1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/DebugInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/GraphWriter.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetFrameLowering.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetMachine.h" 39 using namespace llvm; 40 41 //===----------------------------------------------------------------------===// 42 // MachineFunction implementation 43 //===----------------------------------------------------------------------===// 44 45 // Out of line virtual method. 46 MachineFunctionInfo::~MachineFunctionInfo() {} 47 48 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 49 MBB->getParent()->DeleteMachineBasicBlock(MBB); 50 } 51 52 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 53 unsigned FunctionNum, MachineModuleInfo &mmi, 54 GCModuleInfo* gmi) 55 : Fn(F), Target(TM), Ctx(mmi.getContext()), MMI(mmi), GMI(gmi) { 56 if (TM.getRegisterInfo()) 57 RegInfo = new (Allocator) MachineRegisterInfo(*TM.getRegisterInfo()); 58 else 59 RegInfo = 0; 60 MFInfo = 0; 61 FrameInfo = new (Allocator) MachineFrameInfo(*TM.getFrameLowering(), 62 TM.Options.RealignStack); 63 if (Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 64 Attribute::StackAlignment)) 65 FrameInfo->ensureMaxAlignment(Fn->getAttributes(). 66 getStackAlignment(AttributeSet::FunctionIndex)); 67 ConstantPool = new (Allocator) MachineConstantPool(TM.getDataLayout()); 68 Alignment = TM.getTargetLowering()->getMinFunctionAlignment(); 69 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 70 if (!Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 71 Attribute::OptimizeForSize)) 72 Alignment = std::max(Alignment, 73 TM.getTargetLowering()->getPrefFunctionAlignment()); 74 FunctionNumber = FunctionNum; 75 JumpTableInfo = 0; 76 } 77 78 MachineFunction::~MachineFunction() { 79 // Don't call destructors on MachineInstr and MachineOperand. All of their 80 // memory comes from the BumpPtrAllocator which is about to be purged. 81 // 82 // Do call MachineBasicBlock destructors, it contains std::vectors. 83 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 84 I->Insts.clearAndLeakNodesUnsafely(); 85 86 InstructionRecycler.clear(Allocator); 87 OperandRecycler.clear(Allocator); 88 BasicBlockRecycler.clear(Allocator); 89 if (RegInfo) { 90 RegInfo->~MachineRegisterInfo(); 91 Allocator.Deallocate(RegInfo); 92 } 93 if (MFInfo) { 94 MFInfo->~MachineFunctionInfo(); 95 Allocator.Deallocate(MFInfo); 96 } 97 98 FrameInfo->~MachineFrameInfo(); 99 Allocator.Deallocate(FrameInfo); 100 101 ConstantPool->~MachineConstantPool(); 102 Allocator.Deallocate(ConstantPool); 103 104 if (JumpTableInfo) { 105 JumpTableInfo->~MachineJumpTableInfo(); 106 Allocator.Deallocate(JumpTableInfo); 107 } 108 } 109 110 /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it 111 /// does already exist, allocate one. 112 MachineJumpTableInfo *MachineFunction:: 113 getOrCreateJumpTableInfo(unsigned EntryKind) { 114 if (JumpTableInfo) return JumpTableInfo; 115 116 JumpTableInfo = new (Allocator) 117 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 118 return JumpTableInfo; 119 } 120 121 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and 122 /// recomputes them. This guarantees that the MBB numbers are sequential, 123 /// dense, and match the ordering of the blocks within the function. If a 124 /// specific MachineBasicBlock is specified, only that block and those after 125 /// it are renumbered. 126 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 127 if (empty()) { MBBNumbering.clear(); return; } 128 MachineFunction::iterator MBBI, E = end(); 129 if (MBB == 0) 130 MBBI = begin(); 131 else 132 MBBI = MBB; 133 134 // Figure out the block number this should have. 135 unsigned BlockNo = 0; 136 if (MBBI != begin()) 137 BlockNo = prior(MBBI)->getNumber()+1; 138 139 for (; MBBI != E; ++MBBI, ++BlockNo) { 140 if (MBBI->getNumber() != (int)BlockNo) { 141 // Remove use of the old number. 142 if (MBBI->getNumber() != -1) { 143 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 144 "MBB number mismatch!"); 145 MBBNumbering[MBBI->getNumber()] = 0; 146 } 147 148 // If BlockNo is already taken, set that block's number to -1. 149 if (MBBNumbering[BlockNo]) 150 MBBNumbering[BlockNo]->setNumber(-1); 151 152 MBBNumbering[BlockNo] = MBBI; 153 MBBI->setNumber(BlockNo); 154 } 155 } 156 157 // Okay, all the blocks are renumbered. If we have compactified the block 158 // numbering, shrink MBBNumbering now. 159 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 160 MBBNumbering.resize(BlockNo); 161 } 162 163 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead 164 /// of `new MachineInstr'. 165 /// 166 MachineInstr * 167 MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 168 DebugLoc DL, bool NoImp) { 169 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 170 MachineInstr(*this, MCID, DL, NoImp); 171 } 172 173 /// CloneMachineInstr - Create a new MachineInstr which is a copy of the 174 /// 'Orig' instruction, identical in all ways except the instruction 175 /// has no parent, prev, or next. 176 /// 177 MachineInstr * 178 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 179 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 180 MachineInstr(*this, *Orig); 181 } 182 183 /// DeleteMachineInstr - Delete the given MachineInstr. 184 /// 185 /// This function also serves as the MachineInstr destructor - the real 186 /// ~MachineInstr() destructor must be empty. 187 void 188 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 189 // Strip it for parts. The operand array and the MI object itself are 190 // independently recyclable. 191 if (MI->Operands) 192 deallocateOperandArray(MI->CapOperands, MI->Operands); 193 // Don't call ~MachineInstr() which must be trivial anyway because 194 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 195 // destructors. 196 InstructionRecycler.Deallocate(Allocator, MI); 197 } 198 199 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this 200 /// instead of `new MachineBasicBlock'. 201 /// 202 MachineBasicBlock * 203 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 204 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 205 MachineBasicBlock(*this, bb); 206 } 207 208 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. 209 /// 210 void 211 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 212 assert(MBB->getParent() == this && "MBB parent mismatch!"); 213 MBB->~MachineBasicBlock(); 214 BasicBlockRecycler.Deallocate(Allocator, MBB); 215 } 216 217 MachineMemOperand * 218 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 219 uint64_t s, unsigned base_alignment, 220 const MDNode *TBAAInfo, 221 const MDNode *Ranges) { 222 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 223 TBAAInfo, Ranges); 224 } 225 226 MachineMemOperand * 227 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 228 int64_t Offset, uint64_t Size) { 229 return new (Allocator) 230 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 231 MMO->getOffset()+Offset), 232 MMO->getFlags(), Size, 233 MMO->getBaseAlignment(), 0); 234 } 235 236 MachineInstr::mmo_iterator 237 MachineFunction::allocateMemRefsArray(unsigned long Num) { 238 return Allocator.Allocate<MachineMemOperand *>(Num); 239 } 240 241 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 242 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 243 MachineInstr::mmo_iterator End) { 244 // Count the number of load mem refs. 245 unsigned Num = 0; 246 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 247 if ((*I)->isLoad()) 248 ++Num; 249 250 // Allocate a new array and populate it with the load information. 251 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 252 unsigned Index = 0; 253 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 254 if ((*I)->isLoad()) { 255 if (!(*I)->isStore()) 256 // Reuse the MMO. 257 Result[Index] = *I; 258 else { 259 // Clone the MMO and unset the store flag. 260 MachineMemOperand *JustLoad = 261 getMachineMemOperand((*I)->getPointerInfo(), 262 (*I)->getFlags() & ~MachineMemOperand::MOStore, 263 (*I)->getSize(), (*I)->getBaseAlignment(), 264 (*I)->getTBAAInfo()); 265 Result[Index] = JustLoad; 266 } 267 ++Index; 268 } 269 } 270 return std::make_pair(Result, Result + Num); 271 } 272 273 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 274 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 275 MachineInstr::mmo_iterator End) { 276 // Count the number of load mem refs. 277 unsigned Num = 0; 278 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 279 if ((*I)->isStore()) 280 ++Num; 281 282 // Allocate a new array and populate it with the store information. 283 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 284 unsigned Index = 0; 285 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 286 if ((*I)->isStore()) { 287 if (!(*I)->isLoad()) 288 // Reuse the MMO. 289 Result[Index] = *I; 290 else { 291 // Clone the MMO and unset the load flag. 292 MachineMemOperand *JustStore = 293 getMachineMemOperand((*I)->getPointerInfo(), 294 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 295 (*I)->getSize(), (*I)->getBaseAlignment(), 296 (*I)->getTBAAInfo()); 297 Result[Index] = JustStore; 298 } 299 ++Index; 300 } 301 } 302 return std::make_pair(Result, Result + Num); 303 } 304 305 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 306 void MachineFunction::dump() const { 307 print(dbgs()); 308 } 309 #endif 310 311 StringRef MachineFunction::getName() const { 312 assert(getFunction() && "No function!"); 313 return getFunction()->getName(); 314 } 315 316 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const { 317 OS << "# Machine code for function " << getName() << ": "; 318 if (RegInfo) { 319 OS << (RegInfo->isSSA() ? "SSA" : "Post SSA"); 320 if (!RegInfo->tracksLiveness()) 321 OS << ", not tracking liveness"; 322 } 323 OS << '\n'; 324 325 // Print Frame Information 326 FrameInfo->print(*this, OS); 327 328 // Print JumpTable Information 329 if (JumpTableInfo) 330 JumpTableInfo->print(OS); 331 332 // Print Constant Pool 333 ConstantPool->print(OS); 334 335 const TargetRegisterInfo *TRI = getTarget().getRegisterInfo(); 336 337 if (RegInfo && !RegInfo->livein_empty()) { 338 OS << "Function Live Ins: "; 339 for (MachineRegisterInfo::livein_iterator 340 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 341 OS << PrintReg(I->first, TRI); 342 if (I->second) 343 OS << " in " << PrintReg(I->second, TRI); 344 if (llvm::next(I) != E) 345 OS << ", "; 346 } 347 OS << '\n'; 348 } 349 if (RegInfo && !RegInfo->liveout_empty()) { 350 OS << "Function Live Outs:"; 351 for (MachineRegisterInfo::liveout_iterator 352 I = RegInfo->liveout_begin(), E = RegInfo->liveout_end(); I != E; ++I) 353 OS << ' ' << PrintReg(*I, TRI); 354 OS << '\n'; 355 } 356 357 for (const_iterator BB = begin(), E = end(); BB != E; ++BB) { 358 OS << '\n'; 359 BB->print(OS, Indexes); 360 } 361 362 OS << "\n# End machine code for function " << getName() << ".\n\n"; 363 } 364 365 namespace llvm { 366 template<> 367 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 368 369 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 370 371 static std::string getGraphName(const MachineFunction *F) { 372 return "CFG for '" + F->getName().str() + "' function"; 373 } 374 375 std::string getNodeLabel(const MachineBasicBlock *Node, 376 const MachineFunction *Graph) { 377 std::string OutStr; 378 { 379 raw_string_ostream OSS(OutStr); 380 381 if (isSimple()) { 382 OSS << "BB#" << Node->getNumber(); 383 if (const BasicBlock *BB = Node->getBasicBlock()) 384 OSS << ": " << BB->getName(); 385 } else 386 Node->print(OSS); 387 } 388 389 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 390 391 // Process string output to make it nicer... 392 for (unsigned i = 0; i != OutStr.length(); ++i) 393 if (OutStr[i] == '\n') { // Left justify 394 OutStr[i] = '\\'; 395 OutStr.insert(OutStr.begin()+i+1, 'l'); 396 } 397 return OutStr; 398 } 399 }; 400 } 401 402 void MachineFunction::viewCFG() const 403 { 404 #ifndef NDEBUG 405 ViewGraph(this, "mf" + getName()); 406 #else 407 errs() << "MachineFunction::viewCFG is only available in debug builds on " 408 << "systems with Graphviz or gv!\n"; 409 #endif // NDEBUG 410 } 411 412 void MachineFunction::viewCFGOnly() const 413 { 414 #ifndef NDEBUG 415 ViewGraph(this, "mf" + getName(), true); 416 #else 417 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 418 << "systems with Graphviz or gv!\n"; 419 #endif // NDEBUG 420 } 421 422 /// addLiveIn - Add the specified physical register as a live-in value and 423 /// create a corresponding virtual register for it. 424 unsigned MachineFunction::addLiveIn(unsigned PReg, 425 const TargetRegisterClass *RC) { 426 MachineRegisterInfo &MRI = getRegInfo(); 427 unsigned VReg = MRI.getLiveInVirtReg(PReg); 428 if (VReg) { 429 assert(MRI.getRegClass(VReg) == RC && "Register class mismatch!"); 430 return VReg; 431 } 432 VReg = MRI.createVirtualRegister(RC); 433 MRI.addLiveIn(PReg, VReg); 434 return VReg; 435 } 436 437 /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. 438 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 439 /// normal 'L' label is returned. 440 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 441 bool isLinkerPrivate) const { 442 assert(JumpTableInfo && "No jump tables"); 443 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 444 const MCAsmInfo &MAI = *getTarget().getMCAsmInfo(); 445 446 const char *Prefix = isLinkerPrivate ? MAI.getLinkerPrivateGlobalPrefix() : 447 MAI.getPrivateGlobalPrefix(); 448 SmallString<60> Name; 449 raw_svector_ostream(Name) 450 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 451 return Ctx.GetOrCreateSymbol(Name.str()); 452 } 453 454 /// getPICBaseSymbol - Return a function-local symbol to represent the PIC 455 /// base. 456 MCSymbol *MachineFunction::getPICBaseSymbol() const { 457 const MCAsmInfo &MAI = *Target.getMCAsmInfo(); 458 return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+ 459 Twine(getFunctionNumber())+"$pb"); 460 } 461 462 //===----------------------------------------------------------------------===// 463 // MachineFrameInfo implementation 464 //===----------------------------------------------------------------------===// 465 466 /// ensureMaxAlignment - Make sure the function is at least Align bytes 467 /// aligned. 468 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 469 if (!TFI.isStackRealignable() || !RealignOption) 470 assert(Align <= TFI.getStackAlignment() && 471 "For targets without stack realignment, Align is out of limit!"); 472 if (MaxAlignment < Align) MaxAlignment = Align; 473 } 474 475 /// clampStackAlignment - Clamp the alignment if requested and emit a warning. 476 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align, 477 unsigned StackAlign) { 478 if (!ShouldClamp || Align <= StackAlign) 479 return Align; 480 DEBUG(dbgs() << "Warning: requested alignment " << Align 481 << " exceeds the stack alignment " << StackAlign 482 << " when stack realignment is off" << '\n'); 483 return StackAlign; 484 } 485 486 /// CreateStackObject - Create a new statically sized stack object, returning 487 /// a nonnegative identifier to represent it. 488 /// 489 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment, 490 bool isSS, bool MayNeedSP, const AllocaInst *Alloca) { 491 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 492 Alignment = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption, 493 Alignment, TFI.getStackAlignment()); 494 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, MayNeedSP, 495 Alloca)); 496 int Index = (int)Objects.size() - NumFixedObjects - 1; 497 assert(Index >= 0 && "Bad frame index!"); 498 ensureMaxAlignment(Alignment); 499 return Index; 500 } 501 502 /// CreateSpillStackObject - Create a new statically sized stack object that 503 /// represents a spill slot, returning a nonnegative identifier to represent 504 /// it. 505 /// 506 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 507 unsigned Alignment) { 508 Alignment = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption, 509 Alignment, TFI.getStackAlignment()); 510 CreateStackObject(Size, Alignment, true, false); 511 int Index = (int)Objects.size() - NumFixedObjects - 1; 512 ensureMaxAlignment(Alignment); 513 return Index; 514 } 515 516 /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a 517 /// variable sized object has been created. This must be created whenever a 518 /// variable sized object is created, whether or not the index returned is 519 /// actually used. 520 /// 521 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment) { 522 HasVarSizedObjects = true; 523 Alignment = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption, 524 Alignment, TFI.getStackAlignment()); 525 Objects.push_back(StackObject(0, Alignment, 0, false, false, true, 0)); 526 ensureMaxAlignment(Alignment); 527 return (int)Objects.size()-NumFixedObjects-1; 528 } 529 530 /// CreateFixedObject - Create a new object at a fixed location on the stack. 531 /// All fixed objects should be created before other objects are created for 532 /// efficiency. By default, fixed objects are immutable. This returns an 533 /// index with a negative value. 534 /// 535 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 536 bool Immutable) { 537 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 538 // The alignment of the frame index can be determined from its offset from 539 // the incoming frame position. If the frame object is at offset 32 and 540 // the stack is guaranteed to be 16-byte aligned, then we know that the 541 // object is 16-byte aligned. 542 unsigned StackAlign = TFI.getStackAlignment(); 543 unsigned Align = MinAlign(SPOffset, StackAlign); 544 Align = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption, 545 Align, TFI.getStackAlignment()); 546 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 547 /*isSS*/ false, 548 /*NeedSP*/ false, 549 /*Alloca*/ 0)); 550 return -++NumFixedObjects; 551 } 552 553 554 BitVector 555 MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const { 556 assert(MBB && "MBB must be valid"); 557 const MachineFunction *MF = MBB->getParent(); 558 assert(MF && "MBB must be part of a MachineFunction"); 559 const TargetMachine &TM = MF->getTarget(); 560 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 561 BitVector BV(TRI->getNumRegs()); 562 563 // Before CSI is calculated, no registers are considered pristine. They can be 564 // freely used and PEI will make sure they are saved. 565 if (!isCalleeSavedInfoValid()) 566 return BV; 567 568 for (const uint16_t *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR) 569 BV.set(*CSR); 570 571 // The entry MBB always has all CSRs pristine. 572 if (MBB == &MF->front()) 573 return BV; 574 575 // On other MBBs the saved CSRs are not pristine. 576 const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo(); 577 for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(), 578 E = CSI.end(); I != E; ++I) 579 BV.reset(I->getReg()); 580 581 return BV; 582 } 583 584 585 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 586 if (Objects.empty()) return; 587 588 const TargetFrameLowering *FI = MF.getTarget().getFrameLowering(); 589 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 590 591 OS << "Frame Objects:\n"; 592 593 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 594 const StackObject &SO = Objects[i]; 595 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 596 if (SO.Size == ~0ULL) { 597 OS << "dead\n"; 598 continue; 599 } 600 if (SO.Size == 0) 601 OS << "variable sized"; 602 else 603 OS << "size=" << SO.Size; 604 OS << ", align=" << SO.Alignment; 605 606 if (i < NumFixedObjects) 607 OS << ", fixed"; 608 if (i < NumFixedObjects || SO.SPOffset != -1) { 609 int64_t Off = SO.SPOffset - ValOffset; 610 OS << ", at location [SP"; 611 if (Off > 0) 612 OS << "+" << Off; 613 else if (Off < 0) 614 OS << Off; 615 OS << "]"; 616 } 617 OS << "\n"; 618 } 619 } 620 621 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 622 void MachineFrameInfo::dump(const MachineFunction &MF) const { 623 print(MF, dbgs()); 624 } 625 #endif 626 627 //===----------------------------------------------------------------------===// 628 // MachineJumpTableInfo implementation 629 //===----------------------------------------------------------------------===// 630 631 /// getEntrySize - Return the size of each entry in the jump table. 632 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 633 // The size of a jump table entry is 4 bytes unless the entry is just the 634 // address of a block, in which case it is the pointer size. 635 switch (getEntryKind()) { 636 case MachineJumpTableInfo::EK_BlockAddress: 637 return TD.getPointerSize(); 638 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 639 return 8; 640 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 641 case MachineJumpTableInfo::EK_LabelDifference32: 642 case MachineJumpTableInfo::EK_Custom32: 643 return 4; 644 case MachineJumpTableInfo::EK_Inline: 645 return 0; 646 } 647 llvm_unreachable("Unknown jump table encoding!"); 648 } 649 650 /// getEntryAlignment - Return the alignment of each entry in the jump table. 651 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 652 // The alignment of a jump table entry is the alignment of int32 unless the 653 // entry is just the address of a block, in which case it is the pointer 654 // alignment. 655 switch (getEntryKind()) { 656 case MachineJumpTableInfo::EK_BlockAddress: 657 return TD.getPointerABIAlignment(); 658 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 659 return TD.getABIIntegerTypeAlignment(64); 660 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 661 case MachineJumpTableInfo::EK_LabelDifference32: 662 case MachineJumpTableInfo::EK_Custom32: 663 return TD.getABIIntegerTypeAlignment(32); 664 case MachineJumpTableInfo::EK_Inline: 665 return 1; 666 } 667 llvm_unreachable("Unknown jump table encoding!"); 668 } 669 670 /// createJumpTableIndex - Create a new jump table entry in the jump table info. 671 /// 672 unsigned MachineJumpTableInfo::createJumpTableIndex( 673 const std::vector<MachineBasicBlock*> &DestBBs) { 674 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 675 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 676 return JumpTables.size()-1; 677 } 678 679 /// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update 680 /// the jump tables to branch to New instead. 681 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 682 MachineBasicBlock *New) { 683 assert(Old != New && "Not making a change?"); 684 bool MadeChange = false; 685 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 686 ReplaceMBBInJumpTable(i, Old, New); 687 return MadeChange; 688 } 689 690 /// ReplaceMBBInJumpTable - If Old is a target of the jump tables, update 691 /// the jump table to branch to New instead. 692 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 693 MachineBasicBlock *Old, 694 MachineBasicBlock *New) { 695 assert(Old != New && "Not making a change?"); 696 bool MadeChange = false; 697 MachineJumpTableEntry &JTE = JumpTables[Idx]; 698 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 699 if (JTE.MBBs[j] == Old) { 700 JTE.MBBs[j] = New; 701 MadeChange = true; 702 } 703 return MadeChange; 704 } 705 706 void MachineJumpTableInfo::print(raw_ostream &OS) const { 707 if (JumpTables.empty()) return; 708 709 OS << "Jump Tables:\n"; 710 711 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 712 OS << " jt#" << i << ": "; 713 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 714 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 715 } 716 717 OS << '\n'; 718 } 719 720 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 721 void MachineJumpTableInfo::dump() const { print(dbgs()); } 722 #endif 723 724 725 //===----------------------------------------------------------------------===// 726 // MachineConstantPool implementation 727 //===----------------------------------------------------------------------===// 728 729 void MachineConstantPoolValue::anchor() { } 730 731 Type *MachineConstantPoolEntry::getType() const { 732 if (isMachineConstantPoolEntry()) 733 return Val.MachineCPVal->getType(); 734 return Val.ConstVal->getType(); 735 } 736 737 738 unsigned MachineConstantPoolEntry::getRelocationInfo() const { 739 if (isMachineConstantPoolEntry()) 740 return Val.MachineCPVal->getRelocationInfo(); 741 return Val.ConstVal->getRelocationInfo(); 742 } 743 744 MachineConstantPool::~MachineConstantPool() { 745 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 746 if (Constants[i].isMachineConstantPoolEntry()) 747 delete Constants[i].Val.MachineCPVal; 748 for (DenseSet<MachineConstantPoolValue*>::iterator I = 749 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 750 I != E; ++I) 751 delete *I; 752 } 753 754 /// CanShareConstantPoolEntry - Test whether the given two constants 755 /// can be allocated the same constant pool entry. 756 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 757 const DataLayout *TD) { 758 // Handle the trivial case quickly. 759 if (A == B) return true; 760 761 // If they have the same type but weren't the same constant, quickly 762 // reject them. 763 if (A->getType() == B->getType()) return false; 764 765 // We can't handle structs or arrays. 766 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 767 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 768 return false; 769 770 // For now, only support constants with the same size. 771 uint64_t StoreSize = TD->getTypeStoreSize(A->getType()); 772 if (StoreSize != TD->getTypeStoreSize(B->getType()) || 773 StoreSize > 128) 774 return false; 775 776 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 777 778 // Try constant folding a bitcast of both instructions to an integer. If we 779 // get two identical ConstantInt's, then we are good to share them. We use 780 // the constant folding APIs to do this so that we get the benefit of 781 // DataLayout. 782 if (isa<PointerType>(A->getType())) 783 A = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 784 const_cast<Constant*>(A), TD); 785 else if (A->getType() != IntTy) 786 A = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 787 const_cast<Constant*>(A), TD); 788 if (isa<PointerType>(B->getType())) 789 B = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 790 const_cast<Constant*>(B), TD); 791 else if (B->getType() != IntTy) 792 B = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 793 const_cast<Constant*>(B), TD); 794 795 return A == B; 796 } 797 798 /// getConstantPoolIndex - Create a new entry in the constant pool or return 799 /// an existing one. User must specify the log2 of the minimum required 800 /// alignment for the object. 801 /// 802 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 803 unsigned Alignment) { 804 assert(Alignment && "Alignment must be specified!"); 805 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 806 807 // Check to see if we already have this constant. 808 // 809 // FIXME, this could be made much more efficient for large constant pools. 810 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 811 if (!Constants[i].isMachineConstantPoolEntry() && 812 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, TD)) { 813 if ((unsigned)Constants[i].getAlignment() < Alignment) 814 Constants[i].Alignment = Alignment; 815 return i; 816 } 817 818 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 819 return Constants.size()-1; 820 } 821 822 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 823 unsigned Alignment) { 824 assert(Alignment && "Alignment must be specified!"); 825 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 826 827 // Check to see if we already have this constant. 828 // 829 // FIXME, this could be made much more efficient for large constant pools. 830 int Idx = V->getExistingMachineCPValue(this, Alignment); 831 if (Idx != -1) { 832 MachineCPVsSharingEntries.insert(V); 833 return (unsigned)Idx; 834 } 835 836 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 837 return Constants.size()-1; 838 } 839 840 void MachineConstantPool::print(raw_ostream &OS) const { 841 if (Constants.empty()) return; 842 843 OS << "Constant Pool:\n"; 844 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 845 OS << " cp#" << i << ": "; 846 if (Constants[i].isMachineConstantPoolEntry()) 847 Constants[i].Val.MachineCPVal->print(OS); 848 else 849 OS << *(const Value*)Constants[i].Val.ConstVal; 850 OS << ", align=" << Constants[i].getAlignment(); 851 OS << "\n"; 852 } 853 } 854 855 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 856 void MachineConstantPool::dump() const { print(dbgs()); } 857 #endif 858