1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/EHPersonalities.h" 21 #include "llvm/CodeGen/MachineConstantPool.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/WinEHFuncInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSlotTracker.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/GraphWriter.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetFrameLowering.h" 42 #include "llvm/Target/TargetLowering.h" 43 #include "llvm/Target/TargetMachine.h" 44 #include "llvm/Target/TargetSubtargetInfo.h" 45 using namespace llvm; 46 47 #define DEBUG_TYPE "codegen" 48 49 static cl::opt<unsigned> 50 AlignAllFunctions("align-all-functions", 51 cl::desc("Force the alignment of all functions."), 52 cl::init(0), cl::Hidden); 53 54 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 55 typedef MachineFunctionProperties::Property P; 56 switch(Prop) { 57 case P::FailedISel: return "FailedISel"; 58 case P::IsSSA: return "IsSSA"; 59 case P::Legalized: return "Legalized"; 60 case P::NoPHIs: return "NoPHIs"; 61 case P::NoVRegs: return "NoVRegs"; 62 case P::RegBankSelected: return "RegBankSelected"; 63 case P::Selected: return "Selected"; 64 case P::TracksLiveness: return "TracksLiveness"; 65 } 66 llvm_unreachable("Invalid machine function property"); 67 } 68 69 void MachineFunctionProperties::print(raw_ostream &OS) const { 70 const char *Separator = ""; 71 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 72 if (!Properties[I]) 73 continue; 74 OS << Separator << getPropertyName(static_cast<Property>(I)); 75 Separator = ", "; 76 } 77 } 78 79 //===----------------------------------------------------------------------===// 80 // MachineFunction implementation 81 //===----------------------------------------------------------------------===// 82 83 // Out-of-line virtual method. 84 MachineFunctionInfo::~MachineFunctionInfo() {} 85 86 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 87 MBB->getParent()->DeleteMachineBasicBlock(MBB); 88 } 89 90 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 91 const Function *Fn) { 92 if (Fn->hasFnAttribute(Attribute::StackAlignment)) 93 return Fn->getFnStackAlignment(); 94 return STI->getFrameLowering()->getStackAlignment(); 95 } 96 97 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 98 unsigned FunctionNum, MachineModuleInfo &mmi) 99 : Fn(F), Target(TM), STI(TM.getSubtargetImpl(*F)), Ctx(mmi.getContext()), 100 MMI(mmi) { 101 FunctionNumber = FunctionNum; 102 init(); 103 } 104 105 void MachineFunction::init() { 106 // Assume the function starts in SSA form with correct liveness. 107 Properties.set(MachineFunctionProperties::Property::IsSSA); 108 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 109 if (STI->getRegisterInfo()) 110 RegInfo = new (Allocator) MachineRegisterInfo(this); 111 else 112 RegInfo = nullptr; 113 114 MFInfo = nullptr; 115 // We can realign the stack if the target supports it and the user hasn't 116 // explicitly asked us not to. 117 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 118 !Fn->hasFnAttribute("no-realign-stack"); 119 FrameInfo = new (Allocator) MachineFrameInfo( 120 getFnStackAlignment(STI, Fn), /*StackRealignable=*/CanRealignSP, 121 /*ForceRealign=*/CanRealignSP && 122 Fn->hasFnAttribute(Attribute::StackAlignment)); 123 124 if (Fn->hasFnAttribute(Attribute::StackAlignment)) 125 FrameInfo->ensureMaxAlignment(Fn->getFnStackAlignment()); 126 127 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 128 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 129 130 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 131 // FIXME: Use Function::optForSize(). 132 if (!Fn->hasFnAttribute(Attribute::OptimizeForSize)) 133 Alignment = std::max(Alignment, 134 STI->getTargetLowering()->getPrefFunctionAlignment()); 135 136 if (AlignAllFunctions) 137 Alignment = AlignAllFunctions; 138 139 JumpTableInfo = nullptr; 140 141 if (isFuncletEHPersonality(classifyEHPersonality( 142 Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr))) { 143 WinEHInfo = new (Allocator) WinEHFuncInfo(); 144 } 145 146 assert(Target.isCompatibleDataLayout(getDataLayout()) && 147 "Can't create a MachineFunction using a Module with a " 148 "Target-incompatible DataLayout attached\n"); 149 150 PSVManager = llvm::make_unique<PseudoSourceValueManager>(); 151 } 152 153 MachineFunction::~MachineFunction() { 154 clear(); 155 } 156 157 void MachineFunction::clear() { 158 Properties.reset(); 159 // Don't call destructors on MachineInstr and MachineOperand. All of their 160 // memory comes from the BumpPtrAllocator which is about to be purged. 161 // 162 // Do call MachineBasicBlock destructors, it contains std::vectors. 163 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 164 I->Insts.clearAndLeakNodesUnsafely(); 165 166 InstructionRecycler.clear(Allocator); 167 OperandRecycler.clear(Allocator); 168 BasicBlockRecycler.clear(Allocator); 169 VariableDbgInfos.clear(); 170 if (RegInfo) { 171 RegInfo->~MachineRegisterInfo(); 172 Allocator.Deallocate(RegInfo); 173 } 174 if (MFInfo) { 175 MFInfo->~MachineFunctionInfo(); 176 Allocator.Deallocate(MFInfo); 177 } 178 179 FrameInfo->~MachineFrameInfo(); 180 Allocator.Deallocate(FrameInfo); 181 182 ConstantPool->~MachineConstantPool(); 183 Allocator.Deallocate(ConstantPool); 184 185 if (JumpTableInfo) { 186 JumpTableInfo->~MachineJumpTableInfo(); 187 Allocator.Deallocate(JumpTableInfo); 188 } 189 190 if (WinEHInfo) { 191 WinEHInfo->~WinEHFuncInfo(); 192 Allocator.Deallocate(WinEHInfo); 193 } 194 } 195 196 const DataLayout &MachineFunction::getDataLayout() const { 197 return Fn->getParent()->getDataLayout(); 198 } 199 200 /// Get the JumpTableInfo for this function. 201 /// If it does not already exist, allocate one. 202 MachineJumpTableInfo *MachineFunction:: 203 getOrCreateJumpTableInfo(unsigned EntryKind) { 204 if (JumpTableInfo) return JumpTableInfo; 205 206 JumpTableInfo = new (Allocator) 207 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 208 return JumpTableInfo; 209 } 210 211 /// Should we be emitting segmented stack stuff for the function 212 bool MachineFunction::shouldSplitStack() const { 213 return getFunction()->hasFnAttribute("split-stack"); 214 } 215 216 /// This discards all of the MachineBasicBlock numbers and recomputes them. 217 /// This guarantees that the MBB numbers are sequential, dense, and match the 218 /// ordering of the blocks within the function. If a specific MachineBasicBlock 219 /// is specified, only that block and those after it are renumbered. 220 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 221 if (empty()) { MBBNumbering.clear(); return; } 222 MachineFunction::iterator MBBI, E = end(); 223 if (MBB == nullptr) 224 MBBI = begin(); 225 else 226 MBBI = MBB->getIterator(); 227 228 // Figure out the block number this should have. 229 unsigned BlockNo = 0; 230 if (MBBI != begin()) 231 BlockNo = std::prev(MBBI)->getNumber() + 1; 232 233 for (; MBBI != E; ++MBBI, ++BlockNo) { 234 if (MBBI->getNumber() != (int)BlockNo) { 235 // Remove use of the old number. 236 if (MBBI->getNumber() != -1) { 237 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 238 "MBB number mismatch!"); 239 MBBNumbering[MBBI->getNumber()] = nullptr; 240 } 241 242 // If BlockNo is already taken, set that block's number to -1. 243 if (MBBNumbering[BlockNo]) 244 MBBNumbering[BlockNo]->setNumber(-1); 245 246 MBBNumbering[BlockNo] = &*MBBI; 247 MBBI->setNumber(BlockNo); 248 } 249 } 250 251 // Okay, all the blocks are renumbered. If we have compactified the block 252 // numbering, shrink MBBNumbering now. 253 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 254 MBBNumbering.resize(BlockNo); 255 } 256 257 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 258 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 259 const DebugLoc &DL, 260 bool NoImp) { 261 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 262 MachineInstr(*this, MCID, DL, NoImp); 263 } 264 265 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 266 /// identical in all ways except the instruction has no parent, prev, or next. 267 MachineInstr * 268 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 269 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 270 MachineInstr(*this, *Orig); 271 } 272 273 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB, 274 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) { 275 MachineInstr *FirstClone = nullptr; 276 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 277 for (;;) { 278 MachineInstr *Cloned = CloneMachineInstr(&*I); 279 MBB.insert(InsertBefore, Cloned); 280 if (FirstClone == nullptr) { 281 FirstClone = Cloned; 282 } else { 283 Cloned->bundleWithPred(); 284 } 285 286 if (!I->isBundledWithSucc()) 287 break; 288 ++I; 289 } 290 return *FirstClone; 291 } 292 293 /// Delete the given MachineInstr. 294 /// 295 /// This function also serves as the MachineInstr destructor - the real 296 /// ~MachineInstr() destructor must be empty. 297 void 298 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 299 // Strip it for parts. The operand array and the MI object itself are 300 // independently recyclable. 301 if (MI->Operands) 302 deallocateOperandArray(MI->CapOperands, MI->Operands); 303 // Don't call ~MachineInstr() which must be trivial anyway because 304 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 305 // destructors. 306 InstructionRecycler.Deallocate(Allocator, MI); 307 } 308 309 /// Allocate a new MachineBasicBlock. Use this instead of 310 /// `new MachineBasicBlock'. 311 MachineBasicBlock * 312 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 313 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 314 MachineBasicBlock(*this, bb); 315 } 316 317 /// Delete the given MachineBasicBlock. 318 void 319 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 320 assert(MBB->getParent() == this && "MBB parent mismatch!"); 321 MBB->~MachineBasicBlock(); 322 BasicBlockRecycler.Deallocate(Allocator, MBB); 323 } 324 325 MachineMemOperand *MachineFunction::getMachineMemOperand( 326 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 327 unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 328 SyncScope::ID SSID, AtomicOrdering Ordering, 329 AtomicOrdering FailureOrdering) { 330 return new (Allocator) 331 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 332 SSID, Ordering, FailureOrdering); 333 } 334 335 MachineMemOperand * 336 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 337 int64_t Offset, uint64_t Size) { 338 if (MMO->getValue()) 339 return new (Allocator) 340 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 341 MMO->getOffset()+Offset), 342 MMO->getFlags(), Size, MMO->getBaseAlignment(), 343 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 344 MMO->getOrdering(), MMO->getFailureOrdering()); 345 return new (Allocator) 346 MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(), 347 MMO->getOffset()+Offset), 348 MMO->getFlags(), Size, MMO->getBaseAlignment(), 349 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 350 MMO->getOrdering(), MMO->getFailureOrdering()); 351 } 352 353 MachineMemOperand * 354 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 355 const AAMDNodes &AAInfo) { 356 MachinePointerInfo MPI = MMO->getValue() ? 357 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 358 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 359 360 return new (Allocator) 361 MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(), 362 MMO->getBaseAlignment(), AAInfo, 363 MMO->getRanges(), MMO->getSyncScopeID(), 364 MMO->getOrdering(), MMO->getFailureOrdering()); 365 } 366 367 MachineInstr::mmo_iterator 368 MachineFunction::allocateMemRefsArray(unsigned long Num) { 369 return Allocator.Allocate<MachineMemOperand *>(Num); 370 } 371 372 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 373 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 374 MachineInstr::mmo_iterator End) { 375 // Count the number of load mem refs. 376 unsigned Num = 0; 377 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 378 if ((*I)->isLoad()) 379 ++Num; 380 381 // Allocate a new array and populate it with the load information. 382 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 383 unsigned Index = 0; 384 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 385 if ((*I)->isLoad()) { 386 if (!(*I)->isStore()) 387 // Reuse the MMO. 388 Result[Index] = *I; 389 else { 390 // Clone the MMO and unset the store flag. 391 MachineMemOperand *JustLoad = 392 getMachineMemOperand((*I)->getPointerInfo(), 393 (*I)->getFlags() & ~MachineMemOperand::MOStore, 394 (*I)->getSize(), (*I)->getBaseAlignment(), 395 (*I)->getAAInfo(), nullptr, 396 (*I)->getSyncScopeID(), (*I)->getOrdering(), 397 (*I)->getFailureOrdering()); 398 Result[Index] = JustLoad; 399 } 400 ++Index; 401 } 402 } 403 return std::make_pair(Result, Result + Num); 404 } 405 406 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 407 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 408 MachineInstr::mmo_iterator End) { 409 // Count the number of load mem refs. 410 unsigned Num = 0; 411 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 412 if ((*I)->isStore()) 413 ++Num; 414 415 // Allocate a new array and populate it with the store information. 416 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 417 unsigned Index = 0; 418 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 419 if ((*I)->isStore()) { 420 if (!(*I)->isLoad()) 421 // Reuse the MMO. 422 Result[Index] = *I; 423 else { 424 // Clone the MMO and unset the load flag. 425 MachineMemOperand *JustStore = 426 getMachineMemOperand((*I)->getPointerInfo(), 427 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 428 (*I)->getSize(), (*I)->getBaseAlignment(), 429 (*I)->getAAInfo(), nullptr, 430 (*I)->getSyncScopeID(), (*I)->getOrdering(), 431 (*I)->getFailureOrdering()); 432 Result[Index] = JustStore; 433 } 434 ++Index; 435 } 436 } 437 return std::make_pair(Result, Result + Num); 438 } 439 440 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 441 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 442 std::copy(Name.begin(), Name.end(), Dest); 443 Dest[Name.size()] = 0; 444 return Dest; 445 } 446 447 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 448 LLVM_DUMP_METHOD void MachineFunction::dump() const { 449 print(dbgs()); 450 } 451 #endif 452 453 StringRef MachineFunction::getName() const { 454 assert(getFunction() && "No function!"); 455 return getFunction()->getName(); 456 } 457 458 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 459 OS << "# Machine code for function " << getName() << ": "; 460 getProperties().print(OS); 461 OS << '\n'; 462 463 // Print Frame Information 464 FrameInfo->print(*this, OS); 465 466 // Print JumpTable Information 467 if (JumpTableInfo) 468 JumpTableInfo->print(OS); 469 470 // Print Constant Pool 471 ConstantPool->print(OS); 472 473 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 474 475 if (RegInfo && !RegInfo->livein_empty()) { 476 OS << "Function Live Ins: "; 477 for (MachineRegisterInfo::livein_iterator 478 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 479 OS << PrintReg(I->first, TRI); 480 if (I->second) 481 OS << " in " << PrintReg(I->second, TRI); 482 if (std::next(I) != E) 483 OS << ", "; 484 } 485 OS << '\n'; 486 } 487 488 ModuleSlotTracker MST(getFunction()->getParent()); 489 MST.incorporateFunction(*getFunction()); 490 for (const auto &BB : *this) { 491 OS << '\n'; 492 BB.print(OS, MST, Indexes); 493 } 494 495 OS << "\n# End machine code for function " << getName() << ".\n\n"; 496 } 497 498 namespace llvm { 499 template<> 500 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 501 502 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 503 504 static std::string getGraphName(const MachineFunction *F) { 505 return ("CFG for '" + F->getName() + "' function").str(); 506 } 507 508 std::string getNodeLabel(const MachineBasicBlock *Node, 509 const MachineFunction *Graph) { 510 std::string OutStr; 511 { 512 raw_string_ostream OSS(OutStr); 513 514 if (isSimple()) { 515 OSS << "BB#" << Node->getNumber(); 516 if (const BasicBlock *BB = Node->getBasicBlock()) 517 OSS << ": " << BB->getName(); 518 } else 519 Node->print(OSS); 520 } 521 522 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 523 524 // Process string output to make it nicer... 525 for (unsigned i = 0; i != OutStr.length(); ++i) 526 if (OutStr[i] == '\n') { // Left justify 527 OutStr[i] = '\\'; 528 OutStr.insert(OutStr.begin()+i+1, 'l'); 529 } 530 return OutStr; 531 } 532 }; 533 } 534 535 void MachineFunction::viewCFG() const 536 { 537 #ifndef NDEBUG 538 ViewGraph(this, "mf" + getName()); 539 #else 540 errs() << "MachineFunction::viewCFG is only available in debug builds on " 541 << "systems with Graphviz or gv!\n"; 542 #endif // NDEBUG 543 } 544 545 void MachineFunction::viewCFGOnly() const 546 { 547 #ifndef NDEBUG 548 ViewGraph(this, "mf" + getName(), true); 549 #else 550 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 551 << "systems with Graphviz or gv!\n"; 552 #endif // NDEBUG 553 } 554 555 /// Add the specified physical register as a live-in value and 556 /// create a corresponding virtual register for it. 557 unsigned MachineFunction::addLiveIn(unsigned PReg, 558 const TargetRegisterClass *RC) { 559 MachineRegisterInfo &MRI = getRegInfo(); 560 unsigned VReg = MRI.getLiveInVirtReg(PReg); 561 if (VReg) { 562 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 563 (void)VRegRC; 564 // A physical register can be added several times. 565 // Between two calls, the register class of the related virtual register 566 // may have been constrained to match some operation constraints. 567 // In that case, check that the current register class includes the 568 // physical register and is a sub class of the specified RC. 569 assert((VRegRC == RC || (VRegRC->contains(PReg) && 570 RC->hasSubClassEq(VRegRC))) && 571 "Register class mismatch!"); 572 return VReg; 573 } 574 VReg = MRI.createVirtualRegister(RC); 575 MRI.addLiveIn(PReg, VReg); 576 return VReg; 577 } 578 579 /// Return the MCSymbol for the specified non-empty jump table. 580 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 581 /// normal 'L' label is returned. 582 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 583 bool isLinkerPrivate) const { 584 const DataLayout &DL = getDataLayout(); 585 assert(JumpTableInfo && "No jump tables"); 586 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 587 588 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 589 : DL.getPrivateGlobalPrefix(); 590 SmallString<60> Name; 591 raw_svector_ostream(Name) 592 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 593 return Ctx.getOrCreateSymbol(Name); 594 } 595 596 /// Return a function-local symbol to represent the PIC base. 597 MCSymbol *MachineFunction::getPICBaseSymbol() const { 598 const DataLayout &DL = getDataLayout(); 599 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 600 Twine(getFunctionNumber()) + "$pb"); 601 } 602 603 /// \name Exception Handling 604 /// \{ 605 606 LandingPadInfo & 607 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 608 unsigned N = LandingPads.size(); 609 for (unsigned i = 0; i < N; ++i) { 610 LandingPadInfo &LP = LandingPads[i]; 611 if (LP.LandingPadBlock == LandingPad) 612 return LP; 613 } 614 615 LandingPads.push_back(LandingPadInfo(LandingPad)); 616 return LandingPads[N]; 617 } 618 619 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 620 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 621 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 622 LP.BeginLabels.push_back(BeginLabel); 623 LP.EndLabels.push_back(EndLabel); 624 } 625 626 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 627 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 628 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 629 LP.LandingPadLabel = LandingPadLabel; 630 return LandingPadLabel; 631 } 632 633 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 634 ArrayRef<const GlobalValue *> TyInfo) { 635 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 636 for (unsigned N = TyInfo.size(); N; --N) 637 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); 638 } 639 640 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 641 ArrayRef<const GlobalValue *> TyInfo) { 642 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 643 std::vector<unsigned> IdsInFilter(TyInfo.size()); 644 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 645 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 646 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 647 } 648 649 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol*, uintptr_t> *LPMap) { 650 for (unsigned i = 0; i != LandingPads.size(); ) { 651 LandingPadInfo &LandingPad = LandingPads[i]; 652 if (LandingPad.LandingPadLabel && 653 !LandingPad.LandingPadLabel->isDefined() && 654 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 655 LandingPad.LandingPadLabel = nullptr; 656 657 // Special case: we *should* emit LPs with null LP MBB. This indicates 658 // "nounwind" case. 659 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 660 LandingPads.erase(LandingPads.begin() + i); 661 continue; 662 } 663 664 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 665 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 666 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 667 if ((BeginLabel->isDefined() || 668 (LPMap && (*LPMap)[BeginLabel] != 0)) && 669 (EndLabel->isDefined() || 670 (LPMap && (*LPMap)[EndLabel] != 0))) continue; 671 672 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 673 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 674 --j; 675 --e; 676 } 677 678 // Remove landing pads with no try-ranges. 679 if (LandingPads[i].BeginLabels.empty()) { 680 LandingPads.erase(LandingPads.begin() + i); 681 continue; 682 } 683 684 // If there is no landing pad, ensure that the list of typeids is empty. 685 // If the only typeid is a cleanup, this is the same as having no typeids. 686 if (!LandingPad.LandingPadBlock || 687 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 688 LandingPad.TypeIds.clear(); 689 ++i; 690 } 691 } 692 693 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 694 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 695 LP.TypeIds.push_back(0); 696 } 697 698 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, 699 const Function *Filter, 700 const BlockAddress *RecoverBA) { 701 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 702 SEHHandler Handler; 703 Handler.FilterOrFinally = Filter; 704 Handler.RecoverBA = RecoverBA; 705 LP.SEHHandlers.push_back(Handler); 706 } 707 708 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, 709 const Function *Cleanup) { 710 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 711 SEHHandler Handler; 712 Handler.FilterOrFinally = Cleanup; 713 Handler.RecoverBA = nullptr; 714 LP.SEHHandlers.push_back(Handler); 715 } 716 717 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 718 ArrayRef<unsigned> Sites) { 719 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 720 } 721 722 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 723 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 724 if (TypeInfos[i] == TI) return i + 1; 725 726 TypeInfos.push_back(TI); 727 return TypeInfos.size(); 728 } 729 730 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 731 // If the new filter coincides with the tail of an existing filter, then 732 // re-use the existing filter. Folding filters more than this requires 733 // re-ordering filters and/or their elements - probably not worth it. 734 for (std::vector<unsigned>::iterator I = FilterEnds.begin(), 735 E = FilterEnds.end(); I != E; ++I) { 736 unsigned i = *I, j = TyIds.size(); 737 738 while (i && j) 739 if (FilterIds[--i] != TyIds[--j]) 740 goto try_next; 741 742 if (!j) 743 // The new filter coincides with range [i, end) of the existing filter. 744 return -(1 + i); 745 746 try_next:; 747 } 748 749 // Add the new filter. 750 int FilterID = -(1 + FilterIds.size()); 751 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 752 FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end()); 753 FilterEnds.push_back(FilterIds.size()); 754 FilterIds.push_back(0); // terminator 755 return FilterID; 756 } 757 758 void llvm::addLandingPadInfo(const LandingPadInst &I, MachineBasicBlock &MBB) { 759 MachineFunction &MF = *MBB.getParent(); 760 if (const auto *PF = dyn_cast<Function>( 761 I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts())) 762 MF.getMMI().addPersonality(PF); 763 764 if (I.isCleanup()) 765 MF.addCleanup(&MBB); 766 767 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, 768 // but we need to do it this way because of how the DWARF EH emitter 769 // processes the clauses. 770 for (unsigned i = I.getNumClauses(); i != 0; --i) { 771 Value *Val = I.getClause(i - 1); 772 if (I.isCatch(i - 1)) { 773 MF.addCatchTypeInfo(&MBB, 774 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 775 } else { 776 // Add filters in a list. 777 Constant *CVal = cast<Constant>(Val); 778 SmallVector<const GlobalValue *, 4> FilterList; 779 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end(); 780 II != IE; ++II) 781 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 782 783 MF.addFilterTypeInfo(&MBB, FilterList); 784 } 785 } 786 } 787 788 /// \} 789 790 //===----------------------------------------------------------------------===// 791 // MachineJumpTableInfo implementation 792 //===----------------------------------------------------------------------===// 793 794 /// Return the size of each entry in the jump table. 795 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 796 // The size of a jump table entry is 4 bytes unless the entry is just the 797 // address of a block, in which case it is the pointer size. 798 switch (getEntryKind()) { 799 case MachineJumpTableInfo::EK_BlockAddress: 800 return TD.getPointerSize(); 801 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 802 return 8; 803 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 804 case MachineJumpTableInfo::EK_LabelDifference32: 805 case MachineJumpTableInfo::EK_Custom32: 806 return 4; 807 case MachineJumpTableInfo::EK_Inline: 808 return 0; 809 } 810 llvm_unreachable("Unknown jump table encoding!"); 811 } 812 813 /// Return the alignment of each entry in the jump table. 814 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 815 // The alignment of a jump table entry is the alignment of int32 unless the 816 // entry is just the address of a block, in which case it is the pointer 817 // alignment. 818 switch (getEntryKind()) { 819 case MachineJumpTableInfo::EK_BlockAddress: 820 return TD.getPointerABIAlignment(); 821 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 822 return TD.getABIIntegerTypeAlignment(64); 823 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 824 case MachineJumpTableInfo::EK_LabelDifference32: 825 case MachineJumpTableInfo::EK_Custom32: 826 return TD.getABIIntegerTypeAlignment(32); 827 case MachineJumpTableInfo::EK_Inline: 828 return 1; 829 } 830 llvm_unreachable("Unknown jump table encoding!"); 831 } 832 833 /// Create a new jump table entry in the jump table info. 834 unsigned MachineJumpTableInfo::createJumpTableIndex( 835 const std::vector<MachineBasicBlock*> &DestBBs) { 836 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 837 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 838 return JumpTables.size()-1; 839 } 840 841 /// If Old is the target of any jump tables, update the jump tables to branch 842 /// to New instead. 843 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 844 MachineBasicBlock *New) { 845 assert(Old != New && "Not making a change?"); 846 bool MadeChange = false; 847 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 848 ReplaceMBBInJumpTable(i, Old, New); 849 return MadeChange; 850 } 851 852 /// If Old is a target of the jump tables, update the jump table to branch to 853 /// New instead. 854 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 855 MachineBasicBlock *Old, 856 MachineBasicBlock *New) { 857 assert(Old != New && "Not making a change?"); 858 bool MadeChange = false; 859 MachineJumpTableEntry &JTE = JumpTables[Idx]; 860 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 861 if (JTE.MBBs[j] == Old) { 862 JTE.MBBs[j] = New; 863 MadeChange = true; 864 } 865 return MadeChange; 866 } 867 868 void MachineJumpTableInfo::print(raw_ostream &OS) const { 869 if (JumpTables.empty()) return; 870 871 OS << "Jump Tables:\n"; 872 873 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 874 OS << " jt#" << i << ": "; 875 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 876 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 877 } 878 879 OS << '\n'; 880 } 881 882 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 883 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 884 #endif 885 886 887 //===----------------------------------------------------------------------===// 888 // MachineConstantPool implementation 889 //===----------------------------------------------------------------------===// 890 891 void MachineConstantPoolValue::anchor() { } 892 893 Type *MachineConstantPoolEntry::getType() const { 894 if (isMachineConstantPoolEntry()) 895 return Val.MachineCPVal->getType(); 896 return Val.ConstVal->getType(); 897 } 898 899 bool MachineConstantPoolEntry::needsRelocation() const { 900 if (isMachineConstantPoolEntry()) 901 return true; 902 return Val.ConstVal->needsRelocation(); 903 } 904 905 SectionKind 906 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 907 if (needsRelocation()) 908 return SectionKind::getReadOnlyWithRel(); 909 switch (DL->getTypeAllocSize(getType())) { 910 case 4: 911 return SectionKind::getMergeableConst4(); 912 case 8: 913 return SectionKind::getMergeableConst8(); 914 case 16: 915 return SectionKind::getMergeableConst16(); 916 case 32: 917 return SectionKind::getMergeableConst32(); 918 default: 919 return SectionKind::getReadOnly(); 920 } 921 } 922 923 MachineConstantPool::~MachineConstantPool() { 924 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 925 // so keep track of which we've deleted to avoid double deletions. 926 DenseSet<MachineConstantPoolValue*> Deleted; 927 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 928 if (Constants[i].isMachineConstantPoolEntry()) { 929 Deleted.insert(Constants[i].Val.MachineCPVal); 930 delete Constants[i].Val.MachineCPVal; 931 } 932 for (DenseSet<MachineConstantPoolValue*>::iterator I = 933 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 934 I != E; ++I) { 935 if (Deleted.count(*I) == 0) 936 delete *I; 937 } 938 } 939 940 /// Test whether the given two constants can be allocated the same constant pool 941 /// entry. 942 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 943 const DataLayout &DL) { 944 // Handle the trivial case quickly. 945 if (A == B) return true; 946 947 // If they have the same type but weren't the same constant, quickly 948 // reject them. 949 if (A->getType() == B->getType()) return false; 950 951 // We can't handle structs or arrays. 952 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 953 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 954 return false; 955 956 // For now, only support constants with the same size. 957 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 958 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 959 return false; 960 961 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 962 963 // Try constant folding a bitcast of both instructions to an integer. If we 964 // get two identical ConstantInt's, then we are good to share them. We use 965 // the constant folding APIs to do this so that we get the benefit of 966 // DataLayout. 967 if (isa<PointerType>(A->getType())) 968 A = ConstantFoldCastOperand(Instruction::PtrToInt, 969 const_cast<Constant *>(A), IntTy, DL); 970 else if (A->getType() != IntTy) 971 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 972 IntTy, DL); 973 if (isa<PointerType>(B->getType())) 974 B = ConstantFoldCastOperand(Instruction::PtrToInt, 975 const_cast<Constant *>(B), IntTy, DL); 976 else if (B->getType() != IntTy) 977 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 978 IntTy, DL); 979 980 return A == B; 981 } 982 983 /// Create a new entry in the constant pool or return an existing one. 984 /// User must specify the log2 of the minimum required alignment for the object. 985 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 986 unsigned Alignment) { 987 assert(Alignment && "Alignment must be specified!"); 988 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 989 990 // Check to see if we already have this constant. 991 // 992 // FIXME, this could be made much more efficient for large constant pools. 993 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 994 if (!Constants[i].isMachineConstantPoolEntry() && 995 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 996 if ((unsigned)Constants[i].getAlignment() < Alignment) 997 Constants[i].Alignment = Alignment; 998 return i; 999 } 1000 1001 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1002 return Constants.size()-1; 1003 } 1004 1005 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1006 unsigned Alignment) { 1007 assert(Alignment && "Alignment must be specified!"); 1008 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1009 1010 // Check to see if we already have this constant. 1011 // 1012 // FIXME, this could be made much more efficient for large constant pools. 1013 int Idx = V->getExistingMachineCPValue(this, Alignment); 1014 if (Idx != -1) { 1015 MachineCPVsSharingEntries.insert(V); 1016 return (unsigned)Idx; 1017 } 1018 1019 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1020 return Constants.size()-1; 1021 } 1022 1023 void MachineConstantPool::print(raw_ostream &OS) const { 1024 if (Constants.empty()) return; 1025 1026 OS << "Constant Pool:\n"; 1027 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1028 OS << " cp#" << i << ": "; 1029 if (Constants[i].isMachineConstantPoolEntry()) 1030 Constants[i].Val.MachineCPVal->print(OS); 1031 else 1032 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1033 OS << ", align=" << Constants[i].getAlignment(); 1034 OS << "\n"; 1035 } 1036 } 1037 1038 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1039 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1040 #endif 1041