1 //===-- MachineFunction.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect native machine code information for a function.  This allows
11 // target-specific information about the generated code to be stored with each
12 // function.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/CodeGen/MachineConstantPool.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineJumpTableInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/Target/TargetFrameInfo.h"
27 #include "llvm/Function.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/GraphWriter.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/Config/config.h"
34 #include <fstream>
35 #include <sstream>
36 using namespace llvm;
37 
38 static AnnotationID MF_AID(
39   AnnotationManager::getID("CodeGen::MachineCodeForFunction"));
40 
41 // Out of line virtual function to home classes.
42 void MachineFunctionPass::virtfn() {}
43 
44 namespace {
45   struct VISIBILITY_HIDDEN Printer : public MachineFunctionPass {
46     static char ID;
47 
48     std::ostream *OS;
49     const std::string Banner;
50 
51     Printer (std::ostream *os, const std::string &banner)
52       : MachineFunctionPass((intptr_t)&ID), OS(os), Banner(banner) {}
53 
54     const char *getPassName() const { return "MachineFunction Printer"; }
55 
56     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
57       AU.setPreservesAll();
58     }
59 
60     bool runOnMachineFunction(MachineFunction &MF) {
61       (*OS) << Banner;
62       MF.print (*OS);
63       return false;
64     }
65   };
66   char Printer::ID = 0;
67 }
68 
69 /// Returns a newly-created MachineFunction Printer pass. The default output
70 /// stream is std::cerr; the default banner is empty.
71 ///
72 FunctionPass *llvm::createMachineFunctionPrinterPass(std::ostream *OS,
73                                                      const std::string &Banner){
74   return new Printer(OS, Banner);
75 }
76 
77 namespace {
78   struct VISIBILITY_HIDDEN Deleter : public MachineFunctionPass {
79     static char ID;
80     Deleter() : MachineFunctionPass((intptr_t)&ID) {}
81 
82     const char *getPassName() const { return "Machine Code Deleter"; }
83 
84     bool runOnMachineFunction(MachineFunction &MF) {
85       // Delete the annotation from the function now.
86       MachineFunction::destruct(MF.getFunction());
87       return true;
88     }
89   };
90   char Deleter::ID = 0;
91 }
92 
93 /// MachineCodeDeletion Pass - This pass deletes all of the machine code for
94 /// the current function, which should happen after the function has been
95 /// emitted to a .s file or to memory.
96 FunctionPass *llvm::createMachineCodeDeleter() {
97   return new Deleter();
98 }
99 
100 
101 
102 //===---------------------------------------------------------------------===//
103 // MachineFunction implementation
104 //===---------------------------------------------------------------------===//
105 
106 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
107   MBB->getParent()->DeleteMachineBasicBlock(MBB);
108 }
109 
110 MachineFunction::MachineFunction(const Function *F,
111                                  const TargetMachine &TM)
112   : Annotation(MF_AID), Fn(F), Target(TM) {
113   RegInfo = new (Allocator.Allocate<MachineRegisterInfo>())
114                 MachineRegisterInfo(*TM.getRegisterInfo());
115   MFInfo = 0;
116   FrameInfo = new (Allocator.Allocate<MachineFrameInfo>())
117                   MachineFrameInfo(*TM.getFrameInfo());
118   ConstantPool = new (Allocator.Allocate<MachineConstantPool>())
119                      MachineConstantPool(TM.getTargetData());
120 
121   // Set up jump table.
122   const TargetData &TD = *TM.getTargetData();
123   bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
124   unsigned EntrySize = IsPic ? 4 : TD.getPointerSize();
125   unsigned Alignment = IsPic ? TD.getABITypeAlignment(Type::Int32Ty)
126                              : TD.getPointerABIAlignment();
127   JumpTableInfo = new (Allocator.Allocate<MachineJumpTableInfo>())
128                       MachineJumpTableInfo(EntrySize, Alignment);
129 }
130 
131 MachineFunction::~MachineFunction() {
132   BasicBlocks.clear();
133   InstructionRecycler.clear(Allocator);
134   BasicBlockRecycler.clear(Allocator);
135   RegInfo->~MachineRegisterInfo();        Allocator.Deallocate(RegInfo);
136   if (MFInfo) {
137     MFInfo->~MachineFunctionInfo();       Allocator.Deallocate(MFInfo);
138   }
139   FrameInfo->~MachineFrameInfo();         Allocator.Deallocate(FrameInfo);
140   ConstantPool->~MachineConstantPool();   Allocator.Deallocate(ConstantPool);
141   JumpTableInfo->~MachineJumpTableInfo(); Allocator.Deallocate(JumpTableInfo);
142 }
143 
144 
145 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and
146 /// recomputes them.  This guarantees that the MBB numbers are sequential,
147 /// dense, and match the ordering of the blocks within the function.  If a
148 /// specific MachineBasicBlock is specified, only that block and those after
149 /// it are renumbered.
150 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
151   if (empty()) { MBBNumbering.clear(); return; }
152   MachineFunction::iterator MBBI, E = end();
153   if (MBB == 0)
154     MBBI = begin();
155   else
156     MBBI = MBB;
157 
158   // Figure out the block number this should have.
159   unsigned BlockNo = 0;
160   if (MBBI != begin())
161     BlockNo = prior(MBBI)->getNumber()+1;
162 
163   for (; MBBI != E; ++MBBI, ++BlockNo) {
164     if (MBBI->getNumber() != (int)BlockNo) {
165       // Remove use of the old number.
166       if (MBBI->getNumber() != -1) {
167         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
168                "MBB number mismatch!");
169         MBBNumbering[MBBI->getNumber()] = 0;
170       }
171 
172       // If BlockNo is already taken, set that block's number to -1.
173       if (MBBNumbering[BlockNo])
174         MBBNumbering[BlockNo]->setNumber(-1);
175 
176       MBBNumbering[BlockNo] = MBBI;
177       MBBI->setNumber(BlockNo);
178     }
179   }
180 
181   // Okay, all the blocks are renumbered.  If we have compactified the block
182   // numbering, shrink MBBNumbering now.
183   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
184   MBBNumbering.resize(BlockNo);
185 }
186 
187 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead
188 /// of `new MachineInstr'.
189 ///
190 MachineInstr *
191 MachineFunction::CreateMachineInstr(const TargetInstrDesc &TID, bool NoImp) {
192   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
193              MachineInstr(TID, NoImp);
194 }
195 
196 /// CloneMachineInstr - Create a new MachineInstr which is a copy of the
197 /// 'Orig' instruction, identical in all ways except the the instruction
198 /// has no parent, prev, or next.
199 ///
200 MachineInstr *
201 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
202   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
203              MachineInstr(*this, *Orig);
204 }
205 
206 /// DeleteMachineInstr - Delete the given MachineInstr.
207 ///
208 void
209 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
210   // Clear the instructions memoperands. This must be done manually because
211   // the instruction's parent pointer is now null, so it can't properly
212   // deallocate them on its own.
213   MI->clearMemOperands(*this);
214 
215   MI->~MachineInstr();
216   InstructionRecycler.Deallocate(Allocator, MI);
217 }
218 
219 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this
220 /// instead of `new MachineBasicBlock'.
221 ///
222 MachineBasicBlock *
223 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
224   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
225              MachineBasicBlock(*this, bb);
226 }
227 
228 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock.
229 ///
230 void
231 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
232   assert(MBB->getParent() == this && "MBB parent mismatch!");
233   MBB->~MachineBasicBlock();
234   BasicBlockRecycler.Deallocate(Allocator, MBB);
235 }
236 
237 void MachineFunction::dump() const {
238   print(*cerr.stream());
239 }
240 
241 void MachineFunction::print(std::ostream &OS) const {
242   OS << "# Machine code for " << Fn->getName () << "():\n";
243 
244   // Print Frame Information
245   FrameInfo->print(*this, OS);
246 
247   // Print JumpTable Information
248   JumpTableInfo->print(OS);
249 
250   // Print Constant Pool
251   ConstantPool->print(OS);
252 
253   const TargetRegisterInfo *TRI = getTarget().getRegisterInfo();
254 
255   if (!RegInfo->livein_empty()) {
256     OS << "Live Ins:";
257     for (MachineRegisterInfo::livein_iterator
258          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
259       if (TRI)
260         OS << " " << TRI->getName(I->first);
261       else
262         OS << " Reg #" << I->first;
263 
264       if (I->second)
265         OS << " in VR#" << I->second << " ";
266     }
267     OS << "\n";
268   }
269   if (!RegInfo->liveout_empty()) {
270     OS << "Live Outs:";
271     for (MachineRegisterInfo::liveout_iterator
272          I = RegInfo->liveout_begin(), E = RegInfo->liveout_end(); I != E; ++I)
273       if (TRI)
274         OS << " " << TRI->getName(*I);
275       else
276         OS << " Reg #" << *I;
277     OS << "\n";
278   }
279 
280   for (const_iterator BB = begin(); BB != end(); ++BB)
281     BB->print(OS);
282 
283   OS << "\n# End machine code for " << Fn->getName () << "().\n\n";
284 }
285 
286 /// CFGOnly flag - This is used to control whether or not the CFG graph printer
287 /// prints out the contents of basic blocks or not.  This is acceptable because
288 /// this code is only really used for debugging purposes.
289 ///
290 static bool CFGOnly = false;
291 
292 namespace llvm {
293   template<>
294   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
295     static std::string getGraphName(const MachineFunction *F) {
296       return "CFG for '" + F->getFunction()->getName() + "' function";
297     }
298 
299     static std::string getNodeLabel(const MachineBasicBlock *Node,
300                                     const MachineFunction *Graph) {
301       if (CFGOnly && Node->getBasicBlock() &&
302           !Node->getBasicBlock()->getName().empty())
303         return Node->getBasicBlock()->getName() + ":";
304 
305       std::ostringstream Out;
306       if (CFGOnly) {
307         Out << Node->getNumber() << ':';
308         return Out.str();
309       }
310 
311       Node->print(Out);
312 
313       std::string OutStr = Out.str();
314       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
315 
316       // Process string output to make it nicer...
317       for (unsigned i = 0; i != OutStr.length(); ++i)
318         if (OutStr[i] == '\n') {                            // Left justify
319           OutStr[i] = '\\';
320           OutStr.insert(OutStr.begin()+i+1, 'l');
321         }
322       return OutStr;
323     }
324   };
325 }
326 
327 void MachineFunction::viewCFG() const
328 {
329 #ifndef NDEBUG
330   ViewGraph(this, "mf" + getFunction()->getName());
331 #else
332   cerr << "SelectionDAG::viewGraph is only available in debug builds on "
333        << "systems with Graphviz or gv!\n";
334 #endif // NDEBUG
335 }
336 
337 void MachineFunction::viewCFGOnly() const
338 {
339   CFGOnly = true;
340   viewCFG();
341   CFGOnly = false;
342 }
343 
344 // The next two methods are used to construct and to retrieve
345 // the MachineCodeForFunction object for the given function.
346 // construct() -- Allocates and initializes for a given function and target
347 // get()       -- Returns a handle to the object.
348 //                This should not be called before "construct()"
349 //                for a given Function.
350 //
351 MachineFunction&
352 MachineFunction::construct(const Function *Fn, const TargetMachine &Tar)
353 {
354   assert(Fn->getAnnotation(MF_AID) == 0 &&
355          "Object already exists for this function!");
356   MachineFunction* mcInfo = new MachineFunction(Fn, Tar);
357   Fn->addAnnotation(mcInfo);
358   return *mcInfo;
359 }
360 
361 void MachineFunction::destruct(const Function *Fn) {
362   bool Deleted = Fn->deleteAnnotation(MF_AID);
363   assert(Deleted && "Machine code did not exist for function!");
364   Deleted = Deleted; // silence warning when no assertions.
365 }
366 
367 MachineFunction& MachineFunction::get(const Function *F)
368 {
369   MachineFunction *mc = (MachineFunction*)F->getAnnotation(MF_AID);
370   assert(mc && "Call construct() method first to allocate the object");
371   return *mc;
372 }
373 
374 //===----------------------------------------------------------------------===//
375 //  MachineFrameInfo implementation
376 //===----------------------------------------------------------------------===//
377 
378 /// CreateFixedObject - Create a new object at a fixed location on the stack.
379 /// All fixed objects should be created before other objects are created for
380 /// efficiency. By default, fixed objects are immutable. This returns an
381 /// index with a negative value.
382 ///
383 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset,
384                                         bool Immutable) {
385   assert(Size != 0 && "Cannot allocate zero size fixed stack objects!");
386   Objects.insert(Objects.begin(), StackObject(Size, 1, SPOffset, Immutable));
387   return -++NumFixedObjects;
388 }
389 
390 
391 void MachineFrameInfo::print(const MachineFunction &MF, std::ostream &OS) const{
392   int ValOffset = MF.getTarget().getFrameInfo()->getOffsetOfLocalArea();
393 
394   for (unsigned i = 0, e = Objects.size(); i != e; ++i) {
395     const StackObject &SO = Objects[i];
396     OS << "  <fi #" << (int)(i-NumFixedObjects) << ">: ";
397     if (SO.Size == ~0ULL) {
398       OS << "dead\n";
399       continue;
400     }
401     if (SO.Size == 0)
402       OS << "variable sized";
403     else
404       OS << "size is " << SO.Size << " byte" << (SO.Size != 1 ? "s," : ",");
405     OS << " alignment is " << SO.Alignment << " byte"
406        << (SO.Alignment != 1 ? "s," : ",");
407 
408     if (i < NumFixedObjects)
409       OS << " fixed";
410     if (i < NumFixedObjects || SO.SPOffset != -1) {
411       int64_t Off = SO.SPOffset - ValOffset;
412       OS << " at location [SP";
413       if (Off > 0)
414         OS << "+" << Off;
415       else if (Off < 0)
416         OS << Off;
417       OS << "]";
418     }
419     OS << "\n";
420   }
421 
422   if (HasVarSizedObjects)
423     OS << "  Stack frame contains variable sized objects\n";
424 }
425 
426 void MachineFrameInfo::dump(const MachineFunction &MF) const {
427   print(MF, *cerr.stream());
428 }
429 
430 
431 //===----------------------------------------------------------------------===//
432 //  MachineJumpTableInfo implementation
433 //===----------------------------------------------------------------------===//
434 
435 /// getJumpTableIndex - Create a new jump table entry in the jump table info
436 /// or return an existing one.
437 ///
438 unsigned MachineJumpTableInfo::getJumpTableIndex(
439                                const std::vector<MachineBasicBlock*> &DestBBs) {
440   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
441   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i)
442     if (JumpTables[i].MBBs == DestBBs)
443       return i;
444 
445   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
446   return JumpTables.size()-1;
447 }
448 
449 
450 void MachineJumpTableInfo::print(std::ostream &OS) const {
451   // FIXME: this is lame, maybe we could print out the MBB numbers or something
452   // like {1, 2, 4, 5, 3, 0}
453   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
454     OS << "  <jt #" << i << "> has " << JumpTables[i].MBBs.size()
455        << " entries\n";
456   }
457 }
458 
459 void MachineJumpTableInfo::dump() const { print(*cerr.stream()); }
460 
461 
462 //===----------------------------------------------------------------------===//
463 //  MachineConstantPool implementation
464 //===----------------------------------------------------------------------===//
465 
466 const Type *MachineConstantPoolEntry::getType() const {
467   if (isMachineConstantPoolEntry())
468       return Val.MachineCPVal->getType();
469   return Val.ConstVal->getType();
470 }
471 
472 MachineConstantPool::~MachineConstantPool() {
473   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
474     if (Constants[i].isMachineConstantPoolEntry())
475       delete Constants[i].Val.MachineCPVal;
476 }
477 
478 /// getConstantPoolIndex - Create a new entry in the constant pool or return
479 /// an existing one.  User must specify an alignment in bytes for the object.
480 ///
481 unsigned MachineConstantPool::getConstantPoolIndex(Constant *C,
482                                                    unsigned Alignment) {
483   assert(Alignment && "Alignment must be specified!");
484   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
485 
486   // Check to see if we already have this constant.
487   //
488   // FIXME, this could be made much more efficient for large constant pools.
489   unsigned AlignMask = (1 << Alignment)-1;
490   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
491     if (Constants[i].Val.ConstVal == C && (Constants[i].Offset & AlignMask)== 0)
492       return i;
493 
494   unsigned Offset = 0;
495   if (!Constants.empty()) {
496     Offset = Constants.back().getOffset();
497     Offset += TD->getABITypeSize(Constants.back().getType());
498     Offset = (Offset+AlignMask)&~AlignMask;
499   }
500 
501   Constants.push_back(MachineConstantPoolEntry(C, Offset));
502   return Constants.size()-1;
503 }
504 
505 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
506                                                    unsigned Alignment) {
507   assert(Alignment && "Alignment must be specified!");
508   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
509 
510   // Check to see if we already have this constant.
511   //
512   // FIXME, this could be made much more efficient for large constant pools.
513   unsigned AlignMask = (1 << Alignment)-1;
514   int Idx = V->getExistingMachineCPValue(this, Alignment);
515   if (Idx != -1)
516     return (unsigned)Idx;
517 
518   unsigned Offset = 0;
519   if (!Constants.empty()) {
520     Offset = Constants.back().getOffset();
521     Offset += TD->getABITypeSize(Constants.back().getType());
522     Offset = (Offset+AlignMask)&~AlignMask;
523   }
524 
525   Constants.push_back(MachineConstantPoolEntry(V, Offset));
526   return Constants.size()-1;
527 }
528 
529 void MachineConstantPoolValue::print(std::ostream &o) const {
530   raw_os_ostream OS(o);
531   print(OS);
532 }
533 
534 void MachineConstantPool::print(std::ostream &OS) const {
535   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
536     OS << "  <cp #" << i << "> is";
537     if (Constants[i].isMachineConstantPoolEntry())
538       Constants[i].Val.MachineCPVal->print(OS);
539     else
540       OS << *(Value*)Constants[i].Val.ConstVal;
541     OS << " , offset=" << Constants[i].getOffset();
542     OS << "\n";
543   }
544 }
545 
546 void MachineConstantPool::dump() const { print(*cerr.stream()); }
547