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII);
1309596f483aSJessica Paquette 
1310acffa28cSJessica Paquette   // Remove candidates that overlap with other candidates.
1311809d708bSJessica Paquette   pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII);
1312acffa28cSJessica Paquette 
1313acffa28cSJessica Paquette   // Outline each of the candidates and return true if something was outlined.
1314596f483aSJessica Paquette   return outline(M, CandidateList, FunctionList, Mapper);
1315596f483aSJessica Paquette }
1316