1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/EHPersonalities.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/CodeGen/WasmEHFuncInfo.h" 40 #include "llvm/CodeGen/WinEHFuncInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSlotTracker.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCContext.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/MC/SectionKind.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/DOTGraphTraits.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/GraphWriter.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <iterator> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 79 #define DEBUG_TYPE "codegen" 80 81 static cl::opt<unsigned> AlignAllFunctions( 82 "align-all-functions", 83 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 84 "means align on 16B boundaries)."), 85 cl::init(0), cl::Hidden); 86 87 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 88 using P = MachineFunctionProperties::Property; 89 90 switch(Prop) { 91 case P::FailedISel: return "FailedISel"; 92 case P::IsSSA: return "IsSSA"; 93 case P::Legalized: return "Legalized"; 94 case P::NoPHIs: return "NoPHIs"; 95 case P::NoVRegs: return "NoVRegs"; 96 case P::RegBankSelected: return "RegBankSelected"; 97 case P::Selected: return "Selected"; 98 case P::TracksLiveness: return "TracksLiveness"; 99 } 100 llvm_unreachable("Invalid machine function property"); 101 } 102 103 // Pin the vtable to this file. 104 void MachineFunction::Delegate::anchor() {} 105 106 void MachineFunctionProperties::print(raw_ostream &OS) const { 107 const char *Separator = ""; 108 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 109 if (!Properties[I]) 110 continue; 111 OS << Separator << getPropertyName(static_cast<Property>(I)); 112 Separator = ", "; 113 } 114 } 115 116 //===----------------------------------------------------------------------===// 117 // MachineFunction implementation 118 //===----------------------------------------------------------------------===// 119 120 // Out-of-line virtual method. 121 MachineFunctionInfo::~MachineFunctionInfo() = default; 122 123 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 124 MBB->getParent()->DeleteMachineBasicBlock(MBB); 125 } 126 127 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 128 const Function &F) { 129 if (F.hasFnAttribute(Attribute::StackAlignment)) 130 return F.getFnStackAlignment(); 131 return STI->getFrameLowering()->getStackAlignment(); 132 } 133 134 MachineFunction::MachineFunction(const Function &F, 135 const LLVMTargetMachine &Target, 136 const TargetSubtargetInfo &STI, 137 unsigned FunctionNum, MachineModuleInfo &mmi) 138 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 139 FunctionNumber = FunctionNum; 140 init(); 141 } 142 143 void MachineFunction::handleInsertion(MachineInstr &MI) { 144 if (TheDelegate) 145 TheDelegate->MF_HandleInsertion(MI); 146 } 147 148 void MachineFunction::handleRemoval(MachineInstr &MI) { 149 if (TheDelegate) 150 TheDelegate->MF_HandleRemoval(MI); 151 } 152 153 void MachineFunction::init() { 154 // Assume the function starts in SSA form with correct liveness. 155 Properties.set(MachineFunctionProperties::Property::IsSSA); 156 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 157 if (STI->getRegisterInfo()) 158 RegInfo = new (Allocator) MachineRegisterInfo(this); 159 else 160 RegInfo = nullptr; 161 162 MFInfo = nullptr; 163 // We can realign the stack if the target supports it and the user hasn't 164 // explicitly asked us not to. 165 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 166 !F.hasFnAttribute("no-realign-stack"); 167 FrameInfo = new (Allocator) MachineFrameInfo( 168 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 169 /*ForcedRealign=*/CanRealignSP && 170 F.hasFnAttribute(Attribute::StackAlignment)); 171 172 if (F.hasFnAttribute(Attribute::StackAlignment)) 173 FrameInfo->ensureMaxAlignment(F.getFnStackAlignment()); 174 175 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 176 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 177 178 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 179 // FIXME: Use Function::hasOptSize(). 180 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 181 Alignment = std::max(Alignment, 182 STI->getTargetLowering()->getPrefFunctionAlignment()); 183 184 if (AlignAllFunctions) 185 Alignment = Align(1ULL << AlignAllFunctions); 186 187 JumpTableInfo = nullptr; 188 189 if (isFuncletEHPersonality(classifyEHPersonality( 190 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 191 WinEHInfo = new (Allocator) WinEHFuncInfo(); 192 } 193 194 if (isScopedEHPersonality(classifyEHPersonality( 195 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 196 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 197 } 198 199 assert(Target.isCompatibleDataLayout(getDataLayout()) && 200 "Can't create a MachineFunction using a Module with a " 201 "Target-incompatible DataLayout attached\n"); 202 203 PSVManager = 204 std::make_unique<PseudoSourceValueManager>(*(getSubtarget(). 205 getInstrInfo())); 206 } 207 208 MachineFunction::~MachineFunction() { 209 clear(); 210 } 211 212 void MachineFunction::clear() { 213 Properties.reset(); 214 // Don't call destructors on MachineInstr and MachineOperand. All of their 215 // memory comes from the BumpPtrAllocator which is about to be purged. 216 // 217 // Do call MachineBasicBlock destructors, it contains std::vectors. 218 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 219 I->Insts.clearAndLeakNodesUnsafely(); 220 MBBNumbering.clear(); 221 222 InstructionRecycler.clear(Allocator); 223 OperandRecycler.clear(Allocator); 224 BasicBlockRecycler.clear(Allocator); 225 CodeViewAnnotations.clear(); 226 VariableDbgInfos.clear(); 227 if (RegInfo) { 228 RegInfo->~MachineRegisterInfo(); 229 Allocator.Deallocate(RegInfo); 230 } 231 if (MFInfo) { 232 MFInfo->~MachineFunctionInfo(); 233 Allocator.Deallocate(MFInfo); 234 } 235 236 FrameInfo->~MachineFrameInfo(); 237 Allocator.Deallocate(FrameInfo); 238 239 ConstantPool->~MachineConstantPool(); 240 Allocator.Deallocate(ConstantPool); 241 242 if (JumpTableInfo) { 243 JumpTableInfo->~MachineJumpTableInfo(); 244 Allocator.Deallocate(JumpTableInfo); 245 } 246 247 if (WinEHInfo) { 248 WinEHInfo->~WinEHFuncInfo(); 249 Allocator.Deallocate(WinEHInfo); 250 } 251 252 if (WasmEHInfo) { 253 WasmEHInfo->~WasmEHFuncInfo(); 254 Allocator.Deallocate(WasmEHInfo); 255 } 256 } 257 258 const DataLayout &MachineFunction::getDataLayout() const { 259 return F.getParent()->getDataLayout(); 260 } 261 262 /// Get the JumpTableInfo for this function. 263 /// If it does not already exist, allocate one. 264 MachineJumpTableInfo *MachineFunction:: 265 getOrCreateJumpTableInfo(unsigned EntryKind) { 266 if (JumpTableInfo) return JumpTableInfo; 267 268 JumpTableInfo = new (Allocator) 269 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 270 return JumpTableInfo; 271 } 272 273 /// Should we be emitting segmented stack stuff for the function 274 bool MachineFunction::shouldSplitStack() const { 275 return getFunction().hasFnAttribute("split-stack"); 276 } 277 278 LLVM_NODISCARD unsigned 279 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 280 FrameInstructions.push_back(Inst); 281 return FrameInstructions.size() - 1; 282 } 283 284 /// This discards all of the MachineBasicBlock numbers and recomputes them. 285 /// This guarantees that the MBB numbers are sequential, dense, and match the 286 /// ordering of the blocks within the function. If a specific MachineBasicBlock 287 /// is specified, only that block and those after it are renumbered. 288 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 289 if (empty()) { MBBNumbering.clear(); return; } 290 MachineFunction::iterator MBBI, E = end(); 291 if (MBB == nullptr) 292 MBBI = begin(); 293 else 294 MBBI = MBB->getIterator(); 295 296 // Figure out the block number this should have. 297 unsigned BlockNo = 0; 298 if (MBBI != begin()) 299 BlockNo = std::prev(MBBI)->getNumber() + 1; 300 301 for (; MBBI != E; ++MBBI, ++BlockNo) { 302 if (MBBI->getNumber() != (int)BlockNo) { 303 // Remove use of the old number. 304 if (MBBI->getNumber() != -1) { 305 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 306 "MBB number mismatch!"); 307 MBBNumbering[MBBI->getNumber()] = nullptr; 308 } 309 310 // If BlockNo is already taken, set that block's number to -1. 311 if (MBBNumbering[BlockNo]) 312 MBBNumbering[BlockNo]->setNumber(-1); 313 314 MBBNumbering[BlockNo] = &*MBBI; 315 MBBI->setNumber(BlockNo); 316 } 317 } 318 319 // Okay, all the blocks are renumbered. If we have compactified the block 320 // numbering, shrink MBBNumbering now. 321 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 322 MBBNumbering.resize(BlockNo); 323 } 324 325 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 326 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 327 const DebugLoc &DL, 328 bool NoImp) { 329 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 330 MachineInstr(*this, MCID, DL, NoImp); 331 } 332 333 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 334 /// identical in all ways except the instruction has no parent, prev, or next. 335 MachineInstr * 336 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 337 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 338 MachineInstr(*this, *Orig); 339 } 340 341 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB, 342 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) { 343 MachineInstr *FirstClone = nullptr; 344 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 345 while (true) { 346 MachineInstr *Cloned = CloneMachineInstr(&*I); 347 MBB.insert(InsertBefore, Cloned); 348 if (FirstClone == nullptr) { 349 FirstClone = Cloned; 350 } else { 351 Cloned->bundleWithPred(); 352 } 353 354 if (!I->isBundledWithSucc()) 355 break; 356 ++I; 357 } 358 return *FirstClone; 359 } 360 361 /// Delete the given MachineInstr. 362 /// 363 /// This function also serves as the MachineInstr destructor - the real 364 /// ~MachineInstr() destructor must be empty. 365 void 366 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 367 // Verify that a call site info is at valid state. This assertion should 368 // be triggered during the implementation of support for the 369 // call site info of a new architecture. If the assertion is triggered, 370 // back trace will tell where to insert a call to updateCallSiteInfo(). 371 assert((!MI->isCall(MachineInstr::IgnoreBundle) || 372 CallSitesInfo.find(MI) == CallSitesInfo.end()) && 373 "Call site info was not updated!"); 374 // Strip it for parts. The operand array and the MI object itself are 375 // independently recyclable. 376 if (MI->Operands) 377 deallocateOperandArray(MI->CapOperands, MI->Operands); 378 // Don't call ~MachineInstr() which must be trivial anyway because 379 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 380 // destructors. 381 InstructionRecycler.Deallocate(Allocator, MI); 382 } 383 384 /// Allocate a new MachineBasicBlock. Use this instead of 385 /// `new MachineBasicBlock'. 386 MachineBasicBlock * 387 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 388 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 389 MachineBasicBlock(*this, bb); 390 } 391 392 /// Delete the given MachineBasicBlock. 393 void 394 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 395 assert(MBB->getParent() == this && "MBB parent mismatch!"); 396 MBB->~MachineBasicBlock(); 397 BasicBlockRecycler.Deallocate(Allocator, MBB); 398 } 399 400 MachineMemOperand *MachineFunction::getMachineMemOperand( 401 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 402 unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 403 SyncScope::ID SSID, AtomicOrdering Ordering, 404 AtomicOrdering FailureOrdering) { 405 return new (Allocator) 406 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 407 SSID, Ordering, FailureOrdering); 408 } 409 410 MachineMemOperand * 411 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 412 int64_t Offset, uint64_t Size) { 413 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 414 415 // If there is no pointer value, the offset isn't tracked so we need to adjust 416 // the base alignment. 417 unsigned Align = PtrInfo.V.isNull() 418 ? MinAlign(MMO->getBaseAlignment(), Offset) 419 : MMO->getBaseAlignment(); 420 421 return new (Allocator) 422 MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size, 423 Align, AAMDNodes(), nullptr, MMO->getSyncScopeID(), 424 MMO->getOrdering(), MMO->getFailureOrdering()); 425 } 426 427 MachineMemOperand * 428 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 429 const AAMDNodes &AAInfo) { 430 MachinePointerInfo MPI = MMO->getValue() ? 431 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 432 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 433 434 return new (Allocator) 435 MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(), 436 MMO->getBaseAlignment(), AAInfo, 437 MMO->getRanges(), MMO->getSyncScopeID(), 438 MMO->getOrdering(), MMO->getFailureOrdering()); 439 } 440 441 MachineMemOperand * 442 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 443 MachineMemOperand::Flags Flags) { 444 return new (Allocator) MachineMemOperand( 445 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlignment(), 446 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 447 MMO->getOrdering(), MMO->getFailureOrdering()); 448 } 449 450 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 451 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 452 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) { 453 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 454 PostInstrSymbol, HeapAllocMarker); 455 } 456 457 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 458 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 459 llvm::copy(Name, Dest); 460 Dest[Name.size()] = 0; 461 return Dest; 462 } 463 464 uint32_t *MachineFunction::allocateRegMask() { 465 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 466 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 467 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 468 memset(Mask, 0, Size * sizeof(Mask[0])); 469 return Mask; 470 } 471 472 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 473 LLVM_DUMP_METHOD void MachineFunction::dump() const { 474 print(dbgs()); 475 } 476 #endif 477 478 StringRef MachineFunction::getName() const { 479 return getFunction().getName(); 480 } 481 482 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 483 OS << "# Machine code for function " << getName() << ": "; 484 getProperties().print(OS); 485 OS << '\n'; 486 487 // Print Frame Information 488 FrameInfo->print(*this, OS); 489 490 // Print JumpTable Information 491 if (JumpTableInfo) 492 JumpTableInfo->print(OS); 493 494 // Print Constant Pool 495 ConstantPool->print(OS); 496 497 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 498 499 if (RegInfo && !RegInfo->livein_empty()) { 500 OS << "Function Live Ins: "; 501 for (MachineRegisterInfo::livein_iterator 502 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 503 OS << printReg(I->first, TRI); 504 if (I->second) 505 OS << " in " << printReg(I->second, TRI); 506 if (std::next(I) != E) 507 OS << ", "; 508 } 509 OS << '\n'; 510 } 511 512 ModuleSlotTracker MST(getFunction().getParent()); 513 MST.incorporateFunction(getFunction()); 514 for (const auto &BB : *this) { 515 OS << '\n'; 516 // If we print the whole function, print it at its most verbose level. 517 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 518 } 519 520 OS << "\n# End machine code for function " << getName() << ".\n\n"; 521 } 522 523 namespace llvm { 524 525 template<> 526 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 527 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 528 529 static std::string getGraphName(const MachineFunction *F) { 530 return ("CFG for '" + F->getName() + "' function").str(); 531 } 532 533 std::string getNodeLabel(const MachineBasicBlock *Node, 534 const MachineFunction *Graph) { 535 std::string OutStr; 536 { 537 raw_string_ostream OSS(OutStr); 538 539 if (isSimple()) { 540 OSS << printMBBReference(*Node); 541 if (const BasicBlock *BB = Node->getBasicBlock()) 542 OSS << ": " << BB->getName(); 543 } else 544 Node->print(OSS); 545 } 546 547 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 548 549 // Process string output to make it nicer... 550 for (unsigned i = 0; i != OutStr.length(); ++i) 551 if (OutStr[i] == '\n') { // Left justify 552 OutStr[i] = '\\'; 553 OutStr.insert(OutStr.begin()+i+1, 'l'); 554 } 555 return OutStr; 556 } 557 }; 558 559 } // end namespace llvm 560 561 void MachineFunction::viewCFG() const 562 { 563 #ifndef NDEBUG 564 ViewGraph(this, "mf" + getName()); 565 #else 566 errs() << "MachineFunction::viewCFG is only available in debug builds on " 567 << "systems with Graphviz or gv!\n"; 568 #endif // NDEBUG 569 } 570 571 void MachineFunction::viewCFGOnly() const 572 { 573 #ifndef NDEBUG 574 ViewGraph(this, "mf" + getName(), true); 575 #else 576 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 577 << "systems with Graphviz or gv!\n"; 578 #endif // NDEBUG 579 } 580 581 /// Add the specified physical register as a live-in value and 582 /// create a corresponding virtual register for it. 583 unsigned MachineFunction::addLiveIn(unsigned PReg, 584 const TargetRegisterClass *RC) { 585 MachineRegisterInfo &MRI = getRegInfo(); 586 unsigned VReg = MRI.getLiveInVirtReg(PReg); 587 if (VReg) { 588 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 589 (void)VRegRC; 590 // A physical register can be added several times. 591 // Between two calls, the register class of the related virtual register 592 // may have been constrained to match some operation constraints. 593 // In that case, check that the current register class includes the 594 // physical register and is a sub class of the specified RC. 595 assert((VRegRC == RC || (VRegRC->contains(PReg) && 596 RC->hasSubClassEq(VRegRC))) && 597 "Register class mismatch!"); 598 return VReg; 599 } 600 VReg = MRI.createVirtualRegister(RC); 601 MRI.addLiveIn(PReg, VReg); 602 return VReg; 603 } 604 605 /// Return the MCSymbol for the specified non-empty jump table. 606 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 607 /// normal 'L' label is returned. 608 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 609 bool isLinkerPrivate) const { 610 const DataLayout &DL = getDataLayout(); 611 assert(JumpTableInfo && "No jump tables"); 612 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 613 614 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 615 : DL.getPrivateGlobalPrefix(); 616 SmallString<60> Name; 617 raw_svector_ostream(Name) 618 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 619 return Ctx.getOrCreateSymbol(Name); 620 } 621 622 /// Return a function-local symbol to represent the PIC base. 623 MCSymbol *MachineFunction::getPICBaseSymbol() const { 624 const DataLayout &DL = getDataLayout(); 625 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 626 Twine(getFunctionNumber()) + "$pb"); 627 } 628 629 /// \name Exception Handling 630 /// \{ 631 632 LandingPadInfo & 633 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 634 unsigned N = LandingPads.size(); 635 for (unsigned i = 0; i < N; ++i) { 636 LandingPadInfo &LP = LandingPads[i]; 637 if (LP.LandingPadBlock == LandingPad) 638 return LP; 639 } 640 641 LandingPads.push_back(LandingPadInfo(LandingPad)); 642 return LandingPads[N]; 643 } 644 645 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 646 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 647 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 648 LP.BeginLabels.push_back(BeginLabel); 649 LP.EndLabels.push_back(EndLabel); 650 } 651 652 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 653 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 654 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 655 LP.LandingPadLabel = LandingPadLabel; 656 657 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 658 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 659 if (const auto *PF = 660 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts())) 661 getMMI().addPersonality(PF); 662 663 if (LPI->isCleanup()) 664 addCleanup(LandingPad); 665 666 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 667 // correct, but we need to do it this way because of how the DWARF EH 668 // emitter processes the clauses. 669 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 670 Value *Val = LPI->getClause(I - 1); 671 if (LPI->isCatch(I - 1)) { 672 addCatchTypeInfo(LandingPad, 673 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 674 } else { 675 // Add filters in a list. 676 auto *CVal = cast<Constant>(Val); 677 SmallVector<const GlobalValue *, 4> FilterList; 678 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end(); 679 II != IE; ++II) 680 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 681 682 addFilterTypeInfo(LandingPad, FilterList); 683 } 684 } 685 686 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 687 for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) { 688 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts(); 689 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo)); 690 } 691 692 } else { 693 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 694 } 695 696 return LandingPadLabel; 697 } 698 699 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 700 ArrayRef<const GlobalValue *> TyInfo) { 701 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 702 for (unsigned N = TyInfo.size(); N; --N) 703 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); 704 } 705 706 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 707 ArrayRef<const GlobalValue *> TyInfo) { 708 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 709 std::vector<unsigned> IdsInFilter(TyInfo.size()); 710 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 711 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 712 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 713 } 714 715 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap, 716 bool TidyIfNoBeginLabels) { 717 for (unsigned i = 0; i != LandingPads.size(); ) { 718 LandingPadInfo &LandingPad = LandingPads[i]; 719 if (LandingPad.LandingPadLabel && 720 !LandingPad.LandingPadLabel->isDefined() && 721 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 722 LandingPad.LandingPadLabel = nullptr; 723 724 // Special case: we *should* emit LPs with null LP MBB. This indicates 725 // "nounwind" case. 726 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 727 LandingPads.erase(LandingPads.begin() + i); 728 continue; 729 } 730 731 if (TidyIfNoBeginLabels) { 732 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 733 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 734 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 735 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) && 736 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0))) 737 continue; 738 739 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 740 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 741 --j; 742 --e; 743 } 744 745 // Remove landing pads with no try-ranges. 746 if (LandingPads[i].BeginLabels.empty()) { 747 LandingPads.erase(LandingPads.begin() + i); 748 continue; 749 } 750 } 751 752 // If there is no landing pad, ensure that the list of typeids is empty. 753 // If the only typeid is a cleanup, this is the same as having no typeids. 754 if (!LandingPad.LandingPadBlock || 755 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 756 LandingPad.TypeIds.clear(); 757 ++i; 758 } 759 } 760 761 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 762 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 763 LP.TypeIds.push_back(0); 764 } 765 766 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, 767 const Function *Filter, 768 const BlockAddress *RecoverBA) { 769 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 770 SEHHandler Handler; 771 Handler.FilterOrFinally = Filter; 772 Handler.RecoverBA = RecoverBA; 773 LP.SEHHandlers.push_back(Handler); 774 } 775 776 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, 777 const Function *Cleanup) { 778 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 779 SEHHandler Handler; 780 Handler.FilterOrFinally = Cleanup; 781 Handler.RecoverBA = nullptr; 782 LP.SEHHandlers.push_back(Handler); 783 } 784 785 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 786 ArrayRef<unsigned> Sites) { 787 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 788 } 789 790 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 791 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 792 if (TypeInfos[i] == TI) return i + 1; 793 794 TypeInfos.push_back(TI); 795 return TypeInfos.size(); 796 } 797 798 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 799 // If the new filter coincides with the tail of an existing filter, then 800 // re-use the existing filter. Folding filters more than this requires 801 // re-ordering filters and/or their elements - probably not worth it. 802 for (std::vector<unsigned>::iterator I = FilterEnds.begin(), 803 E = FilterEnds.end(); I != E; ++I) { 804 unsigned i = *I, j = TyIds.size(); 805 806 while (i && j) 807 if (FilterIds[--i] != TyIds[--j]) 808 goto try_next; 809 810 if (!j) 811 // The new filter coincides with range [i, end) of the existing filter. 812 return -(1 + i); 813 814 try_next:; 815 } 816 817 // Add the new filter. 818 int FilterID = -(1 + FilterIds.size()); 819 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 820 FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end()); 821 FilterEnds.push_back(FilterIds.size()); 822 FilterIds.push_back(0); // terminator 823 return FilterID; 824 } 825 826 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 827 const MachineInstr *New) { 828 assert(New->isCall() && "Call site info refers only to call instructions!"); 829 830 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(Old); 831 if (CSIt == CallSitesInfo.end()) 832 return; 833 834 CallSiteInfo CSInfo = std::move(CSIt->second); 835 CallSitesInfo.erase(CSIt); 836 CallSitesInfo[New] = CSInfo; 837 } 838 839 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 840 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(MI); 841 if (CSIt == CallSitesInfo.end()) 842 return; 843 CallSitesInfo.erase(CSIt); 844 } 845 846 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 847 const MachineInstr *New) { 848 assert(New->isCall() && "Call site info refers only to call instructions!"); 849 850 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(Old); 851 if (CSIt == CallSitesInfo.end()) 852 return; 853 854 CallSiteInfo CSInfo = CSIt->second; 855 CallSitesInfo[New] = CSInfo; 856 } 857 858 /// \} 859 860 //===----------------------------------------------------------------------===// 861 // MachineJumpTableInfo implementation 862 //===----------------------------------------------------------------------===// 863 864 /// Return the size of each entry in the jump table. 865 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 866 // The size of a jump table entry is 4 bytes unless the entry is just the 867 // address of a block, in which case it is the pointer size. 868 switch (getEntryKind()) { 869 case MachineJumpTableInfo::EK_BlockAddress: 870 return TD.getPointerSize(); 871 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 872 return 8; 873 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 874 case MachineJumpTableInfo::EK_LabelDifference32: 875 case MachineJumpTableInfo::EK_Custom32: 876 return 4; 877 case MachineJumpTableInfo::EK_Inline: 878 return 0; 879 } 880 llvm_unreachable("Unknown jump table encoding!"); 881 } 882 883 /// Return the alignment of each entry in the jump table. 884 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 885 // The alignment of a jump table entry is the alignment of int32 unless the 886 // entry is just the address of a block, in which case it is the pointer 887 // alignment. 888 switch (getEntryKind()) { 889 case MachineJumpTableInfo::EK_BlockAddress: 890 return TD.getPointerABIAlignment(0).value(); 891 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 892 return TD.getABIIntegerTypeAlignment(64).value(); 893 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 894 case MachineJumpTableInfo::EK_LabelDifference32: 895 case MachineJumpTableInfo::EK_Custom32: 896 return TD.getABIIntegerTypeAlignment(32).value(); 897 case MachineJumpTableInfo::EK_Inline: 898 return 1; 899 } 900 llvm_unreachable("Unknown jump table encoding!"); 901 } 902 903 /// Create a new jump table entry in the jump table info. 904 unsigned MachineJumpTableInfo::createJumpTableIndex( 905 const std::vector<MachineBasicBlock*> &DestBBs) { 906 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 907 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 908 return JumpTables.size()-1; 909 } 910 911 /// If Old is the target of any jump tables, update the jump tables to branch 912 /// to New instead. 913 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 914 MachineBasicBlock *New) { 915 assert(Old != New && "Not making a change?"); 916 bool MadeChange = false; 917 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 918 ReplaceMBBInJumpTable(i, Old, New); 919 return MadeChange; 920 } 921 922 /// If Old is a target of the jump tables, update the jump table to branch to 923 /// New instead. 924 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 925 MachineBasicBlock *Old, 926 MachineBasicBlock *New) { 927 assert(Old != New && "Not making a change?"); 928 bool MadeChange = false; 929 MachineJumpTableEntry &JTE = JumpTables[Idx]; 930 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 931 if (JTE.MBBs[j] == Old) { 932 JTE.MBBs[j] = New; 933 MadeChange = true; 934 } 935 return MadeChange; 936 } 937 938 void MachineJumpTableInfo::print(raw_ostream &OS) const { 939 if (JumpTables.empty()) return; 940 941 OS << "Jump Tables:\n"; 942 943 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 944 OS << printJumpTableEntryReference(i) << ':'; 945 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 946 OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]); 947 if (i != e) 948 OS << '\n'; 949 } 950 951 OS << '\n'; 952 } 953 954 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 955 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 956 #endif 957 958 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 959 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 960 } 961 962 //===----------------------------------------------------------------------===// 963 // MachineConstantPool implementation 964 //===----------------------------------------------------------------------===// 965 966 void MachineConstantPoolValue::anchor() {} 967 968 Type *MachineConstantPoolEntry::getType() const { 969 if (isMachineConstantPoolEntry()) 970 return Val.MachineCPVal->getType(); 971 return Val.ConstVal->getType(); 972 } 973 974 bool MachineConstantPoolEntry::needsRelocation() const { 975 if (isMachineConstantPoolEntry()) 976 return true; 977 return Val.ConstVal->needsRelocation(); 978 } 979 980 SectionKind 981 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 982 if (needsRelocation()) 983 return SectionKind::getReadOnlyWithRel(); 984 switch (DL->getTypeAllocSize(getType())) { 985 case 4: 986 return SectionKind::getMergeableConst4(); 987 case 8: 988 return SectionKind::getMergeableConst8(); 989 case 16: 990 return SectionKind::getMergeableConst16(); 991 case 32: 992 return SectionKind::getMergeableConst32(); 993 default: 994 return SectionKind::getReadOnly(); 995 } 996 } 997 998 MachineConstantPool::~MachineConstantPool() { 999 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1000 // so keep track of which we've deleted to avoid double deletions. 1001 DenseSet<MachineConstantPoolValue*> Deleted; 1002 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1003 if (Constants[i].isMachineConstantPoolEntry()) { 1004 Deleted.insert(Constants[i].Val.MachineCPVal); 1005 delete Constants[i].Val.MachineCPVal; 1006 } 1007 for (DenseSet<MachineConstantPoolValue*>::iterator I = 1008 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 1009 I != E; ++I) { 1010 if (Deleted.count(*I) == 0) 1011 delete *I; 1012 } 1013 } 1014 1015 /// Test whether the given two constants can be allocated the same constant pool 1016 /// entry. 1017 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1018 const DataLayout &DL) { 1019 // Handle the trivial case quickly. 1020 if (A == B) return true; 1021 1022 // If they have the same type but weren't the same constant, quickly 1023 // reject them. 1024 if (A->getType() == B->getType()) return false; 1025 1026 // We can't handle structs or arrays. 1027 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1028 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1029 return false; 1030 1031 // For now, only support constants with the same size. 1032 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1033 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1034 return false; 1035 1036 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1037 1038 // Try constant folding a bitcast of both instructions to an integer. If we 1039 // get two identical ConstantInt's, then we are good to share them. We use 1040 // the constant folding APIs to do this so that we get the benefit of 1041 // DataLayout. 1042 if (isa<PointerType>(A->getType())) 1043 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1044 const_cast<Constant *>(A), IntTy, DL); 1045 else if (A->getType() != IntTy) 1046 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1047 IntTy, DL); 1048 if (isa<PointerType>(B->getType())) 1049 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1050 const_cast<Constant *>(B), IntTy, DL); 1051 else if (B->getType() != IntTy) 1052 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1053 IntTy, DL); 1054 1055 return A == B; 1056 } 1057 1058 /// Create a new entry in the constant pool or return an existing one. 1059 /// User must specify the log2 of the minimum required alignment for the object. 1060 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1061 unsigned Alignment) { 1062 assert(Alignment && "Alignment must be specified!"); 1063 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1064 1065 // Check to see if we already have this constant. 1066 // 1067 // FIXME, this could be made much more efficient for large constant pools. 1068 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1069 if (!Constants[i].isMachineConstantPoolEntry() && 1070 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1071 if ((unsigned)Constants[i].getAlignment() < Alignment) 1072 Constants[i].Alignment = Alignment; 1073 return i; 1074 } 1075 1076 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1077 return Constants.size()-1; 1078 } 1079 1080 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1081 unsigned Alignment) { 1082 assert(Alignment && "Alignment must be specified!"); 1083 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1084 1085 // Check to see if we already have this constant. 1086 // 1087 // FIXME, this could be made much more efficient for large constant pools. 1088 int Idx = V->getExistingMachineCPValue(this, Alignment); 1089 if (Idx != -1) { 1090 MachineCPVsSharingEntries.insert(V); 1091 return (unsigned)Idx; 1092 } 1093 1094 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1095 return Constants.size()-1; 1096 } 1097 1098 void MachineConstantPool::print(raw_ostream &OS) const { 1099 if (Constants.empty()) return; 1100 1101 OS << "Constant Pool:\n"; 1102 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1103 OS << " cp#" << i << ": "; 1104 if (Constants[i].isMachineConstantPoolEntry()) 1105 Constants[i].Val.MachineCPVal->print(OS); 1106 else 1107 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1108 OS << ", align=" << Constants[i].getAlignment(); 1109 OS << "\n"; 1110 } 1111 } 1112 1113 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1114 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1115 #endif 1116