1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/EHPersonalities.h" 21 #include "llvm/CodeGen/MachineConstantPool.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionInitializer.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/Passes.h" 30 #include "llvm/CodeGen/PseudoSourceValue.h" 31 #include "llvm/CodeGen/WinEHFuncInfo.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/ModuleSlotTracker.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCContext.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetFrameLowering.h" 43 #include "llvm/Target/TargetLowering.h" 44 #include "llvm/Target/TargetMachine.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 using namespace llvm; 47 48 #define DEBUG_TYPE "codegen" 49 50 static cl::opt<unsigned> 51 AlignAllFunctions("align-all-functions", 52 cl::desc("Force the alignment of all functions."), 53 cl::init(0), cl::Hidden); 54 55 void MachineFunctionInitializer::anchor() {} 56 57 void MachineFunctionProperties::print(raw_ostream &ROS) const { 58 // Leave this function even in NDEBUG as an out-of-line anchor. 59 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 60 for (BitVector::size_type i = 0; i < Properties.size(); ++i) { 61 bool HasProperty = Properties[i]; 62 switch(static_cast<Property>(i)) { 63 case Property::IsSSA: 64 ROS << (HasProperty ? "SSA, " : "Post SSA, "); 65 break; 66 case Property::AllVRegsAllocated: 67 ROS << (HasProperty ? "AllVRegsAllocated" : "HasVRegs"); 68 break; 69 default: 70 break; 71 } 72 } 73 #endif 74 } 75 76 //===----------------------------------------------------------------------===// 77 // MachineFunction implementation 78 //===----------------------------------------------------------------------===// 79 80 // Out-of-line virtual method. 81 MachineFunctionInfo::~MachineFunctionInfo() {} 82 83 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 84 MBB->getParent()->DeleteMachineBasicBlock(MBB); 85 } 86 87 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 88 unsigned FunctionNum, MachineModuleInfo &mmi) 89 : Fn(F), Target(TM), STI(TM.getSubtargetImpl(*F)), Ctx(mmi.getContext()), 90 MMI(mmi) { 91 // Assume the function starts in SSA form. 92 Properties.set(MachineFunctionProperties::Property::IsSSA); 93 if (STI->getRegisterInfo()) 94 RegInfo = new (Allocator) MachineRegisterInfo(this); 95 else 96 RegInfo = nullptr; 97 98 MFInfo = nullptr; 99 FrameInfo = new (Allocator) 100 MachineFrameInfo(STI->getFrameLowering()->getStackAlignment(), 101 STI->getFrameLowering()->isStackRealignable(), 102 !F->hasFnAttribute("no-realign-stack")); 103 104 if (Fn->hasFnAttribute(Attribute::StackAlignment)) 105 FrameInfo->ensureMaxAlignment(Fn->getFnStackAlignment()); 106 107 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 108 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 109 110 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 111 // FIXME: Use Function::optForSize(). 112 if (!Fn->hasFnAttribute(Attribute::OptimizeForSize)) 113 Alignment = std::max(Alignment, 114 STI->getTargetLowering()->getPrefFunctionAlignment()); 115 116 if (AlignAllFunctions) 117 Alignment = AlignAllFunctions; 118 119 FunctionNumber = FunctionNum; 120 JumpTableInfo = nullptr; 121 122 if (isFuncletEHPersonality(classifyEHPersonality( 123 F->hasPersonalityFn() ? F->getPersonalityFn() : nullptr))) { 124 WinEHInfo = new (Allocator) WinEHFuncInfo(); 125 } 126 127 assert(TM.isCompatibleDataLayout(getDataLayout()) && 128 "Can't create a MachineFunction using a Module with a " 129 "Target-incompatible DataLayout attached\n"); 130 131 PSVManager = llvm::make_unique<PseudoSourceValueManager>(); 132 } 133 134 MachineFunction::~MachineFunction() { 135 // Don't call destructors on MachineInstr and MachineOperand. All of their 136 // memory comes from the BumpPtrAllocator which is about to be purged. 137 // 138 // Do call MachineBasicBlock destructors, it contains std::vectors. 139 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 140 I->Insts.clearAndLeakNodesUnsafely(); 141 142 InstructionRecycler.clear(Allocator); 143 OperandRecycler.clear(Allocator); 144 BasicBlockRecycler.clear(Allocator); 145 if (RegInfo) { 146 RegInfo->~MachineRegisterInfo(); 147 Allocator.Deallocate(RegInfo); 148 } 149 if (MFInfo) { 150 MFInfo->~MachineFunctionInfo(); 151 Allocator.Deallocate(MFInfo); 152 } 153 154 FrameInfo->~MachineFrameInfo(); 155 Allocator.Deallocate(FrameInfo); 156 157 ConstantPool->~MachineConstantPool(); 158 Allocator.Deallocate(ConstantPool); 159 160 if (JumpTableInfo) { 161 JumpTableInfo->~MachineJumpTableInfo(); 162 Allocator.Deallocate(JumpTableInfo); 163 } 164 165 if (WinEHInfo) { 166 WinEHInfo->~WinEHFuncInfo(); 167 Allocator.Deallocate(WinEHInfo); 168 } 169 } 170 171 const DataLayout &MachineFunction::getDataLayout() const { 172 return Fn->getParent()->getDataLayout(); 173 } 174 175 /// Get the JumpTableInfo for this function. 176 /// If it does not already exist, allocate one. 177 MachineJumpTableInfo *MachineFunction:: 178 getOrCreateJumpTableInfo(unsigned EntryKind) { 179 if (JumpTableInfo) return JumpTableInfo; 180 181 JumpTableInfo = new (Allocator) 182 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 183 return JumpTableInfo; 184 } 185 186 /// Should we be emitting segmented stack stuff for the function 187 bool MachineFunction::shouldSplitStack() const { 188 return getFunction()->hasFnAttribute("split-stack"); 189 } 190 191 /// This discards all of the MachineBasicBlock numbers and recomputes them. 192 /// This guarantees that the MBB numbers are sequential, dense, and match the 193 /// ordering of the blocks within the function. If a specific MachineBasicBlock 194 /// is specified, only that block and those after it are renumbered. 195 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 196 if (empty()) { MBBNumbering.clear(); return; } 197 MachineFunction::iterator MBBI, E = end(); 198 if (MBB == nullptr) 199 MBBI = begin(); 200 else 201 MBBI = MBB->getIterator(); 202 203 // Figure out the block number this should have. 204 unsigned BlockNo = 0; 205 if (MBBI != begin()) 206 BlockNo = std::prev(MBBI)->getNumber() + 1; 207 208 for (; MBBI != E; ++MBBI, ++BlockNo) { 209 if (MBBI->getNumber() != (int)BlockNo) { 210 // Remove use of the old number. 211 if (MBBI->getNumber() != -1) { 212 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 213 "MBB number mismatch!"); 214 MBBNumbering[MBBI->getNumber()] = nullptr; 215 } 216 217 // If BlockNo is already taken, set that block's number to -1. 218 if (MBBNumbering[BlockNo]) 219 MBBNumbering[BlockNo]->setNumber(-1); 220 221 MBBNumbering[BlockNo] = &*MBBI; 222 MBBI->setNumber(BlockNo); 223 } 224 } 225 226 // Okay, all the blocks are renumbered. If we have compactified the block 227 // numbering, shrink MBBNumbering now. 228 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 229 MBBNumbering.resize(BlockNo); 230 } 231 232 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 233 MachineInstr * 234 MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 235 DebugLoc DL, bool NoImp) { 236 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 237 MachineInstr(*this, MCID, DL, NoImp); 238 } 239 240 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 241 /// identical in all ways except the instruction has no parent, prev, or next. 242 MachineInstr * 243 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 244 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 245 MachineInstr(*this, *Orig); 246 } 247 248 /// Delete the given MachineInstr. 249 /// 250 /// This function also serves as the MachineInstr destructor - the real 251 /// ~MachineInstr() destructor must be empty. 252 void 253 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 254 // Strip it for parts. The operand array and the MI object itself are 255 // independently recyclable. 256 if (MI->Operands) 257 deallocateOperandArray(MI->CapOperands, MI->Operands); 258 // Don't call ~MachineInstr() which must be trivial anyway because 259 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 260 // destructors. 261 InstructionRecycler.Deallocate(Allocator, MI); 262 } 263 264 /// Allocate a new MachineBasicBlock. Use this instead of 265 /// `new MachineBasicBlock'. 266 MachineBasicBlock * 267 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 268 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 269 MachineBasicBlock(*this, bb); 270 } 271 272 /// Delete the given MachineBasicBlock. 273 void 274 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 275 assert(MBB->getParent() == this && "MBB parent mismatch!"); 276 MBB->~MachineBasicBlock(); 277 BasicBlockRecycler.Deallocate(Allocator, MBB); 278 } 279 280 MachineMemOperand * 281 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 282 uint64_t s, unsigned base_alignment, 283 const AAMDNodes &AAInfo, 284 const MDNode *Ranges) { 285 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 286 AAInfo, Ranges); 287 } 288 289 MachineMemOperand * 290 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 291 int64_t Offset, uint64_t Size) { 292 if (MMO->getValue()) 293 return new (Allocator) 294 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 295 MMO->getOffset()+Offset), 296 MMO->getFlags(), Size, 297 MMO->getBaseAlignment()); 298 return new (Allocator) 299 MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(), 300 MMO->getOffset()+Offset), 301 MMO->getFlags(), Size, 302 MMO->getBaseAlignment()); 303 } 304 305 MachineInstr::mmo_iterator 306 MachineFunction::allocateMemRefsArray(unsigned long Num) { 307 return Allocator.Allocate<MachineMemOperand *>(Num); 308 } 309 310 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 311 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 312 MachineInstr::mmo_iterator End) { 313 // Count the number of load mem refs. 314 unsigned Num = 0; 315 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 316 if ((*I)->isLoad()) 317 ++Num; 318 319 // Allocate a new array and populate it with the load information. 320 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 321 unsigned Index = 0; 322 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 323 if ((*I)->isLoad()) { 324 if (!(*I)->isStore()) 325 // Reuse the MMO. 326 Result[Index] = *I; 327 else { 328 // Clone the MMO and unset the store flag. 329 MachineMemOperand *JustLoad = 330 getMachineMemOperand((*I)->getPointerInfo(), 331 (*I)->getFlags() & ~MachineMemOperand::MOStore, 332 (*I)->getSize(), (*I)->getBaseAlignment(), 333 (*I)->getAAInfo()); 334 Result[Index] = JustLoad; 335 } 336 ++Index; 337 } 338 } 339 return std::make_pair(Result, Result + Num); 340 } 341 342 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 343 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 344 MachineInstr::mmo_iterator End) { 345 // Count the number of load mem refs. 346 unsigned Num = 0; 347 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 348 if ((*I)->isStore()) 349 ++Num; 350 351 // Allocate a new array and populate it with the store information. 352 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 353 unsigned Index = 0; 354 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 355 if ((*I)->isStore()) { 356 if (!(*I)->isLoad()) 357 // Reuse the MMO. 358 Result[Index] = *I; 359 else { 360 // Clone the MMO and unset the load flag. 361 MachineMemOperand *JustStore = 362 getMachineMemOperand((*I)->getPointerInfo(), 363 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 364 (*I)->getSize(), (*I)->getBaseAlignment(), 365 (*I)->getAAInfo()); 366 Result[Index] = JustStore; 367 } 368 ++Index; 369 } 370 } 371 return std::make_pair(Result, Result + Num); 372 } 373 374 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 375 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 376 std::copy(Name.begin(), Name.end(), Dest); 377 Dest[Name.size()] = 0; 378 return Dest; 379 } 380 381 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 382 LLVM_DUMP_METHOD void MachineFunction::dump() const { 383 print(dbgs()); 384 } 385 #endif 386 387 StringRef MachineFunction::getName() const { 388 assert(getFunction() && "No function!"); 389 return getFunction()->getName(); 390 } 391 392 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const { 393 OS << "# Machine code for function " << getName() << ": "; 394 OS << "Properties: <"; 395 getProperties().print(OS); 396 OS << "> : "; 397 if (RegInfo) { 398 if (!RegInfo->tracksLiveness()) 399 OS << "not tracking liveness"; 400 } 401 OS << '\n'; 402 403 // Print Frame Information 404 FrameInfo->print(*this, OS); 405 406 // Print JumpTable Information 407 if (JumpTableInfo) 408 JumpTableInfo->print(OS); 409 410 // Print Constant Pool 411 ConstantPool->print(OS); 412 413 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 414 415 if (RegInfo && !RegInfo->livein_empty()) { 416 OS << "Function Live Ins: "; 417 for (MachineRegisterInfo::livein_iterator 418 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 419 OS << PrintReg(I->first, TRI); 420 if (I->second) 421 OS << " in " << PrintReg(I->second, TRI); 422 if (std::next(I) != E) 423 OS << ", "; 424 } 425 OS << '\n'; 426 } 427 428 ModuleSlotTracker MST(getFunction()->getParent()); 429 MST.incorporateFunction(*getFunction()); 430 for (const auto &BB : *this) { 431 OS << '\n'; 432 BB.print(OS, MST, Indexes); 433 } 434 435 OS << "\n# End machine code for function " << getName() << ".\n\n"; 436 } 437 438 namespace llvm { 439 template<> 440 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 441 442 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 443 444 static std::string getGraphName(const MachineFunction *F) { 445 return ("CFG for '" + F->getName() + "' function").str(); 446 } 447 448 std::string getNodeLabel(const MachineBasicBlock *Node, 449 const MachineFunction *Graph) { 450 std::string OutStr; 451 { 452 raw_string_ostream OSS(OutStr); 453 454 if (isSimple()) { 455 OSS << "BB#" << Node->getNumber(); 456 if (const BasicBlock *BB = Node->getBasicBlock()) 457 OSS << ": " << BB->getName(); 458 } else 459 Node->print(OSS); 460 } 461 462 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 463 464 // Process string output to make it nicer... 465 for (unsigned i = 0; i != OutStr.length(); ++i) 466 if (OutStr[i] == '\n') { // Left justify 467 OutStr[i] = '\\'; 468 OutStr.insert(OutStr.begin()+i+1, 'l'); 469 } 470 return OutStr; 471 } 472 }; 473 } 474 475 void MachineFunction::viewCFG() const 476 { 477 #ifndef NDEBUG 478 ViewGraph(this, "mf" + getName()); 479 #else 480 errs() << "MachineFunction::viewCFG is only available in debug builds on " 481 << "systems with Graphviz or gv!\n"; 482 #endif // NDEBUG 483 } 484 485 void MachineFunction::viewCFGOnly() const 486 { 487 #ifndef NDEBUG 488 ViewGraph(this, "mf" + getName(), true); 489 #else 490 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 491 << "systems with Graphviz or gv!\n"; 492 #endif // NDEBUG 493 } 494 495 /// Add the specified physical register as a live-in value and 496 /// create a corresponding virtual register for it. 497 unsigned MachineFunction::addLiveIn(unsigned PReg, 498 const TargetRegisterClass *RC) { 499 MachineRegisterInfo &MRI = getRegInfo(); 500 unsigned VReg = MRI.getLiveInVirtReg(PReg); 501 if (VReg) { 502 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 503 (void)VRegRC; 504 // A physical register can be added several times. 505 // Between two calls, the register class of the related virtual register 506 // may have been constrained to match some operation constraints. 507 // In that case, check that the current register class includes the 508 // physical register and is a sub class of the specified RC. 509 assert((VRegRC == RC || (VRegRC->contains(PReg) && 510 RC->hasSubClassEq(VRegRC))) && 511 "Register class mismatch!"); 512 return VReg; 513 } 514 VReg = MRI.createVirtualRegister(RC); 515 MRI.addLiveIn(PReg, VReg); 516 return VReg; 517 } 518 519 /// Return the MCSymbol for the specified non-empty jump table. 520 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 521 /// normal 'L' label is returned. 522 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 523 bool isLinkerPrivate) const { 524 const DataLayout &DL = getDataLayout(); 525 assert(JumpTableInfo && "No jump tables"); 526 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 527 528 const char *Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 529 : DL.getPrivateGlobalPrefix(); 530 SmallString<60> Name; 531 raw_svector_ostream(Name) 532 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 533 return Ctx.getOrCreateSymbol(Name); 534 } 535 536 /// Return a function-local symbol to represent the PIC base. 537 MCSymbol *MachineFunction::getPICBaseSymbol() const { 538 const DataLayout &DL = getDataLayout(); 539 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 540 Twine(getFunctionNumber()) + "$pb"); 541 } 542 543 //===----------------------------------------------------------------------===// 544 // MachineFrameInfo implementation 545 //===----------------------------------------------------------------------===// 546 547 /// Make sure the function is at least Align bytes aligned. 548 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 549 if (!StackRealignable || !RealignOption) 550 assert(Align <= StackAlignment && 551 "For targets without stack realignment, Align is out of limit!"); 552 if (MaxAlignment < Align) MaxAlignment = Align; 553 } 554 555 /// Clamp the alignment if requested and emit a warning. 556 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align, 557 unsigned StackAlign) { 558 if (!ShouldClamp || Align <= StackAlign) 559 return Align; 560 DEBUG(dbgs() << "Warning: requested alignment " << Align 561 << " exceeds the stack alignment " << StackAlign 562 << " when stack realignment is off" << '\n'); 563 return StackAlign; 564 } 565 566 /// Create a new statically sized stack object, returning a nonnegative 567 /// identifier to represent it. 568 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment, 569 bool isSS, const AllocaInst *Alloca) { 570 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 571 Alignment = clampStackAlignment(!StackRealignable || !RealignOption, 572 Alignment, StackAlignment); 573 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca, 574 !isSS)); 575 int Index = (int)Objects.size() - NumFixedObjects - 1; 576 assert(Index >= 0 && "Bad frame index!"); 577 ensureMaxAlignment(Alignment); 578 return Index; 579 } 580 581 /// Create a new statically sized stack object that represents a spill slot, 582 /// returning a nonnegative identifier to represent it. 583 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 584 unsigned Alignment) { 585 Alignment = clampStackAlignment(!StackRealignable || !RealignOption, 586 Alignment, StackAlignment); 587 CreateStackObject(Size, Alignment, true); 588 int Index = (int)Objects.size() - NumFixedObjects - 1; 589 ensureMaxAlignment(Alignment); 590 return Index; 591 } 592 593 /// Notify the MachineFrameInfo object that a variable sized object has been 594 /// created. This must be created whenever a variable sized object is created, 595 /// whether or not the index returned is actually used. 596 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment, 597 const AllocaInst *Alloca) { 598 HasVarSizedObjects = true; 599 Alignment = clampStackAlignment(!StackRealignable || !RealignOption, 600 Alignment, StackAlignment); 601 Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca, true)); 602 ensureMaxAlignment(Alignment); 603 return (int)Objects.size()-NumFixedObjects-1; 604 } 605 606 /// Create a new object at a fixed location on the stack. 607 /// All fixed objects should be created before other objects are created for 608 /// efficiency. By default, fixed objects are immutable. This returns an 609 /// index with a negative value. 610 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 611 bool Immutable, bool isAliased) { 612 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 613 // The alignment of the frame index can be determined from its offset from 614 // the incoming frame position. If the frame object is at offset 32 and 615 // the stack is guaranteed to be 16-byte aligned, then we know that the 616 // object is 16-byte aligned. 617 unsigned Align = MinAlign(SPOffset, StackAlignment); 618 Align = clampStackAlignment(!StackRealignable || !RealignOption, Align, 619 StackAlignment); 620 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 621 /*isSS*/ false, 622 /*Alloca*/ nullptr, isAliased)); 623 return -++NumFixedObjects; 624 } 625 626 /// Create a spill slot at a fixed location on the stack. 627 /// Returns an index with a negative value. 628 int MachineFrameInfo::CreateFixedSpillStackObject(uint64_t Size, 629 int64_t SPOffset) { 630 unsigned Align = MinAlign(SPOffset, StackAlignment); 631 Align = clampStackAlignment(!StackRealignable || !RealignOption, Align, 632 StackAlignment); 633 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, 634 /*Immutable*/ true, 635 /*isSS*/ true, 636 /*Alloca*/ nullptr, 637 /*isAliased*/ false)); 638 return -++NumFixedObjects; 639 } 640 641 BitVector MachineFrameInfo::getPristineRegs(const MachineFunction &MF) const { 642 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 643 BitVector BV(TRI->getNumRegs()); 644 645 // Before CSI is calculated, no registers are considered pristine. They can be 646 // freely used and PEI will make sure they are saved. 647 if (!isCalleeSavedInfoValid()) 648 return BV; 649 650 for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR) 651 BV.set(*CSR); 652 653 // Saved CSRs are not pristine. 654 for (auto &I : getCalleeSavedInfo()) 655 for (MCSubRegIterator S(I.getReg(), TRI, true); S.isValid(); ++S) 656 BV.reset(*S); 657 658 return BV; 659 } 660 661 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const { 662 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 663 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 664 unsigned MaxAlign = getMaxAlignment(); 665 int Offset = 0; 666 667 // This code is very, very similar to PEI::calculateFrameObjectOffsets(). 668 // It really should be refactored to share code. Until then, changes 669 // should keep in mind that there's tight coupling between the two. 670 671 for (int i = getObjectIndexBegin(); i != 0; ++i) { 672 int FixedOff = -getObjectOffset(i); 673 if (FixedOff > Offset) Offset = FixedOff; 674 } 675 for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) { 676 if (isDeadObjectIndex(i)) 677 continue; 678 Offset += getObjectSize(i); 679 unsigned Align = getObjectAlignment(i); 680 // Adjust to alignment boundary 681 Offset = (Offset+Align-1)/Align*Align; 682 683 MaxAlign = std::max(Align, MaxAlign); 684 } 685 686 if (adjustsStack() && TFI->hasReservedCallFrame(MF)) 687 Offset += getMaxCallFrameSize(); 688 689 // Round up the size to a multiple of the alignment. If the function has 690 // any calls or alloca's, align to the target's StackAlignment value to 691 // ensure that the callee's frame or the alloca data is suitably aligned; 692 // otherwise, for leaf functions, align to the TransientStackAlignment 693 // value. 694 unsigned StackAlign; 695 if (adjustsStack() || hasVarSizedObjects() || 696 (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0)) 697 StackAlign = TFI->getStackAlignment(); 698 else 699 StackAlign = TFI->getTransientStackAlignment(); 700 701 // If the frame pointer is eliminated, all frame offsets will be relative to 702 // SP not FP. Align to MaxAlign so this works. 703 StackAlign = std::max(StackAlign, MaxAlign); 704 unsigned AlignMask = StackAlign - 1; 705 Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); 706 707 return (unsigned)Offset; 708 } 709 710 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 711 if (Objects.empty()) return; 712 713 const TargetFrameLowering *FI = MF.getSubtarget().getFrameLowering(); 714 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 715 716 OS << "Frame Objects:\n"; 717 718 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 719 const StackObject &SO = Objects[i]; 720 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 721 if (SO.Size == ~0ULL) { 722 OS << "dead\n"; 723 continue; 724 } 725 if (SO.Size == 0) 726 OS << "variable sized"; 727 else 728 OS << "size=" << SO.Size; 729 OS << ", align=" << SO.Alignment; 730 731 if (i < NumFixedObjects) 732 OS << ", fixed"; 733 if (i < NumFixedObjects || SO.SPOffset != -1) { 734 int64_t Off = SO.SPOffset - ValOffset; 735 OS << ", at location [SP"; 736 if (Off > 0) 737 OS << "+" << Off; 738 else if (Off < 0) 739 OS << Off; 740 OS << "]"; 741 } 742 OS << "\n"; 743 } 744 } 745 746 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 747 void MachineFrameInfo::dump(const MachineFunction &MF) const { 748 print(MF, dbgs()); 749 } 750 #endif 751 752 //===----------------------------------------------------------------------===// 753 // MachineJumpTableInfo implementation 754 //===----------------------------------------------------------------------===// 755 756 /// Return the size of each entry in the jump table. 757 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 758 // The size of a jump table entry is 4 bytes unless the entry is just the 759 // address of a block, in which case it is the pointer size. 760 switch (getEntryKind()) { 761 case MachineJumpTableInfo::EK_BlockAddress: 762 return TD.getPointerSize(); 763 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 764 return 8; 765 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 766 case MachineJumpTableInfo::EK_LabelDifference32: 767 case MachineJumpTableInfo::EK_Custom32: 768 return 4; 769 case MachineJumpTableInfo::EK_Inline: 770 return 0; 771 } 772 llvm_unreachable("Unknown jump table encoding!"); 773 } 774 775 /// Return the alignment of each entry in the jump table. 776 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 777 // The alignment of a jump table entry is the alignment of int32 unless the 778 // entry is just the address of a block, in which case it is the pointer 779 // alignment. 780 switch (getEntryKind()) { 781 case MachineJumpTableInfo::EK_BlockAddress: 782 return TD.getPointerABIAlignment(); 783 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 784 return TD.getABIIntegerTypeAlignment(64); 785 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 786 case MachineJumpTableInfo::EK_LabelDifference32: 787 case MachineJumpTableInfo::EK_Custom32: 788 return TD.getABIIntegerTypeAlignment(32); 789 case MachineJumpTableInfo::EK_Inline: 790 return 1; 791 } 792 llvm_unreachable("Unknown jump table encoding!"); 793 } 794 795 /// Create a new jump table entry in the jump table info. 796 unsigned MachineJumpTableInfo::createJumpTableIndex( 797 const std::vector<MachineBasicBlock*> &DestBBs) { 798 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 799 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 800 return JumpTables.size()-1; 801 } 802 803 /// If Old is the target of any jump tables, update the jump tables to branch 804 /// to New instead. 805 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 806 MachineBasicBlock *New) { 807 assert(Old != New && "Not making a change?"); 808 bool MadeChange = false; 809 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 810 ReplaceMBBInJumpTable(i, Old, New); 811 return MadeChange; 812 } 813 814 /// If Old is a target of the jump tables, update the jump table to branch to 815 /// New instead. 816 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 817 MachineBasicBlock *Old, 818 MachineBasicBlock *New) { 819 assert(Old != New && "Not making a change?"); 820 bool MadeChange = false; 821 MachineJumpTableEntry &JTE = JumpTables[Idx]; 822 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 823 if (JTE.MBBs[j] == Old) { 824 JTE.MBBs[j] = New; 825 MadeChange = true; 826 } 827 return MadeChange; 828 } 829 830 void MachineJumpTableInfo::print(raw_ostream &OS) const { 831 if (JumpTables.empty()) return; 832 833 OS << "Jump Tables:\n"; 834 835 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 836 OS << " jt#" << i << ": "; 837 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 838 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 839 } 840 841 OS << '\n'; 842 } 843 844 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 845 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 846 #endif 847 848 849 //===----------------------------------------------------------------------===// 850 // MachineConstantPool implementation 851 //===----------------------------------------------------------------------===// 852 853 void MachineConstantPoolValue::anchor() { } 854 855 Type *MachineConstantPoolEntry::getType() const { 856 if (isMachineConstantPoolEntry()) 857 return Val.MachineCPVal->getType(); 858 return Val.ConstVal->getType(); 859 } 860 861 bool MachineConstantPoolEntry::needsRelocation() const { 862 if (isMachineConstantPoolEntry()) 863 return true; 864 return Val.ConstVal->needsRelocation(); 865 } 866 867 SectionKind 868 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 869 if (needsRelocation()) 870 return SectionKind::getReadOnlyWithRel(); 871 switch (DL->getTypeAllocSize(getType())) { 872 case 4: 873 return SectionKind::getMergeableConst4(); 874 case 8: 875 return SectionKind::getMergeableConst8(); 876 case 16: 877 return SectionKind::getMergeableConst16(); 878 case 32: 879 return SectionKind::getMergeableConst32(); 880 default: 881 return SectionKind::getReadOnly(); 882 } 883 } 884 885 MachineConstantPool::~MachineConstantPool() { 886 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 887 if (Constants[i].isMachineConstantPoolEntry()) 888 delete Constants[i].Val.MachineCPVal; 889 for (DenseSet<MachineConstantPoolValue*>::iterator I = 890 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 891 I != E; ++I) 892 delete *I; 893 } 894 895 /// Test whether the given two constants can be allocated the same constant pool 896 /// entry. 897 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 898 const DataLayout &DL) { 899 // Handle the trivial case quickly. 900 if (A == B) return true; 901 902 // If they have the same type but weren't the same constant, quickly 903 // reject them. 904 if (A->getType() == B->getType()) return false; 905 906 // We can't handle structs or arrays. 907 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 908 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 909 return false; 910 911 // For now, only support constants with the same size. 912 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 913 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 914 return false; 915 916 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 917 918 // Try constant folding a bitcast of both instructions to an integer. If we 919 // get two identical ConstantInt's, then we are good to share them. We use 920 // the constant folding APIs to do this so that we get the benefit of 921 // DataLayout. 922 if (isa<PointerType>(A->getType())) 923 A = ConstantFoldCastOperand(Instruction::PtrToInt, 924 const_cast<Constant *>(A), IntTy, DL); 925 else if (A->getType() != IntTy) 926 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 927 IntTy, DL); 928 if (isa<PointerType>(B->getType())) 929 B = ConstantFoldCastOperand(Instruction::PtrToInt, 930 const_cast<Constant *>(B), IntTy, DL); 931 else if (B->getType() != IntTy) 932 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 933 IntTy, DL); 934 935 return A == B; 936 } 937 938 /// Create a new entry in the constant pool or return an existing one. 939 /// User must specify the log2 of the minimum required alignment for the object. 940 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 941 unsigned Alignment) { 942 assert(Alignment && "Alignment must be specified!"); 943 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 944 945 // Check to see if we already have this constant. 946 // 947 // FIXME, this could be made much more efficient for large constant pools. 948 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 949 if (!Constants[i].isMachineConstantPoolEntry() && 950 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 951 if ((unsigned)Constants[i].getAlignment() < Alignment) 952 Constants[i].Alignment = Alignment; 953 return i; 954 } 955 956 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 957 return Constants.size()-1; 958 } 959 960 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 961 unsigned Alignment) { 962 assert(Alignment && "Alignment must be specified!"); 963 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 964 965 // Check to see if we already have this constant. 966 // 967 // FIXME, this could be made much more efficient for large constant pools. 968 int Idx = V->getExistingMachineCPValue(this, Alignment); 969 if (Idx != -1) { 970 MachineCPVsSharingEntries.insert(V); 971 return (unsigned)Idx; 972 } 973 974 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 975 return Constants.size()-1; 976 } 977 978 void MachineConstantPool::print(raw_ostream &OS) const { 979 if (Constants.empty()) return; 980 981 OS << "Constant Pool:\n"; 982 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 983 OS << " cp#" << i << ": "; 984 if (Constants[i].isMachineConstantPoolEntry()) 985 Constants[i].Val.MachineCPVal->print(OS); 986 else 987 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 988 OS << ", align=" << Constants[i].getAlignment(); 989 OS << "\n"; 990 } 991 } 992 993 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 994 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 995 #endif 996