1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfo.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/GraphWriter.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetFrameLowering.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Target/TargetSubtargetInfo.h" 40 using namespace llvm; 41 42 #define DEBUG_TYPE "codegen" 43 44 //===----------------------------------------------------------------------===// 45 // MachineFunction implementation 46 //===----------------------------------------------------------------------===// 47 48 // Out of line virtual method. 49 MachineFunctionInfo::~MachineFunctionInfo() {} 50 51 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 52 MBB->getParent()->DeleteMachineBasicBlock(MBB); 53 } 54 55 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 56 unsigned FunctionNum, MachineModuleInfo &mmi) 57 : Fn(F), Target(TM), STI(TM.getSubtargetImpl()), Ctx(mmi.getContext()), 58 MMI(mmi) { 59 if (STI->getRegisterInfo()) 60 RegInfo = new (Allocator) MachineRegisterInfo(this); 61 else 62 RegInfo = nullptr; 63 64 MFInfo = nullptr; 65 FrameInfo = new (Allocator) 66 MachineFrameInfo(STI->getFrameLowering()->getStackAlignment(), 67 STI->getFrameLowering()->isStackRealignable(), 68 !F->hasFnAttribute("no-realign-stack")); 69 70 if (Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 71 Attribute::StackAlignment)) 72 FrameInfo->ensureMaxAlignment(Fn->getAttributes(). 73 getStackAlignment(AttributeSet::FunctionIndex)); 74 75 ConstantPool = new (Allocator) MachineConstantPool(TM); 76 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 77 78 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 79 if (!Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 80 Attribute::OptimizeForSize)) 81 Alignment = std::max(Alignment, 82 STI->getTargetLowering()->getPrefFunctionAlignment()); 83 84 FunctionNumber = FunctionNum; 85 JumpTableInfo = nullptr; 86 } 87 88 MachineFunction::~MachineFunction() { 89 // Don't call destructors on MachineInstr and MachineOperand. All of their 90 // memory comes from the BumpPtrAllocator which is about to be purged. 91 // 92 // Do call MachineBasicBlock destructors, it contains std::vectors. 93 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 94 I->Insts.clearAndLeakNodesUnsafely(); 95 96 InstructionRecycler.clear(Allocator); 97 OperandRecycler.clear(Allocator); 98 BasicBlockRecycler.clear(Allocator); 99 if (RegInfo) { 100 RegInfo->~MachineRegisterInfo(); 101 Allocator.Deallocate(RegInfo); 102 } 103 if (MFInfo) { 104 MFInfo->~MachineFunctionInfo(); 105 Allocator.Deallocate(MFInfo); 106 } 107 108 FrameInfo->~MachineFrameInfo(); 109 Allocator.Deallocate(FrameInfo); 110 111 ConstantPool->~MachineConstantPool(); 112 Allocator.Deallocate(ConstantPool); 113 114 if (JumpTableInfo) { 115 JumpTableInfo->~MachineJumpTableInfo(); 116 Allocator.Deallocate(JumpTableInfo); 117 } 118 } 119 120 /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it 121 /// does already exist, allocate one. 122 MachineJumpTableInfo *MachineFunction:: 123 getOrCreateJumpTableInfo(unsigned EntryKind) { 124 if (JumpTableInfo) return JumpTableInfo; 125 126 JumpTableInfo = new (Allocator) 127 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 128 return JumpTableInfo; 129 } 130 131 /// Should we be emitting segmented stack stuff for the function 132 bool MachineFunction::shouldSplitStack() { 133 return getFunction()->hasFnAttribute("split-stack"); 134 } 135 136 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and 137 /// recomputes them. This guarantees that the MBB numbers are sequential, 138 /// dense, and match the ordering of the blocks within the function. If a 139 /// specific MachineBasicBlock is specified, only that block and those after 140 /// it are renumbered. 141 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 142 if (empty()) { MBBNumbering.clear(); return; } 143 MachineFunction::iterator MBBI, E = end(); 144 if (MBB == nullptr) 145 MBBI = begin(); 146 else 147 MBBI = MBB; 148 149 // Figure out the block number this should have. 150 unsigned BlockNo = 0; 151 if (MBBI != begin()) 152 BlockNo = std::prev(MBBI)->getNumber() + 1; 153 154 for (; MBBI != E; ++MBBI, ++BlockNo) { 155 if (MBBI->getNumber() != (int)BlockNo) { 156 // Remove use of the old number. 157 if (MBBI->getNumber() != -1) { 158 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 159 "MBB number mismatch!"); 160 MBBNumbering[MBBI->getNumber()] = nullptr; 161 } 162 163 // If BlockNo is already taken, set that block's number to -1. 164 if (MBBNumbering[BlockNo]) 165 MBBNumbering[BlockNo]->setNumber(-1); 166 167 MBBNumbering[BlockNo] = MBBI; 168 MBBI->setNumber(BlockNo); 169 } 170 } 171 172 // Okay, all the blocks are renumbered. If we have compactified the block 173 // numbering, shrink MBBNumbering now. 174 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 175 MBBNumbering.resize(BlockNo); 176 } 177 178 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead 179 /// of `new MachineInstr'. 180 /// 181 MachineInstr * 182 MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 183 DebugLoc DL, bool NoImp) { 184 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 185 MachineInstr(*this, MCID, DL, NoImp); 186 } 187 188 /// CloneMachineInstr - Create a new MachineInstr which is a copy of the 189 /// 'Orig' instruction, identical in all ways except the instruction 190 /// has no parent, prev, or next. 191 /// 192 MachineInstr * 193 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 194 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 195 MachineInstr(*this, *Orig); 196 } 197 198 /// DeleteMachineInstr - Delete the given MachineInstr. 199 /// 200 /// This function also serves as the MachineInstr destructor - the real 201 /// ~MachineInstr() destructor must be empty. 202 void 203 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 204 // Strip it for parts. The operand array and the MI object itself are 205 // independently recyclable. 206 if (MI->Operands) 207 deallocateOperandArray(MI->CapOperands, MI->Operands); 208 // Don't call ~MachineInstr() which must be trivial anyway because 209 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 210 // destructors. 211 InstructionRecycler.Deallocate(Allocator, MI); 212 } 213 214 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this 215 /// instead of `new MachineBasicBlock'. 216 /// 217 MachineBasicBlock * 218 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 219 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 220 MachineBasicBlock(*this, bb); 221 } 222 223 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. 224 /// 225 void 226 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 227 assert(MBB->getParent() == this && "MBB parent mismatch!"); 228 MBB->~MachineBasicBlock(); 229 BasicBlockRecycler.Deallocate(Allocator, MBB); 230 } 231 232 MachineMemOperand * 233 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 234 uint64_t s, unsigned base_alignment, 235 const AAMDNodes &AAInfo, 236 const MDNode *Ranges) { 237 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 238 AAInfo, Ranges); 239 } 240 241 MachineMemOperand * 242 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 243 int64_t Offset, uint64_t Size) { 244 if (MMO->getValue()) 245 return new (Allocator) 246 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 247 MMO->getOffset()+Offset), 248 MMO->getFlags(), Size, 249 MMO->getBaseAlignment()); 250 return new (Allocator) 251 MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(), 252 MMO->getOffset()+Offset), 253 MMO->getFlags(), Size, 254 MMO->getBaseAlignment()); 255 } 256 257 MachineInstr::mmo_iterator 258 MachineFunction::allocateMemRefsArray(unsigned long Num) { 259 return Allocator.Allocate<MachineMemOperand *>(Num); 260 } 261 262 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 263 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 264 MachineInstr::mmo_iterator End) { 265 // Count the number of load mem refs. 266 unsigned Num = 0; 267 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 268 if ((*I)->isLoad()) 269 ++Num; 270 271 // Allocate a new array and populate it with the load information. 272 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 273 unsigned Index = 0; 274 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 275 if ((*I)->isLoad()) { 276 if (!(*I)->isStore()) 277 // Reuse the MMO. 278 Result[Index] = *I; 279 else { 280 // Clone the MMO and unset the store flag. 281 MachineMemOperand *JustLoad = 282 getMachineMemOperand((*I)->getPointerInfo(), 283 (*I)->getFlags() & ~MachineMemOperand::MOStore, 284 (*I)->getSize(), (*I)->getBaseAlignment(), 285 (*I)->getAAInfo()); 286 Result[Index] = JustLoad; 287 } 288 ++Index; 289 } 290 } 291 return std::make_pair(Result, Result + Num); 292 } 293 294 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 295 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 296 MachineInstr::mmo_iterator End) { 297 // Count the number of load mem refs. 298 unsigned Num = 0; 299 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 300 if ((*I)->isStore()) 301 ++Num; 302 303 // Allocate a new array and populate it with the store information. 304 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 305 unsigned Index = 0; 306 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 307 if ((*I)->isStore()) { 308 if (!(*I)->isLoad()) 309 // Reuse the MMO. 310 Result[Index] = *I; 311 else { 312 // Clone the MMO and unset the load flag. 313 MachineMemOperand *JustStore = 314 getMachineMemOperand((*I)->getPointerInfo(), 315 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 316 (*I)->getSize(), (*I)->getBaseAlignment(), 317 (*I)->getAAInfo()); 318 Result[Index] = JustStore; 319 } 320 ++Index; 321 } 322 } 323 return std::make_pair(Result, Result + Num); 324 } 325 326 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 327 void MachineFunction::dump() const { 328 print(dbgs()); 329 } 330 #endif 331 332 StringRef MachineFunction::getName() const { 333 assert(getFunction() && "No function!"); 334 return getFunction()->getName(); 335 } 336 337 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const { 338 OS << "# Machine code for function " << getName() << ": "; 339 if (RegInfo) { 340 OS << (RegInfo->isSSA() ? "SSA" : "Post SSA"); 341 if (!RegInfo->tracksLiveness()) 342 OS << ", not tracking liveness"; 343 } 344 OS << '\n'; 345 346 // Print Frame Information 347 FrameInfo->print(*this, OS); 348 349 // Print JumpTable Information 350 if (JumpTableInfo) 351 JumpTableInfo->print(OS); 352 353 // Print Constant Pool 354 ConstantPool->print(OS); 355 356 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 357 358 if (RegInfo && !RegInfo->livein_empty()) { 359 OS << "Function Live Ins: "; 360 for (MachineRegisterInfo::livein_iterator 361 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 362 OS << PrintReg(I->first, TRI); 363 if (I->second) 364 OS << " in " << PrintReg(I->second, TRI); 365 if (std::next(I) != E) 366 OS << ", "; 367 } 368 OS << '\n'; 369 } 370 371 for (const auto &BB : *this) { 372 OS << '\n'; 373 BB.print(OS, Indexes); 374 } 375 376 OS << "\n# End machine code for function " << getName() << ".\n\n"; 377 } 378 379 namespace llvm { 380 template<> 381 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 382 383 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 384 385 static std::string getGraphName(const MachineFunction *F) { 386 return "CFG for '" + F->getName().str() + "' function"; 387 } 388 389 std::string getNodeLabel(const MachineBasicBlock *Node, 390 const MachineFunction *Graph) { 391 std::string OutStr; 392 { 393 raw_string_ostream OSS(OutStr); 394 395 if (isSimple()) { 396 OSS << "BB#" << Node->getNumber(); 397 if (const BasicBlock *BB = Node->getBasicBlock()) 398 OSS << ": " << BB->getName(); 399 } else 400 Node->print(OSS); 401 } 402 403 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 404 405 // Process string output to make it nicer... 406 for (unsigned i = 0; i != OutStr.length(); ++i) 407 if (OutStr[i] == '\n') { // Left justify 408 OutStr[i] = '\\'; 409 OutStr.insert(OutStr.begin()+i+1, 'l'); 410 } 411 return OutStr; 412 } 413 }; 414 } 415 416 void MachineFunction::viewCFG() const 417 { 418 #ifndef NDEBUG 419 ViewGraph(this, "mf" + getName()); 420 #else 421 errs() << "MachineFunction::viewCFG is only available in debug builds on " 422 << "systems with Graphviz or gv!\n"; 423 #endif // NDEBUG 424 } 425 426 void MachineFunction::viewCFGOnly() const 427 { 428 #ifndef NDEBUG 429 ViewGraph(this, "mf" + getName(), true); 430 #else 431 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 432 << "systems with Graphviz or gv!\n"; 433 #endif // NDEBUG 434 } 435 436 /// addLiveIn - Add the specified physical register as a live-in value and 437 /// create a corresponding virtual register for it. 438 unsigned MachineFunction::addLiveIn(unsigned PReg, 439 const TargetRegisterClass *RC) { 440 MachineRegisterInfo &MRI = getRegInfo(); 441 unsigned VReg = MRI.getLiveInVirtReg(PReg); 442 if (VReg) { 443 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 444 (void)VRegRC; 445 // A physical register can be added several times. 446 // Between two calls, the register class of the related virtual register 447 // may have been constrained to match some operation constraints. 448 // In that case, check that the current register class includes the 449 // physical register and is a sub class of the specified RC. 450 assert((VRegRC == RC || (VRegRC->contains(PReg) && 451 RC->hasSubClassEq(VRegRC))) && 452 "Register class mismatch!"); 453 return VReg; 454 } 455 VReg = MRI.createVirtualRegister(RC); 456 MRI.addLiveIn(PReg, VReg); 457 return VReg; 458 } 459 460 /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. 461 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 462 /// normal 'L' label is returned. 463 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 464 bool isLinkerPrivate) const { 465 const DataLayout *DL = getSubtarget().getDataLayout(); 466 assert(JumpTableInfo && "No jump tables"); 467 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 468 469 const char *Prefix = isLinkerPrivate ? DL->getLinkerPrivateGlobalPrefix() : 470 DL->getPrivateGlobalPrefix(); 471 SmallString<60> Name; 472 raw_svector_ostream(Name) 473 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 474 return Ctx.GetOrCreateSymbol(Name.str()); 475 } 476 477 /// getPICBaseSymbol - Return a function-local symbol to represent the PIC 478 /// base. 479 MCSymbol *MachineFunction::getPICBaseSymbol() const { 480 const DataLayout *DL = getSubtarget().getDataLayout(); 481 return Ctx.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+ 482 Twine(getFunctionNumber())+"$pb"); 483 } 484 485 //===----------------------------------------------------------------------===// 486 // MachineFrameInfo implementation 487 //===----------------------------------------------------------------------===// 488 489 /// ensureMaxAlignment - Make sure the function is at least Align bytes 490 /// aligned. 491 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 492 if (!StackRealignable || !RealignOption) 493 assert(Align <= StackAlignment && 494 "For targets without stack realignment, Align is out of limit!"); 495 if (MaxAlignment < Align) MaxAlignment = Align; 496 } 497 498 /// clampStackAlignment - Clamp the alignment if requested and emit a warning. 499 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align, 500 unsigned StackAlign) { 501 if (!ShouldClamp || Align <= StackAlign) 502 return Align; 503 DEBUG(dbgs() << "Warning: requested alignment " << Align 504 << " exceeds the stack alignment " << StackAlign 505 << " when stack realignment is off" << '\n'); 506 return StackAlign; 507 } 508 509 /// CreateStackObject - Create a new statically sized stack object, returning 510 /// a nonnegative identifier to represent it. 511 /// 512 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment, 513 bool isSS, const AllocaInst *Alloca) { 514 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 515 Alignment = clampStackAlignment(!StackRealignable || !RealignOption, 516 Alignment, StackAlignment); 517 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca, 518 !isSS)); 519 int Index = (int)Objects.size() - NumFixedObjects - 1; 520 assert(Index >= 0 && "Bad frame index!"); 521 ensureMaxAlignment(Alignment); 522 return Index; 523 } 524 525 /// CreateSpillStackObject - Create a new statically sized stack object that 526 /// represents a spill slot, returning a nonnegative identifier to represent 527 /// it. 528 /// 529 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 530 unsigned Alignment) { 531 Alignment = clampStackAlignment(!StackRealignable || !RealignOption, 532 Alignment, StackAlignment); 533 CreateStackObject(Size, Alignment, true); 534 int Index = (int)Objects.size() - NumFixedObjects - 1; 535 ensureMaxAlignment(Alignment); 536 return Index; 537 } 538 539 /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a 540 /// variable sized object has been created. This must be created whenever a 541 /// variable sized object is created, whether or not the index returned is 542 /// actually used. 543 /// 544 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment, 545 const AllocaInst *Alloca) { 546 HasVarSizedObjects = true; 547 Alignment = clampStackAlignment(!StackRealignable || !RealignOption, 548 Alignment, StackAlignment); 549 Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca, true)); 550 ensureMaxAlignment(Alignment); 551 return (int)Objects.size()-NumFixedObjects-1; 552 } 553 554 /// CreateFixedObject - Create a new object at a fixed location on the stack. 555 /// All fixed objects should be created before other objects are created for 556 /// efficiency. By default, fixed objects are immutable. This returns an 557 /// index with a negative value. 558 /// 559 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 560 bool Immutable, bool isAliased) { 561 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 562 // The alignment of the frame index can be determined from its offset from 563 // the incoming frame position. If the frame object is at offset 32 and 564 // the stack is guaranteed to be 16-byte aligned, then we know that the 565 // object is 16-byte aligned. 566 unsigned Align = MinAlign(SPOffset, StackAlignment); 567 Align = clampStackAlignment(!StackRealignable || !RealignOption, Align, 568 StackAlignment); 569 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 570 /*isSS*/ false, 571 /*Alloca*/ nullptr, isAliased)); 572 return -++NumFixedObjects; 573 } 574 575 /// CreateFixedSpillStackObject - Create a spill slot at a fixed location 576 /// on the stack. Returns an index with a negative value. 577 int MachineFrameInfo::CreateFixedSpillStackObject(uint64_t Size, 578 int64_t SPOffset) { 579 unsigned Align = MinAlign(SPOffset, StackAlignment); 580 Align = clampStackAlignment(!StackRealignable || !RealignOption, Align, 581 StackAlignment); 582 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, 583 /*Immutable*/ true, 584 /*isSS*/ true, 585 /*Alloca*/ nullptr, 586 /*isAliased*/ false)); 587 return -++NumFixedObjects; 588 } 589 590 BitVector 591 MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const { 592 assert(MBB && "MBB must be valid"); 593 const MachineFunction *MF = MBB->getParent(); 594 assert(MF && "MBB must be part of a MachineFunction"); 595 const TargetMachine &TM = MF->getTarget(); 596 const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo(); 597 BitVector BV(TRI->getNumRegs()); 598 599 // Before CSI is calculated, no registers are considered pristine. They can be 600 // freely used and PEI will make sure they are saved. 601 if (!isCalleeSavedInfoValid()) 602 return BV; 603 604 for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR) 605 BV.set(*CSR); 606 607 // The entry MBB always has all CSRs pristine. 608 if (MBB == &MF->front()) 609 return BV; 610 611 // On other MBBs the saved CSRs are not pristine. 612 const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo(); 613 for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(), 614 E = CSI.end(); I != E; ++I) 615 BV.reset(I->getReg()); 616 617 return BV; 618 } 619 620 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const { 621 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 622 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 623 unsigned MaxAlign = getMaxAlignment(); 624 int Offset = 0; 625 626 // This code is very, very similar to PEI::calculateFrameObjectOffsets(). 627 // It really should be refactored to share code. Until then, changes 628 // should keep in mind that there's tight coupling between the two. 629 630 for (int i = getObjectIndexBegin(); i != 0; ++i) { 631 int FixedOff = -getObjectOffset(i); 632 if (FixedOff > Offset) Offset = FixedOff; 633 } 634 for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) { 635 if (isDeadObjectIndex(i)) 636 continue; 637 Offset += getObjectSize(i); 638 unsigned Align = getObjectAlignment(i); 639 // Adjust to alignment boundary 640 Offset = (Offset+Align-1)/Align*Align; 641 642 MaxAlign = std::max(Align, MaxAlign); 643 } 644 645 if (adjustsStack() && TFI->hasReservedCallFrame(MF)) 646 Offset += getMaxCallFrameSize(); 647 648 // Round up the size to a multiple of the alignment. If the function has 649 // any calls or alloca's, align to the target's StackAlignment value to 650 // ensure that the callee's frame or the alloca data is suitably aligned; 651 // otherwise, for leaf functions, align to the TransientStackAlignment 652 // value. 653 unsigned StackAlign; 654 if (adjustsStack() || hasVarSizedObjects() || 655 (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0)) 656 StackAlign = TFI->getStackAlignment(); 657 else 658 StackAlign = TFI->getTransientStackAlignment(); 659 660 // If the frame pointer is eliminated, all frame offsets will be relative to 661 // SP not FP. Align to MaxAlign so this works. 662 StackAlign = std::max(StackAlign, MaxAlign); 663 unsigned AlignMask = StackAlign - 1; 664 Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); 665 666 return (unsigned)Offset; 667 } 668 669 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 670 if (Objects.empty()) return; 671 672 const TargetFrameLowering *FI = MF.getSubtarget().getFrameLowering(); 673 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 674 675 OS << "Frame Objects:\n"; 676 677 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 678 const StackObject &SO = Objects[i]; 679 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 680 if (SO.Size == ~0ULL) { 681 OS << "dead\n"; 682 continue; 683 } 684 if (SO.Size == 0) 685 OS << "variable sized"; 686 else 687 OS << "size=" << SO.Size; 688 OS << ", align=" << SO.Alignment; 689 690 if (i < NumFixedObjects) 691 OS << ", fixed"; 692 if (i < NumFixedObjects || SO.SPOffset != -1) { 693 int64_t Off = SO.SPOffset - ValOffset; 694 OS << ", at location [SP"; 695 if (Off > 0) 696 OS << "+" << Off; 697 else if (Off < 0) 698 OS << Off; 699 OS << "]"; 700 } 701 OS << "\n"; 702 } 703 } 704 705 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 706 void MachineFrameInfo::dump(const MachineFunction &MF) const { 707 print(MF, dbgs()); 708 } 709 #endif 710 711 //===----------------------------------------------------------------------===// 712 // MachineJumpTableInfo implementation 713 //===----------------------------------------------------------------------===// 714 715 /// getEntrySize - Return the size of each entry in the jump table. 716 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 717 // The size of a jump table entry is 4 bytes unless the entry is just the 718 // address of a block, in which case it is the pointer size. 719 switch (getEntryKind()) { 720 case MachineJumpTableInfo::EK_BlockAddress: 721 return TD.getPointerSize(); 722 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 723 return 8; 724 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 725 case MachineJumpTableInfo::EK_LabelDifference32: 726 case MachineJumpTableInfo::EK_Custom32: 727 return 4; 728 case MachineJumpTableInfo::EK_Inline: 729 return 0; 730 } 731 llvm_unreachable("Unknown jump table encoding!"); 732 } 733 734 /// getEntryAlignment - Return the alignment of each entry in the jump table. 735 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 736 // The alignment of a jump table entry is the alignment of int32 unless the 737 // entry is just the address of a block, in which case it is the pointer 738 // alignment. 739 switch (getEntryKind()) { 740 case MachineJumpTableInfo::EK_BlockAddress: 741 return TD.getPointerABIAlignment(); 742 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 743 return TD.getABIIntegerTypeAlignment(64); 744 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 745 case MachineJumpTableInfo::EK_LabelDifference32: 746 case MachineJumpTableInfo::EK_Custom32: 747 return TD.getABIIntegerTypeAlignment(32); 748 case MachineJumpTableInfo::EK_Inline: 749 return 1; 750 } 751 llvm_unreachable("Unknown jump table encoding!"); 752 } 753 754 /// createJumpTableIndex - Create a new jump table entry in the jump table info. 755 /// 756 unsigned MachineJumpTableInfo::createJumpTableIndex( 757 const std::vector<MachineBasicBlock*> &DestBBs) { 758 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 759 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 760 return JumpTables.size()-1; 761 } 762 763 /// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update 764 /// the jump tables to branch to New instead. 765 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 766 MachineBasicBlock *New) { 767 assert(Old != New && "Not making a change?"); 768 bool MadeChange = false; 769 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 770 ReplaceMBBInJumpTable(i, Old, New); 771 return MadeChange; 772 } 773 774 /// ReplaceMBBInJumpTable - If Old is a target of the jump tables, update 775 /// the jump table to branch to New instead. 776 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 777 MachineBasicBlock *Old, 778 MachineBasicBlock *New) { 779 assert(Old != New && "Not making a change?"); 780 bool MadeChange = false; 781 MachineJumpTableEntry &JTE = JumpTables[Idx]; 782 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 783 if (JTE.MBBs[j] == Old) { 784 JTE.MBBs[j] = New; 785 MadeChange = true; 786 } 787 return MadeChange; 788 } 789 790 void MachineJumpTableInfo::print(raw_ostream &OS) const { 791 if (JumpTables.empty()) return; 792 793 OS << "Jump Tables:\n"; 794 795 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 796 OS << " jt#" << i << ": "; 797 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 798 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 799 } 800 801 OS << '\n'; 802 } 803 804 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 805 void MachineJumpTableInfo::dump() const { print(dbgs()); } 806 #endif 807 808 809 //===----------------------------------------------------------------------===// 810 // MachineConstantPool implementation 811 //===----------------------------------------------------------------------===// 812 813 void MachineConstantPoolValue::anchor() { } 814 815 const DataLayout *MachineConstantPool::getDataLayout() const { 816 return TM.getSubtargetImpl()->getDataLayout(); 817 } 818 819 Type *MachineConstantPoolEntry::getType() const { 820 if (isMachineConstantPoolEntry()) 821 return Val.MachineCPVal->getType(); 822 return Val.ConstVal->getType(); 823 } 824 825 826 unsigned MachineConstantPoolEntry::getRelocationInfo() const { 827 if (isMachineConstantPoolEntry()) 828 return Val.MachineCPVal->getRelocationInfo(); 829 return Val.ConstVal->getRelocationInfo(); 830 } 831 832 SectionKind 833 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 834 SectionKind Kind; 835 switch (getRelocationInfo()) { 836 default: 837 llvm_unreachable("Unknown section kind"); 838 case 2: 839 Kind = SectionKind::getReadOnlyWithRel(); 840 break; 841 case 1: 842 Kind = SectionKind::getReadOnlyWithRelLocal(); 843 break; 844 case 0: 845 switch (DL->getTypeAllocSize(getType())) { 846 case 4: 847 Kind = SectionKind::getMergeableConst4(); 848 break; 849 case 8: 850 Kind = SectionKind::getMergeableConst8(); 851 break; 852 case 16: 853 Kind = SectionKind::getMergeableConst16(); 854 break; 855 default: 856 Kind = SectionKind::getMergeableConst(); 857 break; 858 } 859 } 860 return Kind; 861 } 862 863 MachineConstantPool::~MachineConstantPool() { 864 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 865 if (Constants[i].isMachineConstantPoolEntry()) 866 delete Constants[i].Val.MachineCPVal; 867 for (DenseSet<MachineConstantPoolValue*>::iterator I = 868 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 869 I != E; ++I) 870 delete *I; 871 } 872 873 /// CanShareConstantPoolEntry - Test whether the given two constants 874 /// can be allocated the same constant pool entry. 875 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 876 const DataLayout *TD) { 877 // Handle the trivial case quickly. 878 if (A == B) return true; 879 880 // If they have the same type but weren't the same constant, quickly 881 // reject them. 882 if (A->getType() == B->getType()) return false; 883 884 // We can't handle structs or arrays. 885 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 886 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 887 return false; 888 889 // For now, only support constants with the same size. 890 uint64_t StoreSize = TD->getTypeStoreSize(A->getType()); 891 if (StoreSize != TD->getTypeStoreSize(B->getType()) || StoreSize > 128) 892 return false; 893 894 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 895 896 // Try constant folding a bitcast of both instructions to an integer. If we 897 // get two identical ConstantInt's, then we are good to share them. We use 898 // the constant folding APIs to do this so that we get the benefit of 899 // DataLayout. 900 if (isa<PointerType>(A->getType())) 901 A = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 902 const_cast<Constant*>(A), TD); 903 else if (A->getType() != IntTy) 904 A = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 905 const_cast<Constant*>(A), TD); 906 if (isa<PointerType>(B->getType())) 907 B = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 908 const_cast<Constant*>(B), TD); 909 else if (B->getType() != IntTy) 910 B = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 911 const_cast<Constant*>(B), TD); 912 913 return A == B; 914 } 915 916 /// getConstantPoolIndex - Create a new entry in the constant pool or return 917 /// an existing one. User must specify the log2 of the minimum required 918 /// alignment for the object. 919 /// 920 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 921 unsigned Alignment) { 922 assert(Alignment && "Alignment must be specified!"); 923 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 924 925 // Check to see if we already have this constant. 926 // 927 // FIXME, this could be made much more efficient for large constant pools. 928 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 929 if (!Constants[i].isMachineConstantPoolEntry() && 930 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, 931 getDataLayout())) { 932 if ((unsigned)Constants[i].getAlignment() < Alignment) 933 Constants[i].Alignment = Alignment; 934 return i; 935 } 936 937 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 938 return Constants.size()-1; 939 } 940 941 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 942 unsigned Alignment) { 943 assert(Alignment && "Alignment must be specified!"); 944 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 945 946 // Check to see if we already have this constant. 947 // 948 // FIXME, this could be made much more efficient for large constant pools. 949 int Idx = V->getExistingMachineCPValue(this, Alignment); 950 if (Idx != -1) { 951 MachineCPVsSharingEntries.insert(V); 952 return (unsigned)Idx; 953 } 954 955 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 956 return Constants.size()-1; 957 } 958 959 void MachineConstantPool::print(raw_ostream &OS) const { 960 if (Constants.empty()) return; 961 962 OS << "Constant Pool:\n"; 963 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 964 OS << " cp#" << i << ": "; 965 if (Constants[i].isMachineConstantPoolEntry()) 966 Constants[i].Val.MachineCPVal->print(OS); 967 else 968 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 969 OS << ", align=" << Constants[i].getAlignment(); 970 OS << "\n"; 971 } 972 } 973 974 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 975 void MachineConstantPool::dump() const { print(dbgs()); } 976 #endif 977