1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunctionPass.h" 17 #include "llvm/CodeGen/MachineInstr.h" 18 #include "llvm/CodeGen/SSARegMap.h" 19 #include "llvm/CodeGen/MachineFunctionInfo.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineConstantPool.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/Target/TargetMachine.h" 24 #include "llvm/Target/TargetFrameInfo.h" 25 #include "llvm/Function.h" 26 #include "llvm/iOther.h" 27 #include "llvm/Type.h" 28 #include "Support/LeakDetector.h" 29 30 using namespace llvm; 31 32 static AnnotationID MF_AID( 33 AnnotationManager::getID("CodeGen::MachineCodeForFunction")); 34 35 36 namespace { 37 struct Printer : public MachineFunctionPass { 38 std::ostream *OS; 39 const std::string Banner; 40 41 Printer (std::ostream *_OS, const std::string &_Banner) : 42 OS (_OS), Banner (_Banner) { } 43 44 const char *getPassName() const { return "MachineFunction Printer"; } 45 46 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 47 AU.setPreservesAll(); 48 } 49 50 bool runOnMachineFunction(MachineFunction &MF) { 51 (*OS) << Banner; 52 MF.print (*OS); 53 return false; 54 } 55 }; 56 } 57 58 /// Returns a newly-created MachineFunction Printer pass. The default output 59 /// stream is std::cerr; the default banner is empty. 60 /// 61 FunctionPass *llvm::createMachineFunctionPrinterPass(std::ostream *OS, 62 const std::string &Banner) { 63 return new Printer(OS, Banner); 64 } 65 66 namespace { 67 struct Deleter : public MachineFunctionPass { 68 const char *getPassName() const { return "Machine Code Deleter"; } 69 70 bool runOnMachineFunction(MachineFunction &MF) { 71 // Delete the annotation from the function now. 72 MachineFunction::destruct(MF.getFunction()); 73 return true; 74 } 75 }; 76 } 77 78 /// MachineCodeDeletion Pass - This pass deletes all of the machine code for 79 /// the current function, which should happen after the function has been 80 /// emitted to a .s file or to memory. 81 FunctionPass *llvm::createMachineCodeDeleter() { 82 return new Deleter(); 83 } 84 85 86 87 //===---------------------------------------------------------------------===// 88 // MachineFunction implementation 89 //===---------------------------------------------------------------------===// 90 MachineBasicBlock* ilist_traits<MachineBasicBlock>::createNode() 91 { 92 MachineBasicBlock* dummy = new MachineBasicBlock(); 93 LeakDetector::removeGarbageObject(dummy); 94 return dummy; 95 } 96 97 void ilist_traits<MachineBasicBlock>::transferNodesFromList( 98 iplist<MachineBasicBlock, ilist_traits<MachineBasicBlock> >& toList, 99 ilist_iterator<MachineBasicBlock> first, 100 ilist_iterator<MachineBasicBlock> last) 101 { 102 if (Parent != toList.Parent) 103 for (; first != last; ++first) 104 first->Parent = toList.Parent; 105 } 106 107 MachineFunction::MachineFunction(const Function *F, 108 const TargetMachine &TM) 109 : Annotation(MF_AID), Fn(F), Target(TM) { 110 SSARegMapping = new SSARegMap(); 111 MFInfo = new MachineFunctionInfo(*this); 112 FrameInfo = new MachineFrameInfo(); 113 ConstantPool = new MachineConstantPool(); 114 BasicBlocks.Parent = this; 115 } 116 117 MachineFunction::~MachineFunction() { 118 delete SSARegMapping; 119 delete MFInfo; 120 delete FrameInfo; 121 delete ConstantPool; 122 } 123 124 void MachineFunction::dump() const { print(std::cerr); } 125 126 void MachineFunction::print(std::ostream &OS) const { 127 OS << "# Machine code for " << Fn->getName () << "():\n"; 128 129 // Print Frame Information 130 getFrameInfo()->print(*this, OS); 131 132 // Print Constant Pool 133 getConstantPool()->print(OS); 134 135 for (const_iterator BB = begin(); BB != end(); ++BB) 136 BB->print(OS); 137 138 OS << "\n# End machine code for " << Fn->getName () << "().\n\n"; 139 } 140 141 // The next two methods are used to construct and to retrieve 142 // the MachineCodeForFunction object for the given function. 143 // construct() -- Allocates and initializes for a given function and target 144 // get() -- Returns a handle to the object. 145 // This should not be called before "construct()" 146 // for a given Function. 147 // 148 MachineFunction& 149 MachineFunction::construct(const Function *Fn, const TargetMachine &Tar) 150 { 151 assert(Fn->getAnnotation(MF_AID) == 0 && 152 "Object already exists for this function!"); 153 MachineFunction* mcInfo = new MachineFunction(Fn, Tar); 154 Fn->addAnnotation(mcInfo); 155 return *mcInfo; 156 } 157 158 void MachineFunction::destruct(const Function *Fn) { 159 bool Deleted = Fn->deleteAnnotation(MF_AID); 160 assert(Deleted && "Machine code did not exist for function!"); 161 } 162 163 MachineFunction& MachineFunction::get(const Function *F) 164 { 165 MachineFunction *mc = (MachineFunction*)F->getAnnotation(MF_AID); 166 assert(mc && "Call construct() method first to allocate the object"); 167 return *mc; 168 } 169 170 void MachineFunction::clearSSARegMap() { 171 delete SSARegMapping; 172 SSARegMapping = 0; 173 } 174 175 //===----------------------------------------------------------------------===// 176 // MachineFrameInfo implementation 177 //===----------------------------------------------------------------------===// 178 179 /// CreateStackObject - Create a stack object for a value of the specified type. 180 /// 181 int MachineFrameInfo::CreateStackObject(const Type *Ty, const TargetData &TD) { 182 return CreateStackObject(TD.getTypeSize(Ty), TD.getTypeAlignment(Ty)); 183 } 184 185 int MachineFrameInfo::CreateStackObject(const TargetRegisterClass *RC) { 186 return CreateStackObject(RC->getSize(), RC->getAlignment()); 187 } 188 189 190 void MachineFrameInfo::print(const MachineFunction &MF, std::ostream &OS) const{ 191 int ValOffset = MF.getTarget().getFrameInfo()->getOffsetOfLocalArea(); 192 193 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 194 const StackObject &SO = Objects[i]; 195 OS << " <fi #" << (int)(i-NumFixedObjects) << "> is "; 196 if (SO.Size == 0) 197 OS << "variable sized"; 198 else 199 OS << SO.Size << " byte" << (SO.Size != 1 ? "s" : " "); 200 201 if (i < NumFixedObjects) 202 OS << " fixed"; 203 if (i < NumFixedObjects || SO.SPOffset != -1) { 204 int Off = SO.SPOffset - ValOffset; 205 OS << " at location [SP"; 206 if (Off > 0) 207 OS << "+" << Off; 208 else if (Off < 0) 209 OS << Off; 210 OS << "]"; 211 } 212 OS << "\n"; 213 } 214 215 if (HasVarSizedObjects) 216 OS << " Stack frame contains variable sized objects\n"; 217 } 218 219 void MachineFrameInfo::dump(const MachineFunction &MF) const { 220 print(MF, std::cerr); 221 } 222 223 224 //===----------------------------------------------------------------------===// 225 // MachineConstantPool implementation 226 //===----------------------------------------------------------------------===// 227 228 void MachineConstantPool::print(std::ostream &OS) const { 229 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 230 OS << " <cp #" << i << "> is" << *(Value*)Constants[i] << "\n"; 231 } 232 233 void MachineConstantPool::dump() const { print(std::cerr); } 234 235 //===----------------------------------------------------------------------===// 236 // MachineFunctionInfo implementation 237 //===----------------------------------------------------------------------===// 238 239 static unsigned 240 ComputeMaxOptionalArgsSize(const TargetMachine& target, const Function *F, 241 unsigned &maxOptionalNumArgs) 242 { 243 const TargetFrameInfo &frameInfo = *target.getFrameInfo(); 244 245 unsigned maxSize = 0; 246 247 for (Function::const_iterator BB = F->begin(), BBE = F->end(); BB !=BBE; ++BB) 248 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) 249 if (const CallInst *callInst = dyn_cast<CallInst>(I)) 250 { 251 unsigned numOperands = callInst->getNumOperands() - 1; 252 int numExtra = (int)numOperands-frameInfo.getNumFixedOutgoingArgs(); 253 if (numExtra <= 0) 254 continue; 255 256 unsigned sizeForThisCall; 257 if (frameInfo.argsOnStackHaveFixedSize()) 258 { 259 int argSize = frameInfo.getSizeOfEachArgOnStack(); 260 sizeForThisCall = numExtra * (unsigned) argSize; 261 } 262 else 263 { 264 assert(0 && "UNTESTED CODE: Size per stack argument is not " 265 "fixed on this architecture: use actual arg sizes to " 266 "compute MaxOptionalArgsSize"); 267 sizeForThisCall = 0; 268 for (unsigned i = 0; i < numOperands; ++i) 269 sizeForThisCall += target.getTargetData().getTypeSize(callInst-> 270 getOperand(i)->getType()); 271 } 272 273 if (maxSize < sizeForThisCall) 274 maxSize = sizeForThisCall; 275 276 if ((int)maxOptionalNumArgs < numExtra) 277 maxOptionalNumArgs = (unsigned) numExtra; 278 } 279 280 return maxSize; 281 } 282 283 // Align data larger than one L1 cache line on L1 cache line boundaries. 284 // Align all smaller data on the next higher 2^x boundary (4, 8, ...), 285 // but not higher than the alignment of the largest type we support 286 // (currently a double word). -- see class TargetData). 287 // 288 // This function is similar to the corresponding function in EmitAssembly.cpp 289 // but they are unrelated. This one does not align at more than a 290 // double-word boundary whereas that one might. 291 // 292 inline unsigned 293 SizeToAlignment(unsigned size, const TargetMachine& target) 294 { 295 const unsigned short cacheLineSize = 16; 296 if (size > (unsigned) cacheLineSize / 2) 297 return cacheLineSize; 298 else 299 for (unsigned sz=1; /*no condition*/; sz *= 2) 300 if (sz >= size || sz >= target.getTargetData().getDoubleAlignment()) 301 return sz; 302 } 303 304 305 void MachineFunctionInfo::CalculateArgSize() { 306 maxOptionalArgsSize = ComputeMaxOptionalArgsSize(MF.getTarget(), 307 MF.getFunction(), 308 maxOptionalNumArgs); 309 staticStackSize = maxOptionalArgsSize 310 + MF.getTarget().getFrameInfo()->getMinStackFrameSize(); 311 } 312 313 int 314 MachineFunctionInfo::computeOffsetforLocalVar(const Value* val, 315 unsigned &getPaddedSize, 316 unsigned sizeToUse) 317 { 318 if (sizeToUse == 0) { 319 // All integer types smaller than ints promote to 4 byte integers. 320 if (val->getType()->isIntegral() && val->getType()->getPrimitiveSize() < 4) 321 sizeToUse = 4; 322 else 323 sizeToUse = MF.getTarget().getTargetData().getTypeSize(val->getType()); 324 } 325 unsigned align = SizeToAlignment(sizeToUse, MF.getTarget()); 326 327 bool growUp; 328 int firstOffset = MF.getTarget().getFrameInfo()->getFirstAutomaticVarOffset(MF, 329 growUp); 330 int offset = growUp? firstOffset + getAutomaticVarsSize() 331 : firstOffset - (getAutomaticVarsSize() + sizeToUse); 332 333 int aligned = MF.getTarget().getFrameInfo()->adjustAlignment(offset, growUp, align); 334 getPaddedSize = sizeToUse + abs(aligned - offset); 335 336 return aligned; 337 } 338 339 340 int MachineFunctionInfo::allocateLocalVar(const Value* val, 341 unsigned sizeToUse) { 342 assert(! automaticVarsAreaFrozen && 343 "Size of auto vars area has been used to compute an offset so " 344 "no more automatic vars should be allocated!"); 345 346 // Check if we've allocated a stack slot for this value already 347 // 348 hash_map<const Value*, int>::const_iterator pair = offsets.find(val); 349 if (pair != offsets.end()) 350 return pair->second; 351 352 unsigned getPaddedSize; 353 unsigned offset = computeOffsetforLocalVar(val, getPaddedSize, sizeToUse); 354 offsets[val] = offset; 355 incrementAutomaticVarsSize(getPaddedSize); 356 return offset; 357 } 358 359 int 360 MachineFunctionInfo::allocateSpilledValue(const Type* type) 361 { 362 assert(! spillsAreaFrozen && 363 "Size of reg spills area has been used to compute an offset so " 364 "no more register spill slots should be allocated!"); 365 366 unsigned size = MF.getTarget().getTargetData().getTypeSize(type); 367 unsigned char align = MF.getTarget().getTargetData().getTypeAlignment(type); 368 369 bool growUp; 370 int firstOffset = MF.getTarget().getFrameInfo()->getRegSpillAreaOffset(MF, growUp); 371 372 int offset = growUp? firstOffset + getRegSpillsSize() 373 : firstOffset - (getRegSpillsSize() + size); 374 375 int aligned = MF.getTarget().getFrameInfo()->adjustAlignment(offset, growUp, align); 376 size += abs(aligned - offset); // include alignment padding in size 377 378 incrementRegSpillsSize(size); // update size of reg. spills area 379 380 return aligned; 381 } 382 383 int 384 MachineFunctionInfo::pushTempValue(unsigned size) 385 { 386 unsigned align = SizeToAlignment(size, MF.getTarget()); 387 388 bool growUp; 389 int firstOffset = MF.getTarget().getFrameInfo()->getTmpAreaOffset(MF, growUp); 390 391 int offset = growUp? firstOffset + currentTmpValuesSize 392 : firstOffset - (currentTmpValuesSize + size); 393 394 int aligned = MF.getTarget().getFrameInfo()->adjustAlignment(offset, growUp, 395 align); 396 size += abs(aligned - offset); // include alignment padding in size 397 398 incrementTmpAreaSize(size); // update "current" size of tmp area 399 400 return aligned; 401 } 402 403 void MachineFunctionInfo::popAllTempValues() { 404 resetTmpAreaSize(); // clear tmp area to reuse 405 } 406 407