1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function.  This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/CodeGen/WasmEHFuncInfo.h"
40 #include "llvm/CodeGen/WinEHFuncInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSlotTracker.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCContext.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/MC/SectionKind.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/DOTGraphTraits.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/GraphWriter.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <iterator>
73 #include <string>
74 #include <utility>
75 #include <vector>
76 
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "codegen"
80 
81 static cl::opt<unsigned> AlignAllFunctions(
82     "align-all-functions",
83     cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
84              "means align on 16B boundaries)."),
85     cl::init(0), cl::Hidden);
86 
87 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
88   using P = MachineFunctionProperties::Property;
89 
90   switch(Prop) {
91   case P::FailedISel: return "FailedISel";
92   case P::IsSSA: return "IsSSA";
93   case P::Legalized: return "Legalized";
94   case P::NoPHIs: return "NoPHIs";
95   case P::NoVRegs: return "NoVRegs";
96   case P::RegBankSelected: return "RegBankSelected";
97   case P::Selected: return "Selected";
98   case P::TracksLiveness: return "TracksLiveness";
99   }
100   llvm_unreachable("Invalid machine function property");
101 }
102 
103 // Pin the vtable to this file.
104 void MachineFunction::Delegate::anchor() {}
105 
106 void MachineFunctionProperties::print(raw_ostream &OS) const {
107   const char *Separator = "";
108   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
109     if (!Properties[I])
110       continue;
111     OS << Separator << getPropertyName(static_cast<Property>(I));
112     Separator = ", ";
113   }
114 }
115 
116 //===----------------------------------------------------------------------===//
117 // MachineFunction implementation
118 //===----------------------------------------------------------------------===//
119 
120 // Out-of-line virtual method.
121 MachineFunctionInfo::~MachineFunctionInfo() = default;
122 
123 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
124   MBB->getParent()->DeleteMachineBasicBlock(MBB);
125 }
126 
127 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
128                                            const Function &F) {
129   if (F.hasFnAttribute(Attribute::StackAlignment))
130     return F.getFnStackAlignment();
131   return STI->getFrameLowering()->getStackAlignment();
132 }
133 
134 MachineFunction::MachineFunction(const Function &F,
135                                  const LLVMTargetMachine &Target,
136                                  const TargetSubtargetInfo &STI,
137                                  unsigned FunctionNum, MachineModuleInfo &mmi)
138     : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
139   FunctionNumber = FunctionNum;
140   init();
141 }
142 
143 void MachineFunction::handleInsertion(MachineInstr &MI) {
144   if (TheDelegate)
145     TheDelegate->MF_HandleInsertion(MI);
146 }
147 
148 void MachineFunction::handleRemoval(MachineInstr &MI) {
149   if (TheDelegate)
150     TheDelegate->MF_HandleRemoval(MI);
151 }
152 
153 void MachineFunction::init() {
154   // Assume the function starts in SSA form with correct liveness.
155   Properties.set(MachineFunctionProperties::Property::IsSSA);
156   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
157   if (STI->getRegisterInfo())
158     RegInfo = new (Allocator) MachineRegisterInfo(this);
159   else
160     RegInfo = nullptr;
161 
162   MFInfo = nullptr;
163   // We can realign the stack if the target supports it and the user hasn't
164   // explicitly asked us not to.
165   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
166                       !F.hasFnAttribute("no-realign-stack");
167   FrameInfo = new (Allocator) MachineFrameInfo(
168       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
169       /*ForcedRealign=*/CanRealignSP &&
170           F.hasFnAttribute(Attribute::StackAlignment));
171 
172   if (F.hasFnAttribute(Attribute::StackAlignment))
173     FrameInfo->ensureMaxAlignment(F.getFnStackAlignment());
174 
175   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
176   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
177 
178   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
179   // FIXME: Use Function::hasOptSize().
180   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
181     Alignment = std::max(Alignment,
182                          STI->getTargetLowering()->getPrefFunctionAlignment());
183 
184   if (AlignAllFunctions)
185     Alignment = Align(1ULL << AlignAllFunctions);
186 
187   JumpTableInfo = nullptr;
188 
189   if (isFuncletEHPersonality(classifyEHPersonality(
190           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
191     WinEHInfo = new (Allocator) WinEHFuncInfo();
192   }
193 
194   if (isScopedEHPersonality(classifyEHPersonality(
195           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
196     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
197   }
198 
199   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
200          "Can't create a MachineFunction using a Module with a "
201          "Target-incompatible DataLayout attached\n");
202 
203   PSVManager =
204     std::make_unique<PseudoSourceValueManager>(*(getSubtarget().
205                                                   getInstrInfo()));
206 }
207 
208 MachineFunction::~MachineFunction() {
209   clear();
210 }
211 
212 void MachineFunction::clear() {
213   Properties.reset();
214   // Don't call destructors on MachineInstr and MachineOperand. All of their
215   // memory comes from the BumpPtrAllocator which is about to be purged.
216   //
217   // Do call MachineBasicBlock destructors, it contains std::vectors.
218   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
219     I->Insts.clearAndLeakNodesUnsafely();
220   MBBNumbering.clear();
221 
222   InstructionRecycler.clear(Allocator);
223   OperandRecycler.clear(Allocator);
224   BasicBlockRecycler.clear(Allocator);
225   CodeViewAnnotations.clear();
226   VariableDbgInfos.clear();
227   if (RegInfo) {
228     RegInfo->~MachineRegisterInfo();
229     Allocator.Deallocate(RegInfo);
230   }
231   if (MFInfo) {
232     MFInfo->~MachineFunctionInfo();
233     Allocator.Deallocate(MFInfo);
234   }
235 
236   FrameInfo->~MachineFrameInfo();
237   Allocator.Deallocate(FrameInfo);
238 
239   ConstantPool->~MachineConstantPool();
240   Allocator.Deallocate(ConstantPool);
241 
242   if (JumpTableInfo) {
243     JumpTableInfo->~MachineJumpTableInfo();
244     Allocator.Deallocate(JumpTableInfo);
245   }
246 
247   if (WinEHInfo) {
248     WinEHInfo->~WinEHFuncInfo();
249     Allocator.Deallocate(WinEHInfo);
250   }
251 
252   if (WasmEHInfo) {
253     WasmEHInfo->~WasmEHFuncInfo();
254     Allocator.Deallocate(WasmEHInfo);
255   }
256 }
257 
258 const DataLayout &MachineFunction::getDataLayout() const {
259   return F.getParent()->getDataLayout();
260 }
261 
262 /// Get the JumpTableInfo for this function.
263 /// If it does not already exist, allocate one.
264 MachineJumpTableInfo *MachineFunction::
265 getOrCreateJumpTableInfo(unsigned EntryKind) {
266   if (JumpTableInfo) return JumpTableInfo;
267 
268   JumpTableInfo = new (Allocator)
269     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
270   return JumpTableInfo;
271 }
272 
273 /// Should we be emitting segmented stack stuff for the function
274 bool MachineFunction::shouldSplitStack() const {
275   return getFunction().hasFnAttribute("split-stack");
276 }
277 
278 LLVM_NODISCARD unsigned
279 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
280   FrameInstructions.push_back(Inst);
281   return FrameInstructions.size() - 1;
282 }
283 
284 /// This discards all of the MachineBasicBlock numbers and recomputes them.
285 /// This guarantees that the MBB numbers are sequential, dense, and match the
286 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
287 /// is specified, only that block and those after it are renumbered.
288 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
289   if (empty()) { MBBNumbering.clear(); return; }
290   MachineFunction::iterator MBBI, E = end();
291   if (MBB == nullptr)
292     MBBI = begin();
293   else
294     MBBI = MBB->getIterator();
295 
296   // Figure out the block number this should have.
297   unsigned BlockNo = 0;
298   if (MBBI != begin())
299     BlockNo = std::prev(MBBI)->getNumber() + 1;
300 
301   for (; MBBI != E; ++MBBI, ++BlockNo) {
302     if (MBBI->getNumber() != (int)BlockNo) {
303       // Remove use of the old number.
304       if (MBBI->getNumber() != -1) {
305         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
306                "MBB number mismatch!");
307         MBBNumbering[MBBI->getNumber()] = nullptr;
308       }
309 
310       // If BlockNo is already taken, set that block's number to -1.
311       if (MBBNumbering[BlockNo])
312         MBBNumbering[BlockNo]->setNumber(-1);
313 
314       MBBNumbering[BlockNo] = &*MBBI;
315       MBBI->setNumber(BlockNo);
316     }
317   }
318 
319   // Okay, all the blocks are renumbered.  If we have compactified the block
320   // numbering, shrink MBBNumbering now.
321   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
322   MBBNumbering.resize(BlockNo);
323 }
324 
325 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
326 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
327                                                   const DebugLoc &DL,
328                                                   bool NoImp) {
329   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
330     MachineInstr(*this, MCID, DL, NoImp);
331 }
332 
333 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
334 /// identical in all ways except the instruction has no parent, prev, or next.
335 MachineInstr *
336 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
337   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
338              MachineInstr(*this, *Orig);
339 }
340 
341 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
342     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
343   MachineInstr *FirstClone = nullptr;
344   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
345   while (true) {
346     MachineInstr *Cloned = CloneMachineInstr(&*I);
347     MBB.insert(InsertBefore, Cloned);
348     if (FirstClone == nullptr) {
349       FirstClone = Cloned;
350     } else {
351       Cloned->bundleWithPred();
352     }
353 
354     if (!I->isBundledWithSucc())
355       break;
356     ++I;
357   }
358   return *FirstClone;
359 }
360 
361 /// Delete the given MachineInstr.
362 ///
363 /// This function also serves as the MachineInstr destructor - the real
364 /// ~MachineInstr() destructor must be empty.
365 void
366 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
367   // Verify that a call site info is at valid state. This assertion should
368   // be triggered during the implementation of support for the
369   // call site info of a new architecture. If the assertion is triggered,
370   // back trace will tell where to insert a call to updateCallSiteInfo().
371   assert((!MI->isCall(MachineInstr::IgnoreBundle) ||
372           CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
373          "Call site info was not updated!");
374   // Strip it for parts. The operand array and the MI object itself are
375   // independently recyclable.
376   if (MI->Operands)
377     deallocateOperandArray(MI->CapOperands, MI->Operands);
378   // Don't call ~MachineInstr() which must be trivial anyway because
379   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
380   // destructors.
381   InstructionRecycler.Deallocate(Allocator, MI);
382 }
383 
384 /// Allocate a new MachineBasicBlock. Use this instead of
385 /// `new MachineBasicBlock'.
386 MachineBasicBlock *
387 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
388   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
389              MachineBasicBlock(*this, bb);
390 }
391 
392 /// Delete the given MachineBasicBlock.
393 void
394 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
395   assert(MBB->getParent() == this && "MBB parent mismatch!");
396   MBB->~MachineBasicBlock();
397   BasicBlockRecycler.Deallocate(Allocator, MBB);
398 }
399 
400 MachineMemOperand *MachineFunction::getMachineMemOperand(
401     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
402     unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
403     SyncScope::ID SSID, AtomicOrdering Ordering,
404     AtomicOrdering FailureOrdering) {
405   return new (Allocator)
406       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
407                         SSID, Ordering, FailureOrdering);
408 }
409 
410 MachineMemOperand *
411 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
412                                       int64_t Offset, uint64_t Size) {
413   const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
414 
415   // If there is no pointer value, the offset isn't tracked so we need to adjust
416   // the base alignment.
417   unsigned Align = PtrInfo.V.isNull()
418                        ? MinAlign(MMO->getBaseAlignment(), Offset)
419                        : MMO->getBaseAlignment();
420 
421   return new (Allocator)
422       MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size,
423                         Align, AAMDNodes(), nullptr, MMO->getSyncScopeID(),
424                         MMO->getOrdering(), MMO->getFailureOrdering());
425 }
426 
427 MachineMemOperand *
428 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
429                                       const AAMDNodes &AAInfo) {
430   MachinePointerInfo MPI = MMO->getValue() ?
431              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
432              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
433 
434   return new (Allocator)
435              MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(),
436                                MMO->getBaseAlignment(), AAInfo,
437                                MMO->getRanges(), MMO->getSyncScopeID(),
438                                MMO->getOrdering(), MMO->getFailureOrdering());
439 }
440 
441 MachineMemOperand *
442 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
443                                       MachineMemOperand::Flags Flags) {
444   return new (Allocator) MachineMemOperand(
445       MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlignment(),
446       MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
447       MMO->getOrdering(), MMO->getFailureOrdering());
448 }
449 
450 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
451     ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
452     MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) {
453   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
454                                          PostInstrSymbol, HeapAllocMarker);
455 }
456 
457 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
458   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
459   llvm::copy(Name, Dest);
460   Dest[Name.size()] = 0;
461   return Dest;
462 }
463 
464 uint32_t *MachineFunction::allocateRegMask() {
465   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
466   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
467   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
468   memset(Mask, 0, Size * sizeof(Mask[0]));
469   return Mask;
470 }
471 
472 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
473 LLVM_DUMP_METHOD void MachineFunction::dump() const {
474   print(dbgs());
475 }
476 #endif
477 
478 StringRef MachineFunction::getName() const {
479   return getFunction().getName();
480 }
481 
482 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
483   OS << "# Machine code for function " << getName() << ": ";
484   getProperties().print(OS);
485   OS << '\n';
486 
487   // Print Frame Information
488   FrameInfo->print(*this, OS);
489 
490   // Print JumpTable Information
491   if (JumpTableInfo)
492     JumpTableInfo->print(OS);
493 
494   // Print Constant Pool
495   ConstantPool->print(OS);
496 
497   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
498 
499   if (RegInfo && !RegInfo->livein_empty()) {
500     OS << "Function Live Ins: ";
501     for (MachineRegisterInfo::livein_iterator
502          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
503       OS << printReg(I->first, TRI);
504       if (I->second)
505         OS << " in " << printReg(I->second, TRI);
506       if (std::next(I) != E)
507         OS << ", ";
508     }
509     OS << '\n';
510   }
511 
512   ModuleSlotTracker MST(getFunction().getParent());
513   MST.incorporateFunction(getFunction());
514   for (const auto &BB : *this) {
515     OS << '\n';
516     // If we print the whole function, print it at its most verbose level.
517     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
518   }
519 
520   OS << "\n# End machine code for function " << getName() << ".\n\n";
521 }
522 
523 namespace llvm {
524 
525   template<>
526   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
527     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
528 
529     static std::string getGraphName(const MachineFunction *F) {
530       return ("CFG for '" + F->getName() + "' function").str();
531     }
532 
533     std::string getNodeLabel(const MachineBasicBlock *Node,
534                              const MachineFunction *Graph) {
535       std::string OutStr;
536       {
537         raw_string_ostream OSS(OutStr);
538 
539         if (isSimple()) {
540           OSS << printMBBReference(*Node);
541           if (const BasicBlock *BB = Node->getBasicBlock())
542             OSS << ": " << BB->getName();
543         } else
544           Node->print(OSS);
545       }
546 
547       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
548 
549       // Process string output to make it nicer...
550       for (unsigned i = 0; i != OutStr.length(); ++i)
551         if (OutStr[i] == '\n') {                            // Left justify
552           OutStr[i] = '\\';
553           OutStr.insert(OutStr.begin()+i+1, 'l');
554         }
555       return OutStr;
556     }
557   };
558 
559 } // end namespace llvm
560 
561 void MachineFunction::viewCFG() const
562 {
563 #ifndef NDEBUG
564   ViewGraph(this, "mf" + getName());
565 #else
566   errs() << "MachineFunction::viewCFG is only available in debug builds on "
567          << "systems with Graphviz or gv!\n";
568 #endif // NDEBUG
569 }
570 
571 void MachineFunction::viewCFGOnly() const
572 {
573 #ifndef NDEBUG
574   ViewGraph(this, "mf" + getName(), true);
575 #else
576   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
577          << "systems with Graphviz or gv!\n";
578 #endif // NDEBUG
579 }
580 
581 /// Add the specified physical register as a live-in value and
582 /// create a corresponding virtual register for it.
583 unsigned MachineFunction::addLiveIn(unsigned PReg,
584                                     const TargetRegisterClass *RC) {
585   MachineRegisterInfo &MRI = getRegInfo();
586   unsigned VReg = MRI.getLiveInVirtReg(PReg);
587   if (VReg) {
588     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
589     (void)VRegRC;
590     // A physical register can be added several times.
591     // Between two calls, the register class of the related virtual register
592     // may have been constrained to match some operation constraints.
593     // In that case, check that the current register class includes the
594     // physical register and is a sub class of the specified RC.
595     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
596                              RC->hasSubClassEq(VRegRC))) &&
597             "Register class mismatch!");
598     return VReg;
599   }
600   VReg = MRI.createVirtualRegister(RC);
601   MRI.addLiveIn(PReg, VReg);
602   return VReg;
603 }
604 
605 /// Return the MCSymbol for the specified non-empty jump table.
606 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
607 /// normal 'L' label is returned.
608 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
609                                         bool isLinkerPrivate) const {
610   const DataLayout &DL = getDataLayout();
611   assert(JumpTableInfo && "No jump tables");
612   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
613 
614   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
615                                      : DL.getPrivateGlobalPrefix();
616   SmallString<60> Name;
617   raw_svector_ostream(Name)
618     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
619   return Ctx.getOrCreateSymbol(Name);
620 }
621 
622 /// Return a function-local symbol to represent the PIC base.
623 MCSymbol *MachineFunction::getPICBaseSymbol() const {
624   const DataLayout &DL = getDataLayout();
625   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
626                                Twine(getFunctionNumber()) + "$pb");
627 }
628 
629 /// \name Exception Handling
630 /// \{
631 
632 LandingPadInfo &
633 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
634   unsigned N = LandingPads.size();
635   for (unsigned i = 0; i < N; ++i) {
636     LandingPadInfo &LP = LandingPads[i];
637     if (LP.LandingPadBlock == LandingPad)
638       return LP;
639   }
640 
641   LandingPads.push_back(LandingPadInfo(LandingPad));
642   return LandingPads[N];
643 }
644 
645 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
646                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
647   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
648   LP.BeginLabels.push_back(BeginLabel);
649   LP.EndLabels.push_back(EndLabel);
650 }
651 
652 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
653   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
654   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
655   LP.LandingPadLabel = LandingPadLabel;
656 
657   const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
658   if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
659     if (const auto *PF =
660             dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
661       getMMI().addPersonality(PF);
662 
663     if (LPI->isCleanup())
664       addCleanup(LandingPad);
665 
666     // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
667     //        correct, but we need to do it this way because of how the DWARF EH
668     //        emitter processes the clauses.
669     for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
670       Value *Val = LPI->getClause(I - 1);
671       if (LPI->isCatch(I - 1)) {
672         addCatchTypeInfo(LandingPad,
673                          dyn_cast<GlobalValue>(Val->stripPointerCasts()));
674       } else {
675         // Add filters in a list.
676         auto *CVal = cast<Constant>(Val);
677         SmallVector<const GlobalValue *, 4> FilterList;
678         for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
679              II != IE; ++II)
680           FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
681 
682         addFilterTypeInfo(LandingPad, FilterList);
683       }
684     }
685 
686   } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
687     for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
688       Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
689       addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
690     }
691 
692   } else {
693     assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
694   }
695 
696   return LandingPadLabel;
697 }
698 
699 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
700                                        ArrayRef<const GlobalValue *> TyInfo) {
701   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
702   for (unsigned N = TyInfo.size(); N; --N)
703     LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
704 }
705 
706 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
707                                         ArrayRef<const GlobalValue *> TyInfo) {
708   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
709   std::vector<unsigned> IdsInFilter(TyInfo.size());
710   for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
711     IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
712   LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
713 }
714 
715 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
716                                       bool TidyIfNoBeginLabels) {
717   for (unsigned i = 0; i != LandingPads.size(); ) {
718     LandingPadInfo &LandingPad = LandingPads[i];
719     if (LandingPad.LandingPadLabel &&
720         !LandingPad.LandingPadLabel->isDefined() &&
721         (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
722       LandingPad.LandingPadLabel = nullptr;
723 
724     // Special case: we *should* emit LPs with null LP MBB. This indicates
725     // "nounwind" case.
726     if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
727       LandingPads.erase(LandingPads.begin() + i);
728       continue;
729     }
730 
731     if (TidyIfNoBeginLabels) {
732       for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
733         MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
734         MCSymbol *EndLabel = LandingPad.EndLabels[j];
735         if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
736             (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
737           continue;
738 
739         LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
740         LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
741         --j;
742         --e;
743       }
744 
745       // Remove landing pads with no try-ranges.
746       if (LandingPads[i].BeginLabels.empty()) {
747         LandingPads.erase(LandingPads.begin() + i);
748         continue;
749       }
750     }
751 
752     // If there is no landing pad, ensure that the list of typeids is empty.
753     // If the only typeid is a cleanup, this is the same as having no typeids.
754     if (!LandingPad.LandingPadBlock ||
755         (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
756       LandingPad.TypeIds.clear();
757     ++i;
758   }
759 }
760 
761 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
762   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
763   LP.TypeIds.push_back(0);
764 }
765 
766 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
767                                          const Function *Filter,
768                                          const BlockAddress *RecoverBA) {
769   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
770   SEHHandler Handler;
771   Handler.FilterOrFinally = Filter;
772   Handler.RecoverBA = RecoverBA;
773   LP.SEHHandlers.push_back(Handler);
774 }
775 
776 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
777                                            const Function *Cleanup) {
778   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
779   SEHHandler Handler;
780   Handler.FilterOrFinally = Cleanup;
781   Handler.RecoverBA = nullptr;
782   LP.SEHHandlers.push_back(Handler);
783 }
784 
785 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
786                                             ArrayRef<unsigned> Sites) {
787   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
788 }
789 
790 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
791   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
792     if (TypeInfos[i] == TI) return i + 1;
793 
794   TypeInfos.push_back(TI);
795   return TypeInfos.size();
796 }
797 
798 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
799   // If the new filter coincides with the tail of an existing filter, then
800   // re-use the existing filter.  Folding filters more than this requires
801   // re-ordering filters and/or their elements - probably not worth it.
802   for (std::vector<unsigned>::iterator I = FilterEnds.begin(),
803        E = FilterEnds.end(); I != E; ++I) {
804     unsigned i = *I, j = TyIds.size();
805 
806     while (i && j)
807       if (FilterIds[--i] != TyIds[--j])
808         goto try_next;
809 
810     if (!j)
811       // The new filter coincides with range [i, end) of the existing filter.
812       return -(1 + i);
813 
814 try_next:;
815   }
816 
817   // Add the new filter.
818   int FilterID = -(1 + FilterIds.size());
819   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
820   FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end());
821   FilterEnds.push_back(FilterIds.size());
822   FilterIds.push_back(0); // terminator
823   return FilterID;
824 }
825 
826 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
827                                        const MachineInstr *New) {
828   assert(New->isCall() && "Call site info refers only to call instructions!");
829 
830   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(Old);
831   if (CSIt == CallSitesInfo.end())
832     return;
833 
834   CallSiteInfo CSInfo = std::move(CSIt->second);
835   CallSitesInfo.erase(CSIt);
836   CallSitesInfo[New] = CSInfo;
837 }
838 
839 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
840   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(MI);
841   if (CSIt == CallSitesInfo.end())
842     return;
843   CallSitesInfo.erase(CSIt);
844 }
845 
846 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
847                                        const MachineInstr *New) {
848   assert(New->isCall() && "Call site info refers only to call instructions!");
849 
850   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(Old);
851   if (CSIt == CallSitesInfo.end())
852     return;
853 
854   CallSiteInfo CSInfo = CSIt->second;
855   CallSitesInfo[New] = CSInfo;
856 }
857 
858 /// \}
859 
860 //===----------------------------------------------------------------------===//
861 //  MachineJumpTableInfo implementation
862 //===----------------------------------------------------------------------===//
863 
864 /// Return the size of each entry in the jump table.
865 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
866   // The size of a jump table entry is 4 bytes unless the entry is just the
867   // address of a block, in which case it is the pointer size.
868   switch (getEntryKind()) {
869   case MachineJumpTableInfo::EK_BlockAddress:
870     return TD.getPointerSize();
871   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
872     return 8;
873   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
874   case MachineJumpTableInfo::EK_LabelDifference32:
875   case MachineJumpTableInfo::EK_Custom32:
876     return 4;
877   case MachineJumpTableInfo::EK_Inline:
878     return 0;
879   }
880   llvm_unreachable("Unknown jump table encoding!");
881 }
882 
883 /// Return the alignment of each entry in the jump table.
884 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
885   // The alignment of a jump table entry is the alignment of int32 unless the
886   // entry is just the address of a block, in which case it is the pointer
887   // alignment.
888   switch (getEntryKind()) {
889   case MachineJumpTableInfo::EK_BlockAddress:
890     return TD.getPointerABIAlignment(0).value();
891   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
892     return TD.getABIIntegerTypeAlignment(64).value();
893   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
894   case MachineJumpTableInfo::EK_LabelDifference32:
895   case MachineJumpTableInfo::EK_Custom32:
896     return TD.getABIIntegerTypeAlignment(32).value();
897   case MachineJumpTableInfo::EK_Inline:
898     return 1;
899   }
900   llvm_unreachable("Unknown jump table encoding!");
901 }
902 
903 /// Create a new jump table entry in the jump table info.
904 unsigned MachineJumpTableInfo::createJumpTableIndex(
905                                const std::vector<MachineBasicBlock*> &DestBBs) {
906   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
907   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
908   return JumpTables.size()-1;
909 }
910 
911 /// If Old is the target of any jump tables, update the jump tables to branch
912 /// to New instead.
913 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
914                                                   MachineBasicBlock *New) {
915   assert(Old != New && "Not making a change?");
916   bool MadeChange = false;
917   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
918     ReplaceMBBInJumpTable(i, Old, New);
919   return MadeChange;
920 }
921 
922 /// If Old is a target of the jump tables, update the jump table to branch to
923 /// New instead.
924 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
925                                                  MachineBasicBlock *Old,
926                                                  MachineBasicBlock *New) {
927   assert(Old != New && "Not making a change?");
928   bool MadeChange = false;
929   MachineJumpTableEntry &JTE = JumpTables[Idx];
930   for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
931     if (JTE.MBBs[j] == Old) {
932       JTE.MBBs[j] = New;
933       MadeChange = true;
934     }
935   return MadeChange;
936 }
937 
938 void MachineJumpTableInfo::print(raw_ostream &OS) const {
939   if (JumpTables.empty()) return;
940 
941   OS << "Jump Tables:\n";
942 
943   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
944     OS << printJumpTableEntryReference(i) << ':';
945     for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
946       OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
947     if (i != e)
948       OS << '\n';
949   }
950 
951   OS << '\n';
952 }
953 
954 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
955 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
956 #endif
957 
958 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
959   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
960 }
961 
962 //===----------------------------------------------------------------------===//
963 //  MachineConstantPool implementation
964 //===----------------------------------------------------------------------===//
965 
966 void MachineConstantPoolValue::anchor() {}
967 
968 Type *MachineConstantPoolEntry::getType() const {
969   if (isMachineConstantPoolEntry())
970     return Val.MachineCPVal->getType();
971   return Val.ConstVal->getType();
972 }
973 
974 bool MachineConstantPoolEntry::needsRelocation() const {
975   if (isMachineConstantPoolEntry())
976     return true;
977   return Val.ConstVal->needsRelocation();
978 }
979 
980 SectionKind
981 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
982   if (needsRelocation())
983     return SectionKind::getReadOnlyWithRel();
984   switch (DL->getTypeAllocSize(getType())) {
985   case 4:
986     return SectionKind::getMergeableConst4();
987   case 8:
988     return SectionKind::getMergeableConst8();
989   case 16:
990     return SectionKind::getMergeableConst16();
991   case 32:
992     return SectionKind::getMergeableConst32();
993   default:
994     return SectionKind::getReadOnly();
995   }
996 }
997 
998 MachineConstantPool::~MachineConstantPool() {
999   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1000   // so keep track of which we've deleted to avoid double deletions.
1001   DenseSet<MachineConstantPoolValue*> Deleted;
1002   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1003     if (Constants[i].isMachineConstantPoolEntry()) {
1004       Deleted.insert(Constants[i].Val.MachineCPVal);
1005       delete Constants[i].Val.MachineCPVal;
1006     }
1007   for (DenseSet<MachineConstantPoolValue*>::iterator I =
1008        MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
1009        I != E; ++I) {
1010     if (Deleted.count(*I) == 0)
1011       delete *I;
1012   }
1013 }
1014 
1015 /// Test whether the given two constants can be allocated the same constant pool
1016 /// entry.
1017 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1018                                       const DataLayout &DL) {
1019   // Handle the trivial case quickly.
1020   if (A == B) return true;
1021 
1022   // If they have the same type but weren't the same constant, quickly
1023   // reject them.
1024   if (A->getType() == B->getType()) return false;
1025 
1026   // We can't handle structs or arrays.
1027   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1028       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1029     return false;
1030 
1031   // For now, only support constants with the same size.
1032   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1033   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1034     return false;
1035 
1036   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1037 
1038   // Try constant folding a bitcast of both instructions to an integer.  If we
1039   // get two identical ConstantInt's, then we are good to share them.  We use
1040   // the constant folding APIs to do this so that we get the benefit of
1041   // DataLayout.
1042   if (isa<PointerType>(A->getType()))
1043     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1044                                 const_cast<Constant *>(A), IntTy, DL);
1045   else if (A->getType() != IntTy)
1046     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1047                                 IntTy, DL);
1048   if (isa<PointerType>(B->getType()))
1049     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1050                                 const_cast<Constant *>(B), IntTy, DL);
1051   else if (B->getType() != IntTy)
1052     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1053                                 IntTy, DL);
1054 
1055   return A == B;
1056 }
1057 
1058 /// Create a new entry in the constant pool or return an existing one.
1059 /// User must specify the log2 of the minimum required alignment for the object.
1060 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1061                                                    unsigned Alignment) {
1062   assert(Alignment && "Alignment must be specified!");
1063   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1064 
1065   // Check to see if we already have this constant.
1066   //
1067   // FIXME, this could be made much more efficient for large constant pools.
1068   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1069     if (!Constants[i].isMachineConstantPoolEntry() &&
1070         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1071       if ((unsigned)Constants[i].getAlignment() < Alignment)
1072         Constants[i].Alignment = Alignment;
1073       return i;
1074     }
1075 
1076   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1077   return Constants.size()-1;
1078 }
1079 
1080 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1081                                                    unsigned Alignment) {
1082   assert(Alignment && "Alignment must be specified!");
1083   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1084 
1085   // Check to see if we already have this constant.
1086   //
1087   // FIXME, this could be made much more efficient for large constant pools.
1088   int Idx = V->getExistingMachineCPValue(this, Alignment);
1089   if (Idx != -1) {
1090     MachineCPVsSharingEntries.insert(V);
1091     return (unsigned)Idx;
1092   }
1093 
1094   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1095   return Constants.size()-1;
1096 }
1097 
1098 void MachineConstantPool::print(raw_ostream &OS) const {
1099   if (Constants.empty()) return;
1100 
1101   OS << "Constant Pool:\n";
1102   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1103     OS << "  cp#" << i << ": ";
1104     if (Constants[i].isMachineConstantPoolEntry())
1105       Constants[i].Val.MachineCPVal->print(OS);
1106     else
1107       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1108     OS << ", align=" << Constants[i].getAlignment();
1109     OS << "\n";
1110   }
1111 }
1112 
1113 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1114 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1115 #endif
1116