1 //===-- MachineFunction.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect native machine code information for a function.  This allows
11 // target-specific information about the generated code to be stored with each
12 // function.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/CodeGen/MachineConstantPool.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunctionInitializer.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineJumpTableInfo.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/CodeGen/PseudoSourceValue.h"
31 #include "llvm/CodeGen/WinEHFuncInfo.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/ModuleSlotTracker.h"
37 #include "llvm/MC/MCAsmInfo.h"
38 #include "llvm/MC/MCContext.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetFrameLowering.h"
43 #include "llvm/Target/TargetLowering.h"
44 #include "llvm/Target/TargetMachine.h"
45 #include "llvm/Target/TargetSubtargetInfo.h"
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "codegen"
49 
50 static cl::opt<unsigned>
51     AlignAllFunctions("align-all-functions",
52                       cl::desc("Force the alignment of all functions."),
53                       cl::init(0), cl::Hidden);
54 
55 void MachineFunctionInitializer::anchor() {}
56 
57 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
58   typedef MachineFunctionProperties::Property P;
59   switch(Prop) {
60   case P::FailedISel: return "FailedISel";
61   case P::IsSSA: return "IsSSA";
62   case P::Legalized: return "Legalized";
63   case P::NoPHIs: return "NoPHIs";
64   case P::NoVRegs: return "NoVRegs";
65   case P::RegBankSelected: return "RegBankSelected";
66   case P::Selected: return "Selected";
67   case P::TracksLiveness: return "TracksLiveness";
68   }
69   llvm_unreachable("Invalid machine function property");
70 }
71 
72 void MachineFunctionProperties::print(raw_ostream &OS) const {
73   const char *Separator = "";
74   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
75     if (!Properties[I])
76       continue;
77     OS << Separator << getPropertyName(static_cast<Property>(I));
78     Separator = ", ";
79   }
80 }
81 
82 //===----------------------------------------------------------------------===//
83 // MachineFunction implementation
84 //===----------------------------------------------------------------------===//
85 
86 // Out-of-line virtual method.
87 MachineFunctionInfo::~MachineFunctionInfo() {}
88 
89 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
90   MBB->getParent()->DeleteMachineBasicBlock(MBB);
91 }
92 
93 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
94                                            const Function *Fn) {
95   if (Fn->hasFnAttribute(Attribute::StackAlignment))
96     return Fn->getFnStackAlignment();
97   return STI->getFrameLowering()->getStackAlignment();
98 }
99 
100 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM,
101                                  unsigned FunctionNum, MachineModuleInfo &mmi)
102     : Fn(F), Target(TM), STI(TM.getSubtargetImpl(*F)), Ctx(mmi.getContext()),
103       MMI(mmi) {
104   FunctionNumber = FunctionNum;
105   init();
106 }
107 
108 void MachineFunction::init() {
109   // Assume the function starts in SSA form with correct liveness.
110   Properties.set(MachineFunctionProperties::Property::IsSSA);
111   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
112   if (STI->getRegisterInfo())
113     RegInfo = new (Allocator) MachineRegisterInfo(this);
114   else
115     RegInfo = nullptr;
116 
117   MFInfo = nullptr;
118   // We can realign the stack if the target supports it and the user hasn't
119   // explicitly asked us not to.
120   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
121                       !Fn->hasFnAttribute("no-realign-stack");
122   FrameInfo = new (Allocator) MachineFrameInfo(
123       getFnStackAlignment(STI, Fn), /*StackRealignable=*/CanRealignSP,
124       /*ForceRealign=*/CanRealignSP &&
125           Fn->hasFnAttribute(Attribute::StackAlignment));
126 
127   if (Fn->hasFnAttribute(Attribute::StackAlignment))
128     FrameInfo->ensureMaxAlignment(Fn->getFnStackAlignment());
129 
130   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
131   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
132 
133   // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn.
134   // FIXME: Use Function::optForSize().
135   if (!Fn->hasFnAttribute(Attribute::OptimizeForSize))
136     Alignment = std::max(Alignment,
137                          STI->getTargetLowering()->getPrefFunctionAlignment());
138 
139   if (AlignAllFunctions)
140     Alignment = AlignAllFunctions;
141 
142   JumpTableInfo = nullptr;
143 
144   if (isFuncletEHPersonality(classifyEHPersonality(
145           Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr))) {
146     WinEHInfo = new (Allocator) WinEHFuncInfo();
147   }
148 
149   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
150          "Can't create a MachineFunction using a Module with a "
151          "Target-incompatible DataLayout attached\n");
152 
153   PSVManager = llvm::make_unique<PseudoSourceValueManager>();
154 }
155 
156 MachineFunction::~MachineFunction() {
157   clear();
158 }
159 
160 void MachineFunction::clear() {
161   Properties.reset();
162   // Don't call destructors on MachineInstr and MachineOperand. All of their
163   // memory comes from the BumpPtrAllocator which is about to be purged.
164   //
165   // Do call MachineBasicBlock destructors, it contains std::vectors.
166   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
167     I->Insts.clearAndLeakNodesUnsafely();
168 
169   InstructionRecycler.clear(Allocator);
170   OperandRecycler.clear(Allocator);
171   BasicBlockRecycler.clear(Allocator);
172   if (RegInfo) {
173     RegInfo->~MachineRegisterInfo();
174     Allocator.Deallocate(RegInfo);
175   }
176   if (MFInfo) {
177     MFInfo->~MachineFunctionInfo();
178     Allocator.Deallocate(MFInfo);
179   }
180 
181   FrameInfo->~MachineFrameInfo();
182   Allocator.Deallocate(FrameInfo);
183 
184   ConstantPool->~MachineConstantPool();
185   Allocator.Deallocate(ConstantPool);
186 
187   if (JumpTableInfo) {
188     JumpTableInfo->~MachineJumpTableInfo();
189     Allocator.Deallocate(JumpTableInfo);
190   }
191 
192   if (WinEHInfo) {
193     WinEHInfo->~WinEHFuncInfo();
194     Allocator.Deallocate(WinEHInfo);
195   }
196 }
197 
198 const DataLayout &MachineFunction::getDataLayout() const {
199   return Fn->getParent()->getDataLayout();
200 }
201 
202 /// Get the JumpTableInfo for this function.
203 /// If it does not already exist, allocate one.
204 MachineJumpTableInfo *MachineFunction::
205 getOrCreateJumpTableInfo(unsigned EntryKind) {
206   if (JumpTableInfo) return JumpTableInfo;
207 
208   JumpTableInfo = new (Allocator)
209     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
210   return JumpTableInfo;
211 }
212 
213 /// Should we be emitting segmented stack stuff for the function
214 bool MachineFunction::shouldSplitStack() const {
215   return getFunction()->hasFnAttribute("split-stack");
216 }
217 
218 /// This discards all of the MachineBasicBlock numbers and recomputes them.
219 /// This guarantees that the MBB numbers are sequential, dense, and match the
220 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
221 /// is specified, only that block and those after it are renumbered.
222 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
223   if (empty()) { MBBNumbering.clear(); return; }
224   MachineFunction::iterator MBBI, E = end();
225   if (MBB == nullptr)
226     MBBI = begin();
227   else
228     MBBI = MBB->getIterator();
229 
230   // Figure out the block number this should have.
231   unsigned BlockNo = 0;
232   if (MBBI != begin())
233     BlockNo = std::prev(MBBI)->getNumber() + 1;
234 
235   for (; MBBI != E; ++MBBI, ++BlockNo) {
236     if (MBBI->getNumber() != (int)BlockNo) {
237       // Remove use of the old number.
238       if (MBBI->getNumber() != -1) {
239         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
240                "MBB number mismatch!");
241         MBBNumbering[MBBI->getNumber()] = nullptr;
242       }
243 
244       // If BlockNo is already taken, set that block's number to -1.
245       if (MBBNumbering[BlockNo])
246         MBBNumbering[BlockNo]->setNumber(-1);
247 
248       MBBNumbering[BlockNo] = &*MBBI;
249       MBBI->setNumber(BlockNo);
250     }
251   }
252 
253   // Okay, all the blocks are renumbered.  If we have compactified the block
254   // numbering, shrink MBBNumbering now.
255   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
256   MBBNumbering.resize(BlockNo);
257 }
258 
259 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
260 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
261                                                   const DebugLoc &DL,
262                                                   bool NoImp) {
263   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
264     MachineInstr(*this, MCID, DL, NoImp);
265 }
266 
267 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
268 /// identical in all ways except the instruction has no parent, prev, or next.
269 MachineInstr *
270 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
271   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
272              MachineInstr(*this, *Orig);
273 }
274 
275 /// Delete the given MachineInstr.
276 ///
277 /// This function also serves as the MachineInstr destructor - the real
278 /// ~MachineInstr() destructor must be empty.
279 void
280 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
281   // Strip it for parts. The operand array and the MI object itself are
282   // independently recyclable.
283   if (MI->Operands)
284     deallocateOperandArray(MI->CapOperands, MI->Operands);
285   // Don't call ~MachineInstr() which must be trivial anyway because
286   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
287   // destructors.
288   InstructionRecycler.Deallocate(Allocator, MI);
289 }
290 
291 /// Allocate a new MachineBasicBlock. Use this instead of
292 /// `new MachineBasicBlock'.
293 MachineBasicBlock *
294 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
295   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
296              MachineBasicBlock(*this, bb);
297 }
298 
299 /// Delete the given MachineBasicBlock.
300 void
301 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
302   assert(MBB->getParent() == this && "MBB parent mismatch!");
303   MBB->~MachineBasicBlock();
304   BasicBlockRecycler.Deallocate(Allocator, MBB);
305 }
306 
307 MachineMemOperand *MachineFunction::getMachineMemOperand(
308     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
309     unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges) {
310   return new (Allocator)
311       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges);
312 }
313 
314 MachineMemOperand *
315 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
316                                       int64_t Offset, uint64_t Size) {
317   if (MMO->getValue())
318     return new (Allocator)
319                MachineMemOperand(MachinePointerInfo(MMO->getValue(),
320                                                     MMO->getOffset()+Offset),
321                                  MMO->getFlags(), Size,
322                                  MMO->getBaseAlignment());
323   return new (Allocator)
324              MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(),
325                                                   MMO->getOffset()+Offset),
326                                MMO->getFlags(), Size,
327                                MMO->getBaseAlignment());
328 }
329 
330 MachineInstr::mmo_iterator
331 MachineFunction::allocateMemRefsArray(unsigned long Num) {
332   return Allocator.Allocate<MachineMemOperand *>(Num);
333 }
334 
335 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
336 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin,
337                                     MachineInstr::mmo_iterator End) {
338   // Count the number of load mem refs.
339   unsigned Num = 0;
340   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
341     if ((*I)->isLoad())
342       ++Num;
343 
344   // Allocate a new array and populate it with the load information.
345   MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
346   unsigned Index = 0;
347   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
348     if ((*I)->isLoad()) {
349       if (!(*I)->isStore())
350         // Reuse the MMO.
351         Result[Index] = *I;
352       else {
353         // Clone the MMO and unset the store flag.
354         MachineMemOperand *JustLoad =
355           getMachineMemOperand((*I)->getPointerInfo(),
356                                (*I)->getFlags() & ~MachineMemOperand::MOStore,
357                                (*I)->getSize(), (*I)->getBaseAlignment(),
358                                (*I)->getAAInfo());
359         Result[Index] = JustLoad;
360       }
361       ++Index;
362     }
363   }
364   return std::make_pair(Result, Result + Num);
365 }
366 
367 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
368 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
369                                      MachineInstr::mmo_iterator End) {
370   // Count the number of load mem refs.
371   unsigned Num = 0;
372   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
373     if ((*I)->isStore())
374       ++Num;
375 
376   // Allocate a new array and populate it with the store information.
377   MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
378   unsigned Index = 0;
379   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
380     if ((*I)->isStore()) {
381       if (!(*I)->isLoad())
382         // Reuse the MMO.
383         Result[Index] = *I;
384       else {
385         // Clone the MMO and unset the load flag.
386         MachineMemOperand *JustStore =
387           getMachineMemOperand((*I)->getPointerInfo(),
388                                (*I)->getFlags() & ~MachineMemOperand::MOLoad,
389                                (*I)->getSize(), (*I)->getBaseAlignment(),
390                                (*I)->getAAInfo());
391         Result[Index] = JustStore;
392       }
393       ++Index;
394     }
395   }
396   return std::make_pair(Result, Result + Num);
397 }
398 
399 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
400   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
401   std::copy(Name.begin(), Name.end(), Dest);
402   Dest[Name.size()] = 0;
403   return Dest;
404 }
405 
406 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
407 LLVM_DUMP_METHOD void MachineFunction::dump() const {
408   print(dbgs());
409 }
410 #endif
411 
412 StringRef MachineFunction::getName() const {
413   assert(getFunction() && "No function!");
414   return getFunction()->getName();
415 }
416 
417 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
418   OS << "# Machine code for function " << getName() << ": ";
419   getProperties().print(OS);
420 
421   // Print Frame Information
422   FrameInfo->print(*this, OS);
423 
424   // Print JumpTable Information
425   if (JumpTableInfo)
426     JumpTableInfo->print(OS);
427 
428   // Print Constant Pool
429   ConstantPool->print(OS);
430 
431   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
432 
433   if (RegInfo && !RegInfo->livein_empty()) {
434     OS << "Function Live Ins: ";
435     for (MachineRegisterInfo::livein_iterator
436          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
437       OS << PrintReg(I->first, TRI);
438       if (I->second)
439         OS << " in " << PrintReg(I->second, TRI);
440       if (std::next(I) != E)
441         OS << ", ";
442     }
443     OS << '\n';
444   }
445 
446   ModuleSlotTracker MST(getFunction()->getParent());
447   MST.incorporateFunction(*getFunction());
448   for (const auto &BB : *this) {
449     OS << '\n';
450     BB.print(OS, MST, Indexes);
451   }
452 
453   OS << "\n# End machine code for function " << getName() << ".\n\n";
454 }
455 
456 namespace llvm {
457   template<>
458   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
459 
460   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
461 
462     static std::string getGraphName(const MachineFunction *F) {
463       return ("CFG for '" + F->getName() + "' function").str();
464     }
465 
466     std::string getNodeLabel(const MachineBasicBlock *Node,
467                              const MachineFunction *Graph) {
468       std::string OutStr;
469       {
470         raw_string_ostream OSS(OutStr);
471 
472         if (isSimple()) {
473           OSS << "BB#" << Node->getNumber();
474           if (const BasicBlock *BB = Node->getBasicBlock())
475             OSS << ": " << BB->getName();
476         } else
477           Node->print(OSS);
478       }
479 
480       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
481 
482       // Process string output to make it nicer...
483       for (unsigned i = 0; i != OutStr.length(); ++i)
484         if (OutStr[i] == '\n') {                            // Left justify
485           OutStr[i] = '\\';
486           OutStr.insert(OutStr.begin()+i+1, 'l');
487         }
488       return OutStr;
489     }
490   };
491 }
492 
493 void MachineFunction::viewCFG() const
494 {
495 #ifndef NDEBUG
496   ViewGraph(this, "mf" + getName());
497 #else
498   errs() << "MachineFunction::viewCFG is only available in debug builds on "
499          << "systems with Graphviz or gv!\n";
500 #endif // NDEBUG
501 }
502 
503 void MachineFunction::viewCFGOnly() const
504 {
505 #ifndef NDEBUG
506   ViewGraph(this, "mf" + getName(), true);
507 #else
508   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
509          << "systems with Graphviz or gv!\n";
510 #endif // NDEBUG
511 }
512 
513 /// Add the specified physical register as a live-in value and
514 /// create a corresponding virtual register for it.
515 unsigned MachineFunction::addLiveIn(unsigned PReg,
516                                     const TargetRegisterClass *RC) {
517   MachineRegisterInfo &MRI = getRegInfo();
518   unsigned VReg = MRI.getLiveInVirtReg(PReg);
519   if (VReg) {
520     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
521     (void)VRegRC;
522     // A physical register can be added several times.
523     // Between two calls, the register class of the related virtual register
524     // may have been constrained to match some operation constraints.
525     // In that case, check that the current register class includes the
526     // physical register and is a sub class of the specified RC.
527     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
528                              RC->hasSubClassEq(VRegRC))) &&
529             "Register class mismatch!");
530     return VReg;
531   }
532   VReg = MRI.createVirtualRegister(RC);
533   MRI.addLiveIn(PReg, VReg);
534   return VReg;
535 }
536 
537 /// Return the MCSymbol for the specified non-empty jump table.
538 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
539 /// normal 'L' label is returned.
540 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
541                                         bool isLinkerPrivate) const {
542   const DataLayout &DL = getDataLayout();
543   assert(JumpTableInfo && "No jump tables");
544   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
545 
546   const char *Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
547                                        : DL.getPrivateGlobalPrefix();
548   SmallString<60> Name;
549   raw_svector_ostream(Name)
550     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
551   return Ctx.getOrCreateSymbol(Name);
552 }
553 
554 /// Return a function-local symbol to represent the PIC base.
555 MCSymbol *MachineFunction::getPICBaseSymbol() const {
556   const DataLayout &DL = getDataLayout();
557   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
558                                Twine(getFunctionNumber()) + "$pb");
559 }
560 
561 //===----------------------------------------------------------------------===//
562 //  MachineFrameInfo implementation
563 //===----------------------------------------------------------------------===//
564 
565 /// Make sure the function is at least Align bytes aligned.
566 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) {
567   if (!StackRealignable)
568     assert(Align <= StackAlignment &&
569            "For targets without stack realignment, Align is out of limit!");
570   if (MaxAlignment < Align) MaxAlignment = Align;
571 }
572 
573 /// Clamp the alignment if requested and emit a warning.
574 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align,
575                                            unsigned StackAlign) {
576   if (!ShouldClamp || Align <= StackAlign)
577     return Align;
578   DEBUG(dbgs() << "Warning: requested alignment " << Align
579                << " exceeds the stack alignment " << StackAlign
580                << " when stack realignment is off" << '\n');
581   return StackAlign;
582 }
583 
584 /// Create a new statically sized stack object, returning a nonnegative
585 /// identifier to represent it.
586 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment,
587                       bool isSS, const AllocaInst *Alloca) {
588   assert(Size != 0 && "Cannot allocate zero size stack objects!");
589   Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment);
590   Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca,
591                                 !isSS));
592   int Index = (int)Objects.size() - NumFixedObjects - 1;
593   assert(Index >= 0 && "Bad frame index!");
594   ensureMaxAlignment(Alignment);
595   return Index;
596 }
597 
598 /// Create a new statically sized stack object that represents a spill slot,
599 /// returning a nonnegative identifier to represent it.
600 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size,
601                                              unsigned Alignment) {
602   Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment);
603   CreateStackObject(Size, Alignment, true);
604   int Index = (int)Objects.size() - NumFixedObjects - 1;
605   ensureMaxAlignment(Alignment);
606   return Index;
607 }
608 
609 /// Notify the MachineFrameInfo object that a variable sized object has been
610 /// created. This must be created whenever a variable sized object is created,
611 /// whether or not the index returned is actually used.
612 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment,
613                                                 const AllocaInst *Alloca) {
614   HasVarSizedObjects = true;
615   Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment);
616   Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca, true));
617   ensureMaxAlignment(Alignment);
618   return (int)Objects.size()-NumFixedObjects-1;
619 }
620 
621 /// Create a new object at a fixed location on the stack.
622 /// All fixed objects should be created before other objects are created for
623 /// efficiency. By default, fixed objects are immutable. This returns an
624 /// index with a negative value.
625 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset,
626                                         bool Immutable, bool isAliased) {
627   assert(Size != 0 && "Cannot allocate zero size fixed stack objects!");
628   // The alignment of the frame index can be determined from its offset from
629   // the incoming frame position.  If the frame object is at offset 32 and
630   // the stack is guaranteed to be 16-byte aligned, then we know that the
631   // object is 16-byte aligned. Note that unlike the non-fixed case, if the
632   // stack needs realignment, we can't assume that the stack will in fact be
633   // aligned.
634   unsigned Align = MinAlign(SPOffset, ForcedRealign ? 1 : StackAlignment);
635   Align = clampStackAlignment(!StackRealignable, Align, StackAlignment);
636   Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable,
637                                               /*isSS*/   false,
638                                               /*Alloca*/ nullptr, isAliased));
639   return -++NumFixedObjects;
640 }
641 
642 /// Create a spill slot at a fixed location on the stack.
643 /// Returns an index with a negative value.
644 int MachineFrameInfo::CreateFixedSpillStackObject(uint64_t Size,
645                                                   int64_t SPOffset,
646                                                   bool Immutable) {
647   unsigned Align = MinAlign(SPOffset, ForcedRealign ? 1 : StackAlignment);
648   Align = clampStackAlignment(!StackRealignable, Align, StackAlignment);
649   Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable,
650                                               /*isSS*/ true,
651                                               /*Alloca*/ nullptr,
652                                               /*isAliased*/ false));
653   return -++NumFixedObjects;
654 }
655 
656 BitVector MachineFrameInfo::getPristineRegs(const MachineFunction &MF) const {
657   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
658   BitVector BV(TRI->getNumRegs());
659 
660   // Before CSI is calculated, no registers are considered pristine. They can be
661   // freely used and PEI will make sure they are saved.
662   if (!isCalleeSavedInfoValid())
663     return BV;
664 
665   for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR)
666     BV.set(*CSR);
667 
668   // Saved CSRs are not pristine.
669   for (auto &I : getCalleeSavedInfo())
670     for (MCSubRegIterator S(I.getReg(), TRI, true); S.isValid(); ++S)
671       BV.reset(*S);
672 
673   return BV;
674 }
675 
676 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const {
677   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
678   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
679   unsigned MaxAlign = getMaxAlignment();
680   int Offset = 0;
681 
682   // This code is very, very similar to PEI::calculateFrameObjectOffsets().
683   // It really should be refactored to share code. Until then, changes
684   // should keep in mind that there's tight coupling between the two.
685 
686   for (int i = getObjectIndexBegin(); i != 0; ++i) {
687     int FixedOff = -getObjectOffset(i);
688     if (FixedOff > Offset) Offset = FixedOff;
689   }
690   for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) {
691     if (isDeadObjectIndex(i))
692       continue;
693     Offset += getObjectSize(i);
694     unsigned Align = getObjectAlignment(i);
695     // Adjust to alignment boundary
696     Offset = (Offset+Align-1)/Align*Align;
697 
698     MaxAlign = std::max(Align, MaxAlign);
699   }
700 
701   if (adjustsStack() && TFI->hasReservedCallFrame(MF))
702     Offset += getMaxCallFrameSize();
703 
704   // Round up the size to a multiple of the alignment.  If the function has
705   // any calls or alloca's, align to the target's StackAlignment value to
706   // ensure that the callee's frame or the alloca data is suitably aligned;
707   // otherwise, for leaf functions, align to the TransientStackAlignment
708   // value.
709   unsigned StackAlign;
710   if (adjustsStack() || hasVarSizedObjects() ||
711       (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0))
712     StackAlign = TFI->getStackAlignment();
713   else
714     StackAlign = TFI->getTransientStackAlignment();
715 
716   // If the frame pointer is eliminated, all frame offsets will be relative to
717   // SP not FP. Align to MaxAlign so this works.
718   StackAlign = std::max(StackAlign, MaxAlign);
719   unsigned AlignMask = StackAlign - 1;
720   Offset = (Offset + AlignMask) & ~uint64_t(AlignMask);
721 
722   return (unsigned)Offset;
723 }
724 
725 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{
726   if (Objects.empty()) return;
727 
728   const TargetFrameLowering *FI = MF.getSubtarget().getFrameLowering();
729   int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0);
730 
731   OS << "Frame Objects:\n";
732 
733   for (unsigned i = 0, e = Objects.size(); i != e; ++i) {
734     const StackObject &SO = Objects[i];
735     OS << "  fi#" << (int)(i-NumFixedObjects) << ": ";
736     if (SO.Size == ~0ULL) {
737       OS << "dead\n";
738       continue;
739     }
740     if (SO.Size == 0)
741       OS << "variable sized";
742     else
743       OS << "size=" << SO.Size;
744     OS << ", align=" << SO.Alignment;
745 
746     if (i < NumFixedObjects)
747       OS << ", fixed";
748     if (i < NumFixedObjects || SO.SPOffset != -1) {
749       int64_t Off = SO.SPOffset - ValOffset;
750       OS << ", at location [SP";
751       if (Off > 0)
752         OS << "+" << Off;
753       else if (Off < 0)
754         OS << Off;
755       OS << "]";
756     }
757     OS << "\n";
758   }
759 }
760 
761 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
762 void MachineFrameInfo::dump(const MachineFunction &MF) const {
763   print(MF, dbgs());
764 }
765 #endif
766 
767 //===----------------------------------------------------------------------===//
768 //  MachineJumpTableInfo implementation
769 //===----------------------------------------------------------------------===//
770 
771 /// Return the size of each entry in the jump table.
772 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
773   // The size of a jump table entry is 4 bytes unless the entry is just the
774   // address of a block, in which case it is the pointer size.
775   switch (getEntryKind()) {
776   case MachineJumpTableInfo::EK_BlockAddress:
777     return TD.getPointerSize();
778   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
779     return 8;
780   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
781   case MachineJumpTableInfo::EK_LabelDifference32:
782   case MachineJumpTableInfo::EK_Custom32:
783     return 4;
784   case MachineJumpTableInfo::EK_Inline:
785     return 0;
786   }
787   llvm_unreachable("Unknown jump table encoding!");
788 }
789 
790 /// Return the alignment of each entry in the jump table.
791 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
792   // The alignment of a jump table entry is the alignment of int32 unless the
793   // entry is just the address of a block, in which case it is the pointer
794   // alignment.
795   switch (getEntryKind()) {
796   case MachineJumpTableInfo::EK_BlockAddress:
797     return TD.getPointerABIAlignment();
798   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
799     return TD.getABIIntegerTypeAlignment(64);
800   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
801   case MachineJumpTableInfo::EK_LabelDifference32:
802   case MachineJumpTableInfo::EK_Custom32:
803     return TD.getABIIntegerTypeAlignment(32);
804   case MachineJumpTableInfo::EK_Inline:
805     return 1;
806   }
807   llvm_unreachable("Unknown jump table encoding!");
808 }
809 
810 /// Create a new jump table entry in the jump table info.
811 unsigned MachineJumpTableInfo::createJumpTableIndex(
812                                const std::vector<MachineBasicBlock*> &DestBBs) {
813   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
814   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
815   return JumpTables.size()-1;
816 }
817 
818 /// If Old is the target of any jump tables, update the jump tables to branch
819 /// to New instead.
820 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
821                                                   MachineBasicBlock *New) {
822   assert(Old != New && "Not making a change?");
823   bool MadeChange = false;
824   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
825     ReplaceMBBInJumpTable(i, Old, New);
826   return MadeChange;
827 }
828 
829 /// If Old is a target of the jump tables, update the jump table to branch to
830 /// New instead.
831 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
832                                                  MachineBasicBlock *Old,
833                                                  MachineBasicBlock *New) {
834   assert(Old != New && "Not making a change?");
835   bool MadeChange = false;
836   MachineJumpTableEntry &JTE = JumpTables[Idx];
837   for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
838     if (JTE.MBBs[j] == Old) {
839       JTE.MBBs[j] = New;
840       MadeChange = true;
841     }
842   return MadeChange;
843 }
844 
845 void MachineJumpTableInfo::print(raw_ostream &OS) const {
846   if (JumpTables.empty()) return;
847 
848   OS << "Jump Tables:\n";
849 
850   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
851     OS << "  jt#" << i << ": ";
852     for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
853       OS << " BB#" << JumpTables[i].MBBs[j]->getNumber();
854   }
855 
856   OS << '\n';
857 }
858 
859 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
860 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
861 #endif
862 
863 
864 //===----------------------------------------------------------------------===//
865 //  MachineConstantPool implementation
866 //===----------------------------------------------------------------------===//
867 
868 void MachineConstantPoolValue::anchor() { }
869 
870 Type *MachineConstantPoolEntry::getType() const {
871   if (isMachineConstantPoolEntry())
872     return Val.MachineCPVal->getType();
873   return Val.ConstVal->getType();
874 }
875 
876 bool MachineConstantPoolEntry::needsRelocation() const {
877   if (isMachineConstantPoolEntry())
878     return true;
879   return Val.ConstVal->needsRelocation();
880 }
881 
882 SectionKind
883 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
884   if (needsRelocation())
885     return SectionKind::getReadOnlyWithRel();
886   switch (DL->getTypeAllocSize(getType())) {
887   case 4:
888     return SectionKind::getMergeableConst4();
889   case 8:
890     return SectionKind::getMergeableConst8();
891   case 16:
892     return SectionKind::getMergeableConst16();
893   case 32:
894     return SectionKind::getMergeableConst32();
895   default:
896     return SectionKind::getReadOnly();
897   }
898 }
899 
900 MachineConstantPool::~MachineConstantPool() {
901   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
902     if (Constants[i].isMachineConstantPoolEntry())
903       delete Constants[i].Val.MachineCPVal;
904   for (DenseSet<MachineConstantPoolValue*>::iterator I =
905        MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
906        I != E; ++I)
907     delete *I;
908 }
909 
910 /// Test whether the given two constants can be allocated the same constant pool
911 /// entry.
912 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
913                                       const DataLayout &DL) {
914   // Handle the trivial case quickly.
915   if (A == B) return true;
916 
917   // If they have the same type but weren't the same constant, quickly
918   // reject them.
919   if (A->getType() == B->getType()) return false;
920 
921   // We can't handle structs or arrays.
922   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
923       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
924     return false;
925 
926   // For now, only support constants with the same size.
927   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
928   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
929     return false;
930 
931   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
932 
933   // Try constant folding a bitcast of both instructions to an integer.  If we
934   // get two identical ConstantInt's, then we are good to share them.  We use
935   // the constant folding APIs to do this so that we get the benefit of
936   // DataLayout.
937   if (isa<PointerType>(A->getType()))
938     A = ConstantFoldCastOperand(Instruction::PtrToInt,
939                                 const_cast<Constant *>(A), IntTy, DL);
940   else if (A->getType() != IntTy)
941     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
942                                 IntTy, DL);
943   if (isa<PointerType>(B->getType()))
944     B = ConstantFoldCastOperand(Instruction::PtrToInt,
945                                 const_cast<Constant *>(B), IntTy, DL);
946   else if (B->getType() != IntTy)
947     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
948                                 IntTy, DL);
949 
950   return A == B;
951 }
952 
953 /// Create a new entry in the constant pool or return an existing one.
954 /// User must specify the log2 of the minimum required alignment for the object.
955 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
956                                                    unsigned Alignment) {
957   assert(Alignment && "Alignment must be specified!");
958   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
959 
960   // Check to see if we already have this constant.
961   //
962   // FIXME, this could be made much more efficient for large constant pools.
963   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
964     if (!Constants[i].isMachineConstantPoolEntry() &&
965         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
966       if ((unsigned)Constants[i].getAlignment() < Alignment)
967         Constants[i].Alignment = Alignment;
968       return i;
969     }
970 
971   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
972   return Constants.size()-1;
973 }
974 
975 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
976                                                    unsigned Alignment) {
977   assert(Alignment && "Alignment must be specified!");
978   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
979 
980   // Check to see if we already have this constant.
981   //
982   // FIXME, this could be made much more efficient for large constant pools.
983   int Idx = V->getExistingMachineCPValue(this, Alignment);
984   if (Idx != -1) {
985     MachineCPVsSharingEntries.insert(V);
986     return (unsigned)Idx;
987   }
988 
989   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
990   return Constants.size()-1;
991 }
992 
993 void MachineConstantPool::print(raw_ostream &OS) const {
994   if (Constants.empty()) return;
995 
996   OS << "Constant Pool:\n";
997   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
998     OS << "  cp#" << i << ": ";
999     if (Constants[i].isMachineConstantPoolEntry())
1000       Constants[i].Val.MachineCPVal->print(OS);
1001     else
1002       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1003     OS << ", align=" << Constants[i].getAlignment();
1004     OS << "\n";
1005   }
1006 }
1007 
1008 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1009 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1010 #endif
1011