1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/EHPersonalities.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/WasmEHFuncInfo.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ModuleSlotTracker.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/MC/MCContext.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/MC/SectionKind.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Compiler.h" 63 #include "llvm/Support/DOTGraphTraits.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/GraphWriter.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <string> 75 #include <type_traits> 76 #include <utility> 77 #include <vector> 78 79 using namespace llvm; 80 81 #define DEBUG_TYPE "codegen" 82 83 static cl::opt<unsigned> AlignAllFunctions( 84 "align-all-functions", 85 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 86 "means align on 16B boundaries)."), 87 cl::init(0), cl::Hidden); 88 89 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 90 using P = MachineFunctionProperties::Property; 91 92 switch(Prop) { 93 case P::FailedISel: return "FailedISel"; 94 case P::IsSSA: return "IsSSA"; 95 case P::Legalized: return "Legalized"; 96 case P::NoPHIs: return "NoPHIs"; 97 case P::NoVRegs: return "NoVRegs"; 98 case P::RegBankSelected: return "RegBankSelected"; 99 case P::Selected: return "Selected"; 100 case P::TracksLiveness: return "TracksLiveness"; 101 case P::TiedOpsRewritten: return "TiedOpsRewritten"; 102 } 103 llvm_unreachable("Invalid machine function property"); 104 } 105 106 // Pin the vtable to this file. 107 void MachineFunction::Delegate::anchor() {} 108 109 void MachineFunctionProperties::print(raw_ostream &OS) const { 110 const char *Separator = ""; 111 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 112 if (!Properties[I]) 113 continue; 114 OS << Separator << getPropertyName(static_cast<Property>(I)); 115 Separator = ", "; 116 } 117 } 118 119 //===----------------------------------------------------------------------===// 120 // MachineFunction implementation 121 //===----------------------------------------------------------------------===// 122 123 // Out-of-line virtual method. 124 MachineFunctionInfo::~MachineFunctionInfo() = default; 125 126 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 127 MBB->getParent()->DeleteMachineBasicBlock(MBB); 128 } 129 130 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 131 const Function &F) { 132 if (F.hasFnAttribute(Attribute::StackAlignment)) 133 return F.getFnStackAlignment(); 134 return STI->getFrameLowering()->getStackAlign().value(); 135 } 136 137 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target, 138 const TargetSubtargetInfo &STI, 139 unsigned FunctionNum, MachineModuleInfo &mmi) 140 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 141 FunctionNumber = FunctionNum; 142 init(); 143 } 144 145 void MachineFunction::handleInsertion(MachineInstr &MI) { 146 if (TheDelegate) 147 TheDelegate->MF_HandleInsertion(MI); 148 } 149 150 void MachineFunction::handleRemoval(MachineInstr &MI) { 151 if (TheDelegate) 152 TheDelegate->MF_HandleRemoval(MI); 153 } 154 155 void MachineFunction::init() { 156 // Assume the function starts in SSA form with correct liveness. 157 Properties.set(MachineFunctionProperties::Property::IsSSA); 158 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 159 if (STI->getRegisterInfo()) 160 RegInfo = new (Allocator) MachineRegisterInfo(this); 161 else 162 RegInfo = nullptr; 163 164 MFInfo = nullptr; 165 // We can realign the stack if the target supports it and the user hasn't 166 // explicitly asked us not to. 167 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 168 !F.hasFnAttribute("no-realign-stack"); 169 FrameInfo = new (Allocator) MachineFrameInfo( 170 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 171 /*ForcedRealign=*/CanRealignSP && 172 F.hasFnAttribute(Attribute::StackAlignment)); 173 174 if (F.hasFnAttribute(Attribute::StackAlignment)) 175 FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); 176 177 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 178 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 179 180 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 181 // FIXME: Use Function::hasOptSize(). 182 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 183 Alignment = std::max(Alignment, 184 STI->getTargetLowering()->getPrefFunctionAlignment()); 185 186 if (AlignAllFunctions) 187 Alignment = Align(1ULL << AlignAllFunctions); 188 189 JumpTableInfo = nullptr; 190 191 if (isFuncletEHPersonality(classifyEHPersonality( 192 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 193 WinEHInfo = new (Allocator) WinEHFuncInfo(); 194 } 195 196 if (isScopedEHPersonality(classifyEHPersonality( 197 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 198 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 199 } 200 201 assert(Target.isCompatibleDataLayout(getDataLayout()) && 202 "Can't create a MachineFunction using a Module with a " 203 "Target-incompatible DataLayout attached\n"); 204 205 PSVManager = 206 std::make_unique<PseudoSourceValueManager>(*(getSubtarget(). 207 getInstrInfo())); 208 } 209 210 MachineFunction::~MachineFunction() { 211 clear(); 212 } 213 214 void MachineFunction::clear() { 215 Properties.reset(); 216 // Don't call destructors on MachineInstr and MachineOperand. All of their 217 // memory comes from the BumpPtrAllocator which is about to be purged. 218 // 219 // Do call MachineBasicBlock destructors, it contains std::vectors. 220 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 221 I->Insts.clearAndLeakNodesUnsafely(); 222 MBBNumbering.clear(); 223 224 InstructionRecycler.clear(Allocator); 225 OperandRecycler.clear(Allocator); 226 BasicBlockRecycler.clear(Allocator); 227 CodeViewAnnotations.clear(); 228 VariableDbgInfos.clear(); 229 if (RegInfo) { 230 RegInfo->~MachineRegisterInfo(); 231 Allocator.Deallocate(RegInfo); 232 } 233 if (MFInfo) { 234 MFInfo->~MachineFunctionInfo(); 235 Allocator.Deallocate(MFInfo); 236 } 237 238 FrameInfo->~MachineFrameInfo(); 239 Allocator.Deallocate(FrameInfo); 240 241 ConstantPool->~MachineConstantPool(); 242 Allocator.Deallocate(ConstantPool); 243 244 if (JumpTableInfo) { 245 JumpTableInfo->~MachineJumpTableInfo(); 246 Allocator.Deallocate(JumpTableInfo); 247 } 248 249 if (WinEHInfo) { 250 WinEHInfo->~WinEHFuncInfo(); 251 Allocator.Deallocate(WinEHInfo); 252 } 253 254 if (WasmEHInfo) { 255 WasmEHInfo->~WasmEHFuncInfo(); 256 Allocator.Deallocate(WasmEHInfo); 257 } 258 } 259 260 const DataLayout &MachineFunction::getDataLayout() const { 261 return F.getParent()->getDataLayout(); 262 } 263 264 /// Get the JumpTableInfo for this function. 265 /// If it does not already exist, allocate one. 266 MachineJumpTableInfo *MachineFunction:: 267 getOrCreateJumpTableInfo(unsigned EntryKind) { 268 if (JumpTableInfo) return JumpTableInfo; 269 270 JumpTableInfo = new (Allocator) 271 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 272 return JumpTableInfo; 273 } 274 275 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { 276 if (&FPType == &APFloat::IEEEsingle()) { 277 Attribute Attr = F.getFnAttribute("denormal-fp-math-f32"); 278 StringRef Val = Attr.getValueAsString(); 279 if (!Val.empty()) 280 return parseDenormalFPAttribute(Val); 281 282 // If the f32 variant of the attribute isn't specified, try to use the 283 // generic one. 284 } 285 286 // TODO: Should probably avoid the connection to the IR and store directly 287 // in the MachineFunction. 288 Attribute Attr = F.getFnAttribute("denormal-fp-math"); 289 return parseDenormalFPAttribute(Attr.getValueAsString()); 290 } 291 292 /// Should we be emitting segmented stack stuff for the function 293 bool MachineFunction::shouldSplitStack() const { 294 return getFunction().hasFnAttribute("split-stack"); 295 } 296 297 LLVM_NODISCARD unsigned 298 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 299 FrameInstructions.push_back(Inst); 300 return FrameInstructions.size() - 1; 301 } 302 303 /// This discards all of the MachineBasicBlock numbers and recomputes them. 304 /// This guarantees that the MBB numbers are sequential, dense, and match the 305 /// ordering of the blocks within the function. If a specific MachineBasicBlock 306 /// is specified, only that block and those after it are renumbered. 307 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 308 if (empty()) { MBBNumbering.clear(); return; } 309 MachineFunction::iterator MBBI, E = end(); 310 if (MBB == nullptr) 311 MBBI = begin(); 312 else 313 MBBI = MBB->getIterator(); 314 315 // Figure out the block number this should have. 316 unsigned BlockNo = 0; 317 if (MBBI != begin()) 318 BlockNo = std::prev(MBBI)->getNumber() + 1; 319 320 for (; MBBI != E; ++MBBI, ++BlockNo) { 321 if (MBBI->getNumber() != (int)BlockNo) { 322 // Remove use of the old number. 323 if (MBBI->getNumber() != -1) { 324 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 325 "MBB number mismatch!"); 326 MBBNumbering[MBBI->getNumber()] = nullptr; 327 } 328 329 // If BlockNo is already taken, set that block's number to -1. 330 if (MBBNumbering[BlockNo]) 331 MBBNumbering[BlockNo]->setNumber(-1); 332 333 MBBNumbering[BlockNo] = &*MBBI; 334 MBBI->setNumber(BlockNo); 335 } 336 } 337 338 // Okay, all the blocks are renumbered. If we have compactified the block 339 // numbering, shrink MBBNumbering now. 340 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 341 MBBNumbering.resize(BlockNo); 342 } 343 344 /// This method iterates over the basic blocks and assigns their IsBeginSection 345 /// and IsEndSection fields. This must be called after MBB layout is finalized 346 /// and the SectionID's are assigned to MBBs. 347 void MachineFunction::assignBeginEndSections() { 348 front().setIsBeginSection(); 349 auto CurrentSectionID = front().getSectionID(); 350 for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) { 351 if (MBBI->getSectionID() == CurrentSectionID) 352 continue; 353 MBBI->setIsBeginSection(); 354 std::prev(MBBI)->setIsEndSection(); 355 CurrentSectionID = MBBI->getSectionID(); 356 } 357 back().setIsEndSection(); 358 } 359 360 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 361 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 362 const DebugLoc &DL, 363 bool NoImp) { 364 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 365 MachineInstr(*this, MCID, DL, NoImp); 366 } 367 368 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 369 /// identical in all ways except the instruction has no parent, prev, or next. 370 MachineInstr * 371 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 372 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 373 MachineInstr(*this, *Orig); 374 } 375 376 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB, 377 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) { 378 MachineInstr *FirstClone = nullptr; 379 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 380 while (true) { 381 MachineInstr *Cloned = CloneMachineInstr(&*I); 382 MBB.insert(InsertBefore, Cloned); 383 if (FirstClone == nullptr) { 384 FirstClone = Cloned; 385 } else { 386 Cloned->bundleWithPred(); 387 } 388 389 if (!I->isBundledWithSucc()) 390 break; 391 ++I; 392 } 393 // Copy over call site info to the cloned instruction if needed. If Orig is in 394 // a bundle, copyCallSiteInfo takes care of finding the call instruction in 395 // the bundle. 396 if (Orig.shouldUpdateCallSiteInfo()) 397 copyCallSiteInfo(&Orig, FirstClone); 398 return *FirstClone; 399 } 400 401 /// Delete the given MachineInstr. 402 /// 403 /// This function also serves as the MachineInstr destructor - the real 404 /// ~MachineInstr() destructor must be empty. 405 void 406 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 407 // Verify that a call site info is at valid state. This assertion should 408 // be triggered during the implementation of support for the 409 // call site info of a new architecture. If the assertion is triggered, 410 // back trace will tell where to insert a call to updateCallSiteInfo(). 411 assert((!MI->isCandidateForCallSiteEntry() || 412 CallSitesInfo.find(MI) == CallSitesInfo.end()) && 413 "Call site info was not updated!"); 414 // Strip it for parts. The operand array and the MI object itself are 415 // independently recyclable. 416 if (MI->Operands) 417 deallocateOperandArray(MI->CapOperands, MI->Operands); 418 // Don't call ~MachineInstr() which must be trivial anyway because 419 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 420 // destructors. 421 InstructionRecycler.Deallocate(Allocator, MI); 422 } 423 424 /// Allocate a new MachineBasicBlock. Use this instead of 425 /// `new MachineBasicBlock'. 426 MachineBasicBlock * 427 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 428 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 429 MachineBasicBlock(*this, bb); 430 } 431 432 /// Delete the given MachineBasicBlock. 433 void 434 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 435 assert(MBB->getParent() == this && "MBB parent mismatch!"); 436 MBB->~MachineBasicBlock(); 437 BasicBlockRecycler.Deallocate(Allocator, MBB); 438 } 439 440 MachineMemOperand *MachineFunction::getMachineMemOperand( 441 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 442 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 443 SyncScope::ID SSID, AtomicOrdering Ordering, 444 AtomicOrdering FailureOrdering) { 445 return new (Allocator) 446 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 447 SSID, Ordering, FailureOrdering); 448 } 449 450 MachineMemOperand *MachineFunction::getMachineMemOperand( 451 const MachineMemOperand *MMO, MachinePointerInfo &PtrInfo, uint64_t Size) { 452 return new (Allocator) MachineMemOperand( 453 PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), AAMDNodes(), nullptr, 454 MMO->getSyncScopeID(), MMO->getOrdering(), MMO->getFailureOrdering()); 455 } 456 457 MachineMemOperand * 458 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 459 int64_t Offset, uint64_t Size) { 460 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 461 462 // If there is no pointer value, the offset isn't tracked so we need to adjust 463 // the base alignment. 464 Align Alignment = PtrInfo.V.isNull() 465 ? commonAlignment(MMO->getBaseAlign(), Offset) 466 : MMO->getBaseAlign(); 467 468 // Do not preserve ranges, since we don't necessarily know what the high bits 469 // are anymore. 470 return new (Allocator) 471 MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size, 472 Alignment, MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(), 473 MMO->getOrdering(), MMO->getFailureOrdering()); 474 } 475 476 MachineMemOperand * 477 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 478 const AAMDNodes &AAInfo) { 479 MachinePointerInfo MPI = MMO->getValue() ? 480 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 481 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 482 483 return new (Allocator) MachineMemOperand( 484 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, 485 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getOrdering(), 486 MMO->getFailureOrdering()); 487 } 488 489 MachineMemOperand * 490 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 491 MachineMemOperand::Flags Flags) { 492 return new (Allocator) MachineMemOperand( 493 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), 494 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 495 MMO->getOrdering(), MMO->getFailureOrdering()); 496 } 497 498 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 499 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 500 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) { 501 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 502 PostInstrSymbol, HeapAllocMarker); 503 } 504 505 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 506 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 507 llvm::copy(Name, Dest); 508 Dest[Name.size()] = 0; 509 return Dest; 510 } 511 512 uint32_t *MachineFunction::allocateRegMask() { 513 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 514 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 515 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 516 memset(Mask, 0, Size * sizeof(Mask[0])); 517 return Mask; 518 } 519 520 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { 521 int* AllocMask = Allocator.Allocate<int>(Mask.size()); 522 copy(Mask, AllocMask); 523 return {AllocMask, Mask.size()}; 524 } 525 526 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 527 LLVM_DUMP_METHOD void MachineFunction::dump() const { 528 print(dbgs()); 529 } 530 #endif 531 532 StringRef MachineFunction::getName() const { 533 return getFunction().getName(); 534 } 535 536 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 537 OS << "# Machine code for function " << getName() << ": "; 538 getProperties().print(OS); 539 OS << '\n'; 540 541 // Print Frame Information 542 FrameInfo->print(*this, OS); 543 544 // Print JumpTable Information 545 if (JumpTableInfo) 546 JumpTableInfo->print(OS); 547 548 // Print Constant Pool 549 ConstantPool->print(OS); 550 551 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 552 553 if (RegInfo && !RegInfo->livein_empty()) { 554 OS << "Function Live Ins: "; 555 for (MachineRegisterInfo::livein_iterator 556 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 557 OS << printReg(I->first, TRI); 558 if (I->second) 559 OS << " in " << printReg(I->second, TRI); 560 if (std::next(I) != E) 561 OS << ", "; 562 } 563 OS << '\n'; 564 } 565 566 ModuleSlotTracker MST(getFunction().getParent()); 567 MST.incorporateFunction(getFunction()); 568 for (const auto &BB : *this) { 569 OS << '\n'; 570 // If we print the whole function, print it at its most verbose level. 571 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 572 } 573 574 OS << "\n# End machine code for function " << getName() << ".\n\n"; 575 } 576 577 /// True if this function needs frame moves for debug or exceptions. 578 bool MachineFunction::needsFrameMoves() const { 579 return getMMI().hasDebugInfo() || 580 getTarget().Options.ForceDwarfFrameSection || 581 F.needsUnwindTableEntry(); 582 } 583 584 namespace llvm { 585 586 template<> 587 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 588 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 589 590 static std::string getGraphName(const MachineFunction *F) { 591 return ("CFG for '" + F->getName() + "' function").str(); 592 } 593 594 std::string getNodeLabel(const MachineBasicBlock *Node, 595 const MachineFunction *Graph) { 596 std::string OutStr; 597 { 598 raw_string_ostream OSS(OutStr); 599 600 if (isSimple()) { 601 OSS << printMBBReference(*Node); 602 if (const BasicBlock *BB = Node->getBasicBlock()) 603 OSS << ": " << BB->getName(); 604 } else 605 Node->print(OSS); 606 } 607 608 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 609 610 // Process string output to make it nicer... 611 for (unsigned i = 0; i != OutStr.length(); ++i) 612 if (OutStr[i] == '\n') { // Left justify 613 OutStr[i] = '\\'; 614 OutStr.insert(OutStr.begin()+i+1, 'l'); 615 } 616 return OutStr; 617 } 618 }; 619 620 } // end namespace llvm 621 622 void MachineFunction::viewCFG() const 623 { 624 #ifndef NDEBUG 625 ViewGraph(this, "mf" + getName()); 626 #else 627 errs() << "MachineFunction::viewCFG is only available in debug builds on " 628 << "systems with Graphviz or gv!\n"; 629 #endif // NDEBUG 630 } 631 632 void MachineFunction::viewCFGOnly() const 633 { 634 #ifndef NDEBUG 635 ViewGraph(this, "mf" + getName(), true); 636 #else 637 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 638 << "systems with Graphviz or gv!\n"; 639 #endif // NDEBUG 640 } 641 642 /// Add the specified physical register as a live-in value and 643 /// create a corresponding virtual register for it. 644 Register MachineFunction::addLiveIn(MCRegister PReg, 645 const TargetRegisterClass *RC) { 646 MachineRegisterInfo &MRI = getRegInfo(); 647 Register VReg = MRI.getLiveInVirtReg(PReg); 648 if (VReg) { 649 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 650 (void)VRegRC; 651 // A physical register can be added several times. 652 // Between two calls, the register class of the related virtual register 653 // may have been constrained to match some operation constraints. 654 // In that case, check that the current register class includes the 655 // physical register and is a sub class of the specified RC. 656 assert((VRegRC == RC || (VRegRC->contains(PReg) && 657 RC->hasSubClassEq(VRegRC))) && 658 "Register class mismatch!"); 659 return VReg; 660 } 661 VReg = MRI.createVirtualRegister(RC); 662 MRI.addLiveIn(PReg, VReg); 663 return VReg; 664 } 665 666 /// Return the MCSymbol for the specified non-empty jump table. 667 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 668 /// normal 'L' label is returned. 669 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 670 bool isLinkerPrivate) const { 671 const DataLayout &DL = getDataLayout(); 672 assert(JumpTableInfo && "No jump tables"); 673 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 674 675 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 676 : DL.getPrivateGlobalPrefix(); 677 SmallString<60> Name; 678 raw_svector_ostream(Name) 679 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 680 return Ctx.getOrCreateSymbol(Name); 681 } 682 683 /// Return a function-local symbol to represent the PIC base. 684 MCSymbol *MachineFunction::getPICBaseSymbol() const { 685 const DataLayout &DL = getDataLayout(); 686 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 687 Twine(getFunctionNumber()) + "$pb"); 688 } 689 690 /// \name Exception Handling 691 /// \{ 692 693 LandingPadInfo & 694 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 695 unsigned N = LandingPads.size(); 696 for (unsigned i = 0; i < N; ++i) { 697 LandingPadInfo &LP = LandingPads[i]; 698 if (LP.LandingPadBlock == LandingPad) 699 return LP; 700 } 701 702 LandingPads.push_back(LandingPadInfo(LandingPad)); 703 return LandingPads[N]; 704 } 705 706 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 707 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 708 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 709 LP.BeginLabels.push_back(BeginLabel); 710 LP.EndLabels.push_back(EndLabel); 711 } 712 713 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 714 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 715 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 716 LP.LandingPadLabel = LandingPadLabel; 717 718 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 719 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 720 if (const auto *PF = 721 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts())) 722 getMMI().addPersonality(PF); 723 724 if (LPI->isCleanup()) 725 addCleanup(LandingPad); 726 727 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 728 // correct, but we need to do it this way because of how the DWARF EH 729 // emitter processes the clauses. 730 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 731 Value *Val = LPI->getClause(I - 1); 732 if (LPI->isCatch(I - 1)) { 733 addCatchTypeInfo(LandingPad, 734 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 735 } else { 736 // Add filters in a list. 737 auto *CVal = cast<Constant>(Val); 738 SmallVector<const GlobalValue *, 4> FilterList; 739 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end(); 740 II != IE; ++II) 741 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 742 743 addFilterTypeInfo(LandingPad, FilterList); 744 } 745 } 746 747 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 748 for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) { 749 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts(); 750 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo)); 751 } 752 753 } else { 754 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 755 } 756 757 return LandingPadLabel; 758 } 759 760 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 761 ArrayRef<const GlobalValue *> TyInfo) { 762 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 763 for (unsigned N = TyInfo.size(); N; --N) 764 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); 765 } 766 767 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 768 ArrayRef<const GlobalValue *> TyInfo) { 769 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 770 std::vector<unsigned> IdsInFilter(TyInfo.size()); 771 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 772 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 773 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 774 } 775 776 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap, 777 bool TidyIfNoBeginLabels) { 778 for (unsigned i = 0; i != LandingPads.size(); ) { 779 LandingPadInfo &LandingPad = LandingPads[i]; 780 if (LandingPad.LandingPadLabel && 781 !LandingPad.LandingPadLabel->isDefined() && 782 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 783 LandingPad.LandingPadLabel = nullptr; 784 785 // Special case: we *should* emit LPs with null LP MBB. This indicates 786 // "nounwind" case. 787 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 788 LandingPads.erase(LandingPads.begin() + i); 789 continue; 790 } 791 792 if (TidyIfNoBeginLabels) { 793 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 794 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 795 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 796 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) && 797 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0))) 798 continue; 799 800 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 801 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 802 --j; 803 --e; 804 } 805 806 // Remove landing pads with no try-ranges. 807 if (LandingPads[i].BeginLabels.empty()) { 808 LandingPads.erase(LandingPads.begin() + i); 809 continue; 810 } 811 } 812 813 // If there is no landing pad, ensure that the list of typeids is empty. 814 // If the only typeid is a cleanup, this is the same as having no typeids. 815 if (!LandingPad.LandingPadBlock || 816 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 817 LandingPad.TypeIds.clear(); 818 ++i; 819 } 820 } 821 822 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 823 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 824 LP.TypeIds.push_back(0); 825 } 826 827 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, 828 const Function *Filter, 829 const BlockAddress *RecoverBA) { 830 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 831 SEHHandler Handler; 832 Handler.FilterOrFinally = Filter; 833 Handler.RecoverBA = RecoverBA; 834 LP.SEHHandlers.push_back(Handler); 835 } 836 837 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, 838 const Function *Cleanup) { 839 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 840 SEHHandler Handler; 841 Handler.FilterOrFinally = Cleanup; 842 Handler.RecoverBA = nullptr; 843 LP.SEHHandlers.push_back(Handler); 844 } 845 846 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 847 ArrayRef<unsigned> Sites) { 848 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 849 } 850 851 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 852 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 853 if (TypeInfos[i] == TI) return i + 1; 854 855 TypeInfos.push_back(TI); 856 return TypeInfos.size(); 857 } 858 859 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 860 // If the new filter coincides with the tail of an existing filter, then 861 // re-use the existing filter. Folding filters more than this requires 862 // re-ordering filters and/or their elements - probably not worth it. 863 for (std::vector<unsigned>::iterator I = FilterEnds.begin(), 864 E = FilterEnds.end(); I != E; ++I) { 865 unsigned i = *I, j = TyIds.size(); 866 867 while (i && j) 868 if (FilterIds[--i] != TyIds[--j]) 869 goto try_next; 870 871 if (!j) 872 // The new filter coincides with range [i, end) of the existing filter. 873 return -(1 + i); 874 875 try_next:; 876 } 877 878 // Add the new filter. 879 int FilterID = -(1 + FilterIds.size()); 880 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 881 FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end()); 882 FilterEnds.push_back(FilterIds.size()); 883 FilterIds.push_back(0); // terminator 884 return FilterID; 885 } 886 887 MachineFunction::CallSiteInfoMap::iterator 888 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 889 assert(MI->isCandidateForCallSiteEntry() && 890 "Call site info refers only to call (MI) candidates"); 891 892 if (!Target.Options.EmitCallSiteInfo) 893 return CallSitesInfo.end(); 894 return CallSitesInfo.find(MI); 895 } 896 897 /// Return the call machine instruction or find a call within bundle. 898 static const MachineInstr *getCallInstr(const MachineInstr *MI) { 899 if (!MI->isBundle()) 900 return MI; 901 902 for (auto &BMI : make_range(getBundleStart(MI->getIterator()), 903 getBundleEnd(MI->getIterator()))) 904 if (BMI.isCandidateForCallSiteEntry()) 905 return &BMI; 906 907 llvm_unreachable("Unexpected bundle without a call site candidate"); 908 } 909 910 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 911 assert(MI->shouldUpdateCallSiteInfo() && 912 "Call site info refers only to call (MI) candidates or " 913 "candidates inside bundles"); 914 915 const MachineInstr *CallMI = getCallInstr(MI); 916 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); 917 if (CSIt == CallSitesInfo.end()) 918 return; 919 CallSitesInfo.erase(CSIt); 920 } 921 922 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 923 const MachineInstr *New) { 924 assert(Old->shouldUpdateCallSiteInfo() && 925 "Call site info refers only to call (MI) candidates or " 926 "candidates inside bundles"); 927 928 if (!New->isCandidateForCallSiteEntry()) 929 return eraseCallSiteInfo(Old); 930 931 const MachineInstr *OldCallMI = getCallInstr(Old); 932 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 933 if (CSIt == CallSitesInfo.end()) 934 return; 935 936 CallSiteInfo CSInfo = CSIt->second; 937 CallSitesInfo[New] = CSInfo; 938 } 939 940 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 941 const MachineInstr *New) { 942 assert(Old->shouldUpdateCallSiteInfo() && 943 "Call site info refers only to call (MI) candidates or " 944 "candidates inside bundles"); 945 946 if (!New->isCandidateForCallSiteEntry()) 947 return eraseCallSiteInfo(Old); 948 949 const MachineInstr *OldCallMI = getCallInstr(Old); 950 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 951 if (CSIt == CallSitesInfo.end()) 952 return; 953 954 CallSiteInfo CSInfo = std::move(CSIt->second); 955 CallSitesInfo.erase(CSIt); 956 CallSitesInfo[New] = CSInfo; 957 } 958 959 /// \} 960 961 //===----------------------------------------------------------------------===// 962 // MachineJumpTableInfo implementation 963 //===----------------------------------------------------------------------===// 964 965 /// Return the size of each entry in the jump table. 966 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 967 // The size of a jump table entry is 4 bytes unless the entry is just the 968 // address of a block, in which case it is the pointer size. 969 switch (getEntryKind()) { 970 case MachineJumpTableInfo::EK_BlockAddress: 971 return TD.getPointerSize(); 972 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 973 return 8; 974 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 975 case MachineJumpTableInfo::EK_LabelDifference32: 976 case MachineJumpTableInfo::EK_Custom32: 977 return 4; 978 case MachineJumpTableInfo::EK_Inline: 979 return 0; 980 } 981 llvm_unreachable("Unknown jump table encoding!"); 982 } 983 984 /// Return the alignment of each entry in the jump table. 985 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 986 // The alignment of a jump table entry is the alignment of int32 unless the 987 // entry is just the address of a block, in which case it is the pointer 988 // alignment. 989 switch (getEntryKind()) { 990 case MachineJumpTableInfo::EK_BlockAddress: 991 return TD.getPointerABIAlignment(0).value(); 992 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 993 return TD.getABIIntegerTypeAlignment(64).value(); 994 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 995 case MachineJumpTableInfo::EK_LabelDifference32: 996 case MachineJumpTableInfo::EK_Custom32: 997 return TD.getABIIntegerTypeAlignment(32).value(); 998 case MachineJumpTableInfo::EK_Inline: 999 return 1; 1000 } 1001 llvm_unreachable("Unknown jump table encoding!"); 1002 } 1003 1004 /// Create a new jump table entry in the jump table info. 1005 unsigned MachineJumpTableInfo::createJumpTableIndex( 1006 const std::vector<MachineBasicBlock*> &DestBBs) { 1007 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 1008 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 1009 return JumpTables.size()-1; 1010 } 1011 1012 /// If Old is the target of any jump tables, update the jump tables to branch 1013 /// to New instead. 1014 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 1015 MachineBasicBlock *New) { 1016 assert(Old != New && "Not making a change?"); 1017 bool MadeChange = false; 1018 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 1019 ReplaceMBBInJumpTable(i, Old, New); 1020 return MadeChange; 1021 } 1022 1023 /// If Old is a target of the jump tables, update the jump table to branch to 1024 /// New instead. 1025 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 1026 MachineBasicBlock *Old, 1027 MachineBasicBlock *New) { 1028 assert(Old != New && "Not making a change?"); 1029 bool MadeChange = false; 1030 MachineJumpTableEntry &JTE = JumpTables[Idx]; 1031 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 1032 if (JTE.MBBs[j] == Old) { 1033 JTE.MBBs[j] = New; 1034 MadeChange = true; 1035 } 1036 return MadeChange; 1037 } 1038 1039 void MachineJumpTableInfo::print(raw_ostream &OS) const { 1040 if (JumpTables.empty()) return; 1041 1042 OS << "Jump Tables:\n"; 1043 1044 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 1045 OS << printJumpTableEntryReference(i) << ':'; 1046 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 1047 OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]); 1048 if (i != e) 1049 OS << '\n'; 1050 } 1051 1052 OS << '\n'; 1053 } 1054 1055 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1056 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 1057 #endif 1058 1059 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 1060 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 1061 } 1062 1063 //===----------------------------------------------------------------------===// 1064 // MachineConstantPool implementation 1065 //===----------------------------------------------------------------------===// 1066 1067 void MachineConstantPoolValue::anchor() {} 1068 1069 Type *MachineConstantPoolEntry::getType() const { 1070 if (isMachineConstantPoolEntry()) 1071 return Val.MachineCPVal->getType(); 1072 return Val.ConstVal->getType(); 1073 } 1074 1075 bool MachineConstantPoolEntry::needsRelocation() const { 1076 if (isMachineConstantPoolEntry()) 1077 return true; 1078 return Val.ConstVal->needsRelocation(); 1079 } 1080 1081 SectionKind 1082 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 1083 if (needsRelocation()) 1084 return SectionKind::getReadOnlyWithRel(); 1085 switch (DL->getTypeAllocSize(getType())) { 1086 case 4: 1087 return SectionKind::getMergeableConst4(); 1088 case 8: 1089 return SectionKind::getMergeableConst8(); 1090 case 16: 1091 return SectionKind::getMergeableConst16(); 1092 case 32: 1093 return SectionKind::getMergeableConst32(); 1094 default: 1095 return SectionKind::getReadOnly(); 1096 } 1097 } 1098 1099 MachineConstantPool::~MachineConstantPool() { 1100 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1101 // so keep track of which we've deleted to avoid double deletions. 1102 DenseSet<MachineConstantPoolValue*> Deleted; 1103 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1104 if (Constants[i].isMachineConstantPoolEntry()) { 1105 Deleted.insert(Constants[i].Val.MachineCPVal); 1106 delete Constants[i].Val.MachineCPVal; 1107 } 1108 for (DenseSet<MachineConstantPoolValue*>::iterator I = 1109 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 1110 I != E; ++I) { 1111 if (Deleted.count(*I) == 0) 1112 delete *I; 1113 } 1114 } 1115 1116 /// Test whether the given two constants can be allocated the same constant pool 1117 /// entry. 1118 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1119 const DataLayout &DL) { 1120 // Handle the trivial case quickly. 1121 if (A == B) return true; 1122 1123 // If they have the same type but weren't the same constant, quickly 1124 // reject them. 1125 if (A->getType() == B->getType()) return false; 1126 1127 // We can't handle structs or arrays. 1128 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1129 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1130 return false; 1131 1132 // For now, only support constants with the same size. 1133 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1134 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1135 return false; 1136 1137 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1138 1139 // Try constant folding a bitcast of both instructions to an integer. If we 1140 // get two identical ConstantInt's, then we are good to share them. We use 1141 // the constant folding APIs to do this so that we get the benefit of 1142 // DataLayout. 1143 if (isa<PointerType>(A->getType())) 1144 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1145 const_cast<Constant *>(A), IntTy, DL); 1146 else if (A->getType() != IntTy) 1147 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1148 IntTy, DL); 1149 if (isa<PointerType>(B->getType())) 1150 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1151 const_cast<Constant *>(B), IntTy, DL); 1152 else if (B->getType() != IntTy) 1153 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1154 IntTy, DL); 1155 1156 return A == B; 1157 } 1158 1159 /// Create a new entry in the constant pool or return an existing one. 1160 /// User must specify the log2 of the minimum required alignment for the object. 1161 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1162 Align Alignment) { 1163 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1164 1165 // Check to see if we already have this constant. 1166 // 1167 // FIXME, this could be made much more efficient for large constant pools. 1168 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1169 if (!Constants[i].isMachineConstantPoolEntry() && 1170 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1171 if (Constants[i].getAlign() < Alignment) 1172 Constants[i].Alignment = Alignment; 1173 return i; 1174 } 1175 1176 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1177 return Constants.size()-1; 1178 } 1179 1180 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1181 Align Alignment) { 1182 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1183 1184 // Check to see if we already have this constant. 1185 // 1186 // FIXME, this could be made much more efficient for large constant pools. 1187 int Idx = V->getExistingMachineCPValue(this, Alignment); 1188 if (Idx != -1) { 1189 MachineCPVsSharingEntries.insert(V); 1190 return (unsigned)Idx; 1191 } 1192 1193 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1194 return Constants.size()-1; 1195 } 1196 1197 void MachineConstantPool::print(raw_ostream &OS) const { 1198 if (Constants.empty()) return; 1199 1200 OS << "Constant Pool:\n"; 1201 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1202 OS << " cp#" << i << ": "; 1203 if (Constants[i].isMachineConstantPoolEntry()) 1204 Constants[i].Val.MachineCPVal->print(OS); 1205 else 1206 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1207 OS << ", align=" << Constants[i].getAlign().value(); 1208 OS << "\n"; 1209 } 1210 } 1211 1212 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1213 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1214 #endif 1215