1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/EHPersonalities.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/WasmEHFuncInfo.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ModuleSlotTracker.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/MC/MCContext.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/MC/SectionKind.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Compiler.h" 63 #include "llvm/Support/DOTGraphTraits.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/GraphWriter.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <string> 75 #include <type_traits> 76 #include <utility> 77 #include <vector> 78 79 using namespace llvm; 80 81 #define DEBUG_TYPE "codegen" 82 83 static cl::opt<unsigned> AlignAllFunctions( 84 "align-all-functions", 85 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 86 "means align on 16B boundaries)."), 87 cl::init(0), cl::Hidden); 88 89 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 90 using P = MachineFunctionProperties::Property; 91 92 // clang-format off 93 switch(Prop) { 94 case P::FailedISel: return "FailedISel"; 95 case P::IsSSA: return "IsSSA"; 96 case P::Legalized: return "Legalized"; 97 case P::NoPHIs: return "NoPHIs"; 98 case P::NoVRegs: return "NoVRegs"; 99 case P::RegBankSelected: return "RegBankSelected"; 100 case P::Selected: return "Selected"; 101 case P::TracksLiveness: return "TracksLiveness"; 102 case P::TiedOpsRewritten: return "TiedOpsRewritten"; 103 case P::FailsVerification: return "FailsVerification"; 104 case P::TracksDebugUserValues: return "TracksDebugUserValues"; 105 } 106 // clang-format on 107 llvm_unreachable("Invalid machine function property"); 108 } 109 110 // Pin the vtable to this file. 111 void MachineFunction::Delegate::anchor() {} 112 113 void MachineFunctionProperties::print(raw_ostream &OS) const { 114 const char *Separator = ""; 115 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 116 if (!Properties[I]) 117 continue; 118 OS << Separator << getPropertyName(static_cast<Property>(I)); 119 Separator = ", "; 120 } 121 } 122 123 //===----------------------------------------------------------------------===// 124 // MachineFunction implementation 125 //===----------------------------------------------------------------------===// 126 127 // Out-of-line virtual method. 128 MachineFunctionInfo::~MachineFunctionInfo() = default; 129 130 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 131 MBB->getParent()->deleteMachineBasicBlock(MBB); 132 } 133 134 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 135 const Function &F) { 136 if (auto MA = F.getFnStackAlign()) 137 return MA->value(); 138 return STI->getFrameLowering()->getStackAlign().value(); 139 } 140 141 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target, 142 const TargetSubtargetInfo &STI, 143 unsigned FunctionNum, MachineModuleInfo &mmi) 144 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 145 FunctionNumber = FunctionNum; 146 init(); 147 } 148 149 void MachineFunction::handleInsertion(MachineInstr &MI) { 150 if (TheDelegate) 151 TheDelegate->MF_HandleInsertion(MI); 152 } 153 154 void MachineFunction::handleRemoval(MachineInstr &MI) { 155 if (TheDelegate) 156 TheDelegate->MF_HandleRemoval(MI); 157 } 158 159 void MachineFunction::init() { 160 // Assume the function starts in SSA form with correct liveness. 161 Properties.set(MachineFunctionProperties::Property::IsSSA); 162 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 163 if (STI->getRegisterInfo()) 164 RegInfo = new (Allocator) MachineRegisterInfo(this); 165 else 166 RegInfo = nullptr; 167 168 MFInfo = nullptr; 169 // We can realign the stack if the target supports it and the user hasn't 170 // explicitly asked us not to. 171 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 172 !F.hasFnAttribute("no-realign-stack"); 173 FrameInfo = new (Allocator) MachineFrameInfo( 174 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 175 /*ForcedRealign=*/CanRealignSP && 176 F.hasFnAttribute(Attribute::StackAlignment)); 177 178 if (F.hasFnAttribute(Attribute::StackAlignment)) 179 FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); 180 181 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 182 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 183 184 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 185 // FIXME: Use Function::hasOptSize(). 186 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 187 Alignment = std::max(Alignment, 188 STI->getTargetLowering()->getPrefFunctionAlignment()); 189 190 if (AlignAllFunctions) 191 Alignment = Align(1ULL << AlignAllFunctions); 192 193 JumpTableInfo = nullptr; 194 195 if (isFuncletEHPersonality(classifyEHPersonality( 196 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 197 WinEHInfo = new (Allocator) WinEHFuncInfo(); 198 } 199 200 if (isScopedEHPersonality(classifyEHPersonality( 201 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 202 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 203 } 204 205 assert(Target.isCompatibleDataLayout(getDataLayout()) && 206 "Can't create a MachineFunction using a Module with a " 207 "Target-incompatible DataLayout attached\n"); 208 209 PSVManager = 210 std::make_unique<PseudoSourceValueManager>(*(getSubtarget(). 211 getInstrInfo())); 212 } 213 214 MachineFunction::~MachineFunction() { 215 clear(); 216 } 217 218 void MachineFunction::clear() { 219 Properties.reset(); 220 // Don't call destructors on MachineInstr and MachineOperand. All of their 221 // memory comes from the BumpPtrAllocator which is about to be purged. 222 // 223 // Do call MachineBasicBlock destructors, it contains std::vectors. 224 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 225 I->Insts.clearAndLeakNodesUnsafely(); 226 MBBNumbering.clear(); 227 228 InstructionRecycler.clear(Allocator); 229 OperandRecycler.clear(Allocator); 230 BasicBlockRecycler.clear(Allocator); 231 CodeViewAnnotations.clear(); 232 VariableDbgInfos.clear(); 233 if (RegInfo) { 234 RegInfo->~MachineRegisterInfo(); 235 Allocator.Deallocate(RegInfo); 236 } 237 if (MFInfo) { 238 MFInfo->~MachineFunctionInfo(); 239 Allocator.Deallocate(MFInfo); 240 } 241 242 FrameInfo->~MachineFrameInfo(); 243 Allocator.Deallocate(FrameInfo); 244 245 ConstantPool->~MachineConstantPool(); 246 Allocator.Deallocate(ConstantPool); 247 248 if (JumpTableInfo) { 249 JumpTableInfo->~MachineJumpTableInfo(); 250 Allocator.Deallocate(JumpTableInfo); 251 } 252 253 if (WinEHInfo) { 254 WinEHInfo->~WinEHFuncInfo(); 255 Allocator.Deallocate(WinEHInfo); 256 } 257 258 if (WasmEHInfo) { 259 WasmEHInfo->~WasmEHFuncInfo(); 260 Allocator.Deallocate(WasmEHInfo); 261 } 262 } 263 264 const DataLayout &MachineFunction::getDataLayout() const { 265 return F.getParent()->getDataLayout(); 266 } 267 268 /// Get the JumpTableInfo for this function. 269 /// If it does not already exist, allocate one. 270 MachineJumpTableInfo *MachineFunction:: 271 getOrCreateJumpTableInfo(unsigned EntryKind) { 272 if (JumpTableInfo) return JumpTableInfo; 273 274 JumpTableInfo = new (Allocator) 275 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 276 return JumpTableInfo; 277 } 278 279 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { 280 return F.getDenormalMode(FPType); 281 } 282 283 /// Should we be emitting segmented stack stuff for the function 284 bool MachineFunction::shouldSplitStack() const { 285 return getFunction().hasFnAttribute("split-stack"); 286 } 287 288 LLVM_NODISCARD unsigned 289 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 290 FrameInstructions.push_back(Inst); 291 return FrameInstructions.size() - 1; 292 } 293 294 /// This discards all of the MachineBasicBlock numbers and recomputes them. 295 /// This guarantees that the MBB numbers are sequential, dense, and match the 296 /// ordering of the blocks within the function. If a specific MachineBasicBlock 297 /// is specified, only that block and those after it are renumbered. 298 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 299 if (empty()) { MBBNumbering.clear(); return; } 300 MachineFunction::iterator MBBI, E = end(); 301 if (MBB == nullptr) 302 MBBI = begin(); 303 else 304 MBBI = MBB->getIterator(); 305 306 // Figure out the block number this should have. 307 unsigned BlockNo = 0; 308 if (MBBI != begin()) 309 BlockNo = std::prev(MBBI)->getNumber() + 1; 310 311 for (; MBBI != E; ++MBBI, ++BlockNo) { 312 if (MBBI->getNumber() != (int)BlockNo) { 313 // Remove use of the old number. 314 if (MBBI->getNumber() != -1) { 315 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 316 "MBB number mismatch!"); 317 MBBNumbering[MBBI->getNumber()] = nullptr; 318 } 319 320 // If BlockNo is already taken, set that block's number to -1. 321 if (MBBNumbering[BlockNo]) 322 MBBNumbering[BlockNo]->setNumber(-1); 323 324 MBBNumbering[BlockNo] = &*MBBI; 325 MBBI->setNumber(BlockNo); 326 } 327 } 328 329 // Okay, all the blocks are renumbered. If we have compactified the block 330 // numbering, shrink MBBNumbering now. 331 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 332 MBBNumbering.resize(BlockNo); 333 } 334 335 /// This method iterates over the basic blocks and assigns their IsBeginSection 336 /// and IsEndSection fields. This must be called after MBB layout is finalized 337 /// and the SectionID's are assigned to MBBs. 338 void MachineFunction::assignBeginEndSections() { 339 front().setIsBeginSection(); 340 auto CurrentSectionID = front().getSectionID(); 341 for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) { 342 if (MBBI->getSectionID() == CurrentSectionID) 343 continue; 344 MBBI->setIsBeginSection(); 345 std::prev(MBBI)->setIsEndSection(); 346 CurrentSectionID = MBBI->getSectionID(); 347 } 348 back().setIsEndSection(); 349 } 350 351 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 352 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 353 DebugLoc DL, 354 bool NoImplicit) { 355 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 356 MachineInstr(*this, MCID, std::move(DL), NoImplicit); 357 } 358 359 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 360 /// identical in all ways except the instruction has no parent, prev, or next. 361 MachineInstr * 362 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 363 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 364 MachineInstr(*this, *Orig); 365 } 366 367 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB, 368 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) { 369 MachineInstr *FirstClone = nullptr; 370 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 371 while (true) { 372 MachineInstr *Cloned = CloneMachineInstr(&*I); 373 MBB.insert(InsertBefore, Cloned); 374 if (FirstClone == nullptr) { 375 FirstClone = Cloned; 376 } else { 377 Cloned->bundleWithPred(); 378 } 379 380 if (!I->isBundledWithSucc()) 381 break; 382 ++I; 383 } 384 // Copy over call site info to the cloned instruction if needed. If Orig is in 385 // a bundle, copyCallSiteInfo takes care of finding the call instruction in 386 // the bundle. 387 if (Orig.shouldUpdateCallSiteInfo()) 388 copyCallSiteInfo(&Orig, FirstClone); 389 return *FirstClone; 390 } 391 392 /// Delete the given MachineInstr. 393 /// 394 /// This function also serves as the MachineInstr destructor - the real 395 /// ~MachineInstr() destructor must be empty. 396 void MachineFunction::deleteMachineInstr(MachineInstr *MI) { 397 // Verify that a call site info is at valid state. This assertion should 398 // be triggered during the implementation of support for the 399 // call site info of a new architecture. If the assertion is triggered, 400 // back trace will tell where to insert a call to updateCallSiteInfo(). 401 assert((!MI->isCandidateForCallSiteEntry() || 402 CallSitesInfo.find(MI) == CallSitesInfo.end()) && 403 "Call site info was not updated!"); 404 // Strip it for parts. The operand array and the MI object itself are 405 // independently recyclable. 406 if (MI->Operands) 407 deallocateOperandArray(MI->CapOperands, MI->Operands); 408 // Don't call ~MachineInstr() which must be trivial anyway because 409 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 410 // destructors. 411 InstructionRecycler.Deallocate(Allocator, MI); 412 } 413 414 /// Allocate a new MachineBasicBlock. Use this instead of 415 /// `new MachineBasicBlock'. 416 MachineBasicBlock * 417 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 418 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 419 MachineBasicBlock(*this, bb); 420 } 421 422 /// Delete the given MachineBasicBlock. 423 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) { 424 assert(MBB->getParent() == this && "MBB parent mismatch!"); 425 // Clean up any references to MBB in jump tables before deleting it. 426 if (JumpTableInfo) 427 JumpTableInfo->RemoveMBBFromJumpTables(MBB); 428 MBB->~MachineBasicBlock(); 429 BasicBlockRecycler.Deallocate(Allocator, MBB); 430 } 431 432 MachineMemOperand *MachineFunction::getMachineMemOperand( 433 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 434 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 435 SyncScope::ID SSID, AtomicOrdering Ordering, 436 AtomicOrdering FailureOrdering) { 437 return new (Allocator) 438 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 439 SSID, Ordering, FailureOrdering); 440 } 441 442 MachineMemOperand *MachineFunction::getMachineMemOperand( 443 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, 444 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 445 SyncScope::ID SSID, AtomicOrdering Ordering, 446 AtomicOrdering FailureOrdering) { 447 return new (Allocator) 448 MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID, 449 Ordering, FailureOrdering); 450 } 451 452 MachineMemOperand *MachineFunction::getMachineMemOperand( 453 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) { 454 return new (Allocator) 455 MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), 456 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 457 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 458 } 459 460 MachineMemOperand *MachineFunction::getMachineMemOperand( 461 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) { 462 return new (Allocator) 463 MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(), 464 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 465 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 466 } 467 468 MachineMemOperand * 469 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 470 int64_t Offset, LLT Ty) { 471 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 472 473 // If there is no pointer value, the offset isn't tracked so we need to adjust 474 // the base alignment. 475 Align Alignment = PtrInfo.V.isNull() 476 ? commonAlignment(MMO->getBaseAlign(), Offset) 477 : MMO->getBaseAlign(); 478 479 // Do not preserve ranges, since we don't necessarily know what the high bits 480 // are anymore. 481 return new (Allocator) MachineMemOperand( 482 PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment, 483 MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(), 484 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 485 } 486 487 MachineMemOperand * 488 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 489 const AAMDNodes &AAInfo) { 490 MachinePointerInfo MPI = MMO->getValue() ? 491 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 492 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 493 494 return new (Allocator) MachineMemOperand( 495 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, 496 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(), 497 MMO->getFailureOrdering()); 498 } 499 500 MachineMemOperand * 501 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 502 MachineMemOperand::Flags Flags) { 503 return new (Allocator) MachineMemOperand( 504 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), 505 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 506 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 507 } 508 509 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 510 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 511 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) { 512 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 513 PostInstrSymbol, HeapAllocMarker); 514 } 515 516 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 517 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 518 llvm::copy(Name, Dest); 519 Dest[Name.size()] = 0; 520 return Dest; 521 } 522 523 uint32_t *MachineFunction::allocateRegMask() { 524 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 525 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 526 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 527 memset(Mask, 0, Size * sizeof(Mask[0])); 528 return Mask; 529 } 530 531 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { 532 int* AllocMask = Allocator.Allocate<int>(Mask.size()); 533 copy(Mask, AllocMask); 534 return {AllocMask, Mask.size()}; 535 } 536 537 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 538 LLVM_DUMP_METHOD void MachineFunction::dump() const { 539 print(dbgs()); 540 } 541 #endif 542 543 StringRef MachineFunction::getName() const { 544 return getFunction().getName(); 545 } 546 547 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 548 OS << "# Machine code for function " << getName() << ": "; 549 getProperties().print(OS); 550 OS << '\n'; 551 552 // Print Frame Information 553 FrameInfo->print(*this, OS); 554 555 // Print JumpTable Information 556 if (JumpTableInfo) 557 JumpTableInfo->print(OS); 558 559 // Print Constant Pool 560 ConstantPool->print(OS); 561 562 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 563 564 if (RegInfo && !RegInfo->livein_empty()) { 565 OS << "Function Live Ins: "; 566 for (MachineRegisterInfo::livein_iterator 567 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 568 OS << printReg(I->first, TRI); 569 if (I->second) 570 OS << " in " << printReg(I->second, TRI); 571 if (std::next(I) != E) 572 OS << ", "; 573 } 574 OS << '\n'; 575 } 576 577 ModuleSlotTracker MST(getFunction().getParent()); 578 MST.incorporateFunction(getFunction()); 579 for (const auto &BB : *this) { 580 OS << '\n'; 581 // If we print the whole function, print it at its most verbose level. 582 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 583 } 584 585 OS << "\n# End machine code for function " << getName() << ".\n\n"; 586 } 587 588 /// True if this function needs frame moves for debug or exceptions. 589 bool MachineFunction::needsFrameMoves() const { 590 return getMMI().hasDebugInfo() || 591 getTarget().Options.ForceDwarfFrameSection || 592 F.needsUnwindTableEntry(); 593 } 594 595 namespace llvm { 596 597 template<> 598 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 599 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 600 601 static std::string getGraphName(const MachineFunction *F) { 602 return ("CFG for '" + F->getName() + "' function").str(); 603 } 604 605 std::string getNodeLabel(const MachineBasicBlock *Node, 606 const MachineFunction *Graph) { 607 std::string OutStr; 608 { 609 raw_string_ostream OSS(OutStr); 610 611 if (isSimple()) { 612 OSS << printMBBReference(*Node); 613 if (const BasicBlock *BB = Node->getBasicBlock()) 614 OSS << ": " << BB->getName(); 615 } else 616 Node->print(OSS); 617 } 618 619 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 620 621 // Process string output to make it nicer... 622 for (unsigned i = 0; i != OutStr.length(); ++i) 623 if (OutStr[i] == '\n') { // Left justify 624 OutStr[i] = '\\'; 625 OutStr.insert(OutStr.begin()+i+1, 'l'); 626 } 627 return OutStr; 628 } 629 }; 630 631 } // end namespace llvm 632 633 void MachineFunction::viewCFG() const 634 { 635 #ifndef NDEBUG 636 ViewGraph(this, "mf" + getName()); 637 #else 638 errs() << "MachineFunction::viewCFG is only available in debug builds on " 639 << "systems with Graphviz or gv!\n"; 640 #endif // NDEBUG 641 } 642 643 void MachineFunction::viewCFGOnly() const 644 { 645 #ifndef NDEBUG 646 ViewGraph(this, "mf" + getName(), true); 647 #else 648 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 649 << "systems with Graphviz or gv!\n"; 650 #endif // NDEBUG 651 } 652 653 /// Add the specified physical register as a live-in value and 654 /// create a corresponding virtual register for it. 655 Register MachineFunction::addLiveIn(MCRegister PReg, 656 const TargetRegisterClass *RC) { 657 MachineRegisterInfo &MRI = getRegInfo(); 658 Register VReg = MRI.getLiveInVirtReg(PReg); 659 if (VReg) { 660 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 661 (void)VRegRC; 662 // A physical register can be added several times. 663 // Between two calls, the register class of the related virtual register 664 // may have been constrained to match some operation constraints. 665 // In that case, check that the current register class includes the 666 // physical register and is a sub class of the specified RC. 667 assert((VRegRC == RC || (VRegRC->contains(PReg) && 668 RC->hasSubClassEq(VRegRC))) && 669 "Register class mismatch!"); 670 return VReg; 671 } 672 VReg = MRI.createVirtualRegister(RC); 673 MRI.addLiveIn(PReg, VReg); 674 return VReg; 675 } 676 677 /// Return the MCSymbol for the specified non-empty jump table. 678 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 679 /// normal 'L' label is returned. 680 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 681 bool isLinkerPrivate) const { 682 const DataLayout &DL = getDataLayout(); 683 assert(JumpTableInfo && "No jump tables"); 684 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 685 686 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 687 : DL.getPrivateGlobalPrefix(); 688 SmallString<60> Name; 689 raw_svector_ostream(Name) 690 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 691 return Ctx.getOrCreateSymbol(Name); 692 } 693 694 /// Return a function-local symbol to represent the PIC base. 695 MCSymbol *MachineFunction::getPICBaseSymbol() const { 696 const DataLayout &DL = getDataLayout(); 697 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 698 Twine(getFunctionNumber()) + "$pb"); 699 } 700 701 /// \name Exception Handling 702 /// \{ 703 704 LandingPadInfo & 705 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 706 unsigned N = LandingPads.size(); 707 for (unsigned i = 0; i < N; ++i) { 708 LandingPadInfo &LP = LandingPads[i]; 709 if (LP.LandingPadBlock == LandingPad) 710 return LP; 711 } 712 713 LandingPads.push_back(LandingPadInfo(LandingPad)); 714 return LandingPads[N]; 715 } 716 717 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 718 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 719 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 720 LP.BeginLabels.push_back(BeginLabel); 721 LP.EndLabels.push_back(EndLabel); 722 } 723 724 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 725 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 726 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 727 LP.LandingPadLabel = LandingPadLabel; 728 729 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 730 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 731 if (const auto *PF = 732 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts())) 733 getMMI().addPersonality(PF); 734 735 if (LPI->isCleanup()) 736 addCleanup(LandingPad); 737 738 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 739 // correct, but we need to do it this way because of how the DWARF EH 740 // emitter processes the clauses. 741 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 742 Value *Val = LPI->getClause(I - 1); 743 if (LPI->isCatch(I - 1)) { 744 addCatchTypeInfo(LandingPad, 745 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 746 } else { 747 // Add filters in a list. 748 auto *CVal = cast<Constant>(Val); 749 SmallVector<const GlobalValue *, 4> FilterList; 750 for (const Use &U : CVal->operands()) 751 FilterList.push_back(cast<GlobalValue>(U->stripPointerCasts())); 752 753 addFilterTypeInfo(LandingPad, FilterList); 754 } 755 } 756 757 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 758 for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) { 759 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts(); 760 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo)); 761 } 762 763 } else { 764 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 765 } 766 767 return LandingPadLabel; 768 } 769 770 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 771 ArrayRef<const GlobalValue *> TyInfo) { 772 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 773 for (unsigned N = TyInfo.size(); N; --N) 774 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); 775 } 776 777 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 778 ArrayRef<const GlobalValue *> TyInfo) { 779 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 780 std::vector<unsigned> IdsInFilter(TyInfo.size()); 781 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 782 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 783 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 784 } 785 786 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap, 787 bool TidyIfNoBeginLabels) { 788 for (unsigned i = 0; i != LandingPads.size(); ) { 789 LandingPadInfo &LandingPad = LandingPads[i]; 790 if (LandingPad.LandingPadLabel && 791 !LandingPad.LandingPadLabel->isDefined() && 792 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 793 LandingPad.LandingPadLabel = nullptr; 794 795 // Special case: we *should* emit LPs with null LP MBB. This indicates 796 // "nounwind" case. 797 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 798 LandingPads.erase(LandingPads.begin() + i); 799 continue; 800 } 801 802 if (TidyIfNoBeginLabels) { 803 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 804 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 805 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 806 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) && 807 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0))) 808 continue; 809 810 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 811 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 812 --j; 813 --e; 814 } 815 816 // Remove landing pads with no try-ranges. 817 if (LandingPads[i].BeginLabels.empty()) { 818 LandingPads.erase(LandingPads.begin() + i); 819 continue; 820 } 821 } 822 823 // If there is no landing pad, ensure that the list of typeids is empty. 824 // If the only typeid is a cleanup, this is the same as having no typeids. 825 if (!LandingPad.LandingPadBlock || 826 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 827 LandingPad.TypeIds.clear(); 828 ++i; 829 } 830 } 831 832 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 833 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 834 LP.TypeIds.push_back(0); 835 } 836 837 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, 838 const Function *Filter, 839 const BlockAddress *RecoverBA) { 840 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 841 SEHHandler Handler; 842 Handler.FilterOrFinally = Filter; 843 Handler.RecoverBA = RecoverBA; 844 LP.SEHHandlers.push_back(Handler); 845 } 846 847 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, 848 const Function *Cleanup) { 849 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 850 SEHHandler Handler; 851 Handler.FilterOrFinally = Cleanup; 852 Handler.RecoverBA = nullptr; 853 LP.SEHHandlers.push_back(Handler); 854 } 855 856 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 857 ArrayRef<unsigned> Sites) { 858 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 859 } 860 861 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 862 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 863 if (TypeInfos[i] == TI) return i + 1; 864 865 TypeInfos.push_back(TI); 866 return TypeInfos.size(); 867 } 868 869 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 870 // If the new filter coincides with the tail of an existing filter, then 871 // re-use the existing filter. Folding filters more than this requires 872 // re-ordering filters and/or their elements - probably not worth it. 873 for (unsigned i : FilterEnds) { 874 unsigned j = TyIds.size(); 875 876 while (i && j) 877 if (FilterIds[--i] != TyIds[--j]) 878 goto try_next; 879 880 if (!j) 881 // The new filter coincides with range [i, end) of the existing filter. 882 return -(1 + i); 883 884 try_next:; 885 } 886 887 // Add the new filter. 888 int FilterID = -(1 + FilterIds.size()); 889 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 890 llvm::append_range(FilterIds, TyIds); 891 FilterEnds.push_back(FilterIds.size()); 892 FilterIds.push_back(0); // terminator 893 return FilterID; 894 } 895 896 MachineFunction::CallSiteInfoMap::iterator 897 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 898 assert(MI->isCandidateForCallSiteEntry() && 899 "Call site info refers only to call (MI) candidates"); 900 901 if (!Target.Options.EmitCallSiteInfo) 902 return CallSitesInfo.end(); 903 return CallSitesInfo.find(MI); 904 } 905 906 /// Return the call machine instruction or find a call within bundle. 907 static const MachineInstr *getCallInstr(const MachineInstr *MI) { 908 if (!MI->isBundle()) 909 return MI; 910 911 for (auto &BMI : make_range(getBundleStart(MI->getIterator()), 912 getBundleEnd(MI->getIterator()))) 913 if (BMI.isCandidateForCallSiteEntry()) 914 return &BMI; 915 916 llvm_unreachable("Unexpected bundle without a call site candidate"); 917 } 918 919 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 920 assert(MI->shouldUpdateCallSiteInfo() && 921 "Call site info refers only to call (MI) candidates or " 922 "candidates inside bundles"); 923 924 const MachineInstr *CallMI = getCallInstr(MI); 925 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); 926 if (CSIt == CallSitesInfo.end()) 927 return; 928 CallSitesInfo.erase(CSIt); 929 } 930 931 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 932 const MachineInstr *New) { 933 assert(Old->shouldUpdateCallSiteInfo() && 934 "Call site info refers only to call (MI) candidates or " 935 "candidates inside bundles"); 936 937 if (!New->isCandidateForCallSiteEntry()) 938 return eraseCallSiteInfo(Old); 939 940 const MachineInstr *OldCallMI = getCallInstr(Old); 941 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 942 if (CSIt == CallSitesInfo.end()) 943 return; 944 945 CallSiteInfo CSInfo = CSIt->second; 946 CallSitesInfo[New] = CSInfo; 947 } 948 949 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 950 const MachineInstr *New) { 951 assert(Old->shouldUpdateCallSiteInfo() && 952 "Call site info refers only to call (MI) candidates or " 953 "candidates inside bundles"); 954 955 if (!New->isCandidateForCallSiteEntry()) 956 return eraseCallSiteInfo(Old); 957 958 const MachineInstr *OldCallMI = getCallInstr(Old); 959 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 960 if (CSIt == CallSitesInfo.end()) 961 return; 962 963 CallSiteInfo CSInfo = std::move(CSIt->second); 964 CallSitesInfo.erase(CSIt); 965 CallSitesInfo[New] = CSInfo; 966 } 967 968 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) { 969 DebugInstrNumberingCount = Num; 970 } 971 972 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A, 973 DebugInstrOperandPair B, 974 unsigned Subreg) { 975 // Catch any accidental self-loops. 976 assert(A.first != B.first); 977 // Don't allow any substitutions _from_ the memory operand number. 978 assert(A.second != DebugOperandMemNumber); 979 980 DebugValueSubstitutions.push_back({A, B, Subreg}); 981 } 982 983 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old, 984 MachineInstr &New, 985 unsigned MaxOperand) { 986 // If the Old instruction wasn't tracked at all, there is no work to do. 987 unsigned OldInstrNum = Old.peekDebugInstrNum(); 988 if (!OldInstrNum) 989 return; 990 991 // Iterate over all operands looking for defs to create substitutions for. 992 // Avoid creating new instr numbers unless we create a new substitution. 993 // While this has no functional effect, it risks confusing someone reading 994 // MIR output. 995 // Examine all the operands, or the first N specified by the caller. 996 MaxOperand = std::min(MaxOperand, Old.getNumOperands()); 997 for (unsigned int I = 0; I < MaxOperand; ++I) { 998 const auto &OldMO = Old.getOperand(I); 999 auto &NewMO = New.getOperand(I); 1000 (void)NewMO; 1001 1002 if (!OldMO.isReg() || !OldMO.isDef()) 1003 continue; 1004 assert(NewMO.isDef()); 1005 1006 unsigned NewInstrNum = New.getDebugInstrNum(); 1007 makeDebugValueSubstitution(std::make_pair(OldInstrNum, I), 1008 std::make_pair(NewInstrNum, I)); 1009 } 1010 } 1011 1012 auto MachineFunction::salvageCopySSA(MachineInstr &MI) 1013 -> DebugInstrOperandPair { 1014 MachineRegisterInfo &MRI = getRegInfo(); 1015 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 1016 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1017 1018 // Chase the value read by a copy-like instruction back to the instruction 1019 // that ultimately _defines_ that value. This may pass: 1020 // * Through multiple intermediate copies, including subregister moves / 1021 // copies, 1022 // * Copies from physical registers that must then be traced back to the 1023 // defining instruction, 1024 // * Or, physical registers may be live-in to (only) the entry block, which 1025 // requires a DBG_PHI to be created. 1026 // We can pursue this problem in that order: trace back through copies, 1027 // optionally through a physical register, to a defining instruction. We 1028 // should never move from physreg to vreg. As we're still in SSA form, no need 1029 // to worry about partial definitions of registers. 1030 1031 // Helper lambda to interpret a copy-like instruction. Takes instruction, 1032 // returns the register read and any subregister identifying which part is 1033 // read. 1034 auto GetRegAndSubreg = 1035 [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> { 1036 Register NewReg, OldReg; 1037 unsigned SubReg; 1038 if (Cpy.isCopy()) { 1039 OldReg = Cpy.getOperand(0).getReg(); 1040 NewReg = Cpy.getOperand(1).getReg(); 1041 SubReg = Cpy.getOperand(1).getSubReg(); 1042 } else if (Cpy.isSubregToReg()) { 1043 OldReg = Cpy.getOperand(0).getReg(); 1044 NewReg = Cpy.getOperand(2).getReg(); 1045 SubReg = Cpy.getOperand(3).getImm(); 1046 } else { 1047 auto CopyDetails = *TII.isCopyInstr(Cpy); 1048 const MachineOperand &Src = *CopyDetails.Source; 1049 const MachineOperand &Dest = *CopyDetails.Destination; 1050 OldReg = Dest.getReg(); 1051 NewReg = Src.getReg(); 1052 SubReg = Src.getSubReg(); 1053 } 1054 1055 return {NewReg, SubReg}; 1056 }; 1057 1058 // First seek either the defining instruction, or a copy from a physreg. 1059 // During search, the current state is the current copy instruction, and which 1060 // register we've read. Accumulate qualifying subregisters into SubregsSeen; 1061 // deal with those later. 1062 auto State = GetRegAndSubreg(MI); 1063 auto CurInst = MI.getIterator(); 1064 SmallVector<unsigned, 4> SubregsSeen; 1065 while (true) { 1066 // If we've found a copy from a physreg, first portion of search is over. 1067 if (!State.first.isVirtual()) 1068 break; 1069 1070 // Record any subregister qualifier. 1071 if (State.second) 1072 SubregsSeen.push_back(State.second); 1073 1074 assert(MRI.hasOneDef(State.first)); 1075 MachineInstr &Inst = *MRI.def_begin(State.first)->getParent(); 1076 CurInst = Inst.getIterator(); 1077 1078 // Any non-copy instruction is the defining instruction we're seeking. 1079 if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst)) 1080 break; 1081 State = GetRegAndSubreg(Inst); 1082 }; 1083 1084 // Helper lambda to apply additional subregister substitutions to a known 1085 // instruction/operand pair. Adds new (fake) substitutions so that we can 1086 // record the subregister. FIXME: this isn't very space efficient if multiple 1087 // values are tracked back through the same copies; cache something later. 1088 auto ApplySubregisters = 1089 [&](DebugInstrOperandPair P) -> DebugInstrOperandPair { 1090 for (unsigned Subreg : reverse(SubregsSeen)) { 1091 // Fetch a new instruction number, not attached to an actual instruction. 1092 unsigned NewInstrNumber = getNewDebugInstrNum(); 1093 // Add a substitution from the "new" number to the known one, with a 1094 // qualifying subreg. 1095 makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg); 1096 // Return the new number; to find the underlying value, consumers need to 1097 // deal with the qualifying subreg. 1098 P = {NewInstrNumber, 0}; 1099 } 1100 return P; 1101 }; 1102 1103 // If we managed to find the defining instruction after COPYs, return an 1104 // instruction / operand pair after adding subregister qualifiers. 1105 if (State.first.isVirtual()) { 1106 // Virtual register def -- we can just look up where this happens. 1107 MachineInstr *Inst = MRI.def_begin(State.first)->getParent(); 1108 for (auto &MO : Inst->operands()) { 1109 if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first) 1110 continue; 1111 return ApplySubregisters( 1112 {Inst->getDebugInstrNum(), Inst->getOperandNo(&MO)}); 1113 } 1114 1115 llvm_unreachable("Vreg def with no corresponding operand?"); 1116 } 1117 1118 // Our search ended in a copy from a physreg: walk back up the function 1119 // looking for whatever defines the physreg. 1120 assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst)); 1121 State = GetRegAndSubreg(*CurInst); 1122 Register RegToSeek = State.first; 1123 1124 auto RMII = CurInst->getReverseIterator(); 1125 auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend()); 1126 for (auto &ToExamine : PrevInstrs) { 1127 for (auto &MO : ToExamine.operands()) { 1128 // Test for operand that defines something aliasing RegToSeek. 1129 if (!MO.isReg() || !MO.isDef() || 1130 !TRI.regsOverlap(RegToSeek, MO.getReg())) 1131 continue; 1132 1133 return ApplySubregisters( 1134 {ToExamine.getDebugInstrNum(), ToExamine.getOperandNo(&MO)}); 1135 } 1136 } 1137 1138 MachineBasicBlock &InsertBB = *CurInst->getParent(); 1139 1140 // We reached the start of the block before finding a defining instruction. 1141 // It could be from a constant register, otherwise it must be an argument. 1142 if (TRI.isConstantPhysReg(State.first)) { 1143 // We can produce a DBG_PHI that identifies the constant physreg. Doesn't 1144 // matter where we put it, as it's constant valued. 1145 assert(CurInst->isCopy()); 1146 } else if (State.first == TRI.getFrameRegister(*this)) { 1147 // LLVM IR is allowed to read the framepointer by calling a 1148 // llvm.frameaddress.* intrinsic. We can support this by emitting a 1149 // DBG_PHI $fp. This isn't ideal, because it extends the behaviours / 1150 // position that DBG_PHIs appear at, limiting what can be done later. 1151 // TODO: see if there's a better way of expressing these variable 1152 // locations. 1153 ; 1154 } else { 1155 // Assert that this is the entry block, or an EH pad. If it isn't, then 1156 // there is some code construct we don't recognise that deals with physregs 1157 // across blocks. 1158 assert(!State.first.isVirtual()); 1159 assert(&*InsertBB.getParent()->begin() == &InsertBB || InsertBB.isEHPad()); 1160 } 1161 1162 // Create DBG_PHI for specified physreg. 1163 auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(), 1164 TII.get(TargetOpcode::DBG_PHI)); 1165 Builder.addReg(State.first); 1166 unsigned NewNum = getNewDebugInstrNum(); 1167 Builder.addImm(NewNum); 1168 return ApplySubregisters({NewNum, 0u}); 1169 } 1170 1171 void MachineFunction::finalizeDebugInstrRefs() { 1172 auto *TII = getSubtarget().getInstrInfo(); 1173 1174 auto MakeUndefDbgValue = [&](MachineInstr &MI) { 1175 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE); 1176 MI.setDesc(RefII); 1177 MI.getOperand(0).setReg(0); 1178 MI.getOperand(1).ChangeToRegister(0, false); 1179 }; 1180 1181 if (!useDebugInstrRef()) 1182 return; 1183 1184 for (auto &MBB : *this) { 1185 for (auto &MI : MBB) { 1186 if (!MI.isDebugRef() || !MI.getOperand(0).isReg()) 1187 continue; 1188 1189 Register Reg = MI.getOperand(0).getReg(); 1190 1191 // Some vregs can be deleted as redundant in the meantime. Mark those 1192 // as DBG_VALUE $noreg. Additionally, some normal instructions are 1193 // quickly deleted, leaving dangling references to vregs with no def. 1194 if (Reg == 0 || !RegInfo->hasOneDef(Reg)) { 1195 MakeUndefDbgValue(MI); 1196 continue; 1197 } 1198 1199 assert(Reg.isVirtual()); 1200 MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg); 1201 1202 // If we've found a copy-like instruction, follow it back to the 1203 // instruction that defines the source value, see salvageCopySSA docs 1204 // for why this is important. 1205 if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) { 1206 auto Result = salvageCopySSA(DefMI); 1207 MI.getOperand(0).ChangeToImmediate(Result.first); 1208 MI.getOperand(1).setImm(Result.second); 1209 } else { 1210 // Otherwise, identify the operand number that the VReg refers to. 1211 unsigned OperandIdx = 0; 1212 for (const auto &MO : DefMI.operands()) { 1213 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 1214 break; 1215 ++OperandIdx; 1216 } 1217 assert(OperandIdx < DefMI.getNumOperands()); 1218 1219 // Morph this instr ref to point at the given instruction and operand. 1220 unsigned ID = DefMI.getDebugInstrNum(); 1221 MI.getOperand(0).ChangeToImmediate(ID); 1222 MI.getOperand(1).setImm(OperandIdx); 1223 } 1224 } 1225 } 1226 } 1227 1228 bool MachineFunction::useDebugInstrRef() const { 1229 // Disable instr-ref at -O0: it's very slow (in compile time). We can still 1230 // have optimized code inlined into this unoptimized code, however with 1231 // fewer and less aggressive optimizations happening, coverage and accuracy 1232 // should not suffer. 1233 if (getTarget().getOptLevel() == CodeGenOpt::None) 1234 return false; 1235 1236 // Don't use instr-ref if this function is marked optnone. 1237 if (F.hasFnAttribute(Attribute::OptimizeNone)) 1238 return false; 1239 1240 if (getTarget().Options.ValueTrackingVariableLocations) 1241 return true; 1242 1243 return false; 1244 } 1245 1246 // Use one million as a high / reserved number. 1247 const unsigned MachineFunction::DebugOperandMemNumber = 1000000; 1248 1249 /// \} 1250 1251 //===----------------------------------------------------------------------===// 1252 // MachineJumpTableInfo implementation 1253 //===----------------------------------------------------------------------===// 1254 1255 /// Return the size of each entry in the jump table. 1256 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 1257 // The size of a jump table entry is 4 bytes unless the entry is just the 1258 // address of a block, in which case it is the pointer size. 1259 switch (getEntryKind()) { 1260 case MachineJumpTableInfo::EK_BlockAddress: 1261 return TD.getPointerSize(); 1262 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1263 return 8; 1264 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1265 case MachineJumpTableInfo::EK_LabelDifference32: 1266 case MachineJumpTableInfo::EK_Custom32: 1267 return 4; 1268 case MachineJumpTableInfo::EK_Inline: 1269 return 0; 1270 } 1271 llvm_unreachable("Unknown jump table encoding!"); 1272 } 1273 1274 /// Return the alignment of each entry in the jump table. 1275 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 1276 // The alignment of a jump table entry is the alignment of int32 unless the 1277 // entry is just the address of a block, in which case it is the pointer 1278 // alignment. 1279 switch (getEntryKind()) { 1280 case MachineJumpTableInfo::EK_BlockAddress: 1281 return TD.getPointerABIAlignment(0).value(); 1282 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1283 return TD.getABIIntegerTypeAlignment(64).value(); 1284 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1285 case MachineJumpTableInfo::EK_LabelDifference32: 1286 case MachineJumpTableInfo::EK_Custom32: 1287 return TD.getABIIntegerTypeAlignment(32).value(); 1288 case MachineJumpTableInfo::EK_Inline: 1289 return 1; 1290 } 1291 llvm_unreachable("Unknown jump table encoding!"); 1292 } 1293 1294 /// Create a new jump table entry in the jump table info. 1295 unsigned MachineJumpTableInfo::createJumpTableIndex( 1296 const std::vector<MachineBasicBlock*> &DestBBs) { 1297 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 1298 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 1299 return JumpTables.size()-1; 1300 } 1301 1302 /// If Old is the target of any jump tables, update the jump tables to branch 1303 /// to New instead. 1304 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 1305 MachineBasicBlock *New) { 1306 assert(Old != New && "Not making a change?"); 1307 bool MadeChange = false; 1308 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 1309 ReplaceMBBInJumpTable(i, Old, New); 1310 return MadeChange; 1311 } 1312 1313 /// If MBB is present in any jump tables, remove it. 1314 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) { 1315 bool MadeChange = false; 1316 for (MachineJumpTableEntry &JTE : JumpTables) { 1317 auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB); 1318 MadeChange |= (removeBeginItr != JTE.MBBs.end()); 1319 JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end()); 1320 } 1321 return MadeChange; 1322 } 1323 1324 /// If Old is a target of the jump tables, update the jump table to branch to 1325 /// New instead. 1326 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 1327 MachineBasicBlock *Old, 1328 MachineBasicBlock *New) { 1329 assert(Old != New && "Not making a change?"); 1330 bool MadeChange = false; 1331 MachineJumpTableEntry &JTE = JumpTables[Idx]; 1332 for (MachineBasicBlock *&MBB : JTE.MBBs) 1333 if (MBB == Old) { 1334 MBB = New; 1335 MadeChange = true; 1336 } 1337 return MadeChange; 1338 } 1339 1340 void MachineJumpTableInfo::print(raw_ostream &OS) const { 1341 if (JumpTables.empty()) return; 1342 1343 OS << "Jump Tables:\n"; 1344 1345 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 1346 OS << printJumpTableEntryReference(i) << ':'; 1347 for (const MachineBasicBlock *MBB : JumpTables[i].MBBs) 1348 OS << ' ' << printMBBReference(*MBB); 1349 if (i != e) 1350 OS << '\n'; 1351 } 1352 1353 OS << '\n'; 1354 } 1355 1356 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1357 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 1358 #endif 1359 1360 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 1361 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 1362 } 1363 1364 //===----------------------------------------------------------------------===// 1365 // MachineConstantPool implementation 1366 //===----------------------------------------------------------------------===// 1367 1368 void MachineConstantPoolValue::anchor() {} 1369 1370 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const { 1371 return DL.getTypeAllocSize(Ty); 1372 } 1373 1374 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const { 1375 if (isMachineConstantPoolEntry()) 1376 return Val.MachineCPVal->getSizeInBytes(DL); 1377 return DL.getTypeAllocSize(Val.ConstVal->getType()); 1378 } 1379 1380 bool MachineConstantPoolEntry::needsRelocation() const { 1381 if (isMachineConstantPoolEntry()) 1382 return true; 1383 return Val.ConstVal->needsDynamicRelocation(); 1384 } 1385 1386 SectionKind 1387 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 1388 if (needsRelocation()) 1389 return SectionKind::getReadOnlyWithRel(); 1390 switch (getSizeInBytes(*DL)) { 1391 case 4: 1392 return SectionKind::getMergeableConst4(); 1393 case 8: 1394 return SectionKind::getMergeableConst8(); 1395 case 16: 1396 return SectionKind::getMergeableConst16(); 1397 case 32: 1398 return SectionKind::getMergeableConst32(); 1399 default: 1400 return SectionKind::getReadOnly(); 1401 } 1402 } 1403 1404 MachineConstantPool::~MachineConstantPool() { 1405 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1406 // so keep track of which we've deleted to avoid double deletions. 1407 DenseSet<MachineConstantPoolValue*> Deleted; 1408 for (const MachineConstantPoolEntry &C : Constants) 1409 if (C.isMachineConstantPoolEntry()) { 1410 Deleted.insert(C.Val.MachineCPVal); 1411 delete C.Val.MachineCPVal; 1412 } 1413 for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) { 1414 if (Deleted.count(CPV) == 0) 1415 delete CPV; 1416 } 1417 } 1418 1419 /// Test whether the given two constants can be allocated the same constant pool 1420 /// entry. 1421 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1422 const DataLayout &DL) { 1423 // Handle the trivial case quickly. 1424 if (A == B) return true; 1425 1426 // If they have the same type but weren't the same constant, quickly 1427 // reject them. 1428 if (A->getType() == B->getType()) return false; 1429 1430 // We can't handle structs or arrays. 1431 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1432 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1433 return false; 1434 1435 // For now, only support constants with the same size. 1436 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1437 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1438 return false; 1439 1440 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1441 1442 // Try constant folding a bitcast of both instructions to an integer. If we 1443 // get two identical ConstantInt's, then we are good to share them. We use 1444 // the constant folding APIs to do this so that we get the benefit of 1445 // DataLayout. 1446 if (isa<PointerType>(A->getType())) 1447 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1448 const_cast<Constant *>(A), IntTy, DL); 1449 else if (A->getType() != IntTy) 1450 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1451 IntTy, DL); 1452 if (isa<PointerType>(B->getType())) 1453 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1454 const_cast<Constant *>(B), IntTy, DL); 1455 else if (B->getType() != IntTy) 1456 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1457 IntTy, DL); 1458 1459 return A == B; 1460 } 1461 1462 /// Create a new entry in the constant pool or return an existing one. 1463 /// User must specify the log2 of the minimum required alignment for the object. 1464 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1465 Align Alignment) { 1466 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1467 1468 // Check to see if we already have this constant. 1469 // 1470 // FIXME, this could be made much more efficient for large constant pools. 1471 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1472 if (!Constants[i].isMachineConstantPoolEntry() && 1473 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1474 if (Constants[i].getAlign() < Alignment) 1475 Constants[i].Alignment = Alignment; 1476 return i; 1477 } 1478 1479 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1480 return Constants.size()-1; 1481 } 1482 1483 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1484 Align Alignment) { 1485 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1486 1487 // Check to see if we already have this constant. 1488 // 1489 // FIXME, this could be made much more efficient for large constant pools. 1490 int Idx = V->getExistingMachineCPValue(this, Alignment); 1491 if (Idx != -1) { 1492 MachineCPVsSharingEntries.insert(V); 1493 return (unsigned)Idx; 1494 } 1495 1496 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1497 return Constants.size()-1; 1498 } 1499 1500 void MachineConstantPool::print(raw_ostream &OS) const { 1501 if (Constants.empty()) return; 1502 1503 OS << "Constant Pool:\n"; 1504 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1505 OS << " cp#" << i << ": "; 1506 if (Constants[i].isMachineConstantPoolEntry()) 1507 Constants[i].Val.MachineCPVal->print(OS); 1508 else 1509 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1510 OS << ", align=" << Constants[i].getAlign().value(); 1511 OS << "\n"; 1512 } 1513 } 1514 1515 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1516 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1517 #endif 1518