1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfo.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/GraphWriter.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetFrameLowering.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Target/TargetSubtargetInfo.h" 40 using namespace llvm; 41 42 #define DEBUG_TYPE "codegen" 43 44 //===----------------------------------------------------------------------===// 45 // MachineFunction implementation 46 //===----------------------------------------------------------------------===// 47 48 // Out of line virtual method. 49 MachineFunctionInfo::~MachineFunctionInfo() {} 50 51 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 52 MBB->getParent()->DeleteMachineBasicBlock(MBB); 53 } 54 55 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 56 unsigned FunctionNum, MachineModuleInfo &mmi, 57 GCModuleInfo* gmi) 58 : Fn(F), Target(TM), Ctx(mmi.getContext()), MMI(mmi), GMI(gmi) { 59 if (TM.getSubtargetImpl()->getRegisterInfo()) 60 RegInfo = new (Allocator) MachineRegisterInfo(TM); 61 else 62 RegInfo = nullptr; 63 64 MFInfo = nullptr; 65 FrameInfo = 66 new (Allocator) MachineFrameInfo(TM,!F->hasFnAttribute("no-realign-stack")); 67 68 if (Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 69 Attribute::StackAlignment)) 70 FrameInfo->ensureMaxAlignment(Fn->getAttributes(). 71 getStackAlignment(AttributeSet::FunctionIndex)); 72 73 ConstantPool = new (Allocator) MachineConstantPool(TM); 74 Alignment = 75 TM.getSubtargetImpl()->getTargetLowering()->getMinFunctionAlignment(); 76 77 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 78 if (!Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 79 Attribute::OptimizeForSize)) 80 Alignment = std::max( 81 Alignment, 82 TM.getSubtargetImpl()->getTargetLowering()->getPrefFunctionAlignment()); 83 84 FunctionNumber = FunctionNum; 85 JumpTableInfo = nullptr; 86 } 87 88 MachineFunction::~MachineFunction() { 89 // Don't call destructors on MachineInstr and MachineOperand. All of their 90 // memory comes from the BumpPtrAllocator which is about to be purged. 91 // 92 // Do call MachineBasicBlock destructors, it contains std::vectors. 93 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 94 I->Insts.clearAndLeakNodesUnsafely(); 95 96 InstructionRecycler.clear(Allocator); 97 OperandRecycler.clear(Allocator); 98 BasicBlockRecycler.clear(Allocator); 99 if (RegInfo) { 100 RegInfo->~MachineRegisterInfo(); 101 Allocator.Deallocate(RegInfo); 102 } 103 if (MFInfo) { 104 MFInfo->~MachineFunctionInfo(); 105 Allocator.Deallocate(MFInfo); 106 } 107 108 FrameInfo->~MachineFrameInfo(); 109 Allocator.Deallocate(FrameInfo); 110 111 ConstantPool->~MachineConstantPool(); 112 Allocator.Deallocate(ConstantPool); 113 114 if (JumpTableInfo) { 115 JumpTableInfo->~MachineJumpTableInfo(); 116 Allocator.Deallocate(JumpTableInfo); 117 } 118 } 119 120 /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it 121 /// does already exist, allocate one. 122 MachineJumpTableInfo *MachineFunction:: 123 getOrCreateJumpTableInfo(unsigned EntryKind) { 124 if (JumpTableInfo) return JumpTableInfo; 125 126 JumpTableInfo = new (Allocator) 127 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 128 return JumpTableInfo; 129 } 130 131 /// Should we be emitting segmented stack stuff for the function 132 bool MachineFunction::shouldSplitStack() { 133 return getFunction()->hasFnAttribute("split-stack"); 134 } 135 136 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and 137 /// recomputes them. This guarantees that the MBB numbers are sequential, 138 /// dense, and match the ordering of the blocks within the function. If a 139 /// specific MachineBasicBlock is specified, only that block and those after 140 /// it are renumbered. 141 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 142 if (empty()) { MBBNumbering.clear(); return; } 143 MachineFunction::iterator MBBI, E = end(); 144 if (MBB == nullptr) 145 MBBI = begin(); 146 else 147 MBBI = MBB; 148 149 // Figure out the block number this should have. 150 unsigned BlockNo = 0; 151 if (MBBI != begin()) 152 BlockNo = std::prev(MBBI)->getNumber() + 1; 153 154 for (; MBBI != E; ++MBBI, ++BlockNo) { 155 if (MBBI->getNumber() != (int)BlockNo) { 156 // Remove use of the old number. 157 if (MBBI->getNumber() != -1) { 158 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 159 "MBB number mismatch!"); 160 MBBNumbering[MBBI->getNumber()] = nullptr; 161 } 162 163 // If BlockNo is already taken, set that block's number to -1. 164 if (MBBNumbering[BlockNo]) 165 MBBNumbering[BlockNo]->setNumber(-1); 166 167 MBBNumbering[BlockNo] = MBBI; 168 MBBI->setNumber(BlockNo); 169 } 170 } 171 172 // Okay, all the blocks are renumbered. If we have compactified the block 173 // numbering, shrink MBBNumbering now. 174 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 175 MBBNumbering.resize(BlockNo); 176 } 177 178 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead 179 /// of `new MachineInstr'. 180 /// 181 MachineInstr * 182 MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 183 DebugLoc DL, bool NoImp) { 184 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 185 MachineInstr(*this, MCID, DL, NoImp); 186 } 187 188 /// CloneMachineInstr - Create a new MachineInstr which is a copy of the 189 /// 'Orig' instruction, identical in all ways except the instruction 190 /// has no parent, prev, or next. 191 /// 192 MachineInstr * 193 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 194 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 195 MachineInstr(*this, *Orig); 196 } 197 198 /// DeleteMachineInstr - Delete the given MachineInstr. 199 /// 200 /// This function also serves as the MachineInstr destructor - the real 201 /// ~MachineInstr() destructor must be empty. 202 void 203 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 204 // Strip it for parts. The operand array and the MI object itself are 205 // independently recyclable. 206 if (MI->Operands) 207 deallocateOperandArray(MI->CapOperands, MI->Operands); 208 // Don't call ~MachineInstr() which must be trivial anyway because 209 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 210 // destructors. 211 InstructionRecycler.Deallocate(Allocator, MI); 212 } 213 214 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this 215 /// instead of `new MachineBasicBlock'. 216 /// 217 MachineBasicBlock * 218 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 219 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 220 MachineBasicBlock(*this, bb); 221 } 222 223 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. 224 /// 225 void 226 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 227 assert(MBB->getParent() == this && "MBB parent mismatch!"); 228 MBB->~MachineBasicBlock(); 229 BasicBlockRecycler.Deallocate(Allocator, MBB); 230 } 231 232 MachineMemOperand * 233 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 234 uint64_t s, unsigned base_alignment, 235 const AAMDNodes &AAInfo, 236 const MDNode *Ranges) { 237 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 238 AAInfo, Ranges); 239 } 240 241 MachineMemOperand * 242 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 243 int64_t Offset, uint64_t Size) { 244 if (MMO->getValue()) 245 return new (Allocator) 246 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 247 MMO->getOffset()+Offset), 248 MMO->getFlags(), Size, 249 MMO->getBaseAlignment(), nullptr); 250 return new (Allocator) 251 MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(), 252 MMO->getOffset()+Offset), 253 MMO->getFlags(), Size, 254 MMO->getBaseAlignment(), nullptr); 255 } 256 257 MachineInstr::mmo_iterator 258 MachineFunction::allocateMemRefsArray(unsigned long Num) { 259 return Allocator.Allocate<MachineMemOperand *>(Num); 260 } 261 262 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 263 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 264 MachineInstr::mmo_iterator End) { 265 // Count the number of load mem refs. 266 unsigned Num = 0; 267 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 268 if ((*I)->isLoad()) 269 ++Num; 270 271 // Allocate a new array and populate it with the load information. 272 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 273 unsigned Index = 0; 274 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 275 if ((*I)->isLoad()) { 276 if (!(*I)->isStore()) 277 // Reuse the MMO. 278 Result[Index] = *I; 279 else { 280 // Clone the MMO and unset the store flag. 281 MachineMemOperand *JustLoad = 282 getMachineMemOperand((*I)->getPointerInfo(), 283 (*I)->getFlags() & ~MachineMemOperand::MOStore, 284 (*I)->getSize(), (*I)->getBaseAlignment(), 285 (*I)->getAAInfo()); 286 Result[Index] = JustLoad; 287 } 288 ++Index; 289 } 290 } 291 return std::make_pair(Result, Result + Num); 292 } 293 294 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 295 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 296 MachineInstr::mmo_iterator End) { 297 // Count the number of load mem refs. 298 unsigned Num = 0; 299 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 300 if ((*I)->isStore()) 301 ++Num; 302 303 // Allocate a new array and populate it with the store information. 304 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 305 unsigned Index = 0; 306 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 307 if ((*I)->isStore()) { 308 if (!(*I)->isLoad()) 309 // Reuse the MMO. 310 Result[Index] = *I; 311 else { 312 // Clone the MMO and unset the load flag. 313 MachineMemOperand *JustStore = 314 getMachineMemOperand((*I)->getPointerInfo(), 315 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 316 (*I)->getSize(), (*I)->getBaseAlignment(), 317 (*I)->getAAInfo()); 318 Result[Index] = JustStore; 319 } 320 ++Index; 321 } 322 } 323 return std::make_pair(Result, Result + Num); 324 } 325 326 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 327 void MachineFunction::dump() const { 328 print(dbgs()); 329 } 330 #endif 331 332 StringRef MachineFunction::getName() const { 333 assert(getFunction() && "No function!"); 334 return getFunction()->getName(); 335 } 336 337 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const { 338 OS << "# Machine code for function " << getName() << ": "; 339 if (RegInfo) { 340 OS << (RegInfo->isSSA() ? "SSA" : "Post SSA"); 341 if (!RegInfo->tracksLiveness()) 342 OS << ", not tracking liveness"; 343 } 344 OS << '\n'; 345 346 // Print Frame Information 347 FrameInfo->print(*this, OS); 348 349 // Print JumpTable Information 350 if (JumpTableInfo) 351 JumpTableInfo->print(OS); 352 353 // Print Constant Pool 354 ConstantPool->print(OS); 355 356 const TargetRegisterInfo *TRI = 357 getTarget().getSubtargetImpl()->getRegisterInfo(); 358 359 if (RegInfo && !RegInfo->livein_empty()) { 360 OS << "Function Live Ins: "; 361 for (MachineRegisterInfo::livein_iterator 362 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 363 OS << PrintReg(I->first, TRI); 364 if (I->second) 365 OS << " in " << PrintReg(I->second, TRI); 366 if (std::next(I) != E) 367 OS << ", "; 368 } 369 OS << '\n'; 370 } 371 372 for (const auto &BB : *this) { 373 OS << '\n'; 374 BB.print(OS, Indexes); 375 } 376 377 OS << "\n# End machine code for function " << getName() << ".\n\n"; 378 } 379 380 namespace llvm { 381 template<> 382 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 383 384 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 385 386 static std::string getGraphName(const MachineFunction *F) { 387 return "CFG for '" + F->getName().str() + "' function"; 388 } 389 390 std::string getNodeLabel(const MachineBasicBlock *Node, 391 const MachineFunction *Graph) { 392 std::string OutStr; 393 { 394 raw_string_ostream OSS(OutStr); 395 396 if (isSimple()) { 397 OSS << "BB#" << Node->getNumber(); 398 if (const BasicBlock *BB = Node->getBasicBlock()) 399 OSS << ": " << BB->getName(); 400 } else 401 Node->print(OSS); 402 } 403 404 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 405 406 // Process string output to make it nicer... 407 for (unsigned i = 0; i != OutStr.length(); ++i) 408 if (OutStr[i] == '\n') { // Left justify 409 OutStr[i] = '\\'; 410 OutStr.insert(OutStr.begin()+i+1, 'l'); 411 } 412 return OutStr; 413 } 414 }; 415 } 416 417 void MachineFunction::viewCFG() const 418 { 419 #ifndef NDEBUG 420 ViewGraph(this, "mf" + getName()); 421 #else 422 errs() << "MachineFunction::viewCFG is only available in debug builds on " 423 << "systems with Graphviz or gv!\n"; 424 #endif // NDEBUG 425 } 426 427 void MachineFunction::viewCFGOnly() const 428 { 429 #ifndef NDEBUG 430 ViewGraph(this, "mf" + getName(), true); 431 #else 432 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 433 << "systems with Graphviz or gv!\n"; 434 #endif // NDEBUG 435 } 436 437 /// addLiveIn - Add the specified physical register as a live-in value and 438 /// create a corresponding virtual register for it. 439 unsigned MachineFunction::addLiveIn(unsigned PReg, 440 const TargetRegisterClass *RC) { 441 MachineRegisterInfo &MRI = getRegInfo(); 442 unsigned VReg = MRI.getLiveInVirtReg(PReg); 443 if (VReg) { 444 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 445 (void)VRegRC; 446 // A physical register can be added several times. 447 // Between two calls, the register class of the related virtual register 448 // may have been constrained to match some operation constraints. 449 // In that case, check that the current register class includes the 450 // physical register and is a sub class of the specified RC. 451 assert((VRegRC == RC || (VRegRC->contains(PReg) && 452 RC->hasSubClassEq(VRegRC))) && 453 "Register class mismatch!"); 454 return VReg; 455 } 456 VReg = MRI.createVirtualRegister(RC); 457 MRI.addLiveIn(PReg, VReg); 458 return VReg; 459 } 460 461 /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. 462 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 463 /// normal 'L' label is returned. 464 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 465 bool isLinkerPrivate) const { 466 const DataLayout *DL = getTarget().getSubtargetImpl()->getDataLayout(); 467 assert(JumpTableInfo && "No jump tables"); 468 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 469 470 const char *Prefix = isLinkerPrivate ? DL->getLinkerPrivateGlobalPrefix() : 471 DL->getPrivateGlobalPrefix(); 472 SmallString<60> Name; 473 raw_svector_ostream(Name) 474 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 475 return Ctx.GetOrCreateSymbol(Name.str()); 476 } 477 478 /// getPICBaseSymbol - Return a function-local symbol to represent the PIC 479 /// base. 480 MCSymbol *MachineFunction::getPICBaseSymbol() const { 481 const DataLayout *DL = getTarget().getSubtargetImpl()->getDataLayout(); 482 return Ctx.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+ 483 Twine(getFunctionNumber())+"$pb"); 484 } 485 486 //===----------------------------------------------------------------------===// 487 // MachineFrameInfo implementation 488 //===----------------------------------------------------------------------===// 489 490 const TargetFrameLowering *MachineFrameInfo::getFrameLowering() const { 491 return TM.getSubtargetImpl()->getFrameLowering(); 492 } 493 494 /// ensureMaxAlignment - Make sure the function is at least Align bytes 495 /// aligned. 496 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 497 if (!getFrameLowering()->isStackRealignable() || !RealignOption) 498 assert(Align <= getFrameLowering()->getStackAlignment() && 499 "For targets without stack realignment, Align is out of limit!"); 500 if (MaxAlignment < Align) MaxAlignment = Align; 501 } 502 503 /// clampStackAlignment - Clamp the alignment if requested and emit a warning. 504 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align, 505 unsigned StackAlign) { 506 if (!ShouldClamp || Align <= StackAlign) 507 return Align; 508 DEBUG(dbgs() << "Warning: requested alignment " << Align 509 << " exceeds the stack alignment " << StackAlign 510 << " when stack realignment is off" << '\n'); 511 return StackAlign; 512 } 513 514 /// CreateStackObject - Create a new statically sized stack object, returning 515 /// a nonnegative identifier to represent it. 516 /// 517 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment, 518 bool isSS, const AllocaInst *Alloca) { 519 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 520 Alignment = 521 clampStackAlignment(!getFrameLowering()->isStackRealignable() || 522 !RealignOption, 523 Alignment, getFrameLowering()->getStackAlignment()); 524 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca)); 525 int Index = (int)Objects.size() - NumFixedObjects - 1; 526 assert(Index >= 0 && "Bad frame index!"); 527 ensureMaxAlignment(Alignment); 528 return Index; 529 } 530 531 /// CreateSpillStackObject - Create a new statically sized stack object that 532 /// represents a spill slot, returning a nonnegative identifier to represent 533 /// it. 534 /// 535 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 536 unsigned Alignment) { 537 Alignment = clampStackAlignment( 538 !getFrameLowering()->isStackRealignable() || !RealignOption, Alignment, 539 getFrameLowering()->getStackAlignment()); 540 CreateStackObject(Size, Alignment, true); 541 int Index = (int)Objects.size() - NumFixedObjects - 1; 542 ensureMaxAlignment(Alignment); 543 return Index; 544 } 545 546 /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a 547 /// variable sized object has been created. This must be created whenever a 548 /// variable sized object is created, whether or not the index returned is 549 /// actually used. 550 /// 551 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment, 552 const AllocaInst *Alloca) { 553 HasVarSizedObjects = true; 554 Alignment = clampStackAlignment( 555 !getFrameLowering()->isStackRealignable() || !RealignOption, Alignment, 556 getFrameLowering()->getStackAlignment()); 557 Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca)); 558 ensureMaxAlignment(Alignment); 559 return (int)Objects.size()-NumFixedObjects-1; 560 } 561 562 /// CreateFixedObject - Create a new object at a fixed location on the stack. 563 /// All fixed objects should be created before other objects are created for 564 /// efficiency. By default, fixed objects are immutable. This returns an 565 /// index with a negative value. 566 /// 567 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 568 bool Immutable) { 569 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 570 // The alignment of the frame index can be determined from its offset from 571 // the incoming frame position. If the frame object is at offset 32 and 572 // the stack is guaranteed to be 16-byte aligned, then we know that the 573 // object is 16-byte aligned. 574 unsigned StackAlign = getFrameLowering()->getStackAlignment(); 575 unsigned Align = MinAlign(SPOffset, StackAlign); 576 Align = clampStackAlignment(!getFrameLowering()->isStackRealignable() || 577 !RealignOption, 578 Align, getFrameLowering()->getStackAlignment()); 579 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 580 /*isSS*/ false, 581 /*Alloca*/ nullptr)); 582 return -++NumFixedObjects; 583 } 584 585 /// CreateFixedSpillStackObject - Create a spill slot at a fixed location 586 /// on the stack. Returns an index with a negative value. 587 int MachineFrameInfo::CreateFixedSpillStackObject(uint64_t Size, 588 int64_t SPOffset) { 589 unsigned StackAlign = getFrameLowering()->getStackAlignment(); 590 unsigned Align = MinAlign(SPOffset, StackAlign); 591 Align = clampStackAlignment(!getFrameLowering()->isStackRealignable() || 592 !RealignOption, 593 Align, getFrameLowering()->getStackAlignment()); 594 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, 595 /*Immutable*/ true, 596 /*isSS*/ true, 597 /*Alloca*/ nullptr)); 598 return -++NumFixedObjects; 599 } 600 601 BitVector 602 MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const { 603 assert(MBB && "MBB must be valid"); 604 const MachineFunction *MF = MBB->getParent(); 605 assert(MF && "MBB must be part of a MachineFunction"); 606 const TargetMachine &TM = MF->getTarget(); 607 const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo(); 608 BitVector BV(TRI->getNumRegs()); 609 610 // Before CSI is calculated, no registers are considered pristine. They can be 611 // freely used and PEI will make sure they are saved. 612 if (!isCalleeSavedInfoValid()) 613 return BV; 614 615 for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR) 616 BV.set(*CSR); 617 618 // The entry MBB always has all CSRs pristine. 619 if (MBB == &MF->front()) 620 return BV; 621 622 // On other MBBs the saved CSRs are not pristine. 623 const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo(); 624 for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(), 625 E = CSI.end(); I != E; ++I) 626 BV.reset(I->getReg()); 627 628 return BV; 629 } 630 631 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const { 632 const TargetFrameLowering *TFI = 633 MF.getTarget().getSubtargetImpl()->getFrameLowering(); 634 const TargetRegisterInfo *RegInfo = 635 MF.getTarget().getSubtargetImpl()->getRegisterInfo(); 636 unsigned MaxAlign = getMaxAlignment(); 637 int Offset = 0; 638 639 // This code is very, very similar to PEI::calculateFrameObjectOffsets(). 640 // It really should be refactored to share code. Until then, changes 641 // should keep in mind that there's tight coupling between the two. 642 643 for (int i = getObjectIndexBegin(); i != 0; ++i) { 644 int FixedOff = -getObjectOffset(i); 645 if (FixedOff > Offset) Offset = FixedOff; 646 } 647 for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) { 648 if (isDeadObjectIndex(i)) 649 continue; 650 Offset += getObjectSize(i); 651 unsigned Align = getObjectAlignment(i); 652 // Adjust to alignment boundary 653 Offset = (Offset+Align-1)/Align*Align; 654 655 MaxAlign = std::max(Align, MaxAlign); 656 } 657 658 if (adjustsStack() && TFI->hasReservedCallFrame(MF)) 659 Offset += getMaxCallFrameSize(); 660 661 // Round up the size to a multiple of the alignment. If the function has 662 // any calls or alloca's, align to the target's StackAlignment value to 663 // ensure that the callee's frame or the alloca data is suitably aligned; 664 // otherwise, for leaf functions, align to the TransientStackAlignment 665 // value. 666 unsigned StackAlign; 667 if (adjustsStack() || hasVarSizedObjects() || 668 (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0)) 669 StackAlign = TFI->getStackAlignment(); 670 else 671 StackAlign = TFI->getTransientStackAlignment(); 672 673 // If the frame pointer is eliminated, all frame offsets will be relative to 674 // SP not FP. Align to MaxAlign so this works. 675 StackAlign = std::max(StackAlign, MaxAlign); 676 unsigned AlignMask = StackAlign - 1; 677 Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); 678 679 return (unsigned)Offset; 680 } 681 682 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 683 if (Objects.empty()) return; 684 685 const TargetFrameLowering *FI = 686 MF.getTarget().getSubtargetImpl()->getFrameLowering(); 687 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 688 689 OS << "Frame Objects:\n"; 690 691 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 692 const StackObject &SO = Objects[i]; 693 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 694 if (SO.Size == ~0ULL) { 695 OS << "dead\n"; 696 continue; 697 } 698 if (SO.Size == 0) 699 OS << "variable sized"; 700 else 701 OS << "size=" << SO.Size; 702 OS << ", align=" << SO.Alignment; 703 704 if (i < NumFixedObjects) 705 OS << ", fixed"; 706 if (i < NumFixedObjects || SO.SPOffset != -1) { 707 int64_t Off = SO.SPOffset - ValOffset; 708 OS << ", at location [SP"; 709 if (Off > 0) 710 OS << "+" << Off; 711 else if (Off < 0) 712 OS << Off; 713 OS << "]"; 714 } 715 OS << "\n"; 716 } 717 } 718 719 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 720 void MachineFrameInfo::dump(const MachineFunction &MF) const { 721 print(MF, dbgs()); 722 } 723 #endif 724 725 //===----------------------------------------------------------------------===// 726 // MachineJumpTableInfo implementation 727 //===----------------------------------------------------------------------===// 728 729 /// getEntrySize - Return the size of each entry in the jump table. 730 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 731 // The size of a jump table entry is 4 bytes unless the entry is just the 732 // address of a block, in which case it is the pointer size. 733 switch (getEntryKind()) { 734 case MachineJumpTableInfo::EK_BlockAddress: 735 return TD.getPointerSize(); 736 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 737 return 8; 738 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 739 case MachineJumpTableInfo::EK_LabelDifference32: 740 case MachineJumpTableInfo::EK_Custom32: 741 return 4; 742 case MachineJumpTableInfo::EK_Inline: 743 return 0; 744 } 745 llvm_unreachable("Unknown jump table encoding!"); 746 } 747 748 /// getEntryAlignment - Return the alignment of each entry in the jump table. 749 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 750 // The alignment of a jump table entry is the alignment of int32 unless the 751 // entry is just the address of a block, in which case it is the pointer 752 // alignment. 753 switch (getEntryKind()) { 754 case MachineJumpTableInfo::EK_BlockAddress: 755 return TD.getPointerABIAlignment(); 756 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 757 return TD.getABIIntegerTypeAlignment(64); 758 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 759 case MachineJumpTableInfo::EK_LabelDifference32: 760 case MachineJumpTableInfo::EK_Custom32: 761 return TD.getABIIntegerTypeAlignment(32); 762 case MachineJumpTableInfo::EK_Inline: 763 return 1; 764 } 765 llvm_unreachable("Unknown jump table encoding!"); 766 } 767 768 /// createJumpTableIndex - Create a new jump table entry in the jump table info. 769 /// 770 unsigned MachineJumpTableInfo::createJumpTableIndex( 771 const std::vector<MachineBasicBlock*> &DestBBs) { 772 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 773 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 774 return JumpTables.size()-1; 775 } 776 777 /// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update 778 /// the jump tables to branch to New instead. 779 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 780 MachineBasicBlock *New) { 781 assert(Old != New && "Not making a change?"); 782 bool MadeChange = false; 783 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 784 ReplaceMBBInJumpTable(i, Old, New); 785 return MadeChange; 786 } 787 788 /// ReplaceMBBInJumpTable - If Old is a target of the jump tables, update 789 /// the jump table to branch to New instead. 790 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 791 MachineBasicBlock *Old, 792 MachineBasicBlock *New) { 793 assert(Old != New && "Not making a change?"); 794 bool MadeChange = false; 795 MachineJumpTableEntry &JTE = JumpTables[Idx]; 796 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 797 if (JTE.MBBs[j] == Old) { 798 JTE.MBBs[j] = New; 799 MadeChange = true; 800 } 801 return MadeChange; 802 } 803 804 void MachineJumpTableInfo::print(raw_ostream &OS) const { 805 if (JumpTables.empty()) return; 806 807 OS << "Jump Tables:\n"; 808 809 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 810 OS << " jt#" << i << ": "; 811 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 812 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 813 } 814 815 OS << '\n'; 816 } 817 818 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 819 void MachineJumpTableInfo::dump() const { print(dbgs()); } 820 #endif 821 822 823 //===----------------------------------------------------------------------===// 824 // MachineConstantPool implementation 825 //===----------------------------------------------------------------------===// 826 827 void MachineConstantPoolValue::anchor() { } 828 829 const DataLayout *MachineConstantPool::getDataLayout() const { 830 return TM.getSubtargetImpl()->getDataLayout(); 831 } 832 833 Type *MachineConstantPoolEntry::getType() const { 834 if (isMachineConstantPoolEntry()) 835 return Val.MachineCPVal->getType(); 836 return Val.ConstVal->getType(); 837 } 838 839 840 unsigned MachineConstantPoolEntry::getRelocationInfo() const { 841 if (isMachineConstantPoolEntry()) 842 return Val.MachineCPVal->getRelocationInfo(); 843 return Val.ConstVal->getRelocationInfo(); 844 } 845 846 SectionKind 847 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 848 SectionKind Kind; 849 switch (getRelocationInfo()) { 850 default: 851 llvm_unreachable("Unknown section kind"); 852 case 2: 853 Kind = SectionKind::getReadOnlyWithRel(); 854 break; 855 case 1: 856 Kind = SectionKind::getReadOnlyWithRelLocal(); 857 break; 858 case 0: 859 switch (DL->getTypeAllocSize(getType())) { 860 case 4: 861 Kind = SectionKind::getMergeableConst4(); 862 break; 863 case 8: 864 Kind = SectionKind::getMergeableConst8(); 865 break; 866 case 16: 867 Kind = SectionKind::getMergeableConst16(); 868 break; 869 default: 870 Kind = SectionKind::getMergeableConst(); 871 break; 872 } 873 } 874 return Kind; 875 } 876 877 MachineConstantPool::~MachineConstantPool() { 878 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 879 if (Constants[i].isMachineConstantPoolEntry()) 880 delete Constants[i].Val.MachineCPVal; 881 for (DenseSet<MachineConstantPoolValue*>::iterator I = 882 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 883 I != E; ++I) 884 delete *I; 885 } 886 887 /// CanShareConstantPoolEntry - Test whether the given two constants 888 /// can be allocated the same constant pool entry. 889 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 890 const DataLayout *TD) { 891 // Handle the trivial case quickly. 892 if (A == B) return true; 893 894 // If they have the same type but weren't the same constant, quickly 895 // reject them. 896 if (A->getType() == B->getType()) return false; 897 898 // We can't handle structs or arrays. 899 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 900 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 901 return false; 902 903 // For now, only support constants with the same size. 904 uint64_t StoreSize = TD->getTypeStoreSize(A->getType()); 905 if (StoreSize != TD->getTypeStoreSize(B->getType()) || StoreSize > 128) 906 return false; 907 908 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 909 910 // Try constant folding a bitcast of both instructions to an integer. If we 911 // get two identical ConstantInt's, then we are good to share them. We use 912 // the constant folding APIs to do this so that we get the benefit of 913 // DataLayout. 914 if (isa<PointerType>(A->getType())) 915 A = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 916 const_cast<Constant*>(A), TD); 917 else if (A->getType() != IntTy) 918 A = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 919 const_cast<Constant*>(A), TD); 920 if (isa<PointerType>(B->getType())) 921 B = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 922 const_cast<Constant*>(B), TD); 923 else if (B->getType() != IntTy) 924 B = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 925 const_cast<Constant*>(B), TD); 926 927 return A == B; 928 } 929 930 /// getConstantPoolIndex - Create a new entry in the constant pool or return 931 /// an existing one. User must specify the log2 of the minimum required 932 /// alignment for the object. 933 /// 934 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 935 unsigned Alignment) { 936 assert(Alignment && "Alignment must be specified!"); 937 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 938 939 // Check to see if we already have this constant. 940 // 941 // FIXME, this could be made much more efficient for large constant pools. 942 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 943 if (!Constants[i].isMachineConstantPoolEntry() && 944 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, 945 getDataLayout())) { 946 if ((unsigned)Constants[i].getAlignment() < Alignment) 947 Constants[i].Alignment = Alignment; 948 return i; 949 } 950 951 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 952 return Constants.size()-1; 953 } 954 955 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 956 unsigned Alignment) { 957 assert(Alignment && "Alignment must be specified!"); 958 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 959 960 // Check to see if we already have this constant. 961 // 962 // FIXME, this could be made much more efficient for large constant pools. 963 int Idx = V->getExistingMachineCPValue(this, Alignment); 964 if (Idx != -1) { 965 MachineCPVsSharingEntries.insert(V); 966 return (unsigned)Idx; 967 } 968 969 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 970 return Constants.size()-1; 971 } 972 973 void MachineConstantPool::print(raw_ostream &OS) const { 974 if (Constants.empty()) return; 975 976 OS << "Constant Pool:\n"; 977 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 978 OS << " cp#" << i << ": "; 979 if (Constants[i].isMachineConstantPoolEntry()) 980 Constants[i].Val.MachineCPVal->print(OS); 981 else 982 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 983 OS << ", align=" << Constants[i].getAlignment(); 984 OS << "\n"; 985 } 986 } 987 988 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 989 void MachineConstantPool::dump() const { print(dbgs()); } 990 #endif 991