1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/DerivedTypes.h" 17 #include "llvm/Function.h" 18 #include "llvm/Instructions.h" 19 #include "llvm/Config/config.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/MC/MCContext.h" 31 #include "llvm/Analysis/DebugInfo.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Target/TargetData.h" 34 #include "llvm/Target/TargetLowering.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include "llvm/Target/TargetFrameInfo.h" 37 #include "llvm/ADT/SmallString.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/Support/GraphWriter.h" 40 #include "llvm/Support/raw_ostream.h" 41 using namespace llvm; 42 43 //===----------------------------------------------------------------------===// 44 // MachineFunction implementation 45 //===----------------------------------------------------------------------===// 46 47 // Out of line virtual method. 48 MachineFunctionInfo::~MachineFunctionInfo() {} 49 50 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 51 MBB->getParent()->DeleteMachineBasicBlock(MBB); 52 } 53 54 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 55 unsigned FunctionNum, MachineModuleInfo &mmi) 56 : Fn(F), Target(TM), Ctx(mmi.getContext()), MMI(mmi) { 57 if (TM.getRegisterInfo()) 58 RegInfo = new (Allocator) MachineRegisterInfo(*TM.getRegisterInfo()); 59 else 60 RegInfo = 0; 61 MFInfo = 0; 62 FrameInfo = new (Allocator) MachineFrameInfo(*TM.getFrameInfo()); 63 if (Fn->hasFnAttr(Attribute::StackAlignment)) 64 FrameInfo->setMaxAlignment(Attribute::getStackAlignmentFromAttrs( 65 Fn->getAttributes().getFnAttributes())); 66 ConstantPool = new (Allocator) MachineConstantPool(TM.getTargetData()); 67 Alignment = TM.getTargetLowering()->getFunctionAlignment(F); 68 FunctionNumber = FunctionNum; 69 JumpTableInfo = 0; 70 } 71 72 MachineFunction::~MachineFunction() { 73 BasicBlocks.clear(); 74 InstructionRecycler.clear(Allocator); 75 BasicBlockRecycler.clear(Allocator); 76 if (RegInfo) { 77 RegInfo->~MachineRegisterInfo(); 78 Allocator.Deallocate(RegInfo); 79 } 80 if (MFInfo) { 81 MFInfo->~MachineFunctionInfo(); 82 Allocator.Deallocate(MFInfo); 83 } 84 FrameInfo->~MachineFrameInfo(); Allocator.Deallocate(FrameInfo); 85 ConstantPool->~MachineConstantPool(); Allocator.Deallocate(ConstantPool); 86 87 if (JumpTableInfo) { 88 JumpTableInfo->~MachineJumpTableInfo(); 89 Allocator.Deallocate(JumpTableInfo); 90 } 91 } 92 93 /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it 94 /// does already exist, allocate one. 95 MachineJumpTableInfo *MachineFunction:: 96 getOrCreateJumpTableInfo(unsigned EntryKind) { 97 if (JumpTableInfo) return JumpTableInfo; 98 99 JumpTableInfo = new (Allocator) 100 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 101 return JumpTableInfo; 102 } 103 104 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and 105 /// recomputes them. This guarantees that the MBB numbers are sequential, 106 /// dense, and match the ordering of the blocks within the function. If a 107 /// specific MachineBasicBlock is specified, only that block and those after 108 /// it are renumbered. 109 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 110 if (empty()) { MBBNumbering.clear(); return; } 111 MachineFunction::iterator MBBI, E = end(); 112 if (MBB == 0) 113 MBBI = begin(); 114 else 115 MBBI = MBB; 116 117 // Figure out the block number this should have. 118 unsigned BlockNo = 0; 119 if (MBBI != begin()) 120 BlockNo = prior(MBBI)->getNumber()+1; 121 122 for (; MBBI != E; ++MBBI, ++BlockNo) { 123 if (MBBI->getNumber() != (int)BlockNo) { 124 // Remove use of the old number. 125 if (MBBI->getNumber() != -1) { 126 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 127 "MBB number mismatch!"); 128 MBBNumbering[MBBI->getNumber()] = 0; 129 } 130 131 // If BlockNo is already taken, set that block's number to -1. 132 if (MBBNumbering[BlockNo]) 133 MBBNumbering[BlockNo]->setNumber(-1); 134 135 MBBNumbering[BlockNo] = MBBI; 136 MBBI->setNumber(BlockNo); 137 } 138 } 139 140 // Okay, all the blocks are renumbered. If we have compactified the block 141 // numbering, shrink MBBNumbering now. 142 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 143 MBBNumbering.resize(BlockNo); 144 } 145 146 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead 147 /// of `new MachineInstr'. 148 /// 149 MachineInstr * 150 MachineFunction::CreateMachineInstr(const TargetInstrDesc &TID, 151 DebugLoc DL, bool NoImp) { 152 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 153 MachineInstr(TID, DL, NoImp); 154 } 155 156 /// CloneMachineInstr - Create a new MachineInstr which is a copy of the 157 /// 'Orig' instruction, identical in all ways except the instruction 158 /// has no parent, prev, or next. 159 /// 160 MachineInstr * 161 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 162 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 163 MachineInstr(*this, *Orig); 164 } 165 166 /// DeleteMachineInstr - Delete the given MachineInstr. 167 /// 168 void 169 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 170 MI->~MachineInstr(); 171 InstructionRecycler.Deallocate(Allocator, MI); 172 } 173 174 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this 175 /// instead of `new MachineBasicBlock'. 176 /// 177 MachineBasicBlock * 178 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 179 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 180 MachineBasicBlock(*this, bb); 181 } 182 183 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. 184 /// 185 void 186 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 187 assert(MBB->getParent() == this && "MBB parent mismatch!"); 188 MBB->~MachineBasicBlock(); 189 BasicBlockRecycler.Deallocate(Allocator, MBB); 190 } 191 192 MachineMemOperand * 193 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 194 uint64_t s, unsigned base_alignment, 195 const MDNode *TBAAInfo) { 196 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 197 TBAAInfo); 198 } 199 200 MachineMemOperand * 201 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 202 int64_t Offset, uint64_t Size) { 203 return new (Allocator) 204 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 205 MMO->getOffset()+Offset), 206 MMO->getFlags(), Size, 207 MMO->getBaseAlignment(), 0); 208 } 209 210 MachineInstr::mmo_iterator 211 MachineFunction::allocateMemRefsArray(unsigned long Num) { 212 return Allocator.Allocate<MachineMemOperand *>(Num); 213 } 214 215 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 216 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 217 MachineInstr::mmo_iterator End) { 218 // Count the number of load mem refs. 219 unsigned Num = 0; 220 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 221 if ((*I)->isLoad()) 222 ++Num; 223 224 // Allocate a new array and populate it with the load information. 225 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 226 unsigned Index = 0; 227 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 228 if ((*I)->isLoad()) { 229 if (!(*I)->isStore()) 230 // Reuse the MMO. 231 Result[Index] = *I; 232 else { 233 // Clone the MMO and unset the store flag. 234 MachineMemOperand *JustLoad = 235 getMachineMemOperand((*I)->getPointerInfo(), 236 (*I)->getFlags() & ~MachineMemOperand::MOStore, 237 (*I)->getSize(), (*I)->getBaseAlignment(), 238 (*I)->getTBAAInfo()); 239 Result[Index] = JustLoad; 240 } 241 ++Index; 242 } 243 } 244 return std::make_pair(Result, Result + Num); 245 } 246 247 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 248 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 249 MachineInstr::mmo_iterator End) { 250 // Count the number of load mem refs. 251 unsigned Num = 0; 252 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 253 if ((*I)->isStore()) 254 ++Num; 255 256 // Allocate a new array and populate it with the store information. 257 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 258 unsigned Index = 0; 259 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 260 if ((*I)->isStore()) { 261 if (!(*I)->isLoad()) 262 // Reuse the MMO. 263 Result[Index] = *I; 264 else { 265 // Clone the MMO and unset the load flag. 266 MachineMemOperand *JustStore = 267 getMachineMemOperand((*I)->getPointerInfo(), 268 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 269 (*I)->getSize(), (*I)->getBaseAlignment(), 270 (*I)->getTBAAInfo()); 271 Result[Index] = JustStore; 272 } 273 ++Index; 274 } 275 } 276 return std::make_pair(Result, Result + Num); 277 } 278 279 void MachineFunction::dump() const { 280 print(dbgs()); 281 } 282 283 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const { 284 OS << "# Machine code for function " << Fn->getName() << ":\n"; 285 286 // Print Frame Information 287 FrameInfo->print(*this, OS); 288 289 // Print JumpTable Information 290 if (JumpTableInfo) 291 JumpTableInfo->print(OS); 292 293 // Print Constant Pool 294 ConstantPool->print(OS); 295 296 const TargetRegisterInfo *TRI = getTarget().getRegisterInfo(); 297 298 if (RegInfo && !RegInfo->livein_empty()) { 299 OS << "Function Live Ins: "; 300 for (MachineRegisterInfo::livein_iterator 301 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 302 if (TRI) 303 OS << "%" << TRI->getName(I->first); 304 else 305 OS << " %physreg" << I->first; 306 307 if (I->second) 308 OS << " in reg%" << I->second; 309 310 if (llvm::next(I) != E) 311 OS << ", "; 312 } 313 OS << '\n'; 314 } 315 if (RegInfo && !RegInfo->liveout_empty()) { 316 OS << "Function Live Outs: "; 317 for (MachineRegisterInfo::liveout_iterator 318 I = RegInfo->liveout_begin(), E = RegInfo->liveout_end(); I != E; ++I){ 319 if (TRI) 320 OS << '%' << TRI->getName(*I); 321 else 322 OS << "%physreg" << *I; 323 324 if (llvm::next(I) != E) 325 OS << " "; 326 } 327 OS << '\n'; 328 } 329 330 for (const_iterator BB = begin(), E = end(); BB != E; ++BB) { 331 OS << '\n'; 332 BB->print(OS, Indexes); 333 } 334 335 OS << "\n# End machine code for function " << Fn->getName() << ".\n\n"; 336 } 337 338 namespace llvm { 339 template<> 340 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 341 342 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 343 344 static std::string getGraphName(const MachineFunction *F) { 345 return "CFG for '" + F->getFunction()->getNameStr() + "' function"; 346 } 347 348 std::string getNodeLabel(const MachineBasicBlock *Node, 349 const MachineFunction *Graph) { 350 std::string OutStr; 351 { 352 raw_string_ostream OSS(OutStr); 353 354 if (isSimple()) { 355 OSS << "BB#" << Node->getNumber(); 356 if (const BasicBlock *BB = Node->getBasicBlock()) 357 OSS << ": " << BB->getName(); 358 } else 359 Node->print(OSS); 360 } 361 362 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 363 364 // Process string output to make it nicer... 365 for (unsigned i = 0; i != OutStr.length(); ++i) 366 if (OutStr[i] == '\n') { // Left justify 367 OutStr[i] = '\\'; 368 OutStr.insert(OutStr.begin()+i+1, 'l'); 369 } 370 return OutStr; 371 } 372 }; 373 } 374 375 void MachineFunction::viewCFG() const 376 { 377 #ifndef NDEBUG 378 ViewGraph(this, "mf" + getFunction()->getNameStr()); 379 #else 380 errs() << "MachineFunction::viewCFG is only available in debug builds on " 381 << "systems with Graphviz or gv!\n"; 382 #endif // NDEBUG 383 } 384 385 void MachineFunction::viewCFGOnly() const 386 { 387 #ifndef NDEBUG 388 ViewGraph(this, "mf" + getFunction()->getNameStr(), true); 389 #else 390 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 391 << "systems with Graphviz or gv!\n"; 392 #endif // NDEBUG 393 } 394 395 /// addLiveIn - Add the specified physical register as a live-in value and 396 /// create a corresponding virtual register for it. 397 unsigned MachineFunction::addLiveIn(unsigned PReg, 398 const TargetRegisterClass *RC) { 399 MachineRegisterInfo &MRI = getRegInfo(); 400 unsigned VReg = MRI.getLiveInVirtReg(PReg); 401 if (VReg) { 402 assert(MRI.getRegClass(VReg) == RC && "Register class mismatch!"); 403 return VReg; 404 } 405 VReg = MRI.createVirtualRegister(RC); 406 MRI.addLiveIn(PReg, VReg); 407 return VReg; 408 } 409 410 /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. 411 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 412 /// normal 'L' label is returned. 413 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 414 bool isLinkerPrivate) const { 415 assert(JumpTableInfo && "No jump tables"); 416 417 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 418 const MCAsmInfo &MAI = *getTarget().getMCAsmInfo(); 419 420 const char *Prefix = isLinkerPrivate ? MAI.getLinkerPrivateGlobalPrefix() : 421 MAI.getPrivateGlobalPrefix(); 422 SmallString<60> Name; 423 raw_svector_ostream(Name) 424 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 425 return Ctx.GetOrCreateSymbol(Name.str()); 426 } 427 428 429 //===----------------------------------------------------------------------===// 430 // MachineFrameInfo implementation 431 //===----------------------------------------------------------------------===// 432 433 /// CreateFixedObject - Create a new object at a fixed location on the stack. 434 /// All fixed objects should be created before other objects are created for 435 /// efficiency. By default, fixed objects are immutable. This returns an 436 /// index with a negative value. 437 /// 438 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 439 bool Immutable) { 440 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 441 // The alignment of the frame index can be determined from its offset from 442 // the incoming frame position. If the frame object is at offset 32 and 443 // the stack is guaranteed to be 16-byte aligned, then we know that the 444 // object is 16-byte aligned. 445 unsigned StackAlign = TFI.getStackAlignment(); 446 unsigned Align = MinAlign(SPOffset, StackAlign); 447 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 448 /*isSS*/false, false)); 449 return -++NumFixedObjects; 450 } 451 452 453 BitVector 454 MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const { 455 assert(MBB && "MBB must be valid"); 456 const MachineFunction *MF = MBB->getParent(); 457 assert(MF && "MBB must be part of a MachineFunction"); 458 const TargetMachine &TM = MF->getTarget(); 459 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 460 BitVector BV(TRI->getNumRegs()); 461 462 // Before CSI is calculated, no registers are considered pristine. They can be 463 // freely used and PEI will make sure they are saved. 464 if (!isCalleeSavedInfoValid()) 465 return BV; 466 467 for (const unsigned *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR) 468 BV.set(*CSR); 469 470 // The entry MBB always has all CSRs pristine. 471 if (MBB == &MF->front()) 472 return BV; 473 474 // On other MBBs the saved CSRs are not pristine. 475 const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo(); 476 for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(), 477 E = CSI.end(); I != E; ++I) 478 BV.reset(I->getReg()); 479 480 return BV; 481 } 482 483 484 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 485 if (Objects.empty()) return; 486 487 const TargetFrameInfo *FI = MF.getTarget().getFrameInfo(); 488 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 489 490 OS << "Frame Objects:\n"; 491 492 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 493 const StackObject &SO = Objects[i]; 494 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 495 if (SO.Size == ~0ULL) { 496 OS << "dead\n"; 497 continue; 498 } 499 if (SO.Size == 0) 500 OS << "variable sized"; 501 else 502 OS << "size=" << SO.Size; 503 OS << ", align=" << SO.Alignment; 504 505 if (i < NumFixedObjects) 506 OS << ", fixed"; 507 if (i < NumFixedObjects || SO.SPOffset != -1) { 508 int64_t Off = SO.SPOffset - ValOffset; 509 OS << ", at location [SP"; 510 if (Off > 0) 511 OS << "+" << Off; 512 else if (Off < 0) 513 OS << Off; 514 OS << "]"; 515 } 516 OS << "\n"; 517 } 518 } 519 520 void MachineFrameInfo::dump(const MachineFunction &MF) const { 521 print(MF, dbgs()); 522 } 523 524 //===----------------------------------------------------------------------===// 525 // MachineJumpTableInfo implementation 526 //===----------------------------------------------------------------------===// 527 528 /// getEntrySize - Return the size of each entry in the jump table. 529 unsigned MachineJumpTableInfo::getEntrySize(const TargetData &TD) const { 530 // The size of a jump table entry is 4 bytes unless the entry is just the 531 // address of a block, in which case it is the pointer size. 532 switch (getEntryKind()) { 533 case MachineJumpTableInfo::EK_BlockAddress: 534 return TD.getPointerSize(); 535 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 536 case MachineJumpTableInfo::EK_LabelDifference32: 537 case MachineJumpTableInfo::EK_Custom32: 538 return 4; 539 case MachineJumpTableInfo::EK_Inline: 540 return 0; 541 } 542 assert(0 && "Unknown jump table encoding!"); 543 return ~0; 544 } 545 546 /// getEntryAlignment - Return the alignment of each entry in the jump table. 547 unsigned MachineJumpTableInfo::getEntryAlignment(const TargetData &TD) const { 548 // The alignment of a jump table entry is the alignment of int32 unless the 549 // entry is just the address of a block, in which case it is the pointer 550 // alignment. 551 switch (getEntryKind()) { 552 case MachineJumpTableInfo::EK_BlockAddress: 553 return TD.getPointerABIAlignment(); 554 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 555 case MachineJumpTableInfo::EK_LabelDifference32: 556 case MachineJumpTableInfo::EK_Custom32: 557 return TD.getABIIntegerTypeAlignment(32); 558 case MachineJumpTableInfo::EK_Inline: 559 return 1; 560 } 561 assert(0 && "Unknown jump table encoding!"); 562 return ~0; 563 } 564 565 /// createJumpTableIndex - Create a new jump table entry in the jump table info. 566 /// 567 unsigned MachineJumpTableInfo::createJumpTableIndex( 568 const std::vector<MachineBasicBlock*> &DestBBs) { 569 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 570 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 571 return JumpTables.size()-1; 572 } 573 574 /// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update 575 /// the jump tables to branch to New instead. 576 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 577 MachineBasicBlock *New) { 578 assert(Old != New && "Not making a change?"); 579 bool MadeChange = false; 580 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 581 ReplaceMBBInJumpTable(i, Old, New); 582 return MadeChange; 583 } 584 585 /// ReplaceMBBInJumpTable - If Old is a target of the jump tables, update 586 /// the jump table to branch to New instead. 587 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 588 MachineBasicBlock *Old, 589 MachineBasicBlock *New) { 590 assert(Old != New && "Not making a change?"); 591 bool MadeChange = false; 592 MachineJumpTableEntry &JTE = JumpTables[Idx]; 593 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 594 if (JTE.MBBs[j] == Old) { 595 JTE.MBBs[j] = New; 596 MadeChange = true; 597 } 598 return MadeChange; 599 } 600 601 void MachineJumpTableInfo::print(raw_ostream &OS) const { 602 if (JumpTables.empty()) return; 603 604 OS << "Jump Tables:\n"; 605 606 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 607 OS << " jt#" << i << ": "; 608 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 609 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 610 } 611 612 OS << '\n'; 613 } 614 615 void MachineJumpTableInfo::dump() const { print(dbgs()); } 616 617 618 //===----------------------------------------------------------------------===// 619 // MachineConstantPool implementation 620 //===----------------------------------------------------------------------===// 621 622 const Type *MachineConstantPoolEntry::getType() const { 623 if (isMachineConstantPoolEntry()) 624 return Val.MachineCPVal->getType(); 625 return Val.ConstVal->getType(); 626 } 627 628 629 unsigned MachineConstantPoolEntry::getRelocationInfo() const { 630 if (isMachineConstantPoolEntry()) 631 return Val.MachineCPVal->getRelocationInfo(); 632 return Val.ConstVal->getRelocationInfo(); 633 } 634 635 MachineConstantPool::~MachineConstantPool() { 636 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 637 if (Constants[i].isMachineConstantPoolEntry()) 638 delete Constants[i].Val.MachineCPVal; 639 } 640 641 /// CanShareConstantPoolEntry - Test whether the given two constants 642 /// can be allocated the same constant pool entry. 643 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 644 const TargetData *TD) { 645 // Handle the trivial case quickly. 646 if (A == B) return true; 647 648 // If they have the same type but weren't the same constant, quickly 649 // reject them. 650 if (A->getType() == B->getType()) return false; 651 652 // For now, only support constants with the same size. 653 if (TD->getTypeStoreSize(A->getType()) != TD->getTypeStoreSize(B->getType())) 654 return false; 655 656 // If a floating-point value and an integer value have the same encoding, 657 // they can share a constant-pool entry. 658 if (const ConstantFP *AFP = dyn_cast<ConstantFP>(A)) 659 if (const ConstantInt *BI = dyn_cast<ConstantInt>(B)) 660 return AFP->getValueAPF().bitcastToAPInt() == BI->getValue(); 661 if (const ConstantFP *BFP = dyn_cast<ConstantFP>(B)) 662 if (const ConstantInt *AI = dyn_cast<ConstantInt>(A)) 663 return BFP->getValueAPF().bitcastToAPInt() == AI->getValue(); 664 665 // Two vectors can share an entry if each pair of corresponding 666 // elements could. 667 if (const ConstantVector *AV = dyn_cast<ConstantVector>(A)) 668 if (const ConstantVector *BV = dyn_cast<ConstantVector>(B)) { 669 if (AV->getType()->getNumElements() != BV->getType()->getNumElements()) 670 return false; 671 for (unsigned i = 0, e = AV->getType()->getNumElements(); i != e; ++i) 672 if (!CanShareConstantPoolEntry(AV->getOperand(i), 673 BV->getOperand(i), TD)) 674 return false; 675 return true; 676 } 677 678 // TODO: Handle other cases. 679 680 return false; 681 } 682 683 /// getConstantPoolIndex - Create a new entry in the constant pool or return 684 /// an existing one. User must specify the log2 of the minimum required 685 /// alignment for the object. 686 /// 687 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 688 unsigned Alignment) { 689 assert(Alignment && "Alignment must be specified!"); 690 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 691 692 // Check to see if we already have this constant. 693 // 694 // FIXME, this could be made much more efficient for large constant pools. 695 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 696 if (!Constants[i].isMachineConstantPoolEntry() && 697 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, TD)) { 698 if ((unsigned)Constants[i].getAlignment() < Alignment) 699 Constants[i].Alignment = Alignment; 700 return i; 701 } 702 703 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 704 return Constants.size()-1; 705 } 706 707 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 708 unsigned Alignment) { 709 assert(Alignment && "Alignment must be specified!"); 710 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 711 712 // Check to see if we already have this constant. 713 // 714 // FIXME, this could be made much more efficient for large constant pools. 715 int Idx = V->getExistingMachineCPValue(this, Alignment); 716 if (Idx != -1) 717 return (unsigned)Idx; 718 719 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 720 return Constants.size()-1; 721 } 722 723 void MachineConstantPool::print(raw_ostream &OS) const { 724 if (Constants.empty()) return; 725 726 OS << "Constant Pool:\n"; 727 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 728 OS << " cp#" << i << ": "; 729 if (Constants[i].isMachineConstantPoolEntry()) 730 Constants[i].Val.MachineCPVal->print(OS); 731 else 732 OS << *(Value*)Constants[i].Val.ConstVal; 733 OS << ", align=" << Constants[i].getAlignment(); 734 OS << "\n"; 735 } 736 } 737 738 void MachineConstantPool::dump() const { print(dbgs()); } 739