1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/EHPersonalities.h" 21 #include "llvm/CodeGen/MachineConstantPool.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionInitializer.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/Passes.h" 30 #include "llvm/CodeGen/PseudoSourceValue.h" 31 #include "llvm/CodeGen/WinEHFuncInfo.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/ModuleSlotTracker.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCContext.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetFrameLowering.h" 43 #include "llvm/Target/TargetLowering.h" 44 #include "llvm/Target/TargetMachine.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 using namespace llvm; 47 48 #define DEBUG_TYPE "codegen" 49 50 static cl::opt<unsigned> 51 AlignAllFunctions("align-all-functions", 52 cl::desc("Force the alignment of all functions."), 53 cl::init(0), cl::Hidden); 54 55 void MachineFunctionInitializer::anchor() {} 56 57 void MachineFunctionProperties::print(raw_ostream &ROS) const { 58 // Leave this function even in NDEBUG as an out-of-line anchor. 59 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 60 for (BitVector::size_type i = 0; i < Properties.size(); ++i) { 61 bool HasProperty = Properties[i]; 62 switch(static_cast<Property>(i)) { 63 case Property::IsSSA: 64 ROS << (HasProperty ? "SSA, " : "Post SSA, "); 65 break; 66 case Property::AllVRegsAllocated: 67 ROS << (HasProperty ? "AllVRegsAllocated" : "HasVRegs"); 68 break; 69 default: 70 break; 71 } 72 } 73 #endif 74 } 75 76 //===----------------------------------------------------------------------===// 77 // MachineFunction implementation 78 //===----------------------------------------------------------------------===// 79 80 // Out-of-line virtual method. 81 MachineFunctionInfo::~MachineFunctionInfo() {} 82 83 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 84 MBB->getParent()->DeleteMachineBasicBlock(MBB); 85 } 86 87 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 88 const Function *Fn) { 89 if (Fn->hasFnAttribute(Attribute::StackAlignment)) 90 return Fn->getFnStackAlignment(); 91 return STI->getFrameLowering()->getStackAlignment(); 92 } 93 94 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 95 unsigned FunctionNum, MachineModuleInfo &mmi) 96 : Fn(F), Target(TM), STI(TM.getSubtargetImpl(*F)), Ctx(mmi.getContext()), 97 MMI(mmi) { 98 // Assume the function starts in SSA form. 99 Properties.set(MachineFunctionProperties::Property::IsSSA); 100 if (STI->getRegisterInfo()) 101 RegInfo = new (Allocator) MachineRegisterInfo(this); 102 else 103 RegInfo = nullptr; 104 105 MFInfo = nullptr; 106 FrameInfo = new (Allocator) 107 MachineFrameInfo(getFnStackAlignment(STI, Fn), 108 STI->getFrameLowering()->isStackRealignable(), 109 !F->hasFnAttribute("no-realign-stack"), 110 !F->hasFnAttribute("no-realign-stack") && 111 F->hasFnAttribute(Attribute::StackAlignment)); 112 113 if (Fn->hasFnAttribute(Attribute::StackAlignment)) 114 FrameInfo->ensureMaxAlignment(Fn->getFnStackAlignment()); 115 116 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 117 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 118 119 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 120 // FIXME: Use Function::optForSize(). 121 if (!Fn->hasFnAttribute(Attribute::OptimizeForSize)) 122 Alignment = std::max(Alignment, 123 STI->getTargetLowering()->getPrefFunctionAlignment()); 124 125 if (AlignAllFunctions) 126 Alignment = AlignAllFunctions; 127 128 FunctionNumber = FunctionNum; 129 JumpTableInfo = nullptr; 130 131 if (isFuncletEHPersonality(classifyEHPersonality( 132 F->hasPersonalityFn() ? F->getPersonalityFn() : nullptr))) { 133 WinEHInfo = new (Allocator) WinEHFuncInfo(); 134 } 135 136 assert(TM.isCompatibleDataLayout(getDataLayout()) && 137 "Can't create a MachineFunction using a Module with a " 138 "Target-incompatible DataLayout attached\n"); 139 140 PSVManager = llvm::make_unique<PseudoSourceValueManager>(); 141 } 142 143 MachineFunction::~MachineFunction() { 144 // Don't call destructors on MachineInstr and MachineOperand. All of their 145 // memory comes from the BumpPtrAllocator which is about to be purged. 146 // 147 // Do call MachineBasicBlock destructors, it contains std::vectors. 148 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 149 I->Insts.clearAndLeakNodesUnsafely(); 150 151 InstructionRecycler.clear(Allocator); 152 OperandRecycler.clear(Allocator); 153 BasicBlockRecycler.clear(Allocator); 154 if (RegInfo) { 155 RegInfo->~MachineRegisterInfo(); 156 Allocator.Deallocate(RegInfo); 157 } 158 if (MFInfo) { 159 MFInfo->~MachineFunctionInfo(); 160 Allocator.Deallocate(MFInfo); 161 } 162 163 FrameInfo->~MachineFrameInfo(); 164 Allocator.Deallocate(FrameInfo); 165 166 ConstantPool->~MachineConstantPool(); 167 Allocator.Deallocate(ConstantPool); 168 169 if (JumpTableInfo) { 170 JumpTableInfo->~MachineJumpTableInfo(); 171 Allocator.Deallocate(JumpTableInfo); 172 } 173 174 if (WinEHInfo) { 175 WinEHInfo->~WinEHFuncInfo(); 176 Allocator.Deallocate(WinEHInfo); 177 } 178 } 179 180 const DataLayout &MachineFunction::getDataLayout() const { 181 return Fn->getParent()->getDataLayout(); 182 } 183 184 /// Get the JumpTableInfo for this function. 185 /// If it does not already exist, allocate one. 186 MachineJumpTableInfo *MachineFunction:: 187 getOrCreateJumpTableInfo(unsigned EntryKind) { 188 if (JumpTableInfo) return JumpTableInfo; 189 190 JumpTableInfo = new (Allocator) 191 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 192 return JumpTableInfo; 193 } 194 195 /// Should we be emitting segmented stack stuff for the function 196 bool MachineFunction::shouldSplitStack() const { 197 return getFunction()->hasFnAttribute("split-stack"); 198 } 199 200 /// This discards all of the MachineBasicBlock numbers and recomputes them. 201 /// This guarantees that the MBB numbers are sequential, dense, and match the 202 /// ordering of the blocks within the function. If a specific MachineBasicBlock 203 /// is specified, only that block and those after it are renumbered. 204 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 205 if (empty()) { MBBNumbering.clear(); return; } 206 MachineFunction::iterator MBBI, E = end(); 207 if (MBB == nullptr) 208 MBBI = begin(); 209 else 210 MBBI = MBB->getIterator(); 211 212 // Figure out the block number this should have. 213 unsigned BlockNo = 0; 214 if (MBBI != begin()) 215 BlockNo = std::prev(MBBI)->getNumber() + 1; 216 217 for (; MBBI != E; ++MBBI, ++BlockNo) { 218 if (MBBI->getNumber() != (int)BlockNo) { 219 // Remove use of the old number. 220 if (MBBI->getNumber() != -1) { 221 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 222 "MBB number mismatch!"); 223 MBBNumbering[MBBI->getNumber()] = nullptr; 224 } 225 226 // If BlockNo is already taken, set that block's number to -1. 227 if (MBBNumbering[BlockNo]) 228 MBBNumbering[BlockNo]->setNumber(-1); 229 230 MBBNumbering[BlockNo] = &*MBBI; 231 MBBI->setNumber(BlockNo); 232 } 233 } 234 235 // Okay, all the blocks are renumbered. If we have compactified the block 236 // numbering, shrink MBBNumbering now. 237 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 238 MBBNumbering.resize(BlockNo); 239 } 240 241 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 242 MachineInstr * 243 MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 244 DebugLoc DL, bool NoImp) { 245 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 246 MachineInstr(*this, MCID, DL, NoImp); 247 } 248 249 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 250 /// identical in all ways except the instruction has no parent, prev, or next. 251 MachineInstr * 252 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 253 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 254 MachineInstr(*this, *Orig); 255 } 256 257 /// Delete the given MachineInstr. 258 /// 259 /// This function also serves as the MachineInstr destructor - the real 260 /// ~MachineInstr() destructor must be empty. 261 void 262 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 263 // Strip it for parts. The operand array and the MI object itself are 264 // independently recyclable. 265 if (MI->Operands) 266 deallocateOperandArray(MI->CapOperands, MI->Operands); 267 // Don't call ~MachineInstr() which must be trivial anyway because 268 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 269 // destructors. 270 InstructionRecycler.Deallocate(Allocator, MI); 271 } 272 273 /// Allocate a new MachineBasicBlock. Use this instead of 274 /// `new MachineBasicBlock'. 275 MachineBasicBlock * 276 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 277 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 278 MachineBasicBlock(*this, bb); 279 } 280 281 /// Delete the given MachineBasicBlock. 282 void 283 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 284 assert(MBB->getParent() == this && "MBB parent mismatch!"); 285 MBB->~MachineBasicBlock(); 286 BasicBlockRecycler.Deallocate(Allocator, MBB); 287 } 288 289 MachineMemOperand * 290 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 291 uint64_t s, unsigned base_alignment, 292 const AAMDNodes &AAInfo, 293 const MDNode *Ranges) { 294 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 295 AAInfo, Ranges); 296 } 297 298 MachineMemOperand * 299 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 300 int64_t Offset, uint64_t Size) { 301 if (MMO->getValue()) 302 return new (Allocator) 303 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 304 MMO->getOffset()+Offset), 305 MMO->getFlags(), Size, 306 MMO->getBaseAlignment()); 307 return new (Allocator) 308 MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(), 309 MMO->getOffset()+Offset), 310 MMO->getFlags(), Size, 311 MMO->getBaseAlignment()); 312 } 313 314 MachineInstr::mmo_iterator 315 MachineFunction::allocateMemRefsArray(unsigned long Num) { 316 return Allocator.Allocate<MachineMemOperand *>(Num); 317 } 318 319 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 320 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 321 MachineInstr::mmo_iterator End) { 322 // Count the number of load mem refs. 323 unsigned Num = 0; 324 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 325 if ((*I)->isLoad()) 326 ++Num; 327 328 // Allocate a new array and populate it with the load information. 329 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 330 unsigned Index = 0; 331 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 332 if ((*I)->isLoad()) { 333 if (!(*I)->isStore()) 334 // Reuse the MMO. 335 Result[Index] = *I; 336 else { 337 // Clone the MMO and unset the store flag. 338 MachineMemOperand *JustLoad = 339 getMachineMemOperand((*I)->getPointerInfo(), 340 (*I)->getFlags() & ~MachineMemOperand::MOStore, 341 (*I)->getSize(), (*I)->getBaseAlignment(), 342 (*I)->getAAInfo()); 343 Result[Index] = JustLoad; 344 } 345 ++Index; 346 } 347 } 348 return std::make_pair(Result, Result + Num); 349 } 350 351 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 352 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 353 MachineInstr::mmo_iterator End) { 354 // Count the number of load mem refs. 355 unsigned Num = 0; 356 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 357 if ((*I)->isStore()) 358 ++Num; 359 360 // Allocate a new array and populate it with the store information. 361 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 362 unsigned Index = 0; 363 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 364 if ((*I)->isStore()) { 365 if (!(*I)->isLoad()) 366 // Reuse the MMO. 367 Result[Index] = *I; 368 else { 369 // Clone the MMO and unset the load flag. 370 MachineMemOperand *JustStore = 371 getMachineMemOperand((*I)->getPointerInfo(), 372 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 373 (*I)->getSize(), (*I)->getBaseAlignment(), 374 (*I)->getAAInfo()); 375 Result[Index] = JustStore; 376 } 377 ++Index; 378 } 379 } 380 return std::make_pair(Result, Result + Num); 381 } 382 383 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 384 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 385 std::copy(Name.begin(), Name.end(), Dest); 386 Dest[Name.size()] = 0; 387 return Dest; 388 } 389 390 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 391 LLVM_DUMP_METHOD void MachineFunction::dump() const { 392 print(dbgs()); 393 } 394 #endif 395 396 StringRef MachineFunction::getName() const { 397 assert(getFunction() && "No function!"); 398 return getFunction()->getName(); 399 } 400 401 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const { 402 OS << "# Machine code for function " << getName() << ": "; 403 OS << "Properties: <"; 404 getProperties().print(OS); 405 OS << "> : "; 406 if (RegInfo) { 407 if (!RegInfo->tracksLiveness()) 408 OS << "not tracking liveness"; 409 } 410 OS << '\n'; 411 412 // Print Frame Information 413 FrameInfo->print(*this, OS); 414 415 // Print JumpTable Information 416 if (JumpTableInfo) 417 JumpTableInfo->print(OS); 418 419 // Print Constant Pool 420 ConstantPool->print(OS); 421 422 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 423 424 if (RegInfo && !RegInfo->livein_empty()) { 425 OS << "Function Live Ins: "; 426 for (MachineRegisterInfo::livein_iterator 427 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 428 OS << PrintReg(I->first, TRI); 429 if (I->second) 430 OS << " in " << PrintReg(I->second, TRI); 431 if (std::next(I) != E) 432 OS << ", "; 433 } 434 OS << '\n'; 435 } 436 437 ModuleSlotTracker MST(getFunction()->getParent()); 438 MST.incorporateFunction(*getFunction()); 439 for (const auto &BB : *this) { 440 OS << '\n'; 441 BB.print(OS, MST, Indexes); 442 } 443 444 OS << "\n# End machine code for function " << getName() << ".\n\n"; 445 } 446 447 namespace llvm { 448 template<> 449 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 450 451 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 452 453 static std::string getGraphName(const MachineFunction *F) { 454 return ("CFG for '" + F->getName() + "' function").str(); 455 } 456 457 std::string getNodeLabel(const MachineBasicBlock *Node, 458 const MachineFunction *Graph) { 459 std::string OutStr; 460 { 461 raw_string_ostream OSS(OutStr); 462 463 if (isSimple()) { 464 OSS << "BB#" << Node->getNumber(); 465 if (const BasicBlock *BB = Node->getBasicBlock()) 466 OSS << ": " << BB->getName(); 467 } else 468 Node->print(OSS); 469 } 470 471 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 472 473 // Process string output to make it nicer... 474 for (unsigned i = 0; i != OutStr.length(); ++i) 475 if (OutStr[i] == '\n') { // Left justify 476 OutStr[i] = '\\'; 477 OutStr.insert(OutStr.begin()+i+1, 'l'); 478 } 479 return OutStr; 480 } 481 }; 482 } 483 484 void MachineFunction::viewCFG() const 485 { 486 #ifndef NDEBUG 487 ViewGraph(this, "mf" + getName()); 488 #else 489 errs() << "MachineFunction::viewCFG is only available in debug builds on " 490 << "systems with Graphviz or gv!\n"; 491 #endif // NDEBUG 492 } 493 494 void MachineFunction::viewCFGOnly() const 495 { 496 #ifndef NDEBUG 497 ViewGraph(this, "mf" + getName(), true); 498 #else 499 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 500 << "systems with Graphviz or gv!\n"; 501 #endif // NDEBUG 502 } 503 504 /// Add the specified physical register as a live-in value and 505 /// create a corresponding virtual register for it. 506 unsigned MachineFunction::addLiveIn(unsigned PReg, 507 const TargetRegisterClass *RC) { 508 MachineRegisterInfo &MRI = getRegInfo(); 509 unsigned VReg = MRI.getLiveInVirtReg(PReg); 510 if (VReg) { 511 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 512 (void)VRegRC; 513 // A physical register can be added several times. 514 // Between two calls, the register class of the related virtual register 515 // may have been constrained to match some operation constraints. 516 // In that case, check that the current register class includes the 517 // physical register and is a sub class of the specified RC. 518 assert((VRegRC == RC || (VRegRC->contains(PReg) && 519 RC->hasSubClassEq(VRegRC))) && 520 "Register class mismatch!"); 521 return VReg; 522 } 523 VReg = MRI.createVirtualRegister(RC); 524 MRI.addLiveIn(PReg, VReg); 525 return VReg; 526 } 527 528 /// Return the MCSymbol for the specified non-empty jump table. 529 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 530 /// normal 'L' label is returned. 531 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 532 bool isLinkerPrivate) const { 533 const DataLayout &DL = getDataLayout(); 534 assert(JumpTableInfo && "No jump tables"); 535 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 536 537 const char *Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 538 : DL.getPrivateGlobalPrefix(); 539 SmallString<60> Name; 540 raw_svector_ostream(Name) 541 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 542 return Ctx.getOrCreateSymbol(Name); 543 } 544 545 /// Return a function-local symbol to represent the PIC base. 546 MCSymbol *MachineFunction::getPICBaseSymbol() const { 547 const DataLayout &DL = getDataLayout(); 548 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 549 Twine(getFunctionNumber()) + "$pb"); 550 } 551 552 //===----------------------------------------------------------------------===// 553 // MachineFrameInfo implementation 554 //===----------------------------------------------------------------------===// 555 556 /// Make sure the function is at least Align bytes aligned. 557 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 558 if (!StackRealignable || !RealignOption) 559 assert(Align <= StackAlignment && 560 "For targets without stack realignment, Align is out of limit!"); 561 if (MaxAlignment < Align) MaxAlignment = Align; 562 } 563 564 /// Clamp the alignment if requested and emit a warning. 565 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align, 566 unsigned StackAlign) { 567 if (!ShouldClamp || Align <= StackAlign) 568 return Align; 569 DEBUG(dbgs() << "Warning: requested alignment " << Align 570 << " exceeds the stack alignment " << StackAlign 571 << " when stack realignment is off" << '\n'); 572 return StackAlign; 573 } 574 575 /// Create a new statically sized stack object, returning a nonnegative 576 /// identifier to represent it. 577 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment, 578 bool isSS, const AllocaInst *Alloca) { 579 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 580 Alignment = clampStackAlignment(!StackRealignable || !RealignOption, 581 Alignment, StackAlignment); 582 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca, 583 !isSS)); 584 int Index = (int)Objects.size() - NumFixedObjects - 1; 585 assert(Index >= 0 && "Bad frame index!"); 586 ensureMaxAlignment(Alignment); 587 return Index; 588 } 589 590 /// Create a new statically sized stack object that represents a spill slot, 591 /// returning a nonnegative identifier to represent it. 592 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 593 unsigned Alignment) { 594 Alignment = clampStackAlignment(!StackRealignable || !RealignOption, 595 Alignment, StackAlignment); 596 CreateStackObject(Size, Alignment, true); 597 int Index = (int)Objects.size() - NumFixedObjects - 1; 598 ensureMaxAlignment(Alignment); 599 return Index; 600 } 601 602 /// Notify the MachineFrameInfo object that a variable sized object has been 603 /// created. This must be created whenever a variable sized object is created, 604 /// whether or not the index returned is actually used. 605 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment, 606 const AllocaInst *Alloca) { 607 HasVarSizedObjects = true; 608 Alignment = clampStackAlignment(!StackRealignable || !RealignOption, 609 Alignment, StackAlignment); 610 Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca, true)); 611 ensureMaxAlignment(Alignment); 612 return (int)Objects.size()-NumFixedObjects-1; 613 } 614 615 /// Create a new object at a fixed location on the stack. 616 /// All fixed objects should be created before other objects are created for 617 /// efficiency. By default, fixed objects are immutable. This returns an 618 /// index with a negative value. 619 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 620 bool Immutable, bool isAliased) { 621 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 622 // The alignment of the frame index can be determined from its offset from 623 // the incoming frame position. If the frame object is at offset 32 and 624 // the stack is guaranteed to be 16-byte aligned, then we know that the 625 // object is 16-byte aligned. Note that unlike the non-fixed case, if the 626 // stack needs realignment, we can't assume that the stack will in fact be 627 // aligned. 628 unsigned Align = MinAlign(SPOffset, ForcedRealign ? 1 : StackAlignment); 629 Align = clampStackAlignment(!StackRealignable || !RealignOption, Align, 630 StackAlignment); 631 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 632 /*isSS*/ false, 633 /*Alloca*/ nullptr, isAliased)); 634 return -++NumFixedObjects; 635 } 636 637 /// Create a spill slot at a fixed location on the stack. 638 /// Returns an index with a negative value. 639 int MachineFrameInfo::CreateFixedSpillStackObject(uint64_t Size, 640 int64_t SPOffset) { 641 unsigned Align = MinAlign(SPOffset, ForcedRealign ? 1 : StackAlignment); 642 Align = clampStackAlignment(!StackRealignable || !RealignOption, Align, 643 StackAlignment); 644 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, 645 /*Immutable*/ true, 646 /*isSS*/ true, 647 /*Alloca*/ nullptr, 648 /*isAliased*/ false)); 649 return -++NumFixedObjects; 650 } 651 652 BitVector MachineFrameInfo::getPristineRegs(const MachineFunction &MF) const { 653 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 654 BitVector BV(TRI->getNumRegs()); 655 656 // Before CSI is calculated, no registers are considered pristine. They can be 657 // freely used and PEI will make sure they are saved. 658 if (!isCalleeSavedInfoValid()) 659 return BV; 660 661 for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR) 662 BV.set(*CSR); 663 664 // Saved CSRs are not pristine. 665 for (auto &I : getCalleeSavedInfo()) 666 for (MCSubRegIterator S(I.getReg(), TRI, true); S.isValid(); ++S) 667 BV.reset(*S); 668 669 return BV; 670 } 671 672 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const { 673 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 674 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 675 unsigned MaxAlign = getMaxAlignment(); 676 int Offset = 0; 677 678 // This code is very, very similar to PEI::calculateFrameObjectOffsets(). 679 // It really should be refactored to share code. Until then, changes 680 // should keep in mind that there's tight coupling between the two. 681 682 for (int i = getObjectIndexBegin(); i != 0; ++i) { 683 int FixedOff = -getObjectOffset(i); 684 if (FixedOff > Offset) Offset = FixedOff; 685 } 686 for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) { 687 if (isDeadObjectIndex(i)) 688 continue; 689 Offset += getObjectSize(i); 690 unsigned Align = getObjectAlignment(i); 691 // Adjust to alignment boundary 692 Offset = (Offset+Align-1)/Align*Align; 693 694 MaxAlign = std::max(Align, MaxAlign); 695 } 696 697 if (adjustsStack() && TFI->hasReservedCallFrame(MF)) 698 Offset += getMaxCallFrameSize(); 699 700 // Round up the size to a multiple of the alignment. If the function has 701 // any calls or alloca's, align to the target's StackAlignment value to 702 // ensure that the callee's frame or the alloca data is suitably aligned; 703 // otherwise, for leaf functions, align to the TransientStackAlignment 704 // value. 705 unsigned StackAlign; 706 if (adjustsStack() || hasVarSizedObjects() || 707 (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0)) 708 StackAlign = TFI->getStackAlignment(); 709 else 710 StackAlign = TFI->getTransientStackAlignment(); 711 712 // If the frame pointer is eliminated, all frame offsets will be relative to 713 // SP not FP. Align to MaxAlign so this works. 714 StackAlign = std::max(StackAlign, MaxAlign); 715 unsigned AlignMask = StackAlign - 1; 716 Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); 717 718 return (unsigned)Offset; 719 } 720 721 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 722 if (Objects.empty()) return; 723 724 const TargetFrameLowering *FI = MF.getSubtarget().getFrameLowering(); 725 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 726 727 OS << "Frame Objects:\n"; 728 729 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 730 const StackObject &SO = Objects[i]; 731 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 732 if (SO.Size == ~0ULL) { 733 OS << "dead\n"; 734 continue; 735 } 736 if (SO.Size == 0) 737 OS << "variable sized"; 738 else 739 OS << "size=" << SO.Size; 740 OS << ", align=" << SO.Alignment; 741 742 if (i < NumFixedObjects) 743 OS << ", fixed"; 744 if (i < NumFixedObjects || SO.SPOffset != -1) { 745 int64_t Off = SO.SPOffset - ValOffset; 746 OS << ", at location [SP"; 747 if (Off > 0) 748 OS << "+" << Off; 749 else if (Off < 0) 750 OS << Off; 751 OS << "]"; 752 } 753 OS << "\n"; 754 } 755 } 756 757 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 758 void MachineFrameInfo::dump(const MachineFunction &MF) const { 759 print(MF, dbgs()); 760 } 761 #endif 762 763 //===----------------------------------------------------------------------===// 764 // MachineJumpTableInfo implementation 765 //===----------------------------------------------------------------------===// 766 767 /// Return the size of each entry in the jump table. 768 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 769 // The size of a jump table entry is 4 bytes unless the entry is just the 770 // address of a block, in which case it is the pointer size. 771 switch (getEntryKind()) { 772 case MachineJumpTableInfo::EK_BlockAddress: 773 return TD.getPointerSize(); 774 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 775 return 8; 776 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 777 case MachineJumpTableInfo::EK_LabelDifference32: 778 case MachineJumpTableInfo::EK_Custom32: 779 return 4; 780 case MachineJumpTableInfo::EK_Inline: 781 return 0; 782 } 783 llvm_unreachable("Unknown jump table encoding!"); 784 } 785 786 /// Return the alignment of each entry in the jump table. 787 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 788 // The alignment of a jump table entry is the alignment of int32 unless the 789 // entry is just the address of a block, in which case it is the pointer 790 // alignment. 791 switch (getEntryKind()) { 792 case MachineJumpTableInfo::EK_BlockAddress: 793 return TD.getPointerABIAlignment(); 794 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 795 return TD.getABIIntegerTypeAlignment(64); 796 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 797 case MachineJumpTableInfo::EK_LabelDifference32: 798 case MachineJumpTableInfo::EK_Custom32: 799 return TD.getABIIntegerTypeAlignment(32); 800 case MachineJumpTableInfo::EK_Inline: 801 return 1; 802 } 803 llvm_unreachable("Unknown jump table encoding!"); 804 } 805 806 /// Create a new jump table entry in the jump table info. 807 unsigned MachineJumpTableInfo::createJumpTableIndex( 808 const std::vector<MachineBasicBlock*> &DestBBs) { 809 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 810 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 811 return JumpTables.size()-1; 812 } 813 814 /// If Old is the target of any jump tables, update the jump tables to branch 815 /// to New instead. 816 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 817 MachineBasicBlock *New) { 818 assert(Old != New && "Not making a change?"); 819 bool MadeChange = false; 820 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 821 ReplaceMBBInJumpTable(i, Old, New); 822 return MadeChange; 823 } 824 825 /// If Old is a target of the jump tables, update the jump table to branch to 826 /// New instead. 827 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 828 MachineBasicBlock *Old, 829 MachineBasicBlock *New) { 830 assert(Old != New && "Not making a change?"); 831 bool MadeChange = false; 832 MachineJumpTableEntry &JTE = JumpTables[Idx]; 833 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 834 if (JTE.MBBs[j] == Old) { 835 JTE.MBBs[j] = New; 836 MadeChange = true; 837 } 838 return MadeChange; 839 } 840 841 void MachineJumpTableInfo::print(raw_ostream &OS) const { 842 if (JumpTables.empty()) return; 843 844 OS << "Jump Tables:\n"; 845 846 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 847 OS << " jt#" << i << ": "; 848 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 849 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 850 } 851 852 OS << '\n'; 853 } 854 855 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 856 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 857 #endif 858 859 860 //===----------------------------------------------------------------------===// 861 // MachineConstantPool implementation 862 //===----------------------------------------------------------------------===// 863 864 void MachineConstantPoolValue::anchor() { } 865 866 Type *MachineConstantPoolEntry::getType() const { 867 if (isMachineConstantPoolEntry()) 868 return Val.MachineCPVal->getType(); 869 return Val.ConstVal->getType(); 870 } 871 872 bool MachineConstantPoolEntry::needsRelocation() const { 873 if (isMachineConstantPoolEntry()) 874 return true; 875 return Val.ConstVal->needsRelocation(); 876 } 877 878 SectionKind 879 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 880 if (needsRelocation()) 881 return SectionKind::getReadOnlyWithRel(); 882 switch (DL->getTypeAllocSize(getType())) { 883 case 4: 884 return SectionKind::getMergeableConst4(); 885 case 8: 886 return SectionKind::getMergeableConst8(); 887 case 16: 888 return SectionKind::getMergeableConst16(); 889 case 32: 890 return SectionKind::getMergeableConst32(); 891 default: 892 return SectionKind::getReadOnly(); 893 } 894 } 895 896 MachineConstantPool::~MachineConstantPool() { 897 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 898 if (Constants[i].isMachineConstantPoolEntry()) 899 delete Constants[i].Val.MachineCPVal; 900 for (DenseSet<MachineConstantPoolValue*>::iterator I = 901 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 902 I != E; ++I) 903 delete *I; 904 } 905 906 /// Test whether the given two constants can be allocated the same constant pool 907 /// entry. 908 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 909 const DataLayout &DL) { 910 // Handle the trivial case quickly. 911 if (A == B) return true; 912 913 // If they have the same type but weren't the same constant, quickly 914 // reject them. 915 if (A->getType() == B->getType()) return false; 916 917 // We can't handle structs or arrays. 918 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 919 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 920 return false; 921 922 // For now, only support constants with the same size. 923 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 924 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 925 return false; 926 927 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 928 929 // Try constant folding a bitcast of both instructions to an integer. If we 930 // get two identical ConstantInt's, then we are good to share them. We use 931 // the constant folding APIs to do this so that we get the benefit of 932 // DataLayout. 933 if (isa<PointerType>(A->getType())) 934 A = ConstantFoldCastOperand(Instruction::PtrToInt, 935 const_cast<Constant *>(A), IntTy, DL); 936 else if (A->getType() != IntTy) 937 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 938 IntTy, DL); 939 if (isa<PointerType>(B->getType())) 940 B = ConstantFoldCastOperand(Instruction::PtrToInt, 941 const_cast<Constant *>(B), IntTy, DL); 942 else if (B->getType() != IntTy) 943 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 944 IntTy, DL); 945 946 return A == B; 947 } 948 949 /// Create a new entry in the constant pool or return an existing one. 950 /// User must specify the log2 of the minimum required alignment for the object. 951 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 952 unsigned Alignment) { 953 assert(Alignment && "Alignment must be specified!"); 954 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 955 956 // Check to see if we already have this constant. 957 // 958 // FIXME, this could be made much more efficient for large constant pools. 959 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 960 if (!Constants[i].isMachineConstantPoolEntry() && 961 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 962 if ((unsigned)Constants[i].getAlignment() < Alignment) 963 Constants[i].Alignment = Alignment; 964 return i; 965 } 966 967 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 968 return Constants.size()-1; 969 } 970 971 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 972 unsigned Alignment) { 973 assert(Alignment && "Alignment must be specified!"); 974 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 975 976 // Check to see if we already have this constant. 977 // 978 // FIXME, this could be made much more efficient for large constant pools. 979 int Idx = V->getExistingMachineCPValue(this, Alignment); 980 if (Idx != -1) { 981 MachineCPVsSharingEntries.insert(V); 982 return (unsigned)Idx; 983 } 984 985 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 986 return Constants.size()-1; 987 } 988 989 void MachineConstantPool::print(raw_ostream &OS) const { 990 if (Constants.empty()) return; 991 992 OS << "Constant Pool:\n"; 993 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 994 OS << " cp#" << i << ": "; 995 if (Constants[i].isMachineConstantPoolEntry()) 996 Constants[i].Val.MachineCPVal->print(OS); 997 else 998 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 999 OS << ", align=" << Constants[i].getAlignment(); 1000 OS << "\n"; 1001 } 1002 } 1003 1004 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1005 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1006 #endif 1007