1 //===-- MachineFunction.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect native machine code information for a function.  This allows
11 // target-specific information about the generated code to be stored with each
12 // function.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/CodeGen/MachineConstantPool.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunctionInitializer.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineJumpTableInfo.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/CodeGen/PseudoSourceValue.h"
31 #include "llvm/CodeGen/WinEHFuncInfo.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/ModuleSlotTracker.h"
37 #include "llvm/MC/MCAsmInfo.h"
38 #include "llvm/MC/MCContext.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetFrameLowering.h"
43 #include "llvm/Target/TargetLowering.h"
44 #include "llvm/Target/TargetMachine.h"
45 #include "llvm/Target/TargetSubtargetInfo.h"
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "codegen"
49 
50 static cl::opt<unsigned>
51     AlignAllFunctions("align-all-functions",
52                       cl::desc("Force the alignment of all functions."),
53                       cl::init(0), cl::Hidden);
54 
55 void MachineFunctionInitializer::anchor() {}
56 
57 void MachineFunctionProperties::print(raw_ostream &ROS, bool OnlySet) const {
58   // Leave this function even in NDEBUG as an out-of-line anchor.
59 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
60   bool NeedsComma = false;
61   for (BitVector::size_type i = 0; i < Properties.size(); ++i) {
62     bool HasProperty = Properties[i];
63     if (OnlySet && !HasProperty)
64       continue;
65     if (NeedsComma)
66       ROS << ", ";
67     else
68       NeedsComma = true;
69     switch(static_cast<Property>(i)) {
70       case Property::IsSSA:
71         ROS << (HasProperty ? "SSA" : "Post SSA");
72         break;
73       case Property::TracksLiveness:
74         ROS << (HasProperty ? "" : "not ") << "tracking liveness";
75         break;
76       case Property::AllVRegsAllocated:
77         ROS << (HasProperty ? "AllVRegsAllocated" : "HasVRegs");
78         break;
79       case Property::Legalized:
80         ROS << (HasProperty ? "" : "not ") << "legalized";
81         break;
82       case Property::RegBankSelected:
83         ROS << (HasProperty ? "" : "not ") << "RegBank-selected";
84         break;
85       default:
86         break;
87     }
88   }
89 #endif
90 }
91 
92 //===----------------------------------------------------------------------===//
93 // MachineFunction implementation
94 //===----------------------------------------------------------------------===//
95 
96 // Out-of-line virtual method.
97 MachineFunctionInfo::~MachineFunctionInfo() {}
98 
99 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
100   MBB->getParent()->DeleteMachineBasicBlock(MBB);
101 }
102 
103 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
104                                            const Function *Fn) {
105   if (Fn->hasFnAttribute(Attribute::StackAlignment))
106     return Fn->getFnStackAlignment();
107   return STI->getFrameLowering()->getStackAlignment();
108 }
109 
110 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM,
111                                  unsigned FunctionNum, MachineModuleInfo &mmi)
112     : Fn(F), Target(TM), STI(TM.getSubtargetImpl(*F)), Ctx(mmi.getContext()),
113       MMI(mmi) {
114   // Assume the function starts in SSA form with correct liveness.
115   Properties.set(MachineFunctionProperties::Property::IsSSA);
116   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
117   if (STI->getRegisterInfo())
118     RegInfo = new (Allocator) MachineRegisterInfo(this);
119   else
120     RegInfo = nullptr;
121 
122   MFInfo = nullptr;
123   // We can realign the stack if the target supports it and the user hasn't
124   // explicitly asked us not to.
125   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
126                       !F->hasFnAttribute("no-realign-stack");
127   FrameInfo = new (Allocator) MachineFrameInfo(
128       getFnStackAlignment(STI, Fn), /*StackRealignable=*/CanRealignSP,
129       /*ForceRealign=*/CanRealignSP &&
130           F->hasFnAttribute(Attribute::StackAlignment));
131 
132   if (Fn->hasFnAttribute(Attribute::StackAlignment))
133     FrameInfo->ensureMaxAlignment(Fn->getFnStackAlignment());
134 
135   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
136   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
137 
138   // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn.
139   // FIXME: Use Function::optForSize().
140   if (!Fn->hasFnAttribute(Attribute::OptimizeForSize))
141     Alignment = std::max(Alignment,
142                          STI->getTargetLowering()->getPrefFunctionAlignment());
143 
144   if (AlignAllFunctions)
145     Alignment = AlignAllFunctions;
146 
147   FunctionNumber = FunctionNum;
148   JumpTableInfo = nullptr;
149 
150   if (isFuncletEHPersonality(classifyEHPersonality(
151           F->hasPersonalityFn() ? F->getPersonalityFn() : nullptr))) {
152     WinEHInfo = new (Allocator) WinEHFuncInfo();
153   }
154 
155   assert(TM.isCompatibleDataLayout(getDataLayout()) &&
156          "Can't create a MachineFunction using a Module with a "
157          "Target-incompatible DataLayout attached\n");
158 
159   PSVManager = llvm::make_unique<PseudoSourceValueManager>();
160 }
161 
162 MachineFunction::~MachineFunction() {
163   // Don't call destructors on MachineInstr and MachineOperand. All of their
164   // memory comes from the BumpPtrAllocator which is about to be purged.
165   //
166   // Do call MachineBasicBlock destructors, it contains std::vectors.
167   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
168     I->Insts.clearAndLeakNodesUnsafely();
169 
170   InstructionRecycler.clear(Allocator);
171   OperandRecycler.clear(Allocator);
172   BasicBlockRecycler.clear(Allocator);
173   if (RegInfo) {
174     RegInfo->~MachineRegisterInfo();
175     Allocator.Deallocate(RegInfo);
176   }
177   if (MFInfo) {
178     MFInfo->~MachineFunctionInfo();
179     Allocator.Deallocate(MFInfo);
180   }
181 
182   FrameInfo->~MachineFrameInfo();
183   Allocator.Deallocate(FrameInfo);
184 
185   ConstantPool->~MachineConstantPool();
186   Allocator.Deallocate(ConstantPool);
187 
188   if (JumpTableInfo) {
189     JumpTableInfo->~MachineJumpTableInfo();
190     Allocator.Deallocate(JumpTableInfo);
191   }
192 
193   if (WinEHInfo) {
194     WinEHInfo->~WinEHFuncInfo();
195     Allocator.Deallocate(WinEHInfo);
196   }
197 }
198 
199 const DataLayout &MachineFunction::getDataLayout() const {
200   return Fn->getParent()->getDataLayout();
201 }
202 
203 /// Get the JumpTableInfo for this function.
204 /// If it does not already exist, allocate one.
205 MachineJumpTableInfo *MachineFunction::
206 getOrCreateJumpTableInfo(unsigned EntryKind) {
207   if (JumpTableInfo) return JumpTableInfo;
208 
209   JumpTableInfo = new (Allocator)
210     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
211   return JumpTableInfo;
212 }
213 
214 /// Should we be emitting segmented stack stuff for the function
215 bool MachineFunction::shouldSplitStack() const {
216   return getFunction()->hasFnAttribute("split-stack");
217 }
218 
219 /// This discards all of the MachineBasicBlock numbers and recomputes them.
220 /// This guarantees that the MBB numbers are sequential, dense, and match the
221 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
222 /// is specified, only that block and those after it are renumbered.
223 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
224   if (empty()) { MBBNumbering.clear(); return; }
225   MachineFunction::iterator MBBI, E = end();
226   if (MBB == nullptr)
227     MBBI = begin();
228   else
229     MBBI = MBB->getIterator();
230 
231   // Figure out the block number this should have.
232   unsigned BlockNo = 0;
233   if (MBBI != begin())
234     BlockNo = std::prev(MBBI)->getNumber() + 1;
235 
236   for (; MBBI != E; ++MBBI, ++BlockNo) {
237     if (MBBI->getNumber() != (int)BlockNo) {
238       // Remove use of the old number.
239       if (MBBI->getNumber() != -1) {
240         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
241                "MBB number mismatch!");
242         MBBNumbering[MBBI->getNumber()] = nullptr;
243       }
244 
245       // If BlockNo is already taken, set that block's number to -1.
246       if (MBBNumbering[BlockNo])
247         MBBNumbering[BlockNo]->setNumber(-1);
248 
249       MBBNumbering[BlockNo] = &*MBBI;
250       MBBI->setNumber(BlockNo);
251     }
252   }
253 
254   // Okay, all the blocks are renumbered.  If we have compactified the block
255   // numbering, shrink MBBNumbering now.
256   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
257   MBBNumbering.resize(BlockNo);
258 }
259 
260 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
261 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
262                                                   const DebugLoc &DL,
263                                                   bool NoImp) {
264   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
265     MachineInstr(*this, MCID, DL, NoImp);
266 }
267 
268 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
269 /// identical in all ways except the instruction has no parent, prev, or next.
270 MachineInstr *
271 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
272   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
273              MachineInstr(*this, *Orig);
274 }
275 
276 /// Delete the given MachineInstr.
277 ///
278 /// This function also serves as the MachineInstr destructor - the real
279 /// ~MachineInstr() destructor must be empty.
280 void
281 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
282   // Strip it for parts. The operand array and the MI object itself are
283   // independently recyclable.
284   if (MI->Operands)
285     deallocateOperandArray(MI->CapOperands, MI->Operands);
286   // Don't call ~MachineInstr() which must be trivial anyway because
287   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
288   // destructors.
289   InstructionRecycler.Deallocate(Allocator, MI);
290 }
291 
292 /// Allocate a new MachineBasicBlock. Use this instead of
293 /// `new MachineBasicBlock'.
294 MachineBasicBlock *
295 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
296   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
297              MachineBasicBlock(*this, bb);
298 }
299 
300 /// Delete the given MachineBasicBlock.
301 void
302 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
303   assert(MBB->getParent() == this && "MBB parent mismatch!");
304   MBB->~MachineBasicBlock();
305   BasicBlockRecycler.Deallocate(Allocator, MBB);
306 }
307 
308 MachineMemOperand *MachineFunction::getMachineMemOperand(
309     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
310     unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges) {
311   return new (Allocator)
312       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges);
313 }
314 
315 MachineMemOperand *
316 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
317                                       int64_t Offset, uint64_t Size) {
318   if (MMO->getValue())
319     return new (Allocator)
320                MachineMemOperand(MachinePointerInfo(MMO->getValue(),
321                                                     MMO->getOffset()+Offset),
322                                  MMO->getFlags(), Size,
323                                  MMO->getBaseAlignment());
324   return new (Allocator)
325              MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(),
326                                                   MMO->getOffset()+Offset),
327                                MMO->getFlags(), Size,
328                                MMO->getBaseAlignment());
329 }
330 
331 MachineInstr::mmo_iterator
332 MachineFunction::allocateMemRefsArray(unsigned long Num) {
333   return Allocator.Allocate<MachineMemOperand *>(Num);
334 }
335 
336 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
337 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin,
338                                     MachineInstr::mmo_iterator End) {
339   // Count the number of load mem refs.
340   unsigned Num = 0;
341   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
342     if ((*I)->isLoad())
343       ++Num;
344 
345   // Allocate a new array and populate it with the load information.
346   MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
347   unsigned Index = 0;
348   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
349     if ((*I)->isLoad()) {
350       if (!(*I)->isStore())
351         // Reuse the MMO.
352         Result[Index] = *I;
353       else {
354         // Clone the MMO and unset the store flag.
355         MachineMemOperand *JustLoad =
356           getMachineMemOperand((*I)->getPointerInfo(),
357                                (*I)->getFlags() & ~MachineMemOperand::MOStore,
358                                (*I)->getSize(), (*I)->getBaseAlignment(),
359                                (*I)->getAAInfo());
360         Result[Index] = JustLoad;
361       }
362       ++Index;
363     }
364   }
365   return std::make_pair(Result, Result + Num);
366 }
367 
368 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
369 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
370                                      MachineInstr::mmo_iterator End) {
371   // Count the number of load mem refs.
372   unsigned Num = 0;
373   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
374     if ((*I)->isStore())
375       ++Num;
376 
377   // Allocate a new array and populate it with the store information.
378   MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
379   unsigned Index = 0;
380   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
381     if ((*I)->isStore()) {
382       if (!(*I)->isLoad())
383         // Reuse the MMO.
384         Result[Index] = *I;
385       else {
386         // Clone the MMO and unset the load flag.
387         MachineMemOperand *JustStore =
388           getMachineMemOperand((*I)->getPointerInfo(),
389                                (*I)->getFlags() & ~MachineMemOperand::MOLoad,
390                                (*I)->getSize(), (*I)->getBaseAlignment(),
391                                (*I)->getAAInfo());
392         Result[Index] = JustStore;
393       }
394       ++Index;
395     }
396   }
397   return std::make_pair(Result, Result + Num);
398 }
399 
400 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
401   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
402   std::copy(Name.begin(), Name.end(), Dest);
403   Dest[Name.size()] = 0;
404   return Dest;
405 }
406 
407 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
408 LLVM_DUMP_METHOD void MachineFunction::dump() const {
409   print(dbgs());
410 }
411 #endif
412 
413 StringRef MachineFunction::getName() const {
414   assert(getFunction() && "No function!");
415   return getFunction()->getName();
416 }
417 
418 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
419   OS << "# Machine code for function " << getName() << ": ";
420   OS << "Properties: <";
421   getProperties().print(OS);
422   OS << ">\n";
423 
424   // Print Frame Information
425   FrameInfo->print(*this, OS);
426 
427   // Print JumpTable Information
428   if (JumpTableInfo)
429     JumpTableInfo->print(OS);
430 
431   // Print Constant Pool
432   ConstantPool->print(OS);
433 
434   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
435 
436   if (RegInfo && !RegInfo->livein_empty()) {
437     OS << "Function Live Ins: ";
438     for (MachineRegisterInfo::livein_iterator
439          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
440       OS << PrintReg(I->first, TRI);
441       if (I->second)
442         OS << " in " << PrintReg(I->second, TRI);
443       if (std::next(I) != E)
444         OS << ", ";
445     }
446     OS << '\n';
447   }
448 
449   ModuleSlotTracker MST(getFunction()->getParent());
450   MST.incorporateFunction(*getFunction());
451   for (const auto &BB : *this) {
452     OS << '\n';
453     BB.print(OS, MST, Indexes);
454   }
455 
456   OS << "\n# End machine code for function " << getName() << ".\n\n";
457 }
458 
459 namespace llvm {
460   template<>
461   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
462 
463   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
464 
465     static std::string getGraphName(const MachineFunction *F) {
466       return ("CFG for '" + F->getName() + "' function").str();
467     }
468 
469     std::string getNodeLabel(const MachineBasicBlock *Node,
470                              const MachineFunction *Graph) {
471       std::string OutStr;
472       {
473         raw_string_ostream OSS(OutStr);
474 
475         if (isSimple()) {
476           OSS << "BB#" << Node->getNumber();
477           if (const BasicBlock *BB = Node->getBasicBlock())
478             OSS << ": " << BB->getName();
479         } else
480           Node->print(OSS);
481       }
482 
483       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
484 
485       // Process string output to make it nicer...
486       for (unsigned i = 0; i != OutStr.length(); ++i)
487         if (OutStr[i] == '\n') {                            // Left justify
488           OutStr[i] = '\\';
489           OutStr.insert(OutStr.begin()+i+1, 'l');
490         }
491       return OutStr;
492     }
493   };
494 }
495 
496 void MachineFunction::viewCFG() const
497 {
498 #ifndef NDEBUG
499   ViewGraph(this, "mf" + getName());
500 #else
501   errs() << "MachineFunction::viewCFG is only available in debug builds on "
502          << "systems with Graphviz or gv!\n";
503 #endif // NDEBUG
504 }
505 
506 void MachineFunction::viewCFGOnly() const
507 {
508 #ifndef NDEBUG
509   ViewGraph(this, "mf" + getName(), true);
510 #else
511   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
512          << "systems with Graphviz or gv!\n";
513 #endif // NDEBUG
514 }
515 
516 /// Add the specified physical register as a live-in value and
517 /// create a corresponding virtual register for it.
518 unsigned MachineFunction::addLiveIn(unsigned PReg,
519                                     const TargetRegisterClass *RC) {
520   MachineRegisterInfo &MRI = getRegInfo();
521   unsigned VReg = MRI.getLiveInVirtReg(PReg);
522   if (VReg) {
523     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
524     (void)VRegRC;
525     // A physical register can be added several times.
526     // Between two calls, the register class of the related virtual register
527     // may have been constrained to match some operation constraints.
528     // In that case, check that the current register class includes the
529     // physical register and is a sub class of the specified RC.
530     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
531                              RC->hasSubClassEq(VRegRC))) &&
532             "Register class mismatch!");
533     return VReg;
534   }
535   VReg = MRI.createVirtualRegister(RC);
536   MRI.addLiveIn(PReg, VReg);
537   return VReg;
538 }
539 
540 /// Return the MCSymbol for the specified non-empty jump table.
541 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
542 /// normal 'L' label is returned.
543 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
544                                         bool isLinkerPrivate) const {
545   const DataLayout &DL = getDataLayout();
546   assert(JumpTableInfo && "No jump tables");
547   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
548 
549   const char *Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
550                                        : DL.getPrivateGlobalPrefix();
551   SmallString<60> Name;
552   raw_svector_ostream(Name)
553     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
554   return Ctx.getOrCreateSymbol(Name);
555 }
556 
557 /// Return a function-local symbol to represent the PIC base.
558 MCSymbol *MachineFunction::getPICBaseSymbol() const {
559   const DataLayout &DL = getDataLayout();
560   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
561                                Twine(getFunctionNumber()) + "$pb");
562 }
563 
564 //===----------------------------------------------------------------------===//
565 //  MachineFrameInfo implementation
566 //===----------------------------------------------------------------------===//
567 
568 /// Make sure the function is at least Align bytes aligned.
569 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) {
570   if (!StackRealignable)
571     assert(Align <= StackAlignment &&
572            "For targets without stack realignment, Align is out of limit!");
573   if (MaxAlignment < Align) MaxAlignment = Align;
574 }
575 
576 /// Clamp the alignment if requested and emit a warning.
577 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align,
578                                            unsigned StackAlign) {
579   if (!ShouldClamp || Align <= StackAlign)
580     return Align;
581   DEBUG(dbgs() << "Warning: requested alignment " << Align
582                << " exceeds the stack alignment " << StackAlign
583                << " when stack realignment is off" << '\n');
584   return StackAlign;
585 }
586 
587 /// Create a new statically sized stack object, returning a nonnegative
588 /// identifier to represent it.
589 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment,
590                       bool isSS, const AllocaInst *Alloca) {
591   assert(Size != 0 && "Cannot allocate zero size stack objects!");
592   Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment);
593   Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca,
594                                 !isSS));
595   int Index = (int)Objects.size() - NumFixedObjects - 1;
596   assert(Index >= 0 && "Bad frame index!");
597   ensureMaxAlignment(Alignment);
598   return Index;
599 }
600 
601 /// Create a new statically sized stack object that represents a spill slot,
602 /// returning a nonnegative identifier to represent it.
603 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size,
604                                              unsigned Alignment) {
605   Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment);
606   CreateStackObject(Size, Alignment, true);
607   int Index = (int)Objects.size() - NumFixedObjects - 1;
608   ensureMaxAlignment(Alignment);
609   return Index;
610 }
611 
612 /// Notify the MachineFrameInfo object that a variable sized object has been
613 /// created. This must be created whenever a variable sized object is created,
614 /// whether or not the index returned is actually used.
615 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment,
616                                                 const AllocaInst *Alloca) {
617   HasVarSizedObjects = true;
618   Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment);
619   Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca, true));
620   ensureMaxAlignment(Alignment);
621   return (int)Objects.size()-NumFixedObjects-1;
622 }
623 
624 /// Create a new object at a fixed location on the stack.
625 /// All fixed objects should be created before other objects are created for
626 /// efficiency. By default, fixed objects are immutable. This returns an
627 /// index with a negative value.
628 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset,
629                                         bool Immutable, bool isAliased) {
630   assert(Size != 0 && "Cannot allocate zero size fixed stack objects!");
631   // The alignment of the frame index can be determined from its offset from
632   // the incoming frame position.  If the frame object is at offset 32 and
633   // the stack is guaranteed to be 16-byte aligned, then we know that the
634   // object is 16-byte aligned. Note that unlike the non-fixed case, if the
635   // stack needs realignment, we can't assume that the stack will in fact be
636   // aligned.
637   unsigned Align = MinAlign(SPOffset, ForcedRealign ? 1 : StackAlignment);
638   Align = clampStackAlignment(!StackRealignable, Align, StackAlignment);
639   Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable,
640                                               /*isSS*/   false,
641                                               /*Alloca*/ nullptr, isAliased));
642   return -++NumFixedObjects;
643 }
644 
645 /// Create a spill slot at a fixed location on the stack.
646 /// Returns an index with a negative value.
647 int MachineFrameInfo::CreateFixedSpillStackObject(uint64_t Size,
648                                                   int64_t SPOffset) {
649   unsigned Align = MinAlign(SPOffset, ForcedRealign ? 1 : StackAlignment);
650   Align = clampStackAlignment(!StackRealignable, Align, StackAlignment);
651   Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset,
652                                               /*Immutable*/ true,
653                                               /*isSS*/ true,
654                                               /*Alloca*/ nullptr,
655                                               /*isAliased*/ false));
656   return -++NumFixedObjects;
657 }
658 
659 BitVector MachineFrameInfo::getPristineRegs(const MachineFunction &MF) const {
660   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
661   BitVector BV(TRI->getNumRegs());
662 
663   // Before CSI is calculated, no registers are considered pristine. They can be
664   // freely used and PEI will make sure they are saved.
665   if (!isCalleeSavedInfoValid())
666     return BV;
667 
668   for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR)
669     BV.set(*CSR);
670 
671   // Saved CSRs are not pristine.
672   for (auto &I : getCalleeSavedInfo())
673     for (MCSubRegIterator S(I.getReg(), TRI, true); S.isValid(); ++S)
674       BV.reset(*S);
675 
676   return BV;
677 }
678 
679 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const {
680   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
681   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
682   unsigned MaxAlign = getMaxAlignment();
683   int Offset = 0;
684 
685   // This code is very, very similar to PEI::calculateFrameObjectOffsets().
686   // It really should be refactored to share code. Until then, changes
687   // should keep in mind that there's tight coupling between the two.
688 
689   for (int i = getObjectIndexBegin(); i != 0; ++i) {
690     int FixedOff = -getObjectOffset(i);
691     if (FixedOff > Offset) Offset = FixedOff;
692   }
693   for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) {
694     if (isDeadObjectIndex(i))
695       continue;
696     Offset += getObjectSize(i);
697     unsigned Align = getObjectAlignment(i);
698     // Adjust to alignment boundary
699     Offset = (Offset+Align-1)/Align*Align;
700 
701     MaxAlign = std::max(Align, MaxAlign);
702   }
703 
704   if (adjustsStack() && TFI->hasReservedCallFrame(MF))
705     Offset += getMaxCallFrameSize();
706 
707   // Round up the size to a multiple of the alignment.  If the function has
708   // any calls or alloca's, align to the target's StackAlignment value to
709   // ensure that the callee's frame or the alloca data is suitably aligned;
710   // otherwise, for leaf functions, align to the TransientStackAlignment
711   // value.
712   unsigned StackAlign;
713   if (adjustsStack() || hasVarSizedObjects() ||
714       (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0))
715     StackAlign = TFI->getStackAlignment();
716   else
717     StackAlign = TFI->getTransientStackAlignment();
718 
719   // If the frame pointer is eliminated, all frame offsets will be relative to
720   // SP not FP. Align to MaxAlign so this works.
721   StackAlign = std::max(StackAlign, MaxAlign);
722   unsigned AlignMask = StackAlign - 1;
723   Offset = (Offset + AlignMask) & ~uint64_t(AlignMask);
724 
725   return (unsigned)Offset;
726 }
727 
728 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{
729   if (Objects.empty()) return;
730 
731   const TargetFrameLowering *FI = MF.getSubtarget().getFrameLowering();
732   int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0);
733 
734   OS << "Frame Objects:\n";
735 
736   for (unsigned i = 0, e = Objects.size(); i != e; ++i) {
737     const StackObject &SO = Objects[i];
738     OS << "  fi#" << (int)(i-NumFixedObjects) << ": ";
739     if (SO.Size == ~0ULL) {
740       OS << "dead\n";
741       continue;
742     }
743     if (SO.Size == 0)
744       OS << "variable sized";
745     else
746       OS << "size=" << SO.Size;
747     OS << ", align=" << SO.Alignment;
748 
749     if (i < NumFixedObjects)
750       OS << ", fixed";
751     if (i < NumFixedObjects || SO.SPOffset != -1) {
752       int64_t Off = SO.SPOffset - ValOffset;
753       OS << ", at location [SP";
754       if (Off > 0)
755         OS << "+" << Off;
756       else if (Off < 0)
757         OS << Off;
758       OS << "]";
759     }
760     OS << "\n";
761   }
762 }
763 
764 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
765 void MachineFrameInfo::dump(const MachineFunction &MF) const {
766   print(MF, dbgs());
767 }
768 #endif
769 
770 //===----------------------------------------------------------------------===//
771 //  MachineJumpTableInfo implementation
772 //===----------------------------------------------------------------------===//
773 
774 /// Return the size of each entry in the jump table.
775 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
776   // The size of a jump table entry is 4 bytes unless the entry is just the
777   // address of a block, in which case it is the pointer size.
778   switch (getEntryKind()) {
779   case MachineJumpTableInfo::EK_BlockAddress:
780     return TD.getPointerSize();
781   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
782     return 8;
783   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
784   case MachineJumpTableInfo::EK_LabelDifference32:
785   case MachineJumpTableInfo::EK_Custom32:
786     return 4;
787   case MachineJumpTableInfo::EK_Inline:
788     return 0;
789   }
790   llvm_unreachable("Unknown jump table encoding!");
791 }
792 
793 /// Return the alignment of each entry in the jump table.
794 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
795   // The alignment of a jump table entry is the alignment of int32 unless the
796   // entry is just the address of a block, in which case it is the pointer
797   // alignment.
798   switch (getEntryKind()) {
799   case MachineJumpTableInfo::EK_BlockAddress:
800     return TD.getPointerABIAlignment();
801   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
802     return TD.getABIIntegerTypeAlignment(64);
803   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
804   case MachineJumpTableInfo::EK_LabelDifference32:
805   case MachineJumpTableInfo::EK_Custom32:
806     return TD.getABIIntegerTypeAlignment(32);
807   case MachineJumpTableInfo::EK_Inline:
808     return 1;
809   }
810   llvm_unreachable("Unknown jump table encoding!");
811 }
812 
813 /// Create a new jump table entry in the jump table info.
814 unsigned MachineJumpTableInfo::createJumpTableIndex(
815                                const std::vector<MachineBasicBlock*> &DestBBs) {
816   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
817   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
818   return JumpTables.size()-1;
819 }
820 
821 /// If Old is the target of any jump tables, update the jump tables to branch
822 /// to New instead.
823 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
824                                                   MachineBasicBlock *New) {
825   assert(Old != New && "Not making a change?");
826   bool MadeChange = false;
827   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
828     ReplaceMBBInJumpTable(i, Old, New);
829   return MadeChange;
830 }
831 
832 /// If Old is a target of the jump tables, update the jump table to branch to
833 /// New instead.
834 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
835                                                  MachineBasicBlock *Old,
836                                                  MachineBasicBlock *New) {
837   assert(Old != New && "Not making a change?");
838   bool MadeChange = false;
839   MachineJumpTableEntry &JTE = JumpTables[Idx];
840   for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
841     if (JTE.MBBs[j] == Old) {
842       JTE.MBBs[j] = New;
843       MadeChange = true;
844     }
845   return MadeChange;
846 }
847 
848 void MachineJumpTableInfo::print(raw_ostream &OS) const {
849   if (JumpTables.empty()) return;
850 
851   OS << "Jump Tables:\n";
852 
853   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
854     OS << "  jt#" << i << ": ";
855     for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
856       OS << " BB#" << JumpTables[i].MBBs[j]->getNumber();
857   }
858 
859   OS << '\n';
860 }
861 
862 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
863 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
864 #endif
865 
866 
867 //===----------------------------------------------------------------------===//
868 //  MachineConstantPool implementation
869 //===----------------------------------------------------------------------===//
870 
871 void MachineConstantPoolValue::anchor() { }
872 
873 Type *MachineConstantPoolEntry::getType() const {
874   if (isMachineConstantPoolEntry())
875     return Val.MachineCPVal->getType();
876   return Val.ConstVal->getType();
877 }
878 
879 bool MachineConstantPoolEntry::needsRelocation() const {
880   if (isMachineConstantPoolEntry())
881     return true;
882   return Val.ConstVal->needsRelocation();
883 }
884 
885 SectionKind
886 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
887   if (needsRelocation())
888     return SectionKind::getReadOnlyWithRel();
889   switch (DL->getTypeAllocSize(getType())) {
890   case 4:
891     return SectionKind::getMergeableConst4();
892   case 8:
893     return SectionKind::getMergeableConst8();
894   case 16:
895     return SectionKind::getMergeableConst16();
896   case 32:
897     return SectionKind::getMergeableConst32();
898   default:
899     return SectionKind::getReadOnly();
900   }
901 }
902 
903 MachineConstantPool::~MachineConstantPool() {
904   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
905     if (Constants[i].isMachineConstantPoolEntry())
906       delete Constants[i].Val.MachineCPVal;
907   for (DenseSet<MachineConstantPoolValue*>::iterator I =
908        MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
909        I != E; ++I)
910     delete *I;
911 }
912 
913 /// Test whether the given two constants can be allocated the same constant pool
914 /// entry.
915 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
916                                       const DataLayout &DL) {
917   // Handle the trivial case quickly.
918   if (A == B) return true;
919 
920   // If they have the same type but weren't the same constant, quickly
921   // reject them.
922   if (A->getType() == B->getType()) return false;
923 
924   // We can't handle structs or arrays.
925   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
926       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
927     return false;
928 
929   // For now, only support constants with the same size.
930   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
931   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
932     return false;
933 
934   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
935 
936   // Try constant folding a bitcast of both instructions to an integer.  If we
937   // get two identical ConstantInt's, then we are good to share them.  We use
938   // the constant folding APIs to do this so that we get the benefit of
939   // DataLayout.
940   if (isa<PointerType>(A->getType()))
941     A = ConstantFoldCastOperand(Instruction::PtrToInt,
942                                 const_cast<Constant *>(A), IntTy, DL);
943   else if (A->getType() != IntTy)
944     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
945                                 IntTy, DL);
946   if (isa<PointerType>(B->getType()))
947     B = ConstantFoldCastOperand(Instruction::PtrToInt,
948                                 const_cast<Constant *>(B), IntTy, DL);
949   else if (B->getType() != IntTy)
950     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
951                                 IntTy, DL);
952 
953   return A == B;
954 }
955 
956 /// Create a new entry in the constant pool or return an existing one.
957 /// User must specify the log2 of the minimum required alignment for the object.
958 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
959                                                    unsigned Alignment) {
960   assert(Alignment && "Alignment must be specified!");
961   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
962 
963   // Check to see if we already have this constant.
964   //
965   // FIXME, this could be made much more efficient for large constant pools.
966   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
967     if (!Constants[i].isMachineConstantPoolEntry() &&
968         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
969       if ((unsigned)Constants[i].getAlignment() < Alignment)
970         Constants[i].Alignment = Alignment;
971       return i;
972     }
973 
974   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
975   return Constants.size()-1;
976 }
977 
978 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
979                                                    unsigned Alignment) {
980   assert(Alignment && "Alignment must be specified!");
981   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
982 
983   // Check to see if we already have this constant.
984   //
985   // FIXME, this could be made much more efficient for large constant pools.
986   int Idx = V->getExistingMachineCPValue(this, Alignment);
987   if (Idx != -1) {
988     MachineCPVsSharingEntries.insert(V);
989     return (unsigned)Idx;
990   }
991 
992   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
993   return Constants.size()-1;
994 }
995 
996 void MachineConstantPool::print(raw_ostream &OS) const {
997   if (Constants.empty()) return;
998 
999   OS << "Constant Pool:\n";
1000   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1001     OS << "  cp#" << i << ": ";
1002     if (Constants[i].isMachineConstantPoolEntry())
1003       Constants[i].Val.MachineCPVal->print(OS);
1004     else
1005       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1006     OS << ", align=" << Constants[i].getAlignment();
1007     OS << "\n";
1008   }
1009 }
1010 
1011 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1012 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1013 #endif
1014