1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfo.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/GraphWriter.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetFrameLowering.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetMachine.h" 39 using namespace llvm; 40 41 //===----------------------------------------------------------------------===// 42 // MachineFunction implementation 43 //===----------------------------------------------------------------------===// 44 45 // Out of line virtual method. 46 MachineFunctionInfo::~MachineFunctionInfo() {} 47 48 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 49 MBB->getParent()->DeleteMachineBasicBlock(MBB); 50 } 51 52 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 53 unsigned FunctionNum, MachineModuleInfo &mmi, 54 GCModuleInfo* gmi) 55 : Fn(F), Target(TM), Ctx(mmi.getContext()), MMI(mmi), GMI(gmi) { 56 if (TM.getRegisterInfo()) 57 RegInfo = new (Allocator) MachineRegisterInfo(TM); 58 else 59 RegInfo = nullptr; 60 61 MFInfo = nullptr; 62 FrameInfo = 63 new (Allocator) MachineFrameInfo(TM,!F->hasFnAttribute("no-realign-stack")); 64 65 if (Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 66 Attribute::StackAlignment)) 67 FrameInfo->ensureMaxAlignment(Fn->getAttributes(). 68 getStackAlignment(AttributeSet::FunctionIndex)); 69 70 ConstantPool = new (Allocator) MachineConstantPool(TM); 71 Alignment = TM.getTargetLowering()->getMinFunctionAlignment(); 72 73 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 74 if (!Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 75 Attribute::OptimizeForSize)) 76 Alignment = std::max(Alignment, 77 TM.getTargetLowering()->getPrefFunctionAlignment()); 78 79 FunctionNumber = FunctionNum; 80 JumpTableInfo = nullptr; 81 } 82 83 MachineFunction::~MachineFunction() { 84 // Don't call destructors on MachineInstr and MachineOperand. All of their 85 // memory comes from the BumpPtrAllocator which is about to be purged. 86 // 87 // Do call MachineBasicBlock destructors, it contains std::vectors. 88 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 89 I->Insts.clearAndLeakNodesUnsafely(); 90 91 InstructionRecycler.clear(Allocator); 92 OperandRecycler.clear(Allocator); 93 BasicBlockRecycler.clear(Allocator); 94 if (RegInfo) { 95 RegInfo->~MachineRegisterInfo(); 96 Allocator.Deallocate(RegInfo); 97 } 98 if (MFInfo) { 99 MFInfo->~MachineFunctionInfo(); 100 Allocator.Deallocate(MFInfo); 101 } 102 103 FrameInfo->~MachineFrameInfo(); 104 Allocator.Deallocate(FrameInfo); 105 106 ConstantPool->~MachineConstantPool(); 107 Allocator.Deallocate(ConstantPool); 108 109 if (JumpTableInfo) { 110 JumpTableInfo->~MachineJumpTableInfo(); 111 Allocator.Deallocate(JumpTableInfo); 112 } 113 } 114 115 /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it 116 /// does already exist, allocate one. 117 MachineJumpTableInfo *MachineFunction:: 118 getOrCreateJumpTableInfo(unsigned EntryKind) { 119 if (JumpTableInfo) return JumpTableInfo; 120 121 JumpTableInfo = new (Allocator) 122 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 123 return JumpTableInfo; 124 } 125 126 /// Should we be emitting segmented stack stuff for the function 127 bool MachineFunction::shouldSplitStack() { 128 return getFunction()->hasFnAttribute("split-stack"); 129 } 130 131 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and 132 /// recomputes them. This guarantees that the MBB numbers are sequential, 133 /// dense, and match the ordering of the blocks within the function. If a 134 /// specific MachineBasicBlock is specified, only that block and those after 135 /// it are renumbered. 136 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 137 if (empty()) { MBBNumbering.clear(); return; } 138 MachineFunction::iterator MBBI, E = end(); 139 if (MBB == nullptr) 140 MBBI = begin(); 141 else 142 MBBI = MBB; 143 144 // Figure out the block number this should have. 145 unsigned BlockNo = 0; 146 if (MBBI != begin()) 147 BlockNo = std::prev(MBBI)->getNumber() + 1; 148 149 for (; MBBI != E; ++MBBI, ++BlockNo) { 150 if (MBBI->getNumber() != (int)BlockNo) { 151 // Remove use of the old number. 152 if (MBBI->getNumber() != -1) { 153 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 154 "MBB number mismatch!"); 155 MBBNumbering[MBBI->getNumber()] = nullptr; 156 } 157 158 // If BlockNo is already taken, set that block's number to -1. 159 if (MBBNumbering[BlockNo]) 160 MBBNumbering[BlockNo]->setNumber(-1); 161 162 MBBNumbering[BlockNo] = MBBI; 163 MBBI->setNumber(BlockNo); 164 } 165 } 166 167 // Okay, all the blocks are renumbered. If we have compactified the block 168 // numbering, shrink MBBNumbering now. 169 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 170 MBBNumbering.resize(BlockNo); 171 } 172 173 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead 174 /// of `new MachineInstr'. 175 /// 176 MachineInstr * 177 MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 178 DebugLoc DL, bool NoImp) { 179 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 180 MachineInstr(*this, MCID, DL, NoImp); 181 } 182 183 /// CloneMachineInstr - Create a new MachineInstr which is a copy of the 184 /// 'Orig' instruction, identical in all ways except the instruction 185 /// has no parent, prev, or next. 186 /// 187 MachineInstr * 188 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 189 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 190 MachineInstr(*this, *Orig); 191 } 192 193 /// DeleteMachineInstr - Delete the given MachineInstr. 194 /// 195 /// This function also serves as the MachineInstr destructor - the real 196 /// ~MachineInstr() destructor must be empty. 197 void 198 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 199 // Strip it for parts. The operand array and the MI object itself are 200 // independently recyclable. 201 if (MI->Operands) 202 deallocateOperandArray(MI->CapOperands, MI->Operands); 203 // Don't call ~MachineInstr() which must be trivial anyway because 204 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 205 // destructors. 206 InstructionRecycler.Deallocate(Allocator, MI); 207 } 208 209 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this 210 /// instead of `new MachineBasicBlock'. 211 /// 212 MachineBasicBlock * 213 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 214 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 215 MachineBasicBlock(*this, bb); 216 } 217 218 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. 219 /// 220 void 221 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 222 assert(MBB->getParent() == this && "MBB parent mismatch!"); 223 MBB->~MachineBasicBlock(); 224 BasicBlockRecycler.Deallocate(Allocator, MBB); 225 } 226 227 MachineMemOperand * 228 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 229 uint64_t s, unsigned base_alignment, 230 const MDNode *TBAAInfo, 231 const MDNode *Ranges) { 232 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 233 TBAAInfo, Ranges); 234 } 235 236 MachineMemOperand * 237 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 238 int64_t Offset, uint64_t Size) { 239 if (MMO->getValue()) 240 return new (Allocator) 241 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 242 MMO->getOffset()+Offset), 243 MMO->getFlags(), Size, 244 MMO->getBaseAlignment(), nullptr); 245 return new (Allocator) 246 MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(), 247 MMO->getOffset()+Offset), 248 MMO->getFlags(), Size, 249 MMO->getBaseAlignment(), nullptr); 250 } 251 252 MachineInstr::mmo_iterator 253 MachineFunction::allocateMemRefsArray(unsigned long Num) { 254 return Allocator.Allocate<MachineMemOperand *>(Num); 255 } 256 257 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 258 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 259 MachineInstr::mmo_iterator End) { 260 // Count the number of load mem refs. 261 unsigned Num = 0; 262 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 263 if ((*I)->isLoad()) 264 ++Num; 265 266 // Allocate a new array and populate it with the load information. 267 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 268 unsigned Index = 0; 269 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 270 if ((*I)->isLoad()) { 271 if (!(*I)->isStore()) 272 // Reuse the MMO. 273 Result[Index] = *I; 274 else { 275 // Clone the MMO and unset the store flag. 276 MachineMemOperand *JustLoad = 277 getMachineMemOperand((*I)->getPointerInfo(), 278 (*I)->getFlags() & ~MachineMemOperand::MOStore, 279 (*I)->getSize(), (*I)->getBaseAlignment(), 280 (*I)->getTBAAInfo()); 281 Result[Index] = JustLoad; 282 } 283 ++Index; 284 } 285 } 286 return std::make_pair(Result, Result + Num); 287 } 288 289 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 290 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 291 MachineInstr::mmo_iterator End) { 292 // Count the number of load mem refs. 293 unsigned Num = 0; 294 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 295 if ((*I)->isStore()) 296 ++Num; 297 298 // Allocate a new array and populate it with the store information. 299 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 300 unsigned Index = 0; 301 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 302 if ((*I)->isStore()) { 303 if (!(*I)->isLoad()) 304 // Reuse the MMO. 305 Result[Index] = *I; 306 else { 307 // Clone the MMO and unset the load flag. 308 MachineMemOperand *JustStore = 309 getMachineMemOperand((*I)->getPointerInfo(), 310 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 311 (*I)->getSize(), (*I)->getBaseAlignment(), 312 (*I)->getTBAAInfo()); 313 Result[Index] = JustStore; 314 } 315 ++Index; 316 } 317 } 318 return std::make_pair(Result, Result + Num); 319 } 320 321 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 322 void MachineFunction::dump() const { 323 print(dbgs()); 324 } 325 #endif 326 327 StringRef MachineFunction::getName() const { 328 assert(getFunction() && "No function!"); 329 return getFunction()->getName(); 330 } 331 332 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const { 333 OS << "# Machine code for function " << getName() << ": "; 334 if (RegInfo) { 335 OS << (RegInfo->isSSA() ? "SSA" : "Post SSA"); 336 if (!RegInfo->tracksLiveness()) 337 OS << ", not tracking liveness"; 338 } 339 OS << '\n'; 340 341 // Print Frame Information 342 FrameInfo->print(*this, OS); 343 344 // Print JumpTable Information 345 if (JumpTableInfo) 346 JumpTableInfo->print(OS); 347 348 // Print Constant Pool 349 ConstantPool->print(OS); 350 351 const TargetRegisterInfo *TRI = getTarget().getRegisterInfo(); 352 353 if (RegInfo && !RegInfo->livein_empty()) { 354 OS << "Function Live Ins: "; 355 for (MachineRegisterInfo::livein_iterator 356 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 357 OS << PrintReg(I->first, TRI); 358 if (I->second) 359 OS << " in " << PrintReg(I->second, TRI); 360 if (std::next(I) != E) 361 OS << ", "; 362 } 363 OS << '\n'; 364 } 365 366 for (const_iterator BB = begin(), E = end(); BB != E; ++BB) { 367 OS << '\n'; 368 BB->print(OS, Indexes); 369 } 370 371 OS << "\n# End machine code for function " << getName() << ".\n\n"; 372 } 373 374 namespace llvm { 375 template<> 376 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 377 378 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 379 380 static std::string getGraphName(const MachineFunction *F) { 381 return "CFG for '" + F->getName().str() + "' function"; 382 } 383 384 std::string getNodeLabel(const MachineBasicBlock *Node, 385 const MachineFunction *Graph) { 386 std::string OutStr; 387 { 388 raw_string_ostream OSS(OutStr); 389 390 if (isSimple()) { 391 OSS << "BB#" << Node->getNumber(); 392 if (const BasicBlock *BB = Node->getBasicBlock()) 393 OSS << ": " << BB->getName(); 394 } else 395 Node->print(OSS); 396 } 397 398 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 399 400 // Process string output to make it nicer... 401 for (unsigned i = 0; i != OutStr.length(); ++i) 402 if (OutStr[i] == '\n') { // Left justify 403 OutStr[i] = '\\'; 404 OutStr.insert(OutStr.begin()+i+1, 'l'); 405 } 406 return OutStr; 407 } 408 }; 409 } 410 411 void MachineFunction::viewCFG() const 412 { 413 #ifndef NDEBUG 414 ViewGraph(this, "mf" + getName()); 415 #else 416 errs() << "MachineFunction::viewCFG is only available in debug builds on " 417 << "systems with Graphviz or gv!\n"; 418 #endif // NDEBUG 419 } 420 421 void MachineFunction::viewCFGOnly() const 422 { 423 #ifndef NDEBUG 424 ViewGraph(this, "mf" + getName(), true); 425 #else 426 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 427 << "systems with Graphviz or gv!\n"; 428 #endif // NDEBUG 429 } 430 431 /// addLiveIn - Add the specified physical register as a live-in value and 432 /// create a corresponding virtual register for it. 433 unsigned MachineFunction::addLiveIn(unsigned PReg, 434 const TargetRegisterClass *RC) { 435 MachineRegisterInfo &MRI = getRegInfo(); 436 unsigned VReg = MRI.getLiveInVirtReg(PReg); 437 if (VReg) { 438 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 439 (void)VRegRC; 440 // A physical register can be added several times. 441 // Between two calls, the register class of the related virtual register 442 // may have been constrained to match some operation constraints. 443 // In that case, check that the current register class includes the 444 // physical register and is a sub class of the specified RC. 445 assert((VRegRC == RC || (VRegRC->contains(PReg) && 446 RC->hasSubClassEq(VRegRC))) && 447 "Register class mismatch!"); 448 return VReg; 449 } 450 VReg = MRI.createVirtualRegister(RC); 451 MRI.addLiveIn(PReg, VReg); 452 return VReg; 453 } 454 455 /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. 456 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 457 /// normal 'L' label is returned. 458 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 459 bool isLinkerPrivate) const { 460 const DataLayout *DL = getTarget().getDataLayout(); 461 assert(JumpTableInfo && "No jump tables"); 462 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 463 464 const char *Prefix = isLinkerPrivate ? DL->getLinkerPrivateGlobalPrefix() : 465 DL->getPrivateGlobalPrefix(); 466 SmallString<60> Name; 467 raw_svector_ostream(Name) 468 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 469 return Ctx.GetOrCreateSymbol(Name.str()); 470 } 471 472 /// getPICBaseSymbol - Return a function-local symbol to represent the PIC 473 /// base. 474 MCSymbol *MachineFunction::getPICBaseSymbol() const { 475 const DataLayout *DL = getTarget().getDataLayout(); 476 return Ctx.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+ 477 Twine(getFunctionNumber())+"$pb"); 478 } 479 480 //===----------------------------------------------------------------------===// 481 // MachineFrameInfo implementation 482 //===----------------------------------------------------------------------===// 483 484 const TargetFrameLowering *MachineFrameInfo::getFrameLowering() const { 485 return TM.getFrameLowering(); 486 } 487 488 /// ensureMaxAlignment - Make sure the function is at least Align bytes 489 /// aligned. 490 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 491 if (!getFrameLowering()->isStackRealignable() || !RealignOption) 492 assert(Align <= getFrameLowering()->getStackAlignment() && 493 "For targets without stack realignment, Align is out of limit!"); 494 if (MaxAlignment < Align) MaxAlignment = Align; 495 } 496 497 /// clampStackAlignment - Clamp the alignment if requested and emit a warning. 498 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align, 499 unsigned StackAlign) { 500 if (!ShouldClamp || Align <= StackAlign) 501 return Align; 502 DEBUG(dbgs() << "Warning: requested alignment " << Align 503 << " exceeds the stack alignment " << StackAlign 504 << " when stack realignment is off" << '\n'); 505 return StackAlign; 506 } 507 508 /// CreateStackObject - Create a new statically sized stack object, returning 509 /// a nonnegative identifier to represent it. 510 /// 511 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment, 512 bool isSS, const AllocaInst *Alloca) { 513 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 514 Alignment = 515 clampStackAlignment(!getFrameLowering()->isStackRealignable() || 516 !RealignOption, 517 Alignment, getFrameLowering()->getStackAlignment()); 518 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca)); 519 int Index = (int)Objects.size() - NumFixedObjects - 1; 520 assert(Index >= 0 && "Bad frame index!"); 521 ensureMaxAlignment(Alignment); 522 return Index; 523 } 524 525 /// CreateSpillStackObject - Create a new statically sized stack object that 526 /// represents a spill slot, returning a nonnegative identifier to represent 527 /// it. 528 /// 529 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 530 unsigned Alignment) { 531 Alignment = 532 clampStackAlignment(!getFrameLowering()->isStackRealignable() || 533 !RealignOption, 534 Alignment, getFrameLowering()->getStackAlignment()); 535 CreateStackObject(Size, Alignment, true); 536 int Index = (int)Objects.size() - NumFixedObjects - 1; 537 ensureMaxAlignment(Alignment); 538 return Index; 539 } 540 541 /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a 542 /// variable sized object has been created. This must be created whenever a 543 /// variable sized object is created, whether or not the index returned is 544 /// actually used. 545 /// 546 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment, 547 const AllocaInst *Alloca) { 548 HasVarSizedObjects = true; 549 Alignment = 550 clampStackAlignment(!getFrameLowering()->isStackRealignable() || 551 !RealignOption, 552 Alignment, getFrameLowering()->getStackAlignment()); 553 Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca)); 554 ensureMaxAlignment(Alignment); 555 return (int)Objects.size()-NumFixedObjects-1; 556 } 557 558 /// CreateFixedObject - Create a new object at a fixed location on the stack. 559 /// All fixed objects should be created before other objects are created for 560 /// efficiency. By default, fixed objects are immutable. This returns an 561 /// index with a negative value. 562 /// 563 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 564 bool Immutable) { 565 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 566 // The alignment of the frame index can be determined from its offset from 567 // the incoming frame position. If the frame object is at offset 32 and 568 // the stack is guaranteed to be 16-byte aligned, then we know that the 569 // object is 16-byte aligned. 570 unsigned StackAlign = getFrameLowering()->getStackAlignment(); 571 unsigned Align = MinAlign(SPOffset, StackAlign); 572 Align = 573 clampStackAlignment(!getFrameLowering()->isStackRealignable() || 574 !RealignOption, 575 Align, getFrameLowering()->getStackAlignment()); 576 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 577 /*isSS*/ false, 578 /*Alloca*/ nullptr)); 579 return -++NumFixedObjects; 580 } 581 582 583 BitVector 584 MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const { 585 assert(MBB && "MBB must be valid"); 586 const MachineFunction *MF = MBB->getParent(); 587 assert(MF && "MBB must be part of a MachineFunction"); 588 const TargetMachine &TM = MF->getTarget(); 589 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 590 BitVector BV(TRI->getNumRegs()); 591 592 // Before CSI is calculated, no registers are considered pristine. They can be 593 // freely used and PEI will make sure they are saved. 594 if (!isCalleeSavedInfoValid()) 595 return BV; 596 597 for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR) 598 BV.set(*CSR); 599 600 // The entry MBB always has all CSRs pristine. 601 if (MBB == &MF->front()) 602 return BV; 603 604 // On other MBBs the saved CSRs are not pristine. 605 const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo(); 606 for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(), 607 E = CSI.end(); I != E; ++I) 608 BV.reset(I->getReg()); 609 610 return BV; 611 } 612 613 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const { 614 const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering(); 615 const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo(); 616 unsigned MaxAlign = getMaxAlignment(); 617 int Offset = 0; 618 619 // This code is very, very similar to PEI::calculateFrameObjectOffsets(). 620 // It really should be refactored to share code. Until then, changes 621 // should keep in mind that there's tight coupling between the two. 622 623 for (int i = getObjectIndexBegin(); i != 0; ++i) { 624 int FixedOff = -getObjectOffset(i); 625 if (FixedOff > Offset) Offset = FixedOff; 626 } 627 for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) { 628 if (isDeadObjectIndex(i)) 629 continue; 630 Offset += getObjectSize(i); 631 unsigned Align = getObjectAlignment(i); 632 // Adjust to alignment boundary 633 Offset = (Offset+Align-1)/Align*Align; 634 635 MaxAlign = std::max(Align, MaxAlign); 636 } 637 638 if (adjustsStack() && TFI->hasReservedCallFrame(MF)) 639 Offset += getMaxCallFrameSize(); 640 641 // Round up the size to a multiple of the alignment. If the function has 642 // any calls or alloca's, align to the target's StackAlignment value to 643 // ensure that the callee's frame or the alloca data is suitably aligned; 644 // otherwise, for leaf functions, align to the TransientStackAlignment 645 // value. 646 unsigned StackAlign; 647 if (adjustsStack() || hasVarSizedObjects() || 648 (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0)) 649 StackAlign = TFI->getStackAlignment(); 650 else 651 StackAlign = TFI->getTransientStackAlignment(); 652 653 // If the frame pointer is eliminated, all frame offsets will be relative to 654 // SP not FP. Align to MaxAlign so this works. 655 StackAlign = std::max(StackAlign, MaxAlign); 656 unsigned AlignMask = StackAlign - 1; 657 Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); 658 659 return (unsigned)Offset; 660 } 661 662 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 663 if (Objects.empty()) return; 664 665 const TargetFrameLowering *FI = MF.getTarget().getFrameLowering(); 666 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 667 668 OS << "Frame Objects:\n"; 669 670 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 671 const StackObject &SO = Objects[i]; 672 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 673 if (SO.Size == ~0ULL) { 674 OS << "dead\n"; 675 continue; 676 } 677 if (SO.Size == 0) 678 OS << "variable sized"; 679 else 680 OS << "size=" << SO.Size; 681 OS << ", align=" << SO.Alignment; 682 683 if (i < NumFixedObjects) 684 OS << ", fixed"; 685 if (i < NumFixedObjects || SO.SPOffset != -1) { 686 int64_t Off = SO.SPOffset - ValOffset; 687 OS << ", at location [SP"; 688 if (Off > 0) 689 OS << "+" << Off; 690 else if (Off < 0) 691 OS << Off; 692 OS << "]"; 693 } 694 OS << "\n"; 695 } 696 } 697 698 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 699 void MachineFrameInfo::dump(const MachineFunction &MF) const { 700 print(MF, dbgs()); 701 } 702 #endif 703 704 //===----------------------------------------------------------------------===// 705 // MachineJumpTableInfo implementation 706 //===----------------------------------------------------------------------===// 707 708 /// getEntrySize - Return the size of each entry in the jump table. 709 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 710 // The size of a jump table entry is 4 bytes unless the entry is just the 711 // address of a block, in which case it is the pointer size. 712 switch (getEntryKind()) { 713 case MachineJumpTableInfo::EK_BlockAddress: 714 return TD.getPointerSize(); 715 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 716 return 8; 717 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 718 case MachineJumpTableInfo::EK_LabelDifference32: 719 case MachineJumpTableInfo::EK_Custom32: 720 return 4; 721 case MachineJumpTableInfo::EK_Inline: 722 return 0; 723 } 724 llvm_unreachable("Unknown jump table encoding!"); 725 } 726 727 /// getEntryAlignment - Return the alignment of each entry in the jump table. 728 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 729 // The alignment of a jump table entry is the alignment of int32 unless the 730 // entry is just the address of a block, in which case it is the pointer 731 // alignment. 732 switch (getEntryKind()) { 733 case MachineJumpTableInfo::EK_BlockAddress: 734 return TD.getPointerABIAlignment(); 735 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 736 return TD.getABIIntegerTypeAlignment(64); 737 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 738 case MachineJumpTableInfo::EK_LabelDifference32: 739 case MachineJumpTableInfo::EK_Custom32: 740 return TD.getABIIntegerTypeAlignment(32); 741 case MachineJumpTableInfo::EK_Inline: 742 return 1; 743 } 744 llvm_unreachable("Unknown jump table encoding!"); 745 } 746 747 /// createJumpTableIndex - Create a new jump table entry in the jump table info. 748 /// 749 unsigned MachineJumpTableInfo::createJumpTableIndex( 750 const std::vector<MachineBasicBlock*> &DestBBs) { 751 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 752 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 753 return JumpTables.size()-1; 754 } 755 756 /// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update 757 /// the jump tables to branch to New instead. 758 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 759 MachineBasicBlock *New) { 760 assert(Old != New && "Not making a change?"); 761 bool MadeChange = false; 762 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 763 ReplaceMBBInJumpTable(i, Old, New); 764 return MadeChange; 765 } 766 767 /// ReplaceMBBInJumpTable - If Old is a target of the jump tables, update 768 /// the jump table to branch to New instead. 769 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 770 MachineBasicBlock *Old, 771 MachineBasicBlock *New) { 772 assert(Old != New && "Not making a change?"); 773 bool MadeChange = false; 774 MachineJumpTableEntry &JTE = JumpTables[Idx]; 775 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 776 if (JTE.MBBs[j] == Old) { 777 JTE.MBBs[j] = New; 778 MadeChange = true; 779 } 780 return MadeChange; 781 } 782 783 void MachineJumpTableInfo::print(raw_ostream &OS) const { 784 if (JumpTables.empty()) return; 785 786 OS << "Jump Tables:\n"; 787 788 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 789 OS << " jt#" << i << ": "; 790 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 791 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 792 } 793 794 OS << '\n'; 795 } 796 797 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 798 void MachineJumpTableInfo::dump() const { print(dbgs()); } 799 #endif 800 801 802 //===----------------------------------------------------------------------===// 803 // MachineConstantPool implementation 804 //===----------------------------------------------------------------------===// 805 806 void MachineConstantPoolValue::anchor() { } 807 808 const DataLayout *MachineConstantPool::getDataLayout() const { 809 return TM.getDataLayout(); 810 } 811 812 Type *MachineConstantPoolEntry::getType() const { 813 if (isMachineConstantPoolEntry()) 814 return Val.MachineCPVal->getType(); 815 return Val.ConstVal->getType(); 816 } 817 818 819 unsigned MachineConstantPoolEntry::getRelocationInfo() const { 820 if (isMachineConstantPoolEntry()) 821 return Val.MachineCPVal->getRelocationInfo(); 822 return Val.ConstVal->getRelocationInfo(); 823 } 824 825 MachineConstantPool::~MachineConstantPool() { 826 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 827 if (Constants[i].isMachineConstantPoolEntry()) 828 delete Constants[i].Val.MachineCPVal; 829 for (DenseSet<MachineConstantPoolValue*>::iterator I = 830 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 831 I != E; ++I) 832 delete *I; 833 } 834 835 /// CanShareConstantPoolEntry - Test whether the given two constants 836 /// can be allocated the same constant pool entry. 837 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 838 const DataLayout *TD) { 839 // Handle the trivial case quickly. 840 if (A == B) return true; 841 842 // If they have the same type but weren't the same constant, quickly 843 // reject them. 844 if (A->getType() == B->getType()) return false; 845 846 // We can't handle structs or arrays. 847 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 848 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 849 return false; 850 851 // For now, only support constants with the same size. 852 uint64_t StoreSize = TD->getTypeStoreSize(A->getType()); 853 if (StoreSize != TD->getTypeStoreSize(B->getType()) || 854 StoreSize > 128) 855 return false; 856 857 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 858 859 // Try constant folding a bitcast of both instructions to an integer. If we 860 // get two identical ConstantInt's, then we are good to share them. We use 861 // the constant folding APIs to do this so that we get the benefit of 862 // DataLayout. 863 if (isa<PointerType>(A->getType())) 864 A = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 865 const_cast<Constant*>(A), TD); 866 else if (A->getType() != IntTy) 867 A = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 868 const_cast<Constant*>(A), TD); 869 if (isa<PointerType>(B->getType())) 870 B = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 871 const_cast<Constant*>(B), TD); 872 else if (B->getType() != IntTy) 873 B = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 874 const_cast<Constant*>(B), TD); 875 876 return A == B; 877 } 878 879 /// getConstantPoolIndex - Create a new entry in the constant pool or return 880 /// an existing one. User must specify the log2 of the minimum required 881 /// alignment for the object. 882 /// 883 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 884 unsigned Alignment) { 885 assert(Alignment && "Alignment must be specified!"); 886 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 887 888 // Check to see if we already have this constant. 889 // 890 // FIXME, this could be made much more efficient for large constant pools. 891 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 892 if (!Constants[i].isMachineConstantPoolEntry() && 893 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, 894 getDataLayout())) { 895 if ((unsigned)Constants[i].getAlignment() < Alignment) 896 Constants[i].Alignment = Alignment; 897 return i; 898 } 899 900 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 901 return Constants.size()-1; 902 } 903 904 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 905 unsigned Alignment) { 906 assert(Alignment && "Alignment must be specified!"); 907 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 908 909 // Check to see if we already have this constant. 910 // 911 // FIXME, this could be made much more efficient for large constant pools. 912 int Idx = V->getExistingMachineCPValue(this, Alignment); 913 if (Idx != -1) { 914 MachineCPVsSharingEntries.insert(V); 915 return (unsigned)Idx; 916 } 917 918 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 919 return Constants.size()-1; 920 } 921 922 void MachineConstantPool::print(raw_ostream &OS) const { 923 if (Constants.empty()) return; 924 925 OS << "Constant Pool:\n"; 926 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 927 OS << " cp#" << i << ": "; 928 if (Constants[i].isMachineConstantPoolEntry()) 929 Constants[i].Val.MachineCPVal->print(OS); 930 else 931 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 932 OS << ", align=" << Constants[i].getAlignment(); 933 OS << "\n"; 934 } 935 } 936 937 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 938 void MachineConstantPool::dump() const { print(dbgs()); } 939 #endif 940