1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/EHPersonalities.h" 21 #include "llvm/CodeGen/MachineConstantPool.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/WinEHFuncInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/ModuleSlotTracker.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/GraphWriter.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetFrameLowering.h" 42 #include "llvm/Target/TargetLowering.h" 43 #include "llvm/Target/TargetMachine.h" 44 #include "llvm/Target/TargetSubtargetInfo.h" 45 using namespace llvm; 46 47 #define DEBUG_TYPE "codegen" 48 49 static cl::opt<unsigned> 50 AlignAllFunctions("align-all-functions", 51 cl::desc("Force the alignment of all functions."), 52 cl::init(0), cl::Hidden); 53 54 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 55 typedef MachineFunctionProperties::Property P; 56 switch(Prop) { 57 case P::FailedISel: return "FailedISel"; 58 case P::IsSSA: return "IsSSA"; 59 case P::Legalized: return "Legalized"; 60 case P::NoPHIs: return "NoPHIs"; 61 case P::NoVRegs: return "NoVRegs"; 62 case P::RegBankSelected: return "RegBankSelected"; 63 case P::Selected: return "Selected"; 64 case P::TracksLiveness: return "TracksLiveness"; 65 } 66 llvm_unreachable("Invalid machine function property"); 67 } 68 69 void MachineFunctionProperties::print(raw_ostream &OS) const { 70 const char *Separator = ""; 71 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 72 if (!Properties[I]) 73 continue; 74 OS << Separator << getPropertyName(static_cast<Property>(I)); 75 Separator = ", "; 76 } 77 } 78 79 //===----------------------------------------------------------------------===// 80 // MachineFunction implementation 81 //===----------------------------------------------------------------------===// 82 83 // Out-of-line virtual method. 84 MachineFunctionInfo::~MachineFunctionInfo() {} 85 86 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 87 MBB->getParent()->DeleteMachineBasicBlock(MBB); 88 } 89 90 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 91 const Function *Fn) { 92 if (Fn->hasFnAttribute(Attribute::StackAlignment)) 93 return Fn->getFnStackAlignment(); 94 return STI->getFrameLowering()->getStackAlignment(); 95 } 96 97 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 98 unsigned FunctionNum, MachineModuleInfo &mmi) 99 : Fn(F), Target(TM), STI(TM.getSubtargetImpl(*F)), Ctx(mmi.getContext()), 100 MMI(mmi) { 101 FunctionNumber = FunctionNum; 102 init(); 103 } 104 105 void MachineFunction::init() { 106 // Assume the function starts in SSA form with correct liveness. 107 Properties.set(MachineFunctionProperties::Property::IsSSA); 108 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 109 if (STI->getRegisterInfo()) 110 RegInfo = new (Allocator) MachineRegisterInfo(this); 111 else 112 RegInfo = nullptr; 113 114 MFInfo = nullptr; 115 // We can realign the stack if the target supports it and the user hasn't 116 // explicitly asked us not to. 117 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 118 !Fn->hasFnAttribute("no-realign-stack"); 119 FrameInfo = new (Allocator) MachineFrameInfo( 120 getFnStackAlignment(STI, Fn), /*StackRealignable=*/CanRealignSP, 121 /*ForceRealign=*/CanRealignSP && 122 Fn->hasFnAttribute(Attribute::StackAlignment)); 123 124 if (Fn->hasFnAttribute(Attribute::StackAlignment)) 125 FrameInfo->ensureMaxAlignment(Fn->getFnStackAlignment()); 126 127 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 128 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 129 130 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 131 // FIXME: Use Function::optForSize(). 132 if (!Fn->hasFnAttribute(Attribute::OptimizeForSize)) 133 Alignment = std::max(Alignment, 134 STI->getTargetLowering()->getPrefFunctionAlignment()); 135 136 if (AlignAllFunctions) 137 Alignment = AlignAllFunctions; 138 139 JumpTableInfo = nullptr; 140 141 if (isFuncletEHPersonality(classifyEHPersonality( 142 Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr))) { 143 WinEHInfo = new (Allocator) WinEHFuncInfo(); 144 } 145 146 assert(Target.isCompatibleDataLayout(getDataLayout()) && 147 "Can't create a MachineFunction using a Module with a " 148 "Target-incompatible DataLayout attached\n"); 149 150 PSVManager = 151 llvm::make_unique<PseudoSourceValueManager>(*(getSubtarget(). 152 getInstrInfo())); 153 } 154 155 MachineFunction::~MachineFunction() { 156 clear(); 157 } 158 159 void MachineFunction::clear() { 160 Properties.reset(); 161 // Don't call destructors on MachineInstr and MachineOperand. All of their 162 // memory comes from the BumpPtrAllocator which is about to be purged. 163 // 164 // Do call MachineBasicBlock destructors, it contains std::vectors. 165 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 166 I->Insts.clearAndLeakNodesUnsafely(); 167 168 InstructionRecycler.clear(Allocator); 169 OperandRecycler.clear(Allocator); 170 BasicBlockRecycler.clear(Allocator); 171 CodeViewAnnotations.clear(); 172 VariableDbgInfos.clear(); 173 if (RegInfo) { 174 RegInfo->~MachineRegisterInfo(); 175 Allocator.Deallocate(RegInfo); 176 } 177 if (MFInfo) { 178 MFInfo->~MachineFunctionInfo(); 179 Allocator.Deallocate(MFInfo); 180 } 181 182 FrameInfo->~MachineFrameInfo(); 183 Allocator.Deallocate(FrameInfo); 184 185 ConstantPool->~MachineConstantPool(); 186 Allocator.Deallocate(ConstantPool); 187 188 if (JumpTableInfo) { 189 JumpTableInfo->~MachineJumpTableInfo(); 190 Allocator.Deallocate(JumpTableInfo); 191 } 192 193 if (WinEHInfo) { 194 WinEHInfo->~WinEHFuncInfo(); 195 Allocator.Deallocate(WinEHInfo); 196 } 197 } 198 199 const DataLayout &MachineFunction::getDataLayout() const { 200 return Fn->getParent()->getDataLayout(); 201 } 202 203 /// Get the JumpTableInfo for this function. 204 /// If it does not already exist, allocate one. 205 MachineJumpTableInfo *MachineFunction:: 206 getOrCreateJumpTableInfo(unsigned EntryKind) { 207 if (JumpTableInfo) return JumpTableInfo; 208 209 JumpTableInfo = new (Allocator) 210 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 211 return JumpTableInfo; 212 } 213 214 /// Should we be emitting segmented stack stuff for the function 215 bool MachineFunction::shouldSplitStack() const { 216 return getFunction()->hasFnAttribute("split-stack"); 217 } 218 219 /// This discards all of the MachineBasicBlock numbers and recomputes them. 220 /// This guarantees that the MBB numbers are sequential, dense, and match the 221 /// ordering of the blocks within the function. If a specific MachineBasicBlock 222 /// is specified, only that block and those after it are renumbered. 223 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 224 if (empty()) { MBBNumbering.clear(); return; } 225 MachineFunction::iterator MBBI, E = end(); 226 if (MBB == nullptr) 227 MBBI = begin(); 228 else 229 MBBI = MBB->getIterator(); 230 231 // Figure out the block number this should have. 232 unsigned BlockNo = 0; 233 if (MBBI != begin()) 234 BlockNo = std::prev(MBBI)->getNumber() + 1; 235 236 for (; MBBI != E; ++MBBI, ++BlockNo) { 237 if (MBBI->getNumber() != (int)BlockNo) { 238 // Remove use of the old number. 239 if (MBBI->getNumber() != -1) { 240 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 241 "MBB number mismatch!"); 242 MBBNumbering[MBBI->getNumber()] = nullptr; 243 } 244 245 // If BlockNo is already taken, set that block's number to -1. 246 if (MBBNumbering[BlockNo]) 247 MBBNumbering[BlockNo]->setNumber(-1); 248 249 MBBNumbering[BlockNo] = &*MBBI; 250 MBBI->setNumber(BlockNo); 251 } 252 } 253 254 // Okay, all the blocks are renumbered. If we have compactified the block 255 // numbering, shrink MBBNumbering now. 256 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 257 MBBNumbering.resize(BlockNo); 258 } 259 260 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 261 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 262 const DebugLoc &DL, 263 bool NoImp) { 264 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 265 MachineInstr(*this, MCID, DL, NoImp); 266 } 267 268 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 269 /// identical in all ways except the instruction has no parent, prev, or next. 270 MachineInstr * 271 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 272 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 273 MachineInstr(*this, *Orig); 274 } 275 276 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB, 277 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) { 278 MachineInstr *FirstClone = nullptr; 279 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 280 for (;;) { 281 MachineInstr *Cloned = CloneMachineInstr(&*I); 282 MBB.insert(InsertBefore, Cloned); 283 if (FirstClone == nullptr) { 284 FirstClone = Cloned; 285 } else { 286 Cloned->bundleWithPred(); 287 } 288 289 if (!I->isBundledWithSucc()) 290 break; 291 ++I; 292 } 293 return *FirstClone; 294 } 295 296 /// Delete the given MachineInstr. 297 /// 298 /// This function also serves as the MachineInstr destructor - the real 299 /// ~MachineInstr() destructor must be empty. 300 void 301 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 302 // Strip it for parts. The operand array and the MI object itself are 303 // independently recyclable. 304 if (MI->Operands) 305 deallocateOperandArray(MI->CapOperands, MI->Operands); 306 // Don't call ~MachineInstr() which must be trivial anyway because 307 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 308 // destructors. 309 InstructionRecycler.Deallocate(Allocator, MI); 310 } 311 312 /// Allocate a new MachineBasicBlock. Use this instead of 313 /// `new MachineBasicBlock'. 314 MachineBasicBlock * 315 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 316 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 317 MachineBasicBlock(*this, bb); 318 } 319 320 /// Delete the given MachineBasicBlock. 321 void 322 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 323 assert(MBB->getParent() == this && "MBB parent mismatch!"); 324 MBB->~MachineBasicBlock(); 325 BasicBlockRecycler.Deallocate(Allocator, MBB); 326 } 327 328 MachineMemOperand *MachineFunction::getMachineMemOperand( 329 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 330 unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 331 SyncScope::ID SSID, AtomicOrdering Ordering, 332 AtomicOrdering FailureOrdering) { 333 return new (Allocator) 334 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 335 SSID, Ordering, FailureOrdering); 336 } 337 338 MachineMemOperand * 339 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 340 int64_t Offset, uint64_t Size) { 341 if (MMO->getValue()) 342 return new (Allocator) 343 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 344 MMO->getOffset()+Offset), 345 MMO->getFlags(), Size, MMO->getBaseAlignment(), 346 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 347 MMO->getOrdering(), MMO->getFailureOrdering()); 348 return new (Allocator) 349 MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(), 350 MMO->getOffset()+Offset), 351 MMO->getFlags(), Size, MMO->getBaseAlignment(), 352 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 353 MMO->getOrdering(), MMO->getFailureOrdering()); 354 } 355 356 MachineMemOperand * 357 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 358 const AAMDNodes &AAInfo) { 359 MachinePointerInfo MPI = MMO->getValue() ? 360 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 361 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 362 363 return new (Allocator) 364 MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(), 365 MMO->getBaseAlignment(), AAInfo, 366 MMO->getRanges(), MMO->getSyncScopeID(), 367 MMO->getOrdering(), MMO->getFailureOrdering()); 368 } 369 370 MachineInstr::mmo_iterator 371 MachineFunction::allocateMemRefsArray(unsigned long Num) { 372 return Allocator.Allocate<MachineMemOperand *>(Num); 373 } 374 375 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 376 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 377 MachineInstr::mmo_iterator End) { 378 // Count the number of load mem refs. 379 unsigned Num = 0; 380 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 381 if ((*I)->isLoad()) 382 ++Num; 383 384 // Allocate a new array and populate it with the load information. 385 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 386 unsigned Index = 0; 387 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 388 if ((*I)->isLoad()) { 389 if (!(*I)->isStore()) 390 // Reuse the MMO. 391 Result[Index] = *I; 392 else { 393 // Clone the MMO and unset the store flag. 394 MachineMemOperand *JustLoad = 395 getMachineMemOperand((*I)->getPointerInfo(), 396 (*I)->getFlags() & ~MachineMemOperand::MOStore, 397 (*I)->getSize(), (*I)->getBaseAlignment(), 398 (*I)->getAAInfo(), nullptr, 399 (*I)->getSyncScopeID(), (*I)->getOrdering(), 400 (*I)->getFailureOrdering()); 401 Result[Index] = JustLoad; 402 } 403 ++Index; 404 } 405 } 406 return std::make_pair(Result, Result + Num); 407 } 408 409 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 410 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 411 MachineInstr::mmo_iterator End) { 412 // Count the number of load mem refs. 413 unsigned Num = 0; 414 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 415 if ((*I)->isStore()) 416 ++Num; 417 418 // Allocate a new array and populate it with the store information. 419 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 420 unsigned Index = 0; 421 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 422 if ((*I)->isStore()) { 423 if (!(*I)->isLoad()) 424 // Reuse the MMO. 425 Result[Index] = *I; 426 else { 427 // Clone the MMO and unset the load flag. 428 MachineMemOperand *JustStore = 429 getMachineMemOperand((*I)->getPointerInfo(), 430 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 431 (*I)->getSize(), (*I)->getBaseAlignment(), 432 (*I)->getAAInfo(), nullptr, 433 (*I)->getSyncScopeID(), (*I)->getOrdering(), 434 (*I)->getFailureOrdering()); 435 Result[Index] = JustStore; 436 } 437 ++Index; 438 } 439 } 440 return std::make_pair(Result, Result + Num); 441 } 442 443 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 444 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 445 std::copy(Name.begin(), Name.end(), Dest); 446 Dest[Name.size()] = 0; 447 return Dest; 448 } 449 450 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 451 LLVM_DUMP_METHOD void MachineFunction::dump() const { 452 print(dbgs()); 453 } 454 #endif 455 456 StringRef MachineFunction::getName() const { 457 assert(getFunction() && "No function!"); 458 return getFunction()->getName(); 459 } 460 461 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 462 OS << "# Machine code for function " << getName() << ": "; 463 getProperties().print(OS); 464 OS << '\n'; 465 466 // Print Frame Information 467 FrameInfo->print(*this, OS); 468 469 // Print JumpTable Information 470 if (JumpTableInfo) 471 JumpTableInfo->print(OS); 472 473 // Print Constant Pool 474 ConstantPool->print(OS); 475 476 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 477 478 if (RegInfo && !RegInfo->livein_empty()) { 479 OS << "Function Live Ins: "; 480 for (MachineRegisterInfo::livein_iterator 481 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 482 OS << PrintReg(I->first, TRI); 483 if (I->second) 484 OS << " in " << PrintReg(I->second, TRI); 485 if (std::next(I) != E) 486 OS << ", "; 487 } 488 OS << '\n'; 489 } 490 491 ModuleSlotTracker MST(getFunction()->getParent()); 492 MST.incorporateFunction(*getFunction()); 493 for (const auto &BB : *this) { 494 OS << '\n'; 495 BB.print(OS, MST, Indexes); 496 } 497 498 OS << "\n# End machine code for function " << getName() << ".\n\n"; 499 } 500 501 namespace llvm { 502 template<> 503 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 504 505 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 506 507 static std::string getGraphName(const MachineFunction *F) { 508 return ("CFG for '" + F->getName() + "' function").str(); 509 } 510 511 std::string getNodeLabel(const MachineBasicBlock *Node, 512 const MachineFunction *Graph) { 513 std::string OutStr; 514 { 515 raw_string_ostream OSS(OutStr); 516 517 if (isSimple()) { 518 OSS << "BB#" << Node->getNumber(); 519 if (const BasicBlock *BB = Node->getBasicBlock()) 520 OSS << ": " << BB->getName(); 521 } else 522 Node->print(OSS); 523 } 524 525 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 526 527 // Process string output to make it nicer... 528 for (unsigned i = 0; i != OutStr.length(); ++i) 529 if (OutStr[i] == '\n') { // Left justify 530 OutStr[i] = '\\'; 531 OutStr.insert(OutStr.begin()+i+1, 'l'); 532 } 533 return OutStr; 534 } 535 }; 536 } 537 538 void MachineFunction::viewCFG() const 539 { 540 #ifndef NDEBUG 541 ViewGraph(this, "mf" + getName()); 542 #else 543 errs() << "MachineFunction::viewCFG is only available in debug builds on " 544 << "systems with Graphviz or gv!\n"; 545 #endif // NDEBUG 546 } 547 548 void MachineFunction::viewCFGOnly() const 549 { 550 #ifndef NDEBUG 551 ViewGraph(this, "mf" + getName(), true); 552 #else 553 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 554 << "systems with Graphviz or gv!\n"; 555 #endif // NDEBUG 556 } 557 558 /// Add the specified physical register as a live-in value and 559 /// create a corresponding virtual register for it. 560 unsigned MachineFunction::addLiveIn(unsigned PReg, 561 const TargetRegisterClass *RC) { 562 MachineRegisterInfo &MRI = getRegInfo(); 563 unsigned VReg = MRI.getLiveInVirtReg(PReg); 564 if (VReg) { 565 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 566 (void)VRegRC; 567 // A physical register can be added several times. 568 // Between two calls, the register class of the related virtual register 569 // may have been constrained to match some operation constraints. 570 // In that case, check that the current register class includes the 571 // physical register and is a sub class of the specified RC. 572 assert((VRegRC == RC || (VRegRC->contains(PReg) && 573 RC->hasSubClassEq(VRegRC))) && 574 "Register class mismatch!"); 575 return VReg; 576 } 577 VReg = MRI.createVirtualRegister(RC); 578 MRI.addLiveIn(PReg, VReg); 579 return VReg; 580 } 581 582 /// Return the MCSymbol for the specified non-empty jump table. 583 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 584 /// normal 'L' label is returned. 585 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 586 bool isLinkerPrivate) const { 587 const DataLayout &DL = getDataLayout(); 588 assert(JumpTableInfo && "No jump tables"); 589 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 590 591 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 592 : DL.getPrivateGlobalPrefix(); 593 SmallString<60> Name; 594 raw_svector_ostream(Name) 595 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 596 return Ctx.getOrCreateSymbol(Name); 597 } 598 599 /// Return a function-local symbol to represent the PIC base. 600 MCSymbol *MachineFunction::getPICBaseSymbol() const { 601 const DataLayout &DL = getDataLayout(); 602 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 603 Twine(getFunctionNumber()) + "$pb"); 604 } 605 606 /// \name Exception Handling 607 /// \{ 608 609 LandingPadInfo & 610 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 611 unsigned N = LandingPads.size(); 612 for (unsigned i = 0; i < N; ++i) { 613 LandingPadInfo &LP = LandingPads[i]; 614 if (LP.LandingPadBlock == LandingPad) 615 return LP; 616 } 617 618 LandingPads.push_back(LandingPadInfo(LandingPad)); 619 return LandingPads[N]; 620 } 621 622 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 623 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 624 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 625 LP.BeginLabels.push_back(BeginLabel); 626 LP.EndLabels.push_back(EndLabel); 627 } 628 629 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 630 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 631 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 632 LP.LandingPadLabel = LandingPadLabel; 633 return LandingPadLabel; 634 } 635 636 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 637 ArrayRef<const GlobalValue *> TyInfo) { 638 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 639 for (unsigned N = TyInfo.size(); N; --N) 640 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); 641 } 642 643 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 644 ArrayRef<const GlobalValue *> TyInfo) { 645 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 646 std::vector<unsigned> IdsInFilter(TyInfo.size()); 647 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 648 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 649 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 650 } 651 652 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol*, uintptr_t> *LPMap) { 653 for (unsigned i = 0; i != LandingPads.size(); ) { 654 LandingPadInfo &LandingPad = LandingPads[i]; 655 if (LandingPad.LandingPadLabel && 656 !LandingPad.LandingPadLabel->isDefined() && 657 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 658 LandingPad.LandingPadLabel = nullptr; 659 660 // Special case: we *should* emit LPs with null LP MBB. This indicates 661 // "nounwind" case. 662 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 663 LandingPads.erase(LandingPads.begin() + i); 664 continue; 665 } 666 667 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 668 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 669 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 670 if ((BeginLabel->isDefined() || 671 (LPMap && (*LPMap)[BeginLabel] != 0)) && 672 (EndLabel->isDefined() || 673 (LPMap && (*LPMap)[EndLabel] != 0))) continue; 674 675 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 676 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 677 --j; 678 --e; 679 } 680 681 // Remove landing pads with no try-ranges. 682 if (LandingPads[i].BeginLabels.empty()) { 683 LandingPads.erase(LandingPads.begin() + i); 684 continue; 685 } 686 687 // If there is no landing pad, ensure that the list of typeids is empty. 688 // If the only typeid is a cleanup, this is the same as having no typeids. 689 if (!LandingPad.LandingPadBlock || 690 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 691 LandingPad.TypeIds.clear(); 692 ++i; 693 } 694 } 695 696 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 697 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 698 LP.TypeIds.push_back(0); 699 } 700 701 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, 702 const Function *Filter, 703 const BlockAddress *RecoverBA) { 704 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 705 SEHHandler Handler; 706 Handler.FilterOrFinally = Filter; 707 Handler.RecoverBA = RecoverBA; 708 LP.SEHHandlers.push_back(Handler); 709 } 710 711 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, 712 const Function *Cleanup) { 713 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 714 SEHHandler Handler; 715 Handler.FilterOrFinally = Cleanup; 716 Handler.RecoverBA = nullptr; 717 LP.SEHHandlers.push_back(Handler); 718 } 719 720 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 721 ArrayRef<unsigned> Sites) { 722 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 723 } 724 725 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 726 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 727 if (TypeInfos[i] == TI) return i + 1; 728 729 TypeInfos.push_back(TI); 730 return TypeInfos.size(); 731 } 732 733 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 734 // If the new filter coincides with the tail of an existing filter, then 735 // re-use the existing filter. Folding filters more than this requires 736 // re-ordering filters and/or their elements - probably not worth it. 737 for (std::vector<unsigned>::iterator I = FilterEnds.begin(), 738 E = FilterEnds.end(); I != E; ++I) { 739 unsigned i = *I, j = TyIds.size(); 740 741 while (i && j) 742 if (FilterIds[--i] != TyIds[--j]) 743 goto try_next; 744 745 if (!j) 746 // The new filter coincides with range [i, end) of the existing filter. 747 return -(1 + i); 748 749 try_next:; 750 } 751 752 // Add the new filter. 753 int FilterID = -(1 + FilterIds.size()); 754 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 755 FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end()); 756 FilterEnds.push_back(FilterIds.size()); 757 FilterIds.push_back(0); // terminator 758 return FilterID; 759 } 760 761 void llvm::addLandingPadInfo(const LandingPadInst &I, MachineBasicBlock &MBB) { 762 MachineFunction &MF = *MBB.getParent(); 763 if (const auto *PF = dyn_cast<Function>( 764 I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts())) 765 MF.getMMI().addPersonality(PF); 766 767 if (I.isCleanup()) 768 MF.addCleanup(&MBB); 769 770 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, 771 // but we need to do it this way because of how the DWARF EH emitter 772 // processes the clauses. 773 for (unsigned i = I.getNumClauses(); i != 0; --i) { 774 Value *Val = I.getClause(i - 1); 775 if (I.isCatch(i - 1)) { 776 MF.addCatchTypeInfo(&MBB, 777 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 778 } else { 779 // Add filters in a list. 780 Constant *CVal = cast<Constant>(Val); 781 SmallVector<const GlobalValue *, 4> FilterList; 782 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end(); 783 II != IE; ++II) 784 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 785 786 MF.addFilterTypeInfo(&MBB, FilterList); 787 } 788 } 789 } 790 791 /// \} 792 793 //===----------------------------------------------------------------------===// 794 // MachineJumpTableInfo implementation 795 //===----------------------------------------------------------------------===// 796 797 /// Return the size of each entry in the jump table. 798 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 799 // The size of a jump table entry is 4 bytes unless the entry is just the 800 // address of a block, in which case it is the pointer size. 801 switch (getEntryKind()) { 802 case MachineJumpTableInfo::EK_BlockAddress: 803 return TD.getPointerSize(); 804 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 805 return 8; 806 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 807 case MachineJumpTableInfo::EK_LabelDifference32: 808 case MachineJumpTableInfo::EK_Custom32: 809 return 4; 810 case MachineJumpTableInfo::EK_Inline: 811 return 0; 812 } 813 llvm_unreachable("Unknown jump table encoding!"); 814 } 815 816 /// Return the alignment of each entry in the jump table. 817 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 818 // The alignment of a jump table entry is the alignment of int32 unless the 819 // entry is just the address of a block, in which case it is the pointer 820 // alignment. 821 switch (getEntryKind()) { 822 case MachineJumpTableInfo::EK_BlockAddress: 823 return TD.getPointerABIAlignment(); 824 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 825 return TD.getABIIntegerTypeAlignment(64); 826 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 827 case MachineJumpTableInfo::EK_LabelDifference32: 828 case MachineJumpTableInfo::EK_Custom32: 829 return TD.getABIIntegerTypeAlignment(32); 830 case MachineJumpTableInfo::EK_Inline: 831 return 1; 832 } 833 llvm_unreachable("Unknown jump table encoding!"); 834 } 835 836 /// Create a new jump table entry in the jump table info. 837 unsigned MachineJumpTableInfo::createJumpTableIndex( 838 const std::vector<MachineBasicBlock*> &DestBBs) { 839 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 840 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 841 return JumpTables.size()-1; 842 } 843 844 /// If Old is the target of any jump tables, update the jump tables to branch 845 /// to New instead. 846 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 847 MachineBasicBlock *New) { 848 assert(Old != New && "Not making a change?"); 849 bool MadeChange = false; 850 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 851 ReplaceMBBInJumpTable(i, Old, New); 852 return MadeChange; 853 } 854 855 /// If Old is a target of the jump tables, update the jump table to branch to 856 /// New instead. 857 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 858 MachineBasicBlock *Old, 859 MachineBasicBlock *New) { 860 assert(Old != New && "Not making a change?"); 861 bool MadeChange = false; 862 MachineJumpTableEntry &JTE = JumpTables[Idx]; 863 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 864 if (JTE.MBBs[j] == Old) { 865 JTE.MBBs[j] = New; 866 MadeChange = true; 867 } 868 return MadeChange; 869 } 870 871 void MachineJumpTableInfo::print(raw_ostream &OS) const { 872 if (JumpTables.empty()) return; 873 874 OS << "Jump Tables:\n"; 875 876 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 877 OS << " jt#" << i << ": "; 878 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 879 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 880 } 881 882 OS << '\n'; 883 } 884 885 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 886 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 887 #endif 888 889 890 //===----------------------------------------------------------------------===// 891 // MachineConstantPool implementation 892 //===----------------------------------------------------------------------===// 893 894 void MachineConstantPoolValue::anchor() { } 895 896 Type *MachineConstantPoolEntry::getType() const { 897 if (isMachineConstantPoolEntry()) 898 return Val.MachineCPVal->getType(); 899 return Val.ConstVal->getType(); 900 } 901 902 bool MachineConstantPoolEntry::needsRelocation() const { 903 if (isMachineConstantPoolEntry()) 904 return true; 905 return Val.ConstVal->needsRelocation(); 906 } 907 908 SectionKind 909 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 910 if (needsRelocation()) 911 return SectionKind::getReadOnlyWithRel(); 912 switch (DL->getTypeAllocSize(getType())) { 913 case 4: 914 return SectionKind::getMergeableConst4(); 915 case 8: 916 return SectionKind::getMergeableConst8(); 917 case 16: 918 return SectionKind::getMergeableConst16(); 919 case 32: 920 return SectionKind::getMergeableConst32(); 921 default: 922 return SectionKind::getReadOnly(); 923 } 924 } 925 926 MachineConstantPool::~MachineConstantPool() { 927 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 928 // so keep track of which we've deleted to avoid double deletions. 929 DenseSet<MachineConstantPoolValue*> Deleted; 930 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 931 if (Constants[i].isMachineConstantPoolEntry()) { 932 Deleted.insert(Constants[i].Val.MachineCPVal); 933 delete Constants[i].Val.MachineCPVal; 934 } 935 for (DenseSet<MachineConstantPoolValue*>::iterator I = 936 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 937 I != E; ++I) { 938 if (Deleted.count(*I) == 0) 939 delete *I; 940 } 941 } 942 943 /// Test whether the given two constants can be allocated the same constant pool 944 /// entry. 945 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 946 const DataLayout &DL) { 947 // Handle the trivial case quickly. 948 if (A == B) return true; 949 950 // If they have the same type but weren't the same constant, quickly 951 // reject them. 952 if (A->getType() == B->getType()) return false; 953 954 // We can't handle structs or arrays. 955 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 956 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 957 return false; 958 959 // For now, only support constants with the same size. 960 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 961 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 962 return false; 963 964 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 965 966 // Try constant folding a bitcast of both instructions to an integer. If we 967 // get two identical ConstantInt's, then we are good to share them. We use 968 // the constant folding APIs to do this so that we get the benefit of 969 // DataLayout. 970 if (isa<PointerType>(A->getType())) 971 A = ConstantFoldCastOperand(Instruction::PtrToInt, 972 const_cast<Constant *>(A), IntTy, DL); 973 else if (A->getType() != IntTy) 974 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 975 IntTy, DL); 976 if (isa<PointerType>(B->getType())) 977 B = ConstantFoldCastOperand(Instruction::PtrToInt, 978 const_cast<Constant *>(B), IntTy, DL); 979 else if (B->getType() != IntTy) 980 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 981 IntTy, DL); 982 983 return A == B; 984 } 985 986 /// Create a new entry in the constant pool or return an existing one. 987 /// User must specify the log2 of the minimum required alignment for the object. 988 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 989 unsigned Alignment) { 990 assert(Alignment && "Alignment must be specified!"); 991 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 992 993 // Check to see if we already have this constant. 994 // 995 // FIXME, this could be made much more efficient for large constant pools. 996 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 997 if (!Constants[i].isMachineConstantPoolEntry() && 998 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 999 if ((unsigned)Constants[i].getAlignment() < Alignment) 1000 Constants[i].Alignment = Alignment; 1001 return i; 1002 } 1003 1004 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1005 return Constants.size()-1; 1006 } 1007 1008 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1009 unsigned Alignment) { 1010 assert(Alignment && "Alignment must be specified!"); 1011 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1012 1013 // Check to see if we already have this constant. 1014 // 1015 // FIXME, this could be made much more efficient for large constant pools. 1016 int Idx = V->getExistingMachineCPValue(this, Alignment); 1017 if (Idx != -1) { 1018 MachineCPVsSharingEntries.insert(V); 1019 return (unsigned)Idx; 1020 } 1021 1022 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1023 return Constants.size()-1; 1024 } 1025 1026 void MachineConstantPool::print(raw_ostream &OS) const { 1027 if (Constants.empty()) return; 1028 1029 OS << "Constant Pool:\n"; 1030 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1031 OS << " cp#" << i << ": "; 1032 if (Constants[i].isMachineConstantPoolEntry()) 1033 Constants[i].Val.MachineCPVal->print(OS); 1034 else 1035 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1036 OS << ", align=" << Constants[i].getAlignment(); 1037 OS << "\n"; 1038 } 1039 } 1040 1041 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1042 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1043 #endif 1044