1 //===-- MachineFunction.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect native machine code information for a function.  This allows
11 // target-specific information about the generated code to be stored with each
12 // function.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/CodeGen/MachineConstantPool.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunctionInitializer.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineJumpTableInfo.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/CodeGen/PseudoSourceValue.h"
31 #include "llvm/CodeGen/WinEHFuncInfo.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/ModuleSlotTracker.h"
37 #include "llvm/MC/MCAsmInfo.h"
38 #include "llvm/MC/MCContext.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetFrameLowering.h"
43 #include "llvm/Target/TargetLowering.h"
44 #include "llvm/Target/TargetMachine.h"
45 #include "llvm/Target/TargetSubtargetInfo.h"
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "codegen"
49 
50 static cl::opt<unsigned>
51     AlignAllFunctions("align-all-functions",
52                       cl::desc("Force the alignment of all functions."),
53                       cl::init(0), cl::Hidden);
54 
55 void MachineFunctionInitializer::anchor() {}
56 
57 void MachineFunctionProperties::print(raw_ostream &ROS, bool OnlySet) const {
58   // Leave this function even in NDEBUG as an out-of-line anchor.
59 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
60   bool NeedsComma = false;
61   for (BitVector::size_type i = 0; i < Properties.size(); ++i) {
62     bool HasProperty = Properties[i];
63     if (OnlySet && !HasProperty)
64       continue;
65     if (NeedsComma)
66       ROS << ", ";
67     else
68       NeedsComma = true;
69     switch(static_cast<Property>(i)) {
70       case Property::IsSSA:
71         ROS << (HasProperty ? "SSA" : "Post SSA");
72         break;
73       case Property::TracksLiveness:
74         ROS << (HasProperty ? "" : "not ") << "tracking liveness";
75         break;
76       case Property::AllVRegsAllocated:
77         ROS << (HasProperty ? "AllVRegsAllocated" : "HasVRegs");
78         break;
79       case Property::Legalized:
80         ROS << (HasProperty ? "" : "not ") << "legalized";
81         break;
82       case Property::RegBankSelected:
83         ROS << (HasProperty ? "" : "not ") << "RegBank-selected";
84         break;
85       case Property::Selected:
86         ROS << (HasProperty ? "" : "not ") << "selected";
87         break;
88       default:
89         break;
90     }
91   }
92 #endif
93 }
94 
95 //===----------------------------------------------------------------------===//
96 // MachineFunction implementation
97 //===----------------------------------------------------------------------===//
98 
99 // Out-of-line virtual method.
100 MachineFunctionInfo::~MachineFunctionInfo() {}
101 
102 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
103   MBB->getParent()->DeleteMachineBasicBlock(MBB);
104 }
105 
106 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
107                                            const Function *Fn) {
108   if (Fn->hasFnAttribute(Attribute::StackAlignment))
109     return Fn->getFnStackAlignment();
110   return STI->getFrameLowering()->getStackAlignment();
111 }
112 
113 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM,
114                                  unsigned FunctionNum, MachineModuleInfo &mmi)
115     : Fn(F), Target(TM), STI(TM.getSubtargetImpl(*F)), Ctx(mmi.getContext()),
116       MMI(mmi) {
117   // Assume the function starts in SSA form with correct liveness.
118   Properties.set(MachineFunctionProperties::Property::IsSSA);
119   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
120   if (STI->getRegisterInfo())
121     RegInfo = new (Allocator) MachineRegisterInfo(this);
122   else
123     RegInfo = nullptr;
124 
125   MFInfo = nullptr;
126   // We can realign the stack if the target supports it and the user hasn't
127   // explicitly asked us not to.
128   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
129                       !F->hasFnAttribute("no-realign-stack");
130   FrameInfo = new (Allocator) MachineFrameInfo(
131       getFnStackAlignment(STI, Fn), /*StackRealignable=*/CanRealignSP,
132       /*ForceRealign=*/CanRealignSP &&
133           F->hasFnAttribute(Attribute::StackAlignment));
134 
135   if (Fn->hasFnAttribute(Attribute::StackAlignment))
136     FrameInfo->ensureMaxAlignment(Fn->getFnStackAlignment());
137 
138   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
139   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
140 
141   // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn.
142   // FIXME: Use Function::optForSize().
143   if (!Fn->hasFnAttribute(Attribute::OptimizeForSize))
144     Alignment = std::max(Alignment,
145                          STI->getTargetLowering()->getPrefFunctionAlignment());
146 
147   if (AlignAllFunctions)
148     Alignment = AlignAllFunctions;
149 
150   FunctionNumber = FunctionNum;
151   JumpTableInfo = nullptr;
152 
153   if (isFuncletEHPersonality(classifyEHPersonality(
154           F->hasPersonalityFn() ? F->getPersonalityFn() : nullptr))) {
155     WinEHInfo = new (Allocator) WinEHFuncInfo();
156   }
157 
158   assert(TM.isCompatibleDataLayout(getDataLayout()) &&
159          "Can't create a MachineFunction using a Module with a "
160          "Target-incompatible DataLayout attached\n");
161 
162   PSVManager = llvm::make_unique<PseudoSourceValueManager>();
163 }
164 
165 MachineFunction::~MachineFunction() {
166   // Don't call destructors on MachineInstr and MachineOperand. All of their
167   // memory comes from the BumpPtrAllocator which is about to be purged.
168   //
169   // Do call MachineBasicBlock destructors, it contains std::vectors.
170   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
171     I->Insts.clearAndLeakNodesUnsafely();
172 
173   InstructionRecycler.clear(Allocator);
174   OperandRecycler.clear(Allocator);
175   BasicBlockRecycler.clear(Allocator);
176   if (RegInfo) {
177     RegInfo->~MachineRegisterInfo();
178     Allocator.Deallocate(RegInfo);
179   }
180   if (MFInfo) {
181     MFInfo->~MachineFunctionInfo();
182     Allocator.Deallocate(MFInfo);
183   }
184 
185   FrameInfo->~MachineFrameInfo();
186   Allocator.Deallocate(FrameInfo);
187 
188   ConstantPool->~MachineConstantPool();
189   Allocator.Deallocate(ConstantPool);
190 
191   if (JumpTableInfo) {
192     JumpTableInfo->~MachineJumpTableInfo();
193     Allocator.Deallocate(JumpTableInfo);
194   }
195 
196   if (WinEHInfo) {
197     WinEHInfo->~WinEHFuncInfo();
198     Allocator.Deallocate(WinEHInfo);
199   }
200 }
201 
202 const DataLayout &MachineFunction::getDataLayout() const {
203   return Fn->getParent()->getDataLayout();
204 }
205 
206 /// Get the JumpTableInfo for this function.
207 /// If it does not already exist, allocate one.
208 MachineJumpTableInfo *MachineFunction::
209 getOrCreateJumpTableInfo(unsigned EntryKind) {
210   if (JumpTableInfo) return JumpTableInfo;
211 
212   JumpTableInfo = new (Allocator)
213     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
214   return JumpTableInfo;
215 }
216 
217 /// Should we be emitting segmented stack stuff for the function
218 bool MachineFunction::shouldSplitStack() const {
219   return getFunction()->hasFnAttribute("split-stack");
220 }
221 
222 /// This discards all of the MachineBasicBlock numbers and recomputes them.
223 /// This guarantees that the MBB numbers are sequential, dense, and match the
224 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
225 /// is specified, only that block and those after it are renumbered.
226 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
227   if (empty()) { MBBNumbering.clear(); return; }
228   MachineFunction::iterator MBBI, E = end();
229   if (MBB == nullptr)
230     MBBI = begin();
231   else
232     MBBI = MBB->getIterator();
233 
234   // Figure out the block number this should have.
235   unsigned BlockNo = 0;
236   if (MBBI != begin())
237     BlockNo = std::prev(MBBI)->getNumber() + 1;
238 
239   for (; MBBI != E; ++MBBI, ++BlockNo) {
240     if (MBBI->getNumber() != (int)BlockNo) {
241       // Remove use of the old number.
242       if (MBBI->getNumber() != -1) {
243         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
244                "MBB number mismatch!");
245         MBBNumbering[MBBI->getNumber()] = nullptr;
246       }
247 
248       // If BlockNo is already taken, set that block's number to -1.
249       if (MBBNumbering[BlockNo])
250         MBBNumbering[BlockNo]->setNumber(-1);
251 
252       MBBNumbering[BlockNo] = &*MBBI;
253       MBBI->setNumber(BlockNo);
254     }
255   }
256 
257   // Okay, all the blocks are renumbered.  If we have compactified the block
258   // numbering, shrink MBBNumbering now.
259   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
260   MBBNumbering.resize(BlockNo);
261 }
262 
263 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
264 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
265                                                   const DebugLoc &DL,
266                                                   bool NoImp) {
267   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
268     MachineInstr(*this, MCID, DL, NoImp);
269 }
270 
271 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
272 /// identical in all ways except the instruction has no parent, prev, or next.
273 MachineInstr *
274 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
275   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
276              MachineInstr(*this, *Orig);
277 }
278 
279 /// Delete the given MachineInstr.
280 ///
281 /// This function also serves as the MachineInstr destructor - the real
282 /// ~MachineInstr() destructor must be empty.
283 void
284 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
285   // Strip it for parts. The operand array and the MI object itself are
286   // independently recyclable.
287   if (MI->Operands)
288     deallocateOperandArray(MI->CapOperands, MI->Operands);
289   // Don't call ~MachineInstr() which must be trivial anyway because
290   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
291   // destructors.
292   InstructionRecycler.Deallocate(Allocator, MI);
293 }
294 
295 /// Allocate a new MachineBasicBlock. Use this instead of
296 /// `new MachineBasicBlock'.
297 MachineBasicBlock *
298 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
299   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
300              MachineBasicBlock(*this, bb);
301 }
302 
303 /// Delete the given MachineBasicBlock.
304 void
305 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
306   assert(MBB->getParent() == this && "MBB parent mismatch!");
307   MBB->~MachineBasicBlock();
308   BasicBlockRecycler.Deallocate(Allocator, MBB);
309 }
310 
311 MachineMemOperand *MachineFunction::getMachineMemOperand(
312     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
313     unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges) {
314   return new (Allocator)
315       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges);
316 }
317 
318 MachineMemOperand *
319 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
320                                       int64_t Offset, uint64_t Size) {
321   if (MMO->getValue())
322     return new (Allocator)
323                MachineMemOperand(MachinePointerInfo(MMO->getValue(),
324                                                     MMO->getOffset()+Offset),
325                                  MMO->getFlags(), Size,
326                                  MMO->getBaseAlignment());
327   return new (Allocator)
328              MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(),
329                                                   MMO->getOffset()+Offset),
330                                MMO->getFlags(), Size,
331                                MMO->getBaseAlignment());
332 }
333 
334 MachineInstr::mmo_iterator
335 MachineFunction::allocateMemRefsArray(unsigned long Num) {
336   return Allocator.Allocate<MachineMemOperand *>(Num);
337 }
338 
339 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
340 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin,
341                                     MachineInstr::mmo_iterator End) {
342   // Count the number of load mem refs.
343   unsigned Num = 0;
344   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
345     if ((*I)->isLoad())
346       ++Num;
347 
348   // Allocate a new array and populate it with the load information.
349   MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
350   unsigned Index = 0;
351   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
352     if ((*I)->isLoad()) {
353       if (!(*I)->isStore())
354         // Reuse the MMO.
355         Result[Index] = *I;
356       else {
357         // Clone the MMO and unset the store flag.
358         MachineMemOperand *JustLoad =
359           getMachineMemOperand((*I)->getPointerInfo(),
360                                (*I)->getFlags() & ~MachineMemOperand::MOStore,
361                                (*I)->getSize(), (*I)->getBaseAlignment(),
362                                (*I)->getAAInfo());
363         Result[Index] = JustLoad;
364       }
365       ++Index;
366     }
367   }
368   return std::make_pair(Result, Result + Num);
369 }
370 
371 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
372 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
373                                      MachineInstr::mmo_iterator End) {
374   // Count the number of load mem refs.
375   unsigned Num = 0;
376   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
377     if ((*I)->isStore())
378       ++Num;
379 
380   // Allocate a new array and populate it with the store information.
381   MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
382   unsigned Index = 0;
383   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
384     if ((*I)->isStore()) {
385       if (!(*I)->isLoad())
386         // Reuse the MMO.
387         Result[Index] = *I;
388       else {
389         // Clone the MMO and unset the load flag.
390         MachineMemOperand *JustStore =
391           getMachineMemOperand((*I)->getPointerInfo(),
392                                (*I)->getFlags() & ~MachineMemOperand::MOLoad,
393                                (*I)->getSize(), (*I)->getBaseAlignment(),
394                                (*I)->getAAInfo());
395         Result[Index] = JustStore;
396       }
397       ++Index;
398     }
399   }
400   return std::make_pair(Result, Result + Num);
401 }
402 
403 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
404   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
405   std::copy(Name.begin(), Name.end(), Dest);
406   Dest[Name.size()] = 0;
407   return Dest;
408 }
409 
410 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
411 LLVM_DUMP_METHOD void MachineFunction::dump() const {
412   print(dbgs());
413 }
414 #endif
415 
416 StringRef MachineFunction::getName() const {
417   assert(getFunction() && "No function!");
418   return getFunction()->getName();
419 }
420 
421 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
422   OS << "# Machine code for function " << getName() << ": ";
423   OS << "Properties: <";
424   getProperties().print(OS);
425   OS << ">\n";
426 
427   // Print Frame Information
428   FrameInfo->print(*this, OS);
429 
430   // Print JumpTable Information
431   if (JumpTableInfo)
432     JumpTableInfo->print(OS);
433 
434   // Print Constant Pool
435   ConstantPool->print(OS);
436 
437   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
438 
439   if (RegInfo && !RegInfo->livein_empty()) {
440     OS << "Function Live Ins: ";
441     for (MachineRegisterInfo::livein_iterator
442          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
443       OS << PrintReg(I->first, TRI);
444       if (I->second)
445         OS << " in " << PrintReg(I->second, TRI);
446       if (std::next(I) != E)
447         OS << ", ";
448     }
449     OS << '\n';
450   }
451 
452   ModuleSlotTracker MST(getFunction()->getParent());
453   MST.incorporateFunction(*getFunction());
454   for (const auto &BB : *this) {
455     OS << '\n';
456     BB.print(OS, MST, Indexes);
457   }
458 
459   OS << "\n# End machine code for function " << getName() << ".\n\n";
460 }
461 
462 namespace llvm {
463   template<>
464   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
465 
466   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
467 
468     static std::string getGraphName(const MachineFunction *F) {
469       return ("CFG for '" + F->getName() + "' function").str();
470     }
471 
472     std::string getNodeLabel(const MachineBasicBlock *Node,
473                              const MachineFunction *Graph) {
474       std::string OutStr;
475       {
476         raw_string_ostream OSS(OutStr);
477 
478         if (isSimple()) {
479           OSS << "BB#" << Node->getNumber();
480           if (const BasicBlock *BB = Node->getBasicBlock())
481             OSS << ": " << BB->getName();
482         } else
483           Node->print(OSS);
484       }
485 
486       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
487 
488       // Process string output to make it nicer...
489       for (unsigned i = 0; i != OutStr.length(); ++i)
490         if (OutStr[i] == '\n') {                            // Left justify
491           OutStr[i] = '\\';
492           OutStr.insert(OutStr.begin()+i+1, 'l');
493         }
494       return OutStr;
495     }
496   };
497 }
498 
499 void MachineFunction::viewCFG() const
500 {
501 #ifndef NDEBUG
502   ViewGraph(this, "mf" + getName());
503 #else
504   errs() << "MachineFunction::viewCFG is only available in debug builds on "
505          << "systems with Graphviz or gv!\n";
506 #endif // NDEBUG
507 }
508 
509 void MachineFunction::viewCFGOnly() const
510 {
511 #ifndef NDEBUG
512   ViewGraph(this, "mf" + getName(), true);
513 #else
514   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
515          << "systems with Graphviz or gv!\n";
516 #endif // NDEBUG
517 }
518 
519 /// Add the specified physical register as a live-in value and
520 /// create a corresponding virtual register for it.
521 unsigned MachineFunction::addLiveIn(unsigned PReg,
522                                     const TargetRegisterClass *RC) {
523   MachineRegisterInfo &MRI = getRegInfo();
524   unsigned VReg = MRI.getLiveInVirtReg(PReg);
525   if (VReg) {
526     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
527     (void)VRegRC;
528     // A physical register can be added several times.
529     // Between two calls, the register class of the related virtual register
530     // may have been constrained to match some operation constraints.
531     // In that case, check that the current register class includes the
532     // physical register and is a sub class of the specified RC.
533     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
534                              RC->hasSubClassEq(VRegRC))) &&
535             "Register class mismatch!");
536     return VReg;
537   }
538   VReg = MRI.createVirtualRegister(RC);
539   MRI.addLiveIn(PReg, VReg);
540   return VReg;
541 }
542 
543 /// Return the MCSymbol for the specified non-empty jump table.
544 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
545 /// normal 'L' label is returned.
546 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
547                                         bool isLinkerPrivate) const {
548   const DataLayout &DL = getDataLayout();
549   assert(JumpTableInfo && "No jump tables");
550   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
551 
552   const char *Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
553                                        : DL.getPrivateGlobalPrefix();
554   SmallString<60> Name;
555   raw_svector_ostream(Name)
556     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
557   return Ctx.getOrCreateSymbol(Name);
558 }
559 
560 /// Return a function-local symbol to represent the PIC base.
561 MCSymbol *MachineFunction::getPICBaseSymbol() const {
562   const DataLayout &DL = getDataLayout();
563   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
564                                Twine(getFunctionNumber()) + "$pb");
565 }
566 
567 //===----------------------------------------------------------------------===//
568 //  MachineFrameInfo implementation
569 //===----------------------------------------------------------------------===//
570 
571 /// Make sure the function is at least Align bytes aligned.
572 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) {
573   if (!StackRealignable)
574     assert(Align <= StackAlignment &&
575            "For targets without stack realignment, Align is out of limit!");
576   if (MaxAlignment < Align) MaxAlignment = Align;
577 }
578 
579 /// Clamp the alignment if requested and emit a warning.
580 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align,
581                                            unsigned StackAlign) {
582   if (!ShouldClamp || Align <= StackAlign)
583     return Align;
584   DEBUG(dbgs() << "Warning: requested alignment " << Align
585                << " exceeds the stack alignment " << StackAlign
586                << " when stack realignment is off" << '\n');
587   return StackAlign;
588 }
589 
590 /// Create a new statically sized stack object, returning a nonnegative
591 /// identifier to represent it.
592 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment,
593                       bool isSS, const AllocaInst *Alloca) {
594   assert(Size != 0 && "Cannot allocate zero size stack objects!");
595   Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment);
596   Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca,
597                                 !isSS));
598   int Index = (int)Objects.size() - NumFixedObjects - 1;
599   assert(Index >= 0 && "Bad frame index!");
600   ensureMaxAlignment(Alignment);
601   return Index;
602 }
603 
604 /// Create a new statically sized stack object that represents a spill slot,
605 /// returning a nonnegative identifier to represent it.
606 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size,
607                                              unsigned Alignment) {
608   Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment);
609   CreateStackObject(Size, Alignment, true);
610   int Index = (int)Objects.size() - NumFixedObjects - 1;
611   ensureMaxAlignment(Alignment);
612   return Index;
613 }
614 
615 /// Notify the MachineFrameInfo object that a variable sized object has been
616 /// created. This must be created whenever a variable sized object is created,
617 /// whether or not the index returned is actually used.
618 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment,
619                                                 const AllocaInst *Alloca) {
620   HasVarSizedObjects = true;
621   Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment);
622   Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca, true));
623   ensureMaxAlignment(Alignment);
624   return (int)Objects.size()-NumFixedObjects-1;
625 }
626 
627 /// Create a new object at a fixed location on the stack.
628 /// All fixed objects should be created before other objects are created for
629 /// efficiency. By default, fixed objects are immutable. This returns an
630 /// index with a negative value.
631 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset,
632                                         bool Immutable, bool isAliased) {
633   assert(Size != 0 && "Cannot allocate zero size fixed stack objects!");
634   // The alignment of the frame index can be determined from its offset from
635   // the incoming frame position.  If the frame object is at offset 32 and
636   // the stack is guaranteed to be 16-byte aligned, then we know that the
637   // object is 16-byte aligned. Note that unlike the non-fixed case, if the
638   // stack needs realignment, we can't assume that the stack will in fact be
639   // aligned.
640   unsigned Align = MinAlign(SPOffset, ForcedRealign ? 1 : StackAlignment);
641   Align = clampStackAlignment(!StackRealignable, Align, StackAlignment);
642   Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable,
643                                               /*isSS*/   false,
644                                               /*Alloca*/ nullptr, isAliased));
645   return -++NumFixedObjects;
646 }
647 
648 /// Create a spill slot at a fixed location on the stack.
649 /// Returns an index with a negative value.
650 int MachineFrameInfo::CreateFixedSpillStackObject(uint64_t Size,
651                                                   int64_t SPOffset) {
652   unsigned Align = MinAlign(SPOffset, ForcedRealign ? 1 : StackAlignment);
653   Align = clampStackAlignment(!StackRealignable, Align, StackAlignment);
654   Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset,
655                                               /*Immutable*/ true,
656                                               /*isSS*/ true,
657                                               /*Alloca*/ nullptr,
658                                               /*isAliased*/ false));
659   return -++NumFixedObjects;
660 }
661 
662 BitVector MachineFrameInfo::getPristineRegs(const MachineFunction &MF) const {
663   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
664   BitVector BV(TRI->getNumRegs());
665 
666   // Before CSI is calculated, no registers are considered pristine. They can be
667   // freely used and PEI will make sure they are saved.
668   if (!isCalleeSavedInfoValid())
669     return BV;
670 
671   for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR)
672     BV.set(*CSR);
673 
674   // Saved CSRs are not pristine.
675   for (auto &I : getCalleeSavedInfo())
676     for (MCSubRegIterator S(I.getReg(), TRI, true); S.isValid(); ++S)
677       BV.reset(*S);
678 
679   return BV;
680 }
681 
682 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const {
683   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
684   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
685   unsigned MaxAlign = getMaxAlignment();
686   int Offset = 0;
687 
688   // This code is very, very similar to PEI::calculateFrameObjectOffsets().
689   // It really should be refactored to share code. Until then, changes
690   // should keep in mind that there's tight coupling between the two.
691 
692   for (int i = getObjectIndexBegin(); i != 0; ++i) {
693     int FixedOff = -getObjectOffset(i);
694     if (FixedOff > Offset) Offset = FixedOff;
695   }
696   for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) {
697     if (isDeadObjectIndex(i))
698       continue;
699     Offset += getObjectSize(i);
700     unsigned Align = getObjectAlignment(i);
701     // Adjust to alignment boundary
702     Offset = (Offset+Align-1)/Align*Align;
703 
704     MaxAlign = std::max(Align, MaxAlign);
705   }
706 
707   if (adjustsStack() && TFI->hasReservedCallFrame(MF))
708     Offset += getMaxCallFrameSize();
709 
710   // Round up the size to a multiple of the alignment.  If the function has
711   // any calls or alloca's, align to the target's StackAlignment value to
712   // ensure that the callee's frame or the alloca data is suitably aligned;
713   // otherwise, for leaf functions, align to the TransientStackAlignment
714   // value.
715   unsigned StackAlign;
716   if (adjustsStack() || hasVarSizedObjects() ||
717       (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0))
718     StackAlign = TFI->getStackAlignment();
719   else
720     StackAlign = TFI->getTransientStackAlignment();
721 
722   // If the frame pointer is eliminated, all frame offsets will be relative to
723   // SP not FP. Align to MaxAlign so this works.
724   StackAlign = std::max(StackAlign, MaxAlign);
725   unsigned AlignMask = StackAlign - 1;
726   Offset = (Offset + AlignMask) & ~uint64_t(AlignMask);
727 
728   return (unsigned)Offset;
729 }
730 
731 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{
732   if (Objects.empty()) return;
733 
734   const TargetFrameLowering *FI = MF.getSubtarget().getFrameLowering();
735   int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0);
736 
737   OS << "Frame Objects:\n";
738 
739   for (unsigned i = 0, e = Objects.size(); i != e; ++i) {
740     const StackObject &SO = Objects[i];
741     OS << "  fi#" << (int)(i-NumFixedObjects) << ": ";
742     if (SO.Size == ~0ULL) {
743       OS << "dead\n";
744       continue;
745     }
746     if (SO.Size == 0)
747       OS << "variable sized";
748     else
749       OS << "size=" << SO.Size;
750     OS << ", align=" << SO.Alignment;
751 
752     if (i < NumFixedObjects)
753       OS << ", fixed";
754     if (i < NumFixedObjects || SO.SPOffset != -1) {
755       int64_t Off = SO.SPOffset - ValOffset;
756       OS << ", at location [SP";
757       if (Off > 0)
758         OS << "+" << Off;
759       else if (Off < 0)
760         OS << Off;
761       OS << "]";
762     }
763     OS << "\n";
764   }
765 }
766 
767 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
768 void MachineFrameInfo::dump(const MachineFunction &MF) const {
769   print(MF, dbgs());
770 }
771 #endif
772 
773 //===----------------------------------------------------------------------===//
774 //  MachineJumpTableInfo implementation
775 //===----------------------------------------------------------------------===//
776 
777 /// Return the size of each entry in the jump table.
778 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
779   // The size of a jump table entry is 4 bytes unless the entry is just the
780   // address of a block, in which case it is the pointer size.
781   switch (getEntryKind()) {
782   case MachineJumpTableInfo::EK_BlockAddress:
783     return TD.getPointerSize();
784   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
785     return 8;
786   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
787   case MachineJumpTableInfo::EK_LabelDifference32:
788   case MachineJumpTableInfo::EK_Custom32:
789     return 4;
790   case MachineJumpTableInfo::EK_Inline:
791     return 0;
792   }
793   llvm_unreachable("Unknown jump table encoding!");
794 }
795 
796 /// Return the alignment of each entry in the jump table.
797 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
798   // The alignment of a jump table entry is the alignment of int32 unless the
799   // entry is just the address of a block, in which case it is the pointer
800   // alignment.
801   switch (getEntryKind()) {
802   case MachineJumpTableInfo::EK_BlockAddress:
803     return TD.getPointerABIAlignment();
804   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
805     return TD.getABIIntegerTypeAlignment(64);
806   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
807   case MachineJumpTableInfo::EK_LabelDifference32:
808   case MachineJumpTableInfo::EK_Custom32:
809     return TD.getABIIntegerTypeAlignment(32);
810   case MachineJumpTableInfo::EK_Inline:
811     return 1;
812   }
813   llvm_unreachable("Unknown jump table encoding!");
814 }
815 
816 /// Create a new jump table entry in the jump table info.
817 unsigned MachineJumpTableInfo::createJumpTableIndex(
818                                const std::vector<MachineBasicBlock*> &DestBBs) {
819   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
820   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
821   return JumpTables.size()-1;
822 }
823 
824 /// If Old is the target of any jump tables, update the jump tables to branch
825 /// to New instead.
826 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
827                                                   MachineBasicBlock *New) {
828   assert(Old != New && "Not making a change?");
829   bool MadeChange = false;
830   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
831     ReplaceMBBInJumpTable(i, Old, New);
832   return MadeChange;
833 }
834 
835 /// If Old is a target of the jump tables, update the jump table to branch to
836 /// New instead.
837 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
838                                                  MachineBasicBlock *Old,
839                                                  MachineBasicBlock *New) {
840   assert(Old != New && "Not making a change?");
841   bool MadeChange = false;
842   MachineJumpTableEntry &JTE = JumpTables[Idx];
843   for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
844     if (JTE.MBBs[j] == Old) {
845       JTE.MBBs[j] = New;
846       MadeChange = true;
847     }
848   return MadeChange;
849 }
850 
851 void MachineJumpTableInfo::print(raw_ostream &OS) const {
852   if (JumpTables.empty()) return;
853 
854   OS << "Jump Tables:\n";
855 
856   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
857     OS << "  jt#" << i << ": ";
858     for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
859       OS << " BB#" << JumpTables[i].MBBs[j]->getNumber();
860   }
861 
862   OS << '\n';
863 }
864 
865 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
866 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
867 #endif
868 
869 
870 //===----------------------------------------------------------------------===//
871 //  MachineConstantPool implementation
872 //===----------------------------------------------------------------------===//
873 
874 void MachineConstantPoolValue::anchor() { }
875 
876 Type *MachineConstantPoolEntry::getType() const {
877   if (isMachineConstantPoolEntry())
878     return Val.MachineCPVal->getType();
879   return Val.ConstVal->getType();
880 }
881 
882 bool MachineConstantPoolEntry::needsRelocation() const {
883   if (isMachineConstantPoolEntry())
884     return true;
885   return Val.ConstVal->needsRelocation();
886 }
887 
888 SectionKind
889 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
890   if (needsRelocation())
891     return SectionKind::getReadOnlyWithRel();
892   switch (DL->getTypeAllocSize(getType())) {
893   case 4:
894     return SectionKind::getMergeableConst4();
895   case 8:
896     return SectionKind::getMergeableConst8();
897   case 16:
898     return SectionKind::getMergeableConst16();
899   case 32:
900     return SectionKind::getMergeableConst32();
901   default:
902     return SectionKind::getReadOnly();
903   }
904 }
905 
906 MachineConstantPool::~MachineConstantPool() {
907   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
908     if (Constants[i].isMachineConstantPoolEntry())
909       delete Constants[i].Val.MachineCPVal;
910   for (DenseSet<MachineConstantPoolValue*>::iterator I =
911        MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
912        I != E; ++I)
913     delete *I;
914 }
915 
916 /// Test whether the given two constants can be allocated the same constant pool
917 /// entry.
918 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
919                                       const DataLayout &DL) {
920   // Handle the trivial case quickly.
921   if (A == B) return true;
922 
923   // If they have the same type but weren't the same constant, quickly
924   // reject them.
925   if (A->getType() == B->getType()) return false;
926 
927   // We can't handle structs or arrays.
928   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
929       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
930     return false;
931 
932   // For now, only support constants with the same size.
933   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
934   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
935     return false;
936 
937   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
938 
939   // Try constant folding a bitcast of both instructions to an integer.  If we
940   // get two identical ConstantInt's, then we are good to share them.  We use
941   // the constant folding APIs to do this so that we get the benefit of
942   // DataLayout.
943   if (isa<PointerType>(A->getType()))
944     A = ConstantFoldCastOperand(Instruction::PtrToInt,
945                                 const_cast<Constant *>(A), IntTy, DL);
946   else if (A->getType() != IntTy)
947     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
948                                 IntTy, DL);
949   if (isa<PointerType>(B->getType()))
950     B = ConstantFoldCastOperand(Instruction::PtrToInt,
951                                 const_cast<Constant *>(B), IntTy, DL);
952   else if (B->getType() != IntTy)
953     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
954                                 IntTy, DL);
955 
956   return A == B;
957 }
958 
959 /// Create a new entry in the constant pool or return an existing one.
960 /// User must specify the log2 of the minimum required alignment for the object.
961 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
962                                                    unsigned Alignment) {
963   assert(Alignment && "Alignment must be specified!");
964   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
965 
966   // Check to see if we already have this constant.
967   //
968   // FIXME, this could be made much more efficient for large constant pools.
969   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
970     if (!Constants[i].isMachineConstantPoolEntry() &&
971         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
972       if ((unsigned)Constants[i].getAlignment() < Alignment)
973         Constants[i].Alignment = Alignment;
974       return i;
975     }
976 
977   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
978   return Constants.size()-1;
979 }
980 
981 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
982                                                    unsigned Alignment) {
983   assert(Alignment && "Alignment must be specified!");
984   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
985 
986   // Check to see if we already have this constant.
987   //
988   // FIXME, this could be made much more efficient for large constant pools.
989   int Idx = V->getExistingMachineCPValue(this, Alignment);
990   if (Idx != -1) {
991     MachineCPVsSharingEntries.insert(V);
992     return (unsigned)Idx;
993   }
994 
995   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
996   return Constants.size()-1;
997 }
998 
999 void MachineConstantPool::print(raw_ostream &OS) const {
1000   if (Constants.empty()) return;
1001 
1002   OS << "Constant Pool:\n";
1003   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1004     OS << "  cp#" << i << ": ";
1005     if (Constants[i].isMachineConstantPoolEntry())
1006       Constants[i].Val.MachineCPVal->print(OS);
1007     else
1008       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1009     OS << ", align=" << Constants[i].getAlignment();
1010     OS << "\n";
1011   }
1012 }
1013 
1014 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1015 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1016 #endif
1017