1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/EHPersonalities.h" 21 #include "llvm/CodeGen/MachineConstantPool.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionInitializer.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/Passes.h" 30 #include "llvm/CodeGen/PseudoSourceValue.h" 31 #include "llvm/CodeGen/WinEHFuncInfo.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/ModuleSlotTracker.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCContext.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetFrameLowering.h" 43 #include "llvm/Target/TargetLowering.h" 44 #include "llvm/Target/TargetMachine.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 using namespace llvm; 47 48 #define DEBUG_TYPE "codegen" 49 50 static cl::opt<unsigned> 51 AlignAllFunctions("align-all-functions", 52 cl::desc("Force the alignment of all functions."), 53 cl::init(0), cl::Hidden); 54 55 void MachineFunctionInitializer::anchor() {} 56 57 void MachineFunctionProperties::print(raw_ostream &ROS, bool OnlySet) const { 58 // Leave this function even in NDEBUG as an out-of-line anchor. 59 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 60 for (BitVector::size_type i = 0; i < Properties.size(); ++i) { 61 bool HasProperty = Properties[i]; 62 if (OnlySet && !HasProperty) 63 continue; 64 switch(static_cast<Property>(i)) { 65 case Property::IsSSA: 66 ROS << (HasProperty ? "SSA, " : "Post SSA, "); 67 break; 68 case Property::TracksLiveness: 69 ROS << (HasProperty ? "" : "not ") << "tracking liveness, "; 70 break; 71 case Property::AllVRegsAllocated: 72 ROS << (HasProperty ? "AllVRegsAllocated" : "HasVRegs"); 73 break; 74 default: 75 break; 76 } 77 } 78 #endif 79 } 80 81 //===----------------------------------------------------------------------===// 82 // MachineFunction implementation 83 //===----------------------------------------------------------------------===// 84 85 // Out-of-line virtual method. 86 MachineFunctionInfo::~MachineFunctionInfo() {} 87 88 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 89 MBB->getParent()->DeleteMachineBasicBlock(MBB); 90 } 91 92 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 93 const Function *Fn) { 94 if (Fn->hasFnAttribute(Attribute::StackAlignment)) 95 return Fn->getFnStackAlignment(); 96 return STI->getFrameLowering()->getStackAlignment(); 97 } 98 99 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 100 unsigned FunctionNum, MachineModuleInfo &mmi) 101 : Fn(F), Target(TM), STI(TM.getSubtargetImpl(*F)), Ctx(mmi.getContext()), 102 MMI(mmi) { 103 // Assume the function starts in SSA form with correct liveness. 104 Properties.set(MachineFunctionProperties::Property::IsSSA); 105 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 106 if (STI->getRegisterInfo()) 107 RegInfo = new (Allocator) MachineRegisterInfo(this); 108 else 109 RegInfo = nullptr; 110 111 MFInfo = nullptr; 112 // We can realign the stack if the target supports it and the user hasn't 113 // explicitly asked us not to. 114 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 115 !F->hasFnAttribute("no-realign-stack"); 116 FrameInfo = new (Allocator) MachineFrameInfo( 117 getFnStackAlignment(STI, Fn), /*StackRealignable=*/CanRealignSP, 118 /*ForceRealign=*/CanRealignSP && 119 F->hasFnAttribute(Attribute::StackAlignment)); 120 121 if (Fn->hasFnAttribute(Attribute::StackAlignment)) 122 FrameInfo->ensureMaxAlignment(Fn->getFnStackAlignment()); 123 124 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 125 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 126 127 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 128 // FIXME: Use Function::optForSize(). 129 if (!Fn->hasFnAttribute(Attribute::OptimizeForSize)) 130 Alignment = std::max(Alignment, 131 STI->getTargetLowering()->getPrefFunctionAlignment()); 132 133 if (AlignAllFunctions) 134 Alignment = AlignAllFunctions; 135 136 FunctionNumber = FunctionNum; 137 JumpTableInfo = nullptr; 138 139 if (isFuncletEHPersonality(classifyEHPersonality( 140 F->hasPersonalityFn() ? F->getPersonalityFn() : nullptr))) { 141 WinEHInfo = new (Allocator) WinEHFuncInfo(); 142 } 143 144 assert(TM.isCompatibleDataLayout(getDataLayout()) && 145 "Can't create a MachineFunction using a Module with a " 146 "Target-incompatible DataLayout attached\n"); 147 148 PSVManager = llvm::make_unique<PseudoSourceValueManager>(); 149 } 150 151 MachineFunction::~MachineFunction() { 152 // Don't call destructors on MachineInstr and MachineOperand. All of their 153 // memory comes from the BumpPtrAllocator which is about to be purged. 154 // 155 // Do call MachineBasicBlock destructors, it contains std::vectors. 156 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 157 I->Insts.clearAndLeakNodesUnsafely(); 158 159 InstructionRecycler.clear(Allocator); 160 OperandRecycler.clear(Allocator); 161 BasicBlockRecycler.clear(Allocator); 162 if (RegInfo) { 163 RegInfo->~MachineRegisterInfo(); 164 Allocator.Deallocate(RegInfo); 165 } 166 if (MFInfo) { 167 MFInfo->~MachineFunctionInfo(); 168 Allocator.Deallocate(MFInfo); 169 } 170 171 FrameInfo->~MachineFrameInfo(); 172 Allocator.Deallocate(FrameInfo); 173 174 ConstantPool->~MachineConstantPool(); 175 Allocator.Deallocate(ConstantPool); 176 177 if (JumpTableInfo) { 178 JumpTableInfo->~MachineJumpTableInfo(); 179 Allocator.Deallocate(JumpTableInfo); 180 } 181 182 if (WinEHInfo) { 183 WinEHInfo->~WinEHFuncInfo(); 184 Allocator.Deallocate(WinEHInfo); 185 } 186 } 187 188 const DataLayout &MachineFunction::getDataLayout() const { 189 return Fn->getParent()->getDataLayout(); 190 } 191 192 /// Get the JumpTableInfo for this function. 193 /// If it does not already exist, allocate one. 194 MachineJumpTableInfo *MachineFunction:: 195 getOrCreateJumpTableInfo(unsigned EntryKind) { 196 if (JumpTableInfo) return JumpTableInfo; 197 198 JumpTableInfo = new (Allocator) 199 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 200 return JumpTableInfo; 201 } 202 203 /// Should we be emitting segmented stack stuff for the function 204 bool MachineFunction::shouldSplitStack() const { 205 return getFunction()->hasFnAttribute("split-stack"); 206 } 207 208 /// This discards all of the MachineBasicBlock numbers and recomputes them. 209 /// This guarantees that the MBB numbers are sequential, dense, and match the 210 /// ordering of the blocks within the function. If a specific MachineBasicBlock 211 /// is specified, only that block and those after it are renumbered. 212 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 213 if (empty()) { MBBNumbering.clear(); return; } 214 MachineFunction::iterator MBBI, E = end(); 215 if (MBB == nullptr) 216 MBBI = begin(); 217 else 218 MBBI = MBB->getIterator(); 219 220 // Figure out the block number this should have. 221 unsigned BlockNo = 0; 222 if (MBBI != begin()) 223 BlockNo = std::prev(MBBI)->getNumber() + 1; 224 225 for (; MBBI != E; ++MBBI, ++BlockNo) { 226 if (MBBI->getNumber() != (int)BlockNo) { 227 // Remove use of the old number. 228 if (MBBI->getNumber() != -1) { 229 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 230 "MBB number mismatch!"); 231 MBBNumbering[MBBI->getNumber()] = nullptr; 232 } 233 234 // If BlockNo is already taken, set that block's number to -1. 235 if (MBBNumbering[BlockNo]) 236 MBBNumbering[BlockNo]->setNumber(-1); 237 238 MBBNumbering[BlockNo] = &*MBBI; 239 MBBI->setNumber(BlockNo); 240 } 241 } 242 243 // Okay, all the blocks are renumbered. If we have compactified the block 244 // numbering, shrink MBBNumbering now. 245 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 246 MBBNumbering.resize(BlockNo); 247 } 248 249 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 250 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 251 const DebugLoc &DL, 252 bool NoImp) { 253 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 254 MachineInstr(*this, MCID, DL, NoImp); 255 } 256 257 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 258 /// identical in all ways except the instruction has no parent, prev, or next. 259 MachineInstr * 260 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 261 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 262 MachineInstr(*this, *Orig); 263 } 264 265 /// Delete the given MachineInstr. 266 /// 267 /// This function also serves as the MachineInstr destructor - the real 268 /// ~MachineInstr() destructor must be empty. 269 void 270 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 271 // Strip it for parts. The operand array and the MI object itself are 272 // independently recyclable. 273 if (MI->Operands) 274 deallocateOperandArray(MI->CapOperands, MI->Operands); 275 // Don't call ~MachineInstr() which must be trivial anyway because 276 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 277 // destructors. 278 InstructionRecycler.Deallocate(Allocator, MI); 279 } 280 281 /// Allocate a new MachineBasicBlock. Use this instead of 282 /// `new MachineBasicBlock'. 283 MachineBasicBlock * 284 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 285 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 286 MachineBasicBlock(*this, bb); 287 } 288 289 /// Delete the given MachineBasicBlock. 290 void 291 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 292 assert(MBB->getParent() == this && "MBB parent mismatch!"); 293 MBB->~MachineBasicBlock(); 294 BasicBlockRecycler.Deallocate(Allocator, MBB); 295 } 296 297 MachineMemOperand * 298 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 299 uint64_t s, unsigned base_alignment, 300 const AAMDNodes &AAInfo, 301 const MDNode *Ranges) { 302 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 303 AAInfo, Ranges); 304 } 305 306 MachineMemOperand * 307 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 308 int64_t Offset, uint64_t Size) { 309 if (MMO->getValue()) 310 return new (Allocator) 311 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 312 MMO->getOffset()+Offset), 313 MMO->getFlags(), Size, 314 MMO->getBaseAlignment()); 315 return new (Allocator) 316 MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(), 317 MMO->getOffset()+Offset), 318 MMO->getFlags(), Size, 319 MMO->getBaseAlignment()); 320 } 321 322 MachineInstr::mmo_iterator 323 MachineFunction::allocateMemRefsArray(unsigned long Num) { 324 return Allocator.Allocate<MachineMemOperand *>(Num); 325 } 326 327 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 328 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 329 MachineInstr::mmo_iterator End) { 330 // Count the number of load mem refs. 331 unsigned Num = 0; 332 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 333 if ((*I)->isLoad()) 334 ++Num; 335 336 // Allocate a new array and populate it with the load information. 337 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 338 unsigned Index = 0; 339 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 340 if ((*I)->isLoad()) { 341 if (!(*I)->isStore()) 342 // Reuse the MMO. 343 Result[Index] = *I; 344 else { 345 // Clone the MMO and unset the store flag. 346 MachineMemOperand *JustLoad = 347 getMachineMemOperand((*I)->getPointerInfo(), 348 (*I)->getFlags() & ~MachineMemOperand::MOStore, 349 (*I)->getSize(), (*I)->getBaseAlignment(), 350 (*I)->getAAInfo()); 351 Result[Index] = JustLoad; 352 } 353 ++Index; 354 } 355 } 356 return std::make_pair(Result, Result + Num); 357 } 358 359 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 360 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 361 MachineInstr::mmo_iterator End) { 362 // Count the number of load mem refs. 363 unsigned Num = 0; 364 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 365 if ((*I)->isStore()) 366 ++Num; 367 368 // Allocate a new array and populate it with the store information. 369 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 370 unsigned Index = 0; 371 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 372 if ((*I)->isStore()) { 373 if (!(*I)->isLoad()) 374 // Reuse the MMO. 375 Result[Index] = *I; 376 else { 377 // Clone the MMO and unset the load flag. 378 MachineMemOperand *JustStore = 379 getMachineMemOperand((*I)->getPointerInfo(), 380 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 381 (*I)->getSize(), (*I)->getBaseAlignment(), 382 (*I)->getAAInfo()); 383 Result[Index] = JustStore; 384 } 385 ++Index; 386 } 387 } 388 return std::make_pair(Result, Result + Num); 389 } 390 391 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 392 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 393 std::copy(Name.begin(), Name.end(), Dest); 394 Dest[Name.size()] = 0; 395 return Dest; 396 } 397 398 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 399 LLVM_DUMP_METHOD void MachineFunction::dump() const { 400 print(dbgs()); 401 } 402 #endif 403 404 StringRef MachineFunction::getName() const { 405 assert(getFunction() && "No function!"); 406 return getFunction()->getName(); 407 } 408 409 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 410 OS << "# Machine code for function " << getName() << ": "; 411 OS << "Properties: <"; 412 getProperties().print(OS); 413 OS << ">\n"; 414 415 // Print Frame Information 416 FrameInfo->print(*this, OS); 417 418 // Print JumpTable Information 419 if (JumpTableInfo) 420 JumpTableInfo->print(OS); 421 422 // Print Constant Pool 423 ConstantPool->print(OS); 424 425 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 426 427 if (RegInfo && !RegInfo->livein_empty()) { 428 OS << "Function Live Ins: "; 429 for (MachineRegisterInfo::livein_iterator 430 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 431 OS << PrintReg(I->first, TRI); 432 if (I->second) 433 OS << " in " << PrintReg(I->second, TRI); 434 if (std::next(I) != E) 435 OS << ", "; 436 } 437 OS << '\n'; 438 } 439 440 ModuleSlotTracker MST(getFunction()->getParent()); 441 MST.incorporateFunction(*getFunction()); 442 for (const auto &BB : *this) { 443 OS << '\n'; 444 BB.print(OS, MST, Indexes); 445 } 446 447 OS << "\n# End machine code for function " << getName() << ".\n\n"; 448 } 449 450 namespace llvm { 451 template<> 452 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 453 454 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 455 456 static std::string getGraphName(const MachineFunction *F) { 457 return ("CFG for '" + F->getName() + "' function").str(); 458 } 459 460 std::string getNodeLabel(const MachineBasicBlock *Node, 461 const MachineFunction *Graph) { 462 std::string OutStr; 463 { 464 raw_string_ostream OSS(OutStr); 465 466 if (isSimple()) { 467 OSS << "BB#" << Node->getNumber(); 468 if (const BasicBlock *BB = Node->getBasicBlock()) 469 OSS << ": " << BB->getName(); 470 } else 471 Node->print(OSS); 472 } 473 474 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 475 476 // Process string output to make it nicer... 477 for (unsigned i = 0; i != OutStr.length(); ++i) 478 if (OutStr[i] == '\n') { // Left justify 479 OutStr[i] = '\\'; 480 OutStr.insert(OutStr.begin()+i+1, 'l'); 481 } 482 return OutStr; 483 } 484 }; 485 } 486 487 void MachineFunction::viewCFG() const 488 { 489 #ifndef NDEBUG 490 ViewGraph(this, "mf" + getName()); 491 #else 492 errs() << "MachineFunction::viewCFG is only available in debug builds on " 493 << "systems with Graphviz or gv!\n"; 494 #endif // NDEBUG 495 } 496 497 void MachineFunction::viewCFGOnly() const 498 { 499 #ifndef NDEBUG 500 ViewGraph(this, "mf" + getName(), true); 501 #else 502 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 503 << "systems with Graphviz or gv!\n"; 504 #endif // NDEBUG 505 } 506 507 /// Add the specified physical register as a live-in value and 508 /// create a corresponding virtual register for it. 509 unsigned MachineFunction::addLiveIn(unsigned PReg, 510 const TargetRegisterClass *RC) { 511 MachineRegisterInfo &MRI = getRegInfo(); 512 unsigned VReg = MRI.getLiveInVirtReg(PReg); 513 if (VReg) { 514 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 515 (void)VRegRC; 516 // A physical register can be added several times. 517 // Between two calls, the register class of the related virtual register 518 // may have been constrained to match some operation constraints. 519 // In that case, check that the current register class includes the 520 // physical register and is a sub class of the specified RC. 521 assert((VRegRC == RC || (VRegRC->contains(PReg) && 522 RC->hasSubClassEq(VRegRC))) && 523 "Register class mismatch!"); 524 return VReg; 525 } 526 VReg = MRI.createVirtualRegister(RC); 527 MRI.addLiveIn(PReg, VReg); 528 return VReg; 529 } 530 531 /// Return the MCSymbol for the specified non-empty jump table. 532 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 533 /// normal 'L' label is returned. 534 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 535 bool isLinkerPrivate) const { 536 const DataLayout &DL = getDataLayout(); 537 assert(JumpTableInfo && "No jump tables"); 538 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 539 540 const char *Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 541 : DL.getPrivateGlobalPrefix(); 542 SmallString<60> Name; 543 raw_svector_ostream(Name) 544 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 545 return Ctx.getOrCreateSymbol(Name); 546 } 547 548 /// Return a function-local symbol to represent the PIC base. 549 MCSymbol *MachineFunction::getPICBaseSymbol() const { 550 const DataLayout &DL = getDataLayout(); 551 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 552 Twine(getFunctionNumber()) + "$pb"); 553 } 554 555 //===----------------------------------------------------------------------===// 556 // MachineFrameInfo implementation 557 //===----------------------------------------------------------------------===// 558 559 /// Make sure the function is at least Align bytes aligned. 560 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 561 if (!StackRealignable) 562 assert(Align <= StackAlignment && 563 "For targets without stack realignment, Align is out of limit!"); 564 if (MaxAlignment < Align) MaxAlignment = Align; 565 } 566 567 /// Clamp the alignment if requested and emit a warning. 568 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align, 569 unsigned StackAlign) { 570 if (!ShouldClamp || Align <= StackAlign) 571 return Align; 572 DEBUG(dbgs() << "Warning: requested alignment " << Align 573 << " exceeds the stack alignment " << StackAlign 574 << " when stack realignment is off" << '\n'); 575 return StackAlign; 576 } 577 578 /// Create a new statically sized stack object, returning a nonnegative 579 /// identifier to represent it. 580 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment, 581 bool isSS, const AllocaInst *Alloca) { 582 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 583 Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment); 584 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca, 585 !isSS)); 586 int Index = (int)Objects.size() - NumFixedObjects - 1; 587 assert(Index >= 0 && "Bad frame index!"); 588 ensureMaxAlignment(Alignment); 589 return Index; 590 } 591 592 /// Create a new statically sized stack object that represents a spill slot, 593 /// returning a nonnegative identifier to represent it. 594 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 595 unsigned Alignment) { 596 Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment); 597 CreateStackObject(Size, Alignment, true); 598 int Index = (int)Objects.size() - NumFixedObjects - 1; 599 ensureMaxAlignment(Alignment); 600 return Index; 601 } 602 603 /// Notify the MachineFrameInfo object that a variable sized object has been 604 /// created. This must be created whenever a variable sized object is created, 605 /// whether or not the index returned is actually used. 606 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment, 607 const AllocaInst *Alloca) { 608 HasVarSizedObjects = true; 609 Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment); 610 Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca, true)); 611 ensureMaxAlignment(Alignment); 612 return (int)Objects.size()-NumFixedObjects-1; 613 } 614 615 /// Create a new object at a fixed location on the stack. 616 /// All fixed objects should be created before other objects are created for 617 /// efficiency. By default, fixed objects are immutable. This returns an 618 /// index with a negative value. 619 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 620 bool Immutable, bool isAliased) { 621 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 622 // The alignment of the frame index can be determined from its offset from 623 // the incoming frame position. If the frame object is at offset 32 and 624 // the stack is guaranteed to be 16-byte aligned, then we know that the 625 // object is 16-byte aligned. Note that unlike the non-fixed case, if the 626 // stack needs realignment, we can't assume that the stack will in fact be 627 // aligned. 628 unsigned Align = MinAlign(SPOffset, ForcedRealign ? 1 : StackAlignment); 629 Align = clampStackAlignment(!StackRealignable, Align, StackAlignment); 630 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 631 /*isSS*/ false, 632 /*Alloca*/ nullptr, isAliased)); 633 return -++NumFixedObjects; 634 } 635 636 /// Create a spill slot at a fixed location on the stack. 637 /// Returns an index with a negative value. 638 int MachineFrameInfo::CreateFixedSpillStackObject(uint64_t Size, 639 int64_t SPOffset) { 640 unsigned Align = MinAlign(SPOffset, ForcedRealign ? 1 : StackAlignment); 641 Align = clampStackAlignment(!StackRealignable, Align, StackAlignment); 642 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, 643 /*Immutable*/ true, 644 /*isSS*/ true, 645 /*Alloca*/ nullptr, 646 /*isAliased*/ false)); 647 return -++NumFixedObjects; 648 } 649 650 BitVector MachineFrameInfo::getPristineRegs(const MachineFunction &MF) const { 651 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 652 BitVector BV(TRI->getNumRegs()); 653 654 // Before CSI is calculated, no registers are considered pristine. They can be 655 // freely used and PEI will make sure they are saved. 656 if (!isCalleeSavedInfoValid()) 657 return BV; 658 659 for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR) 660 BV.set(*CSR); 661 662 // Saved CSRs are not pristine. 663 for (auto &I : getCalleeSavedInfo()) 664 for (MCSubRegIterator S(I.getReg(), TRI, true); S.isValid(); ++S) 665 BV.reset(*S); 666 667 return BV; 668 } 669 670 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const { 671 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 672 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 673 unsigned MaxAlign = getMaxAlignment(); 674 int Offset = 0; 675 676 // This code is very, very similar to PEI::calculateFrameObjectOffsets(). 677 // It really should be refactored to share code. Until then, changes 678 // should keep in mind that there's tight coupling between the two. 679 680 for (int i = getObjectIndexBegin(); i != 0; ++i) { 681 int FixedOff = -getObjectOffset(i); 682 if (FixedOff > Offset) Offset = FixedOff; 683 } 684 for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) { 685 if (isDeadObjectIndex(i)) 686 continue; 687 Offset += getObjectSize(i); 688 unsigned Align = getObjectAlignment(i); 689 // Adjust to alignment boundary 690 Offset = (Offset+Align-1)/Align*Align; 691 692 MaxAlign = std::max(Align, MaxAlign); 693 } 694 695 if (adjustsStack() && TFI->hasReservedCallFrame(MF)) 696 Offset += getMaxCallFrameSize(); 697 698 // Round up the size to a multiple of the alignment. If the function has 699 // any calls or alloca's, align to the target's StackAlignment value to 700 // ensure that the callee's frame or the alloca data is suitably aligned; 701 // otherwise, for leaf functions, align to the TransientStackAlignment 702 // value. 703 unsigned StackAlign; 704 if (adjustsStack() || hasVarSizedObjects() || 705 (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0)) 706 StackAlign = TFI->getStackAlignment(); 707 else 708 StackAlign = TFI->getTransientStackAlignment(); 709 710 // If the frame pointer is eliminated, all frame offsets will be relative to 711 // SP not FP. Align to MaxAlign so this works. 712 StackAlign = std::max(StackAlign, MaxAlign); 713 unsigned AlignMask = StackAlign - 1; 714 Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); 715 716 return (unsigned)Offset; 717 } 718 719 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 720 if (Objects.empty()) return; 721 722 const TargetFrameLowering *FI = MF.getSubtarget().getFrameLowering(); 723 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 724 725 OS << "Frame Objects:\n"; 726 727 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 728 const StackObject &SO = Objects[i]; 729 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 730 if (SO.Size == ~0ULL) { 731 OS << "dead\n"; 732 continue; 733 } 734 if (SO.Size == 0) 735 OS << "variable sized"; 736 else 737 OS << "size=" << SO.Size; 738 OS << ", align=" << SO.Alignment; 739 740 if (i < NumFixedObjects) 741 OS << ", fixed"; 742 if (i < NumFixedObjects || SO.SPOffset != -1) { 743 int64_t Off = SO.SPOffset - ValOffset; 744 OS << ", at location [SP"; 745 if (Off > 0) 746 OS << "+" << Off; 747 else if (Off < 0) 748 OS << Off; 749 OS << "]"; 750 } 751 OS << "\n"; 752 } 753 } 754 755 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 756 void MachineFrameInfo::dump(const MachineFunction &MF) const { 757 print(MF, dbgs()); 758 } 759 #endif 760 761 //===----------------------------------------------------------------------===// 762 // MachineJumpTableInfo implementation 763 //===----------------------------------------------------------------------===// 764 765 /// Return the size of each entry in the jump table. 766 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 767 // The size of a jump table entry is 4 bytes unless the entry is just the 768 // address of a block, in which case it is the pointer size. 769 switch (getEntryKind()) { 770 case MachineJumpTableInfo::EK_BlockAddress: 771 return TD.getPointerSize(); 772 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 773 return 8; 774 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 775 case MachineJumpTableInfo::EK_LabelDifference32: 776 case MachineJumpTableInfo::EK_Custom32: 777 return 4; 778 case MachineJumpTableInfo::EK_Inline: 779 return 0; 780 } 781 llvm_unreachable("Unknown jump table encoding!"); 782 } 783 784 /// Return the alignment of each entry in the jump table. 785 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 786 // The alignment of a jump table entry is the alignment of int32 unless the 787 // entry is just the address of a block, in which case it is the pointer 788 // alignment. 789 switch (getEntryKind()) { 790 case MachineJumpTableInfo::EK_BlockAddress: 791 return TD.getPointerABIAlignment(); 792 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 793 return TD.getABIIntegerTypeAlignment(64); 794 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 795 case MachineJumpTableInfo::EK_LabelDifference32: 796 case MachineJumpTableInfo::EK_Custom32: 797 return TD.getABIIntegerTypeAlignment(32); 798 case MachineJumpTableInfo::EK_Inline: 799 return 1; 800 } 801 llvm_unreachable("Unknown jump table encoding!"); 802 } 803 804 /// Create a new jump table entry in the jump table info. 805 unsigned MachineJumpTableInfo::createJumpTableIndex( 806 const std::vector<MachineBasicBlock*> &DestBBs) { 807 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 808 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 809 return JumpTables.size()-1; 810 } 811 812 /// If Old is the target of any jump tables, update the jump tables to branch 813 /// to New instead. 814 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 815 MachineBasicBlock *New) { 816 assert(Old != New && "Not making a change?"); 817 bool MadeChange = false; 818 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 819 ReplaceMBBInJumpTable(i, Old, New); 820 return MadeChange; 821 } 822 823 /// If Old is a target of the jump tables, update the jump table to branch to 824 /// New instead. 825 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 826 MachineBasicBlock *Old, 827 MachineBasicBlock *New) { 828 assert(Old != New && "Not making a change?"); 829 bool MadeChange = false; 830 MachineJumpTableEntry &JTE = JumpTables[Idx]; 831 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 832 if (JTE.MBBs[j] == Old) { 833 JTE.MBBs[j] = New; 834 MadeChange = true; 835 } 836 return MadeChange; 837 } 838 839 void MachineJumpTableInfo::print(raw_ostream &OS) const { 840 if (JumpTables.empty()) return; 841 842 OS << "Jump Tables:\n"; 843 844 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 845 OS << " jt#" << i << ": "; 846 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 847 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 848 } 849 850 OS << '\n'; 851 } 852 853 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 854 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 855 #endif 856 857 858 //===----------------------------------------------------------------------===// 859 // MachineConstantPool implementation 860 //===----------------------------------------------------------------------===// 861 862 void MachineConstantPoolValue::anchor() { } 863 864 Type *MachineConstantPoolEntry::getType() const { 865 if (isMachineConstantPoolEntry()) 866 return Val.MachineCPVal->getType(); 867 return Val.ConstVal->getType(); 868 } 869 870 bool MachineConstantPoolEntry::needsRelocation() const { 871 if (isMachineConstantPoolEntry()) 872 return true; 873 return Val.ConstVal->needsRelocation(); 874 } 875 876 SectionKind 877 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 878 if (needsRelocation()) 879 return SectionKind::getReadOnlyWithRel(); 880 switch (DL->getTypeAllocSize(getType())) { 881 case 4: 882 return SectionKind::getMergeableConst4(); 883 case 8: 884 return SectionKind::getMergeableConst8(); 885 case 16: 886 return SectionKind::getMergeableConst16(); 887 case 32: 888 return SectionKind::getMergeableConst32(); 889 default: 890 return SectionKind::getReadOnly(); 891 } 892 } 893 894 MachineConstantPool::~MachineConstantPool() { 895 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 896 if (Constants[i].isMachineConstantPoolEntry()) 897 delete Constants[i].Val.MachineCPVal; 898 for (DenseSet<MachineConstantPoolValue*>::iterator I = 899 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 900 I != E; ++I) 901 delete *I; 902 } 903 904 /// Test whether the given two constants can be allocated the same constant pool 905 /// entry. 906 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 907 const DataLayout &DL) { 908 // Handle the trivial case quickly. 909 if (A == B) return true; 910 911 // If they have the same type but weren't the same constant, quickly 912 // reject them. 913 if (A->getType() == B->getType()) return false; 914 915 // We can't handle structs or arrays. 916 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 917 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 918 return false; 919 920 // For now, only support constants with the same size. 921 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 922 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 923 return false; 924 925 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 926 927 // Try constant folding a bitcast of both instructions to an integer. If we 928 // get two identical ConstantInt's, then we are good to share them. We use 929 // the constant folding APIs to do this so that we get the benefit of 930 // DataLayout. 931 if (isa<PointerType>(A->getType())) 932 A = ConstantFoldCastOperand(Instruction::PtrToInt, 933 const_cast<Constant *>(A), IntTy, DL); 934 else if (A->getType() != IntTy) 935 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 936 IntTy, DL); 937 if (isa<PointerType>(B->getType())) 938 B = ConstantFoldCastOperand(Instruction::PtrToInt, 939 const_cast<Constant *>(B), IntTy, DL); 940 else if (B->getType() != IntTy) 941 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 942 IntTy, DL); 943 944 return A == B; 945 } 946 947 /// Create a new entry in the constant pool or return an existing one. 948 /// User must specify the log2 of the minimum required alignment for the object. 949 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 950 unsigned Alignment) { 951 assert(Alignment && "Alignment must be specified!"); 952 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 953 954 // Check to see if we already have this constant. 955 // 956 // FIXME, this could be made much more efficient for large constant pools. 957 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 958 if (!Constants[i].isMachineConstantPoolEntry() && 959 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 960 if ((unsigned)Constants[i].getAlignment() < Alignment) 961 Constants[i].Alignment = Alignment; 962 return i; 963 } 964 965 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 966 return Constants.size()-1; 967 } 968 969 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 970 unsigned Alignment) { 971 assert(Alignment && "Alignment must be specified!"); 972 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 973 974 // Check to see if we already have this constant. 975 // 976 // FIXME, this could be made much more efficient for large constant pools. 977 int Idx = V->getExistingMachineCPValue(this, Alignment); 978 if (Idx != -1) { 979 MachineCPVsSharingEntries.insert(V); 980 return (unsigned)Idx; 981 } 982 983 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 984 return Constants.size()-1; 985 } 986 987 void MachineConstantPool::print(raw_ostream &OS) const { 988 if (Constants.empty()) return; 989 990 OS << "Constant Pool:\n"; 991 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 992 OS << " cp#" << i << ": "; 993 if (Constants[i].isMachineConstantPoolEntry()) 994 Constants[i].Val.MachineCPVal->print(OS); 995 else 996 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 997 OS << ", align=" << Constants[i].getAlignment(); 998 OS << "\n"; 999 } 1000 } 1001 1002 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1003 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1004 #endif 1005