1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/EHPersonalities.h" 21 #include "llvm/CodeGen/MachineConstantPool.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionInitializer.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/Passes.h" 30 #include "llvm/CodeGen/PseudoSourceValue.h" 31 #include "llvm/CodeGen/WinEHFuncInfo.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/ModuleSlotTracker.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCContext.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetFrameLowering.h" 43 #include "llvm/Target/TargetLowering.h" 44 #include "llvm/Target/TargetMachine.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 using namespace llvm; 47 48 #define DEBUG_TYPE "codegen" 49 50 static cl::opt<unsigned> 51 AlignAllFunctions("align-all-functions", 52 cl::desc("Force the alignment of all functions."), 53 cl::init(0), cl::Hidden); 54 55 void MachineFunctionInitializer::anchor() {} 56 57 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 58 typedef MachineFunctionProperties::Property P; 59 switch(Prop) { 60 case P::AllVRegsAllocated: return "AllVRegsAllocated"; 61 case P::IsSSA: return "IsSSA"; 62 case P::Legalized: return "Legalized"; 63 case P::RegBankSelected: return "RegBankSelected"; 64 case P::Selected: return "Selected"; 65 case P::TracksLiveness: return "TracksLiveness"; 66 } 67 llvm_unreachable("Invalid machine function property"); 68 } 69 70 void MachineFunctionProperties::print(raw_ostream &OS) const { 71 const char *Separator = ""; 72 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 73 if (!Properties[I]) 74 continue; 75 OS << Separator << getPropertyName(static_cast<Property>(I)); 76 Separator = ", "; 77 } 78 } 79 80 //===----------------------------------------------------------------------===// 81 // MachineFunction implementation 82 //===----------------------------------------------------------------------===// 83 84 // Out-of-line virtual method. 85 MachineFunctionInfo::~MachineFunctionInfo() {} 86 87 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 88 MBB->getParent()->DeleteMachineBasicBlock(MBB); 89 } 90 91 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 92 const Function *Fn) { 93 if (Fn->hasFnAttribute(Attribute::StackAlignment)) 94 return Fn->getFnStackAlignment(); 95 return STI->getFrameLowering()->getStackAlignment(); 96 } 97 98 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 99 unsigned FunctionNum, MachineModuleInfo &mmi) 100 : Fn(F), Target(TM), STI(TM.getSubtargetImpl(*F)), Ctx(mmi.getContext()), 101 MMI(mmi) { 102 // Assume the function starts in SSA form with correct liveness. 103 Properties.set(MachineFunctionProperties::Property::IsSSA); 104 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 105 if (STI->getRegisterInfo()) 106 RegInfo = new (Allocator) MachineRegisterInfo(this); 107 else 108 RegInfo = nullptr; 109 110 MFInfo = nullptr; 111 // We can realign the stack if the target supports it and the user hasn't 112 // explicitly asked us not to. 113 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 114 !F->hasFnAttribute("no-realign-stack"); 115 FrameInfo = new (Allocator) MachineFrameInfo( 116 getFnStackAlignment(STI, Fn), /*StackRealignable=*/CanRealignSP, 117 /*ForceRealign=*/CanRealignSP && 118 F->hasFnAttribute(Attribute::StackAlignment)); 119 120 if (Fn->hasFnAttribute(Attribute::StackAlignment)) 121 FrameInfo->ensureMaxAlignment(Fn->getFnStackAlignment()); 122 123 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 124 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 125 126 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 127 // FIXME: Use Function::optForSize(). 128 if (!Fn->hasFnAttribute(Attribute::OptimizeForSize)) 129 Alignment = std::max(Alignment, 130 STI->getTargetLowering()->getPrefFunctionAlignment()); 131 132 if (AlignAllFunctions) 133 Alignment = AlignAllFunctions; 134 135 FunctionNumber = FunctionNum; 136 JumpTableInfo = nullptr; 137 138 if (isFuncletEHPersonality(classifyEHPersonality( 139 F->hasPersonalityFn() ? F->getPersonalityFn() : nullptr))) { 140 WinEHInfo = new (Allocator) WinEHFuncInfo(); 141 } 142 143 assert(TM.isCompatibleDataLayout(getDataLayout()) && 144 "Can't create a MachineFunction using a Module with a " 145 "Target-incompatible DataLayout attached\n"); 146 147 PSVManager = llvm::make_unique<PseudoSourceValueManager>(); 148 } 149 150 MachineFunction::~MachineFunction() { 151 // Don't call destructors on MachineInstr and MachineOperand. All of their 152 // memory comes from the BumpPtrAllocator which is about to be purged. 153 // 154 // Do call MachineBasicBlock destructors, it contains std::vectors. 155 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 156 I->Insts.clearAndLeakNodesUnsafely(); 157 158 InstructionRecycler.clear(Allocator); 159 OperandRecycler.clear(Allocator); 160 BasicBlockRecycler.clear(Allocator); 161 if (RegInfo) { 162 RegInfo->~MachineRegisterInfo(); 163 Allocator.Deallocate(RegInfo); 164 } 165 if (MFInfo) { 166 MFInfo->~MachineFunctionInfo(); 167 Allocator.Deallocate(MFInfo); 168 } 169 170 FrameInfo->~MachineFrameInfo(); 171 Allocator.Deallocate(FrameInfo); 172 173 ConstantPool->~MachineConstantPool(); 174 Allocator.Deallocate(ConstantPool); 175 176 if (JumpTableInfo) { 177 JumpTableInfo->~MachineJumpTableInfo(); 178 Allocator.Deallocate(JumpTableInfo); 179 } 180 181 if (WinEHInfo) { 182 WinEHInfo->~WinEHFuncInfo(); 183 Allocator.Deallocate(WinEHInfo); 184 } 185 } 186 187 const DataLayout &MachineFunction::getDataLayout() const { 188 return Fn->getParent()->getDataLayout(); 189 } 190 191 /// Get the JumpTableInfo for this function. 192 /// If it does not already exist, allocate one. 193 MachineJumpTableInfo *MachineFunction:: 194 getOrCreateJumpTableInfo(unsigned EntryKind) { 195 if (JumpTableInfo) return JumpTableInfo; 196 197 JumpTableInfo = new (Allocator) 198 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 199 return JumpTableInfo; 200 } 201 202 /// Should we be emitting segmented stack stuff for the function 203 bool MachineFunction::shouldSplitStack() const { 204 return getFunction()->hasFnAttribute("split-stack"); 205 } 206 207 /// This discards all of the MachineBasicBlock numbers and recomputes them. 208 /// This guarantees that the MBB numbers are sequential, dense, and match the 209 /// ordering of the blocks within the function. If a specific MachineBasicBlock 210 /// is specified, only that block and those after it are renumbered. 211 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 212 if (empty()) { MBBNumbering.clear(); return; } 213 MachineFunction::iterator MBBI, E = end(); 214 if (MBB == nullptr) 215 MBBI = begin(); 216 else 217 MBBI = MBB->getIterator(); 218 219 // Figure out the block number this should have. 220 unsigned BlockNo = 0; 221 if (MBBI != begin()) 222 BlockNo = std::prev(MBBI)->getNumber() + 1; 223 224 for (; MBBI != E; ++MBBI, ++BlockNo) { 225 if (MBBI->getNumber() != (int)BlockNo) { 226 // Remove use of the old number. 227 if (MBBI->getNumber() != -1) { 228 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 229 "MBB number mismatch!"); 230 MBBNumbering[MBBI->getNumber()] = nullptr; 231 } 232 233 // If BlockNo is already taken, set that block's number to -1. 234 if (MBBNumbering[BlockNo]) 235 MBBNumbering[BlockNo]->setNumber(-1); 236 237 MBBNumbering[BlockNo] = &*MBBI; 238 MBBI->setNumber(BlockNo); 239 } 240 } 241 242 // Okay, all the blocks are renumbered. If we have compactified the block 243 // numbering, shrink MBBNumbering now. 244 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 245 MBBNumbering.resize(BlockNo); 246 } 247 248 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 249 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 250 const DebugLoc &DL, 251 bool NoImp) { 252 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 253 MachineInstr(*this, MCID, DL, NoImp); 254 } 255 256 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 257 /// identical in all ways except the instruction has no parent, prev, or next. 258 MachineInstr * 259 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 260 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 261 MachineInstr(*this, *Orig); 262 } 263 264 /// Delete the given MachineInstr. 265 /// 266 /// This function also serves as the MachineInstr destructor - the real 267 /// ~MachineInstr() destructor must be empty. 268 void 269 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 270 // Strip it for parts. The operand array and the MI object itself are 271 // independently recyclable. 272 if (MI->Operands) 273 deallocateOperandArray(MI->CapOperands, MI->Operands); 274 // Don't call ~MachineInstr() which must be trivial anyway because 275 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 276 // destructors. 277 InstructionRecycler.Deallocate(Allocator, MI); 278 } 279 280 /// Allocate a new MachineBasicBlock. Use this instead of 281 /// `new MachineBasicBlock'. 282 MachineBasicBlock * 283 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 284 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 285 MachineBasicBlock(*this, bb); 286 } 287 288 /// Delete the given MachineBasicBlock. 289 void 290 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 291 assert(MBB->getParent() == this && "MBB parent mismatch!"); 292 MBB->~MachineBasicBlock(); 293 BasicBlockRecycler.Deallocate(Allocator, MBB); 294 } 295 296 MachineMemOperand *MachineFunction::getMachineMemOperand( 297 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 298 unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges) { 299 return new (Allocator) 300 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges); 301 } 302 303 MachineMemOperand * 304 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 305 int64_t Offset, uint64_t Size) { 306 if (MMO->getValue()) 307 return new (Allocator) 308 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 309 MMO->getOffset()+Offset), 310 MMO->getFlags(), Size, 311 MMO->getBaseAlignment()); 312 return new (Allocator) 313 MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(), 314 MMO->getOffset()+Offset), 315 MMO->getFlags(), Size, 316 MMO->getBaseAlignment()); 317 } 318 319 MachineInstr::mmo_iterator 320 MachineFunction::allocateMemRefsArray(unsigned long Num) { 321 return Allocator.Allocate<MachineMemOperand *>(Num); 322 } 323 324 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 325 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 326 MachineInstr::mmo_iterator End) { 327 // Count the number of load mem refs. 328 unsigned Num = 0; 329 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 330 if ((*I)->isLoad()) 331 ++Num; 332 333 // Allocate a new array and populate it with the load information. 334 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 335 unsigned Index = 0; 336 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 337 if ((*I)->isLoad()) { 338 if (!(*I)->isStore()) 339 // Reuse the MMO. 340 Result[Index] = *I; 341 else { 342 // Clone the MMO and unset the store flag. 343 MachineMemOperand *JustLoad = 344 getMachineMemOperand((*I)->getPointerInfo(), 345 (*I)->getFlags() & ~MachineMemOperand::MOStore, 346 (*I)->getSize(), (*I)->getBaseAlignment(), 347 (*I)->getAAInfo()); 348 Result[Index] = JustLoad; 349 } 350 ++Index; 351 } 352 } 353 return std::make_pair(Result, Result + Num); 354 } 355 356 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 357 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 358 MachineInstr::mmo_iterator End) { 359 // Count the number of load mem refs. 360 unsigned Num = 0; 361 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 362 if ((*I)->isStore()) 363 ++Num; 364 365 // Allocate a new array and populate it with the store information. 366 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 367 unsigned Index = 0; 368 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 369 if ((*I)->isStore()) { 370 if (!(*I)->isLoad()) 371 // Reuse the MMO. 372 Result[Index] = *I; 373 else { 374 // Clone the MMO and unset the load flag. 375 MachineMemOperand *JustStore = 376 getMachineMemOperand((*I)->getPointerInfo(), 377 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 378 (*I)->getSize(), (*I)->getBaseAlignment(), 379 (*I)->getAAInfo()); 380 Result[Index] = JustStore; 381 } 382 ++Index; 383 } 384 } 385 return std::make_pair(Result, Result + Num); 386 } 387 388 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 389 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 390 std::copy(Name.begin(), Name.end(), Dest); 391 Dest[Name.size()] = 0; 392 return Dest; 393 } 394 395 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 396 LLVM_DUMP_METHOD void MachineFunction::dump() const { 397 print(dbgs()); 398 } 399 #endif 400 401 StringRef MachineFunction::getName() const { 402 assert(getFunction() && "No function!"); 403 return getFunction()->getName(); 404 } 405 406 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 407 OS << "# Machine code for function " << getName() << ": "; 408 getProperties().print(OS); 409 410 // Print Frame Information 411 FrameInfo->print(*this, OS); 412 413 // Print JumpTable Information 414 if (JumpTableInfo) 415 JumpTableInfo->print(OS); 416 417 // Print Constant Pool 418 ConstantPool->print(OS); 419 420 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 421 422 if (RegInfo && !RegInfo->livein_empty()) { 423 OS << "Function Live Ins: "; 424 for (MachineRegisterInfo::livein_iterator 425 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 426 OS << PrintReg(I->first, TRI); 427 if (I->second) 428 OS << " in " << PrintReg(I->second, TRI); 429 if (std::next(I) != E) 430 OS << ", "; 431 } 432 OS << '\n'; 433 } 434 435 ModuleSlotTracker MST(getFunction()->getParent()); 436 MST.incorporateFunction(*getFunction()); 437 for (const auto &BB : *this) { 438 OS << '\n'; 439 BB.print(OS, MST, Indexes); 440 } 441 442 OS << "\n# End machine code for function " << getName() << ".\n\n"; 443 } 444 445 namespace llvm { 446 template<> 447 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 448 449 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 450 451 static std::string getGraphName(const MachineFunction *F) { 452 return ("CFG for '" + F->getName() + "' function").str(); 453 } 454 455 std::string getNodeLabel(const MachineBasicBlock *Node, 456 const MachineFunction *Graph) { 457 std::string OutStr; 458 { 459 raw_string_ostream OSS(OutStr); 460 461 if (isSimple()) { 462 OSS << "BB#" << Node->getNumber(); 463 if (const BasicBlock *BB = Node->getBasicBlock()) 464 OSS << ": " << BB->getName(); 465 } else 466 Node->print(OSS); 467 } 468 469 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 470 471 // Process string output to make it nicer... 472 for (unsigned i = 0; i != OutStr.length(); ++i) 473 if (OutStr[i] == '\n') { // Left justify 474 OutStr[i] = '\\'; 475 OutStr.insert(OutStr.begin()+i+1, 'l'); 476 } 477 return OutStr; 478 } 479 }; 480 } 481 482 void MachineFunction::viewCFG() const 483 { 484 #ifndef NDEBUG 485 ViewGraph(this, "mf" + getName()); 486 #else 487 errs() << "MachineFunction::viewCFG is only available in debug builds on " 488 << "systems with Graphviz or gv!\n"; 489 #endif // NDEBUG 490 } 491 492 void MachineFunction::viewCFGOnly() const 493 { 494 #ifndef NDEBUG 495 ViewGraph(this, "mf" + getName(), true); 496 #else 497 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 498 << "systems with Graphviz or gv!\n"; 499 #endif // NDEBUG 500 } 501 502 /// Add the specified physical register as a live-in value and 503 /// create a corresponding virtual register for it. 504 unsigned MachineFunction::addLiveIn(unsigned PReg, 505 const TargetRegisterClass *RC) { 506 MachineRegisterInfo &MRI = getRegInfo(); 507 unsigned VReg = MRI.getLiveInVirtReg(PReg); 508 if (VReg) { 509 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 510 (void)VRegRC; 511 // A physical register can be added several times. 512 // Between two calls, the register class of the related virtual register 513 // may have been constrained to match some operation constraints. 514 // In that case, check that the current register class includes the 515 // physical register and is a sub class of the specified RC. 516 assert((VRegRC == RC || (VRegRC->contains(PReg) && 517 RC->hasSubClassEq(VRegRC))) && 518 "Register class mismatch!"); 519 return VReg; 520 } 521 VReg = MRI.createVirtualRegister(RC); 522 MRI.addLiveIn(PReg, VReg); 523 return VReg; 524 } 525 526 /// Return the MCSymbol for the specified non-empty jump table. 527 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 528 /// normal 'L' label is returned. 529 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 530 bool isLinkerPrivate) const { 531 const DataLayout &DL = getDataLayout(); 532 assert(JumpTableInfo && "No jump tables"); 533 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 534 535 const char *Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 536 : DL.getPrivateGlobalPrefix(); 537 SmallString<60> Name; 538 raw_svector_ostream(Name) 539 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 540 return Ctx.getOrCreateSymbol(Name); 541 } 542 543 /// Return a function-local symbol to represent the PIC base. 544 MCSymbol *MachineFunction::getPICBaseSymbol() const { 545 const DataLayout &DL = getDataLayout(); 546 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 547 Twine(getFunctionNumber()) + "$pb"); 548 } 549 550 //===----------------------------------------------------------------------===// 551 // MachineFrameInfo implementation 552 //===----------------------------------------------------------------------===// 553 554 /// Make sure the function is at least Align bytes aligned. 555 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 556 if (!StackRealignable) 557 assert(Align <= StackAlignment && 558 "For targets without stack realignment, Align is out of limit!"); 559 if (MaxAlignment < Align) MaxAlignment = Align; 560 } 561 562 /// Clamp the alignment if requested and emit a warning. 563 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align, 564 unsigned StackAlign) { 565 if (!ShouldClamp || Align <= StackAlign) 566 return Align; 567 DEBUG(dbgs() << "Warning: requested alignment " << Align 568 << " exceeds the stack alignment " << StackAlign 569 << " when stack realignment is off" << '\n'); 570 return StackAlign; 571 } 572 573 /// Create a new statically sized stack object, returning a nonnegative 574 /// identifier to represent it. 575 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment, 576 bool isSS, const AllocaInst *Alloca) { 577 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 578 Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment); 579 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca, 580 !isSS)); 581 int Index = (int)Objects.size() - NumFixedObjects - 1; 582 assert(Index >= 0 && "Bad frame index!"); 583 ensureMaxAlignment(Alignment); 584 return Index; 585 } 586 587 /// Create a new statically sized stack object that represents a spill slot, 588 /// returning a nonnegative identifier to represent it. 589 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 590 unsigned Alignment) { 591 Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment); 592 CreateStackObject(Size, Alignment, true); 593 int Index = (int)Objects.size() - NumFixedObjects - 1; 594 ensureMaxAlignment(Alignment); 595 return Index; 596 } 597 598 /// Notify the MachineFrameInfo object that a variable sized object has been 599 /// created. This must be created whenever a variable sized object is created, 600 /// whether or not the index returned is actually used. 601 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment, 602 const AllocaInst *Alloca) { 603 HasVarSizedObjects = true; 604 Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment); 605 Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca, true)); 606 ensureMaxAlignment(Alignment); 607 return (int)Objects.size()-NumFixedObjects-1; 608 } 609 610 /// Create a new object at a fixed location on the stack. 611 /// All fixed objects should be created before other objects are created for 612 /// efficiency. By default, fixed objects are immutable. This returns an 613 /// index with a negative value. 614 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 615 bool Immutable, bool isAliased) { 616 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 617 // The alignment of the frame index can be determined from its offset from 618 // the incoming frame position. If the frame object is at offset 32 and 619 // the stack is guaranteed to be 16-byte aligned, then we know that the 620 // object is 16-byte aligned. Note that unlike the non-fixed case, if the 621 // stack needs realignment, we can't assume that the stack will in fact be 622 // aligned. 623 unsigned Align = MinAlign(SPOffset, ForcedRealign ? 1 : StackAlignment); 624 Align = clampStackAlignment(!StackRealignable, Align, StackAlignment); 625 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 626 /*isSS*/ false, 627 /*Alloca*/ nullptr, isAliased)); 628 return -++NumFixedObjects; 629 } 630 631 /// Create a spill slot at a fixed location on the stack. 632 /// Returns an index with a negative value. 633 int MachineFrameInfo::CreateFixedSpillStackObject(uint64_t Size, 634 int64_t SPOffset) { 635 unsigned Align = MinAlign(SPOffset, ForcedRealign ? 1 : StackAlignment); 636 Align = clampStackAlignment(!StackRealignable, Align, StackAlignment); 637 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, 638 /*Immutable*/ true, 639 /*isSS*/ true, 640 /*Alloca*/ nullptr, 641 /*isAliased*/ false)); 642 return -++NumFixedObjects; 643 } 644 645 BitVector MachineFrameInfo::getPristineRegs(const MachineFunction &MF) const { 646 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 647 BitVector BV(TRI->getNumRegs()); 648 649 // Before CSI is calculated, no registers are considered pristine. They can be 650 // freely used and PEI will make sure they are saved. 651 if (!isCalleeSavedInfoValid()) 652 return BV; 653 654 for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR) 655 BV.set(*CSR); 656 657 // Saved CSRs are not pristine. 658 for (auto &I : getCalleeSavedInfo()) 659 for (MCSubRegIterator S(I.getReg(), TRI, true); S.isValid(); ++S) 660 BV.reset(*S); 661 662 return BV; 663 } 664 665 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const { 666 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 667 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 668 unsigned MaxAlign = getMaxAlignment(); 669 int Offset = 0; 670 671 // This code is very, very similar to PEI::calculateFrameObjectOffsets(). 672 // It really should be refactored to share code. Until then, changes 673 // should keep in mind that there's tight coupling between the two. 674 675 for (int i = getObjectIndexBegin(); i != 0; ++i) { 676 int FixedOff = -getObjectOffset(i); 677 if (FixedOff > Offset) Offset = FixedOff; 678 } 679 for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) { 680 if (isDeadObjectIndex(i)) 681 continue; 682 Offset += getObjectSize(i); 683 unsigned Align = getObjectAlignment(i); 684 // Adjust to alignment boundary 685 Offset = (Offset+Align-1)/Align*Align; 686 687 MaxAlign = std::max(Align, MaxAlign); 688 } 689 690 if (adjustsStack() && TFI->hasReservedCallFrame(MF)) 691 Offset += getMaxCallFrameSize(); 692 693 // Round up the size to a multiple of the alignment. If the function has 694 // any calls or alloca's, align to the target's StackAlignment value to 695 // ensure that the callee's frame or the alloca data is suitably aligned; 696 // otherwise, for leaf functions, align to the TransientStackAlignment 697 // value. 698 unsigned StackAlign; 699 if (adjustsStack() || hasVarSizedObjects() || 700 (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0)) 701 StackAlign = TFI->getStackAlignment(); 702 else 703 StackAlign = TFI->getTransientStackAlignment(); 704 705 // If the frame pointer is eliminated, all frame offsets will be relative to 706 // SP not FP. Align to MaxAlign so this works. 707 StackAlign = std::max(StackAlign, MaxAlign); 708 unsigned AlignMask = StackAlign - 1; 709 Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); 710 711 return (unsigned)Offset; 712 } 713 714 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 715 if (Objects.empty()) return; 716 717 const TargetFrameLowering *FI = MF.getSubtarget().getFrameLowering(); 718 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 719 720 OS << "Frame Objects:\n"; 721 722 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 723 const StackObject &SO = Objects[i]; 724 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 725 if (SO.Size == ~0ULL) { 726 OS << "dead\n"; 727 continue; 728 } 729 if (SO.Size == 0) 730 OS << "variable sized"; 731 else 732 OS << "size=" << SO.Size; 733 OS << ", align=" << SO.Alignment; 734 735 if (i < NumFixedObjects) 736 OS << ", fixed"; 737 if (i < NumFixedObjects || SO.SPOffset != -1) { 738 int64_t Off = SO.SPOffset - ValOffset; 739 OS << ", at location [SP"; 740 if (Off > 0) 741 OS << "+" << Off; 742 else if (Off < 0) 743 OS << Off; 744 OS << "]"; 745 } 746 OS << "\n"; 747 } 748 } 749 750 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 751 void MachineFrameInfo::dump(const MachineFunction &MF) const { 752 print(MF, dbgs()); 753 } 754 #endif 755 756 //===----------------------------------------------------------------------===// 757 // MachineJumpTableInfo implementation 758 //===----------------------------------------------------------------------===// 759 760 /// Return the size of each entry in the jump table. 761 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 762 // The size of a jump table entry is 4 bytes unless the entry is just the 763 // address of a block, in which case it is the pointer size. 764 switch (getEntryKind()) { 765 case MachineJumpTableInfo::EK_BlockAddress: 766 return TD.getPointerSize(); 767 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 768 return 8; 769 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 770 case MachineJumpTableInfo::EK_LabelDifference32: 771 case MachineJumpTableInfo::EK_Custom32: 772 return 4; 773 case MachineJumpTableInfo::EK_Inline: 774 return 0; 775 } 776 llvm_unreachable("Unknown jump table encoding!"); 777 } 778 779 /// Return the alignment of each entry in the jump table. 780 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 781 // The alignment of a jump table entry is the alignment of int32 unless the 782 // entry is just the address of a block, in which case it is the pointer 783 // alignment. 784 switch (getEntryKind()) { 785 case MachineJumpTableInfo::EK_BlockAddress: 786 return TD.getPointerABIAlignment(); 787 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 788 return TD.getABIIntegerTypeAlignment(64); 789 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 790 case MachineJumpTableInfo::EK_LabelDifference32: 791 case MachineJumpTableInfo::EK_Custom32: 792 return TD.getABIIntegerTypeAlignment(32); 793 case MachineJumpTableInfo::EK_Inline: 794 return 1; 795 } 796 llvm_unreachable("Unknown jump table encoding!"); 797 } 798 799 /// Create a new jump table entry in the jump table info. 800 unsigned MachineJumpTableInfo::createJumpTableIndex( 801 const std::vector<MachineBasicBlock*> &DestBBs) { 802 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 803 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 804 return JumpTables.size()-1; 805 } 806 807 /// If Old is the target of any jump tables, update the jump tables to branch 808 /// to New instead. 809 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 810 MachineBasicBlock *New) { 811 assert(Old != New && "Not making a change?"); 812 bool MadeChange = false; 813 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 814 ReplaceMBBInJumpTable(i, Old, New); 815 return MadeChange; 816 } 817 818 /// If Old is a target of the jump tables, update the jump table to branch to 819 /// New instead. 820 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 821 MachineBasicBlock *Old, 822 MachineBasicBlock *New) { 823 assert(Old != New && "Not making a change?"); 824 bool MadeChange = false; 825 MachineJumpTableEntry &JTE = JumpTables[Idx]; 826 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 827 if (JTE.MBBs[j] == Old) { 828 JTE.MBBs[j] = New; 829 MadeChange = true; 830 } 831 return MadeChange; 832 } 833 834 void MachineJumpTableInfo::print(raw_ostream &OS) const { 835 if (JumpTables.empty()) return; 836 837 OS << "Jump Tables:\n"; 838 839 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 840 OS << " jt#" << i << ": "; 841 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 842 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 843 } 844 845 OS << '\n'; 846 } 847 848 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 849 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 850 #endif 851 852 853 //===----------------------------------------------------------------------===// 854 // MachineConstantPool implementation 855 //===----------------------------------------------------------------------===// 856 857 void MachineConstantPoolValue::anchor() { } 858 859 Type *MachineConstantPoolEntry::getType() const { 860 if (isMachineConstantPoolEntry()) 861 return Val.MachineCPVal->getType(); 862 return Val.ConstVal->getType(); 863 } 864 865 bool MachineConstantPoolEntry::needsRelocation() const { 866 if (isMachineConstantPoolEntry()) 867 return true; 868 return Val.ConstVal->needsRelocation(); 869 } 870 871 SectionKind 872 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 873 if (needsRelocation()) 874 return SectionKind::getReadOnlyWithRel(); 875 switch (DL->getTypeAllocSize(getType())) { 876 case 4: 877 return SectionKind::getMergeableConst4(); 878 case 8: 879 return SectionKind::getMergeableConst8(); 880 case 16: 881 return SectionKind::getMergeableConst16(); 882 case 32: 883 return SectionKind::getMergeableConst32(); 884 default: 885 return SectionKind::getReadOnly(); 886 } 887 } 888 889 MachineConstantPool::~MachineConstantPool() { 890 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 891 if (Constants[i].isMachineConstantPoolEntry()) 892 delete Constants[i].Val.MachineCPVal; 893 for (DenseSet<MachineConstantPoolValue*>::iterator I = 894 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 895 I != E; ++I) 896 delete *I; 897 } 898 899 /// Test whether the given two constants can be allocated the same constant pool 900 /// entry. 901 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 902 const DataLayout &DL) { 903 // Handle the trivial case quickly. 904 if (A == B) return true; 905 906 // If they have the same type but weren't the same constant, quickly 907 // reject them. 908 if (A->getType() == B->getType()) return false; 909 910 // We can't handle structs or arrays. 911 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 912 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 913 return false; 914 915 // For now, only support constants with the same size. 916 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 917 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 918 return false; 919 920 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 921 922 // Try constant folding a bitcast of both instructions to an integer. If we 923 // get two identical ConstantInt's, then we are good to share them. We use 924 // the constant folding APIs to do this so that we get the benefit of 925 // DataLayout. 926 if (isa<PointerType>(A->getType())) 927 A = ConstantFoldCastOperand(Instruction::PtrToInt, 928 const_cast<Constant *>(A), IntTy, DL); 929 else if (A->getType() != IntTy) 930 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 931 IntTy, DL); 932 if (isa<PointerType>(B->getType())) 933 B = ConstantFoldCastOperand(Instruction::PtrToInt, 934 const_cast<Constant *>(B), IntTy, DL); 935 else if (B->getType() != IntTy) 936 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 937 IntTy, DL); 938 939 return A == B; 940 } 941 942 /// Create a new entry in the constant pool or return an existing one. 943 /// User must specify the log2 of the minimum required alignment for the object. 944 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 945 unsigned Alignment) { 946 assert(Alignment && "Alignment must be specified!"); 947 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 948 949 // Check to see if we already have this constant. 950 // 951 // FIXME, this could be made much more efficient for large constant pools. 952 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 953 if (!Constants[i].isMachineConstantPoolEntry() && 954 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 955 if ((unsigned)Constants[i].getAlignment() < Alignment) 956 Constants[i].Alignment = Alignment; 957 return i; 958 } 959 960 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 961 return Constants.size()-1; 962 } 963 964 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 965 unsigned Alignment) { 966 assert(Alignment && "Alignment must be specified!"); 967 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 968 969 // Check to see if we already have this constant. 970 // 971 // FIXME, this could be made much more efficient for large constant pools. 972 int Idx = V->getExistingMachineCPValue(this, Alignment); 973 if (Idx != -1) { 974 MachineCPVsSharingEntries.insert(V); 975 return (unsigned)Idx; 976 } 977 978 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 979 return Constants.size()-1; 980 } 981 982 void MachineConstantPool::print(raw_ostream &OS) const { 983 if (Constants.empty()) return; 984 985 OS << "Constant Pool:\n"; 986 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 987 OS << " cp#" << i << ": "; 988 if (Constants[i].isMachineConstantPoolEntry()) 989 Constants[i].Val.MachineCPVal->print(OS); 990 else 991 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 992 OS << ", align=" << Constants[i].getAlignment(); 993 OS << "\n"; 994 } 995 } 996 997 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 998 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 999 #endif 1000