1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/EHPersonalities.h" 21 #include "llvm/CodeGen/MachineConstantPool.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionInitializer.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/Passes.h" 30 #include "llvm/CodeGen/PseudoSourceValue.h" 31 #include "llvm/CodeGen/WinEHFuncInfo.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/ModuleSlotTracker.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCContext.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetFrameLowering.h" 43 #include "llvm/Target/TargetLowering.h" 44 #include "llvm/Target/TargetMachine.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 using namespace llvm; 47 48 #define DEBUG_TYPE "codegen" 49 50 static cl::opt<unsigned> 51 AlignAllFunctions("align-all-functions", 52 cl::desc("Force the alignment of all functions."), 53 cl::init(0), cl::Hidden); 54 55 void MachineFunctionInitializer::anchor() {} 56 57 void MachineFunctionProperties::print(raw_ostream &ROS) const { 58 // Leave this function even in NDEBUG as an out-of-line anchor. 59 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 60 for (BitVector::size_type i = 0; i < Properties.size(); ++i) { 61 bool HasProperty = Properties[i]; 62 switch(static_cast<Property>(i)) { 63 case Property::IsSSA: 64 ROS << (HasProperty ? "SSA, " : "Post SSA, "); 65 break; 66 case Property::AllVRegsAllocated: 67 ROS << (HasProperty ? "AllVRegsAllocated" : "HasVRegs"); 68 break; 69 default: 70 break; 71 } 72 } 73 #endif 74 } 75 76 //===----------------------------------------------------------------------===// 77 // MachineFunction implementation 78 //===----------------------------------------------------------------------===// 79 80 // Out-of-line virtual method. 81 MachineFunctionInfo::~MachineFunctionInfo() {} 82 83 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 84 MBB->getParent()->DeleteMachineBasicBlock(MBB); 85 } 86 87 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 88 const Function *Fn) { 89 if (Fn->hasFnAttribute(Attribute::StackAlignment)) 90 return Fn->getFnStackAlignment(); 91 return STI->getFrameLowering()->getStackAlignment(); 92 } 93 94 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 95 unsigned FunctionNum, MachineModuleInfo &mmi) 96 : Fn(F), Target(TM), STI(TM.getSubtargetImpl(*F)), Ctx(mmi.getContext()), 97 MMI(mmi) { 98 // Assume the function starts in SSA form. 99 Properties.set(MachineFunctionProperties::Property::IsSSA); 100 if (STI->getRegisterInfo()) 101 RegInfo = new (Allocator) MachineRegisterInfo(this); 102 else 103 RegInfo = nullptr; 104 105 MFInfo = nullptr; 106 // We can realign the stack if the target supports it and the user hasn't 107 // explicitly asked us not to. 108 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 109 !F->hasFnAttribute("no-realign-stack"); 110 FrameInfo = new (Allocator) MachineFrameInfo( 111 getFnStackAlignment(STI, Fn), /*StackRealignable=*/CanRealignSP, 112 /*ForceRealign=*/CanRealignSP && 113 F->hasFnAttribute(Attribute::StackAlignment)); 114 115 if (Fn->hasFnAttribute(Attribute::StackAlignment)) 116 FrameInfo->ensureMaxAlignment(Fn->getFnStackAlignment()); 117 118 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 119 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 120 121 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 122 // FIXME: Use Function::optForSize(). 123 if (!Fn->hasFnAttribute(Attribute::OptimizeForSize)) 124 Alignment = std::max(Alignment, 125 STI->getTargetLowering()->getPrefFunctionAlignment()); 126 127 if (AlignAllFunctions) 128 Alignment = AlignAllFunctions; 129 130 FunctionNumber = FunctionNum; 131 JumpTableInfo = nullptr; 132 133 if (isFuncletEHPersonality(classifyEHPersonality( 134 F->hasPersonalityFn() ? F->getPersonalityFn() : nullptr))) { 135 WinEHInfo = new (Allocator) WinEHFuncInfo(); 136 } 137 138 assert(TM.isCompatibleDataLayout(getDataLayout()) && 139 "Can't create a MachineFunction using a Module with a " 140 "Target-incompatible DataLayout attached\n"); 141 142 PSVManager = llvm::make_unique<PseudoSourceValueManager>(); 143 } 144 145 MachineFunction::~MachineFunction() { 146 // Don't call destructors on MachineInstr and MachineOperand. All of their 147 // memory comes from the BumpPtrAllocator which is about to be purged. 148 // 149 // Do call MachineBasicBlock destructors, it contains std::vectors. 150 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 151 I->Insts.clearAndLeakNodesUnsafely(); 152 153 InstructionRecycler.clear(Allocator); 154 OperandRecycler.clear(Allocator); 155 BasicBlockRecycler.clear(Allocator); 156 if (RegInfo) { 157 RegInfo->~MachineRegisterInfo(); 158 Allocator.Deallocate(RegInfo); 159 } 160 if (MFInfo) { 161 MFInfo->~MachineFunctionInfo(); 162 Allocator.Deallocate(MFInfo); 163 } 164 165 FrameInfo->~MachineFrameInfo(); 166 Allocator.Deallocate(FrameInfo); 167 168 ConstantPool->~MachineConstantPool(); 169 Allocator.Deallocate(ConstantPool); 170 171 if (JumpTableInfo) { 172 JumpTableInfo->~MachineJumpTableInfo(); 173 Allocator.Deallocate(JumpTableInfo); 174 } 175 176 if (WinEHInfo) { 177 WinEHInfo->~WinEHFuncInfo(); 178 Allocator.Deallocate(WinEHInfo); 179 } 180 } 181 182 const DataLayout &MachineFunction::getDataLayout() const { 183 return Fn->getParent()->getDataLayout(); 184 } 185 186 /// Get the JumpTableInfo for this function. 187 /// If it does not already exist, allocate one. 188 MachineJumpTableInfo *MachineFunction:: 189 getOrCreateJumpTableInfo(unsigned EntryKind) { 190 if (JumpTableInfo) return JumpTableInfo; 191 192 JumpTableInfo = new (Allocator) 193 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 194 return JumpTableInfo; 195 } 196 197 /// Should we be emitting segmented stack stuff for the function 198 bool MachineFunction::shouldSplitStack() const { 199 return getFunction()->hasFnAttribute("split-stack"); 200 } 201 202 /// This discards all of the MachineBasicBlock numbers and recomputes them. 203 /// This guarantees that the MBB numbers are sequential, dense, and match the 204 /// ordering of the blocks within the function. If a specific MachineBasicBlock 205 /// is specified, only that block and those after it are renumbered. 206 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 207 if (empty()) { MBBNumbering.clear(); return; } 208 MachineFunction::iterator MBBI, E = end(); 209 if (MBB == nullptr) 210 MBBI = begin(); 211 else 212 MBBI = MBB->getIterator(); 213 214 // Figure out the block number this should have. 215 unsigned BlockNo = 0; 216 if (MBBI != begin()) 217 BlockNo = std::prev(MBBI)->getNumber() + 1; 218 219 for (; MBBI != E; ++MBBI, ++BlockNo) { 220 if (MBBI->getNumber() != (int)BlockNo) { 221 // Remove use of the old number. 222 if (MBBI->getNumber() != -1) { 223 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 224 "MBB number mismatch!"); 225 MBBNumbering[MBBI->getNumber()] = nullptr; 226 } 227 228 // If BlockNo is already taken, set that block's number to -1. 229 if (MBBNumbering[BlockNo]) 230 MBBNumbering[BlockNo]->setNumber(-1); 231 232 MBBNumbering[BlockNo] = &*MBBI; 233 MBBI->setNumber(BlockNo); 234 } 235 } 236 237 // Okay, all the blocks are renumbered. If we have compactified the block 238 // numbering, shrink MBBNumbering now. 239 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 240 MBBNumbering.resize(BlockNo); 241 } 242 243 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 244 MachineInstr * 245 MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 246 DebugLoc DL, bool NoImp) { 247 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 248 MachineInstr(*this, MCID, DL, NoImp); 249 } 250 251 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 252 /// identical in all ways except the instruction has no parent, prev, or next. 253 MachineInstr * 254 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 255 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 256 MachineInstr(*this, *Orig); 257 } 258 259 /// Delete the given MachineInstr. 260 /// 261 /// This function also serves as the MachineInstr destructor - the real 262 /// ~MachineInstr() destructor must be empty. 263 void 264 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 265 // Strip it for parts. The operand array and the MI object itself are 266 // independently recyclable. 267 if (MI->Operands) 268 deallocateOperandArray(MI->CapOperands, MI->Operands); 269 // Don't call ~MachineInstr() which must be trivial anyway because 270 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 271 // destructors. 272 InstructionRecycler.Deallocate(Allocator, MI); 273 } 274 275 /// Allocate a new MachineBasicBlock. Use this instead of 276 /// `new MachineBasicBlock'. 277 MachineBasicBlock * 278 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 279 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 280 MachineBasicBlock(*this, bb); 281 } 282 283 /// Delete the given MachineBasicBlock. 284 void 285 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 286 assert(MBB->getParent() == this && "MBB parent mismatch!"); 287 MBB->~MachineBasicBlock(); 288 BasicBlockRecycler.Deallocate(Allocator, MBB); 289 } 290 291 MachineMemOperand * 292 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 293 uint64_t s, unsigned base_alignment, 294 const AAMDNodes &AAInfo, 295 const MDNode *Ranges) { 296 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 297 AAInfo, Ranges); 298 } 299 300 MachineMemOperand * 301 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 302 int64_t Offset, uint64_t Size) { 303 if (MMO->getValue()) 304 return new (Allocator) 305 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 306 MMO->getOffset()+Offset), 307 MMO->getFlags(), Size, 308 MMO->getBaseAlignment()); 309 return new (Allocator) 310 MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(), 311 MMO->getOffset()+Offset), 312 MMO->getFlags(), Size, 313 MMO->getBaseAlignment()); 314 } 315 316 MachineInstr::mmo_iterator 317 MachineFunction::allocateMemRefsArray(unsigned long Num) { 318 return Allocator.Allocate<MachineMemOperand *>(Num); 319 } 320 321 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 322 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 323 MachineInstr::mmo_iterator End) { 324 // Count the number of load mem refs. 325 unsigned Num = 0; 326 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 327 if ((*I)->isLoad()) 328 ++Num; 329 330 // Allocate a new array and populate it with the load information. 331 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 332 unsigned Index = 0; 333 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 334 if ((*I)->isLoad()) { 335 if (!(*I)->isStore()) 336 // Reuse the MMO. 337 Result[Index] = *I; 338 else { 339 // Clone the MMO and unset the store flag. 340 MachineMemOperand *JustLoad = 341 getMachineMemOperand((*I)->getPointerInfo(), 342 (*I)->getFlags() & ~MachineMemOperand::MOStore, 343 (*I)->getSize(), (*I)->getBaseAlignment(), 344 (*I)->getAAInfo()); 345 Result[Index] = JustLoad; 346 } 347 ++Index; 348 } 349 } 350 return std::make_pair(Result, Result + Num); 351 } 352 353 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 354 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 355 MachineInstr::mmo_iterator End) { 356 // Count the number of load mem refs. 357 unsigned Num = 0; 358 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 359 if ((*I)->isStore()) 360 ++Num; 361 362 // Allocate a new array and populate it with the store information. 363 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 364 unsigned Index = 0; 365 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 366 if ((*I)->isStore()) { 367 if (!(*I)->isLoad()) 368 // Reuse the MMO. 369 Result[Index] = *I; 370 else { 371 // Clone the MMO and unset the load flag. 372 MachineMemOperand *JustStore = 373 getMachineMemOperand((*I)->getPointerInfo(), 374 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 375 (*I)->getSize(), (*I)->getBaseAlignment(), 376 (*I)->getAAInfo()); 377 Result[Index] = JustStore; 378 } 379 ++Index; 380 } 381 } 382 return std::make_pair(Result, Result + Num); 383 } 384 385 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 386 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 387 std::copy(Name.begin(), Name.end(), Dest); 388 Dest[Name.size()] = 0; 389 return Dest; 390 } 391 392 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 393 LLVM_DUMP_METHOD void MachineFunction::dump() const { 394 print(dbgs()); 395 } 396 #endif 397 398 StringRef MachineFunction::getName() const { 399 assert(getFunction() && "No function!"); 400 return getFunction()->getName(); 401 } 402 403 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const { 404 OS << "# Machine code for function " << getName() << ": "; 405 OS << "Properties: <"; 406 getProperties().print(OS); 407 OS << "> : "; 408 if (RegInfo) { 409 if (!RegInfo->tracksLiveness()) 410 OS << "not tracking liveness"; 411 } 412 OS << '\n'; 413 414 // Print Frame Information 415 FrameInfo->print(*this, OS); 416 417 // Print JumpTable Information 418 if (JumpTableInfo) 419 JumpTableInfo->print(OS); 420 421 // Print Constant Pool 422 ConstantPool->print(OS); 423 424 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 425 426 if (RegInfo && !RegInfo->livein_empty()) { 427 OS << "Function Live Ins: "; 428 for (MachineRegisterInfo::livein_iterator 429 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 430 OS << PrintReg(I->first, TRI); 431 if (I->second) 432 OS << " in " << PrintReg(I->second, TRI); 433 if (std::next(I) != E) 434 OS << ", "; 435 } 436 OS << '\n'; 437 } 438 439 ModuleSlotTracker MST(getFunction()->getParent()); 440 MST.incorporateFunction(*getFunction()); 441 for (const auto &BB : *this) { 442 OS << '\n'; 443 BB.print(OS, MST, Indexes); 444 } 445 446 OS << "\n# End machine code for function " << getName() << ".\n\n"; 447 } 448 449 namespace llvm { 450 template<> 451 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 452 453 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 454 455 static std::string getGraphName(const MachineFunction *F) { 456 return ("CFG for '" + F->getName() + "' function").str(); 457 } 458 459 std::string getNodeLabel(const MachineBasicBlock *Node, 460 const MachineFunction *Graph) { 461 std::string OutStr; 462 { 463 raw_string_ostream OSS(OutStr); 464 465 if (isSimple()) { 466 OSS << "BB#" << Node->getNumber(); 467 if (const BasicBlock *BB = Node->getBasicBlock()) 468 OSS << ": " << BB->getName(); 469 } else 470 Node->print(OSS); 471 } 472 473 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 474 475 // Process string output to make it nicer... 476 for (unsigned i = 0; i != OutStr.length(); ++i) 477 if (OutStr[i] == '\n') { // Left justify 478 OutStr[i] = '\\'; 479 OutStr.insert(OutStr.begin()+i+1, 'l'); 480 } 481 return OutStr; 482 } 483 }; 484 } 485 486 void MachineFunction::viewCFG() const 487 { 488 #ifndef NDEBUG 489 ViewGraph(this, "mf" + getName()); 490 #else 491 errs() << "MachineFunction::viewCFG is only available in debug builds on " 492 << "systems with Graphviz or gv!\n"; 493 #endif // NDEBUG 494 } 495 496 void MachineFunction::viewCFGOnly() const 497 { 498 #ifndef NDEBUG 499 ViewGraph(this, "mf" + getName(), true); 500 #else 501 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 502 << "systems with Graphviz or gv!\n"; 503 #endif // NDEBUG 504 } 505 506 /// Add the specified physical register as a live-in value and 507 /// create a corresponding virtual register for it. 508 unsigned MachineFunction::addLiveIn(unsigned PReg, 509 const TargetRegisterClass *RC) { 510 MachineRegisterInfo &MRI = getRegInfo(); 511 unsigned VReg = MRI.getLiveInVirtReg(PReg); 512 if (VReg) { 513 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 514 (void)VRegRC; 515 // A physical register can be added several times. 516 // Between two calls, the register class of the related virtual register 517 // may have been constrained to match some operation constraints. 518 // In that case, check that the current register class includes the 519 // physical register and is a sub class of the specified RC. 520 assert((VRegRC == RC || (VRegRC->contains(PReg) && 521 RC->hasSubClassEq(VRegRC))) && 522 "Register class mismatch!"); 523 return VReg; 524 } 525 VReg = MRI.createVirtualRegister(RC); 526 MRI.addLiveIn(PReg, VReg); 527 return VReg; 528 } 529 530 /// Return the MCSymbol for the specified non-empty jump table. 531 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 532 /// normal 'L' label is returned. 533 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 534 bool isLinkerPrivate) const { 535 const DataLayout &DL = getDataLayout(); 536 assert(JumpTableInfo && "No jump tables"); 537 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 538 539 const char *Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 540 : DL.getPrivateGlobalPrefix(); 541 SmallString<60> Name; 542 raw_svector_ostream(Name) 543 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 544 return Ctx.getOrCreateSymbol(Name); 545 } 546 547 /// Return a function-local symbol to represent the PIC base. 548 MCSymbol *MachineFunction::getPICBaseSymbol() const { 549 const DataLayout &DL = getDataLayout(); 550 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 551 Twine(getFunctionNumber()) + "$pb"); 552 } 553 554 //===----------------------------------------------------------------------===// 555 // MachineFrameInfo implementation 556 //===----------------------------------------------------------------------===// 557 558 /// Make sure the function is at least Align bytes aligned. 559 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 560 if (!StackRealignable) 561 assert(Align <= StackAlignment && 562 "For targets without stack realignment, Align is out of limit!"); 563 if (MaxAlignment < Align) MaxAlignment = Align; 564 } 565 566 /// Clamp the alignment if requested and emit a warning. 567 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align, 568 unsigned StackAlign) { 569 if (!ShouldClamp || Align <= StackAlign) 570 return Align; 571 DEBUG(dbgs() << "Warning: requested alignment " << Align 572 << " exceeds the stack alignment " << StackAlign 573 << " when stack realignment is off" << '\n'); 574 return StackAlign; 575 } 576 577 /// Create a new statically sized stack object, returning a nonnegative 578 /// identifier to represent it. 579 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment, 580 bool isSS, const AllocaInst *Alloca) { 581 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 582 Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment); 583 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca, 584 !isSS)); 585 int Index = (int)Objects.size() - NumFixedObjects - 1; 586 assert(Index >= 0 && "Bad frame index!"); 587 ensureMaxAlignment(Alignment); 588 return Index; 589 } 590 591 /// Create a new statically sized stack object that represents a spill slot, 592 /// returning a nonnegative identifier to represent it. 593 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 594 unsigned Alignment) { 595 Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment); 596 CreateStackObject(Size, Alignment, true); 597 int Index = (int)Objects.size() - NumFixedObjects - 1; 598 ensureMaxAlignment(Alignment); 599 return Index; 600 } 601 602 /// Notify the MachineFrameInfo object that a variable sized object has been 603 /// created. This must be created whenever a variable sized object is created, 604 /// whether or not the index returned is actually used. 605 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment, 606 const AllocaInst *Alloca) { 607 HasVarSizedObjects = true; 608 Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment); 609 Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca, true)); 610 ensureMaxAlignment(Alignment); 611 return (int)Objects.size()-NumFixedObjects-1; 612 } 613 614 /// Create a new object at a fixed location on the stack. 615 /// All fixed objects should be created before other objects are created for 616 /// efficiency. By default, fixed objects are immutable. This returns an 617 /// index with a negative value. 618 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 619 bool Immutable, bool isAliased) { 620 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 621 // The alignment of the frame index can be determined from its offset from 622 // the incoming frame position. If the frame object is at offset 32 and 623 // the stack is guaranteed to be 16-byte aligned, then we know that the 624 // object is 16-byte aligned. Note that unlike the non-fixed case, if the 625 // stack needs realignment, we can't assume that the stack will in fact be 626 // aligned. 627 unsigned Align = MinAlign(SPOffset, ForcedRealign ? 1 : StackAlignment); 628 Align = clampStackAlignment(!StackRealignable, Align, StackAlignment); 629 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 630 /*isSS*/ false, 631 /*Alloca*/ nullptr, isAliased)); 632 return -++NumFixedObjects; 633 } 634 635 /// Create a spill slot at a fixed location on the stack. 636 /// Returns an index with a negative value. 637 int MachineFrameInfo::CreateFixedSpillStackObject(uint64_t Size, 638 int64_t SPOffset) { 639 unsigned Align = MinAlign(SPOffset, ForcedRealign ? 1 : StackAlignment); 640 Align = clampStackAlignment(!StackRealignable, Align, StackAlignment); 641 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, 642 /*Immutable*/ true, 643 /*isSS*/ true, 644 /*Alloca*/ nullptr, 645 /*isAliased*/ false)); 646 return -++NumFixedObjects; 647 } 648 649 BitVector MachineFrameInfo::getPristineRegs(const MachineFunction &MF) const { 650 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 651 BitVector BV(TRI->getNumRegs()); 652 653 // Before CSI is calculated, no registers are considered pristine. They can be 654 // freely used and PEI will make sure they are saved. 655 if (!isCalleeSavedInfoValid()) 656 return BV; 657 658 for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR) 659 BV.set(*CSR); 660 661 // Saved CSRs are not pristine. 662 for (auto &I : getCalleeSavedInfo()) 663 for (MCSubRegIterator S(I.getReg(), TRI, true); S.isValid(); ++S) 664 BV.reset(*S); 665 666 return BV; 667 } 668 669 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const { 670 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 671 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 672 unsigned MaxAlign = getMaxAlignment(); 673 int Offset = 0; 674 675 // This code is very, very similar to PEI::calculateFrameObjectOffsets(). 676 // It really should be refactored to share code. Until then, changes 677 // should keep in mind that there's tight coupling between the two. 678 679 for (int i = getObjectIndexBegin(); i != 0; ++i) { 680 int FixedOff = -getObjectOffset(i); 681 if (FixedOff > Offset) Offset = FixedOff; 682 } 683 for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) { 684 if (isDeadObjectIndex(i)) 685 continue; 686 Offset += getObjectSize(i); 687 unsigned Align = getObjectAlignment(i); 688 // Adjust to alignment boundary 689 Offset = (Offset+Align-1)/Align*Align; 690 691 MaxAlign = std::max(Align, MaxAlign); 692 } 693 694 if (adjustsStack() && TFI->hasReservedCallFrame(MF)) 695 Offset += getMaxCallFrameSize(); 696 697 // Round up the size to a multiple of the alignment. If the function has 698 // any calls or alloca's, align to the target's StackAlignment value to 699 // ensure that the callee's frame or the alloca data is suitably aligned; 700 // otherwise, for leaf functions, align to the TransientStackAlignment 701 // value. 702 unsigned StackAlign; 703 if (adjustsStack() || hasVarSizedObjects() || 704 (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0)) 705 StackAlign = TFI->getStackAlignment(); 706 else 707 StackAlign = TFI->getTransientStackAlignment(); 708 709 // If the frame pointer is eliminated, all frame offsets will be relative to 710 // SP not FP. Align to MaxAlign so this works. 711 StackAlign = std::max(StackAlign, MaxAlign); 712 unsigned AlignMask = StackAlign - 1; 713 Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); 714 715 return (unsigned)Offset; 716 } 717 718 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 719 if (Objects.empty()) return; 720 721 const TargetFrameLowering *FI = MF.getSubtarget().getFrameLowering(); 722 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 723 724 OS << "Frame Objects:\n"; 725 726 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 727 const StackObject &SO = Objects[i]; 728 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 729 if (SO.Size == ~0ULL) { 730 OS << "dead\n"; 731 continue; 732 } 733 if (SO.Size == 0) 734 OS << "variable sized"; 735 else 736 OS << "size=" << SO.Size; 737 OS << ", align=" << SO.Alignment; 738 739 if (i < NumFixedObjects) 740 OS << ", fixed"; 741 if (i < NumFixedObjects || SO.SPOffset != -1) { 742 int64_t Off = SO.SPOffset - ValOffset; 743 OS << ", at location [SP"; 744 if (Off > 0) 745 OS << "+" << Off; 746 else if (Off < 0) 747 OS << Off; 748 OS << "]"; 749 } 750 OS << "\n"; 751 } 752 } 753 754 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 755 void MachineFrameInfo::dump(const MachineFunction &MF) const { 756 print(MF, dbgs()); 757 } 758 #endif 759 760 //===----------------------------------------------------------------------===// 761 // MachineJumpTableInfo implementation 762 //===----------------------------------------------------------------------===// 763 764 /// Return the size of each entry in the jump table. 765 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 766 // The size of a jump table entry is 4 bytes unless the entry is just the 767 // address of a block, in which case it is the pointer size. 768 switch (getEntryKind()) { 769 case MachineJumpTableInfo::EK_BlockAddress: 770 return TD.getPointerSize(); 771 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 772 return 8; 773 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 774 case MachineJumpTableInfo::EK_LabelDifference32: 775 case MachineJumpTableInfo::EK_Custom32: 776 return 4; 777 case MachineJumpTableInfo::EK_Inline: 778 return 0; 779 } 780 llvm_unreachable("Unknown jump table encoding!"); 781 } 782 783 /// Return the alignment of each entry in the jump table. 784 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 785 // The alignment of a jump table entry is the alignment of int32 unless the 786 // entry is just the address of a block, in which case it is the pointer 787 // alignment. 788 switch (getEntryKind()) { 789 case MachineJumpTableInfo::EK_BlockAddress: 790 return TD.getPointerABIAlignment(); 791 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 792 return TD.getABIIntegerTypeAlignment(64); 793 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 794 case MachineJumpTableInfo::EK_LabelDifference32: 795 case MachineJumpTableInfo::EK_Custom32: 796 return TD.getABIIntegerTypeAlignment(32); 797 case MachineJumpTableInfo::EK_Inline: 798 return 1; 799 } 800 llvm_unreachable("Unknown jump table encoding!"); 801 } 802 803 /// Create a new jump table entry in the jump table info. 804 unsigned MachineJumpTableInfo::createJumpTableIndex( 805 const std::vector<MachineBasicBlock*> &DestBBs) { 806 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 807 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 808 return JumpTables.size()-1; 809 } 810 811 /// If Old is the target of any jump tables, update the jump tables to branch 812 /// to New instead. 813 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 814 MachineBasicBlock *New) { 815 assert(Old != New && "Not making a change?"); 816 bool MadeChange = false; 817 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 818 ReplaceMBBInJumpTable(i, Old, New); 819 return MadeChange; 820 } 821 822 /// If Old is a target of the jump tables, update the jump table to branch to 823 /// New instead. 824 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 825 MachineBasicBlock *Old, 826 MachineBasicBlock *New) { 827 assert(Old != New && "Not making a change?"); 828 bool MadeChange = false; 829 MachineJumpTableEntry &JTE = JumpTables[Idx]; 830 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 831 if (JTE.MBBs[j] == Old) { 832 JTE.MBBs[j] = New; 833 MadeChange = true; 834 } 835 return MadeChange; 836 } 837 838 void MachineJumpTableInfo::print(raw_ostream &OS) const { 839 if (JumpTables.empty()) return; 840 841 OS << "Jump Tables:\n"; 842 843 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 844 OS << " jt#" << i << ": "; 845 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 846 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 847 } 848 849 OS << '\n'; 850 } 851 852 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 853 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 854 #endif 855 856 857 //===----------------------------------------------------------------------===// 858 // MachineConstantPool implementation 859 //===----------------------------------------------------------------------===// 860 861 void MachineConstantPoolValue::anchor() { } 862 863 Type *MachineConstantPoolEntry::getType() const { 864 if (isMachineConstantPoolEntry()) 865 return Val.MachineCPVal->getType(); 866 return Val.ConstVal->getType(); 867 } 868 869 bool MachineConstantPoolEntry::needsRelocation() const { 870 if (isMachineConstantPoolEntry()) 871 return true; 872 return Val.ConstVal->needsRelocation(); 873 } 874 875 SectionKind 876 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 877 if (needsRelocation()) 878 return SectionKind::getReadOnlyWithRel(); 879 switch (DL->getTypeAllocSize(getType())) { 880 case 4: 881 return SectionKind::getMergeableConst4(); 882 case 8: 883 return SectionKind::getMergeableConst8(); 884 case 16: 885 return SectionKind::getMergeableConst16(); 886 case 32: 887 return SectionKind::getMergeableConst32(); 888 default: 889 return SectionKind::getReadOnly(); 890 } 891 } 892 893 MachineConstantPool::~MachineConstantPool() { 894 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 895 if (Constants[i].isMachineConstantPoolEntry()) 896 delete Constants[i].Val.MachineCPVal; 897 for (DenseSet<MachineConstantPoolValue*>::iterator I = 898 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 899 I != E; ++I) 900 delete *I; 901 } 902 903 /// Test whether the given two constants can be allocated the same constant pool 904 /// entry. 905 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 906 const DataLayout &DL) { 907 // Handle the trivial case quickly. 908 if (A == B) return true; 909 910 // If they have the same type but weren't the same constant, quickly 911 // reject them. 912 if (A->getType() == B->getType()) return false; 913 914 // We can't handle structs or arrays. 915 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 916 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 917 return false; 918 919 // For now, only support constants with the same size. 920 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 921 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 922 return false; 923 924 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 925 926 // Try constant folding a bitcast of both instructions to an integer. If we 927 // get two identical ConstantInt's, then we are good to share them. We use 928 // the constant folding APIs to do this so that we get the benefit of 929 // DataLayout. 930 if (isa<PointerType>(A->getType())) 931 A = ConstantFoldCastOperand(Instruction::PtrToInt, 932 const_cast<Constant *>(A), IntTy, DL); 933 else if (A->getType() != IntTy) 934 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 935 IntTy, DL); 936 if (isa<PointerType>(B->getType())) 937 B = ConstantFoldCastOperand(Instruction::PtrToInt, 938 const_cast<Constant *>(B), IntTy, DL); 939 else if (B->getType() != IntTy) 940 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 941 IntTy, DL); 942 943 return A == B; 944 } 945 946 /// Create a new entry in the constant pool or return an existing one. 947 /// User must specify the log2 of the minimum required alignment for the object. 948 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 949 unsigned Alignment) { 950 assert(Alignment && "Alignment must be specified!"); 951 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 952 953 // Check to see if we already have this constant. 954 // 955 // FIXME, this could be made much more efficient for large constant pools. 956 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 957 if (!Constants[i].isMachineConstantPoolEntry() && 958 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 959 if ((unsigned)Constants[i].getAlignment() < Alignment) 960 Constants[i].Alignment = Alignment; 961 return i; 962 } 963 964 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 965 return Constants.size()-1; 966 } 967 968 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 969 unsigned Alignment) { 970 assert(Alignment && "Alignment must be specified!"); 971 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 972 973 // Check to see if we already have this constant. 974 // 975 // FIXME, this could be made much more efficient for large constant pools. 976 int Idx = V->getExistingMachineCPValue(this, Alignment); 977 if (Idx != -1) { 978 MachineCPVsSharingEntries.insert(V); 979 return (unsigned)Idx; 980 } 981 982 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 983 return Constants.size()-1; 984 } 985 986 void MachineConstantPool::print(raw_ostream &OS) const { 987 if (Constants.empty()) return; 988 989 OS << "Constant Pool:\n"; 990 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 991 OS << " cp#" << i << ": "; 992 if (Constants[i].isMachineConstantPoolEntry()) 993 Constants[i].Val.MachineCPVal->print(OS); 994 else 995 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 996 OS << ", align=" << Constants[i].getAlignment(); 997 OS << "\n"; 998 } 999 } 1000 1001 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1002 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1003 #endif 1004