1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/EHPersonalities.h" 21 #include "llvm/CodeGen/MachineConstantPool.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionInitializer.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/Passes.h" 30 #include "llvm/CodeGen/PseudoSourceValue.h" 31 #include "llvm/CodeGen/WinEHFuncInfo.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/ModuleSlotTracker.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCContext.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetFrameLowering.h" 43 #include "llvm/Target/TargetLowering.h" 44 #include "llvm/Target/TargetMachine.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 using namespace llvm; 47 48 #define DEBUG_TYPE "codegen" 49 50 static cl::opt<unsigned> 51 AlignAllFunctions("align-all-functions", 52 cl::desc("Force the alignment of all functions."), 53 cl::init(0), cl::Hidden); 54 55 void MachineFunctionInitializer::anchor() {} 56 57 void MachineFunctionProperties::print(raw_ostream &ROS) const { 58 // Leave this function even in NDEBUG as an out-of-line anchor. 59 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 60 if (!Properties.any()) { 61 ROS << "(empty)"; 62 return; 63 } 64 for (BitVector::size_type i = 0; i < Properties.size(); ++i) { 65 if (Properties[i]) { 66 switch(static_cast<Property>(i)) { 67 case Property::AllVRegsAllocated: 68 ROS << "AllVRegsAllocated "; 69 break; 70 default: 71 // TODO: Implement IsSSA/TracksLiveness when we make them properties. 72 llvm_unreachable("Unexpected value for property enum"); 73 } 74 } 75 } 76 #endif 77 } 78 79 //===----------------------------------------------------------------------===// 80 // MachineFunction implementation 81 //===----------------------------------------------------------------------===// 82 83 // Out-of-line virtual method. 84 MachineFunctionInfo::~MachineFunctionInfo() {} 85 86 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 87 MBB->getParent()->DeleteMachineBasicBlock(MBB); 88 } 89 90 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 91 unsigned FunctionNum, MachineModuleInfo &mmi) 92 : Fn(F), Target(TM), STI(TM.getSubtargetImpl(*F)), Ctx(mmi.getContext()), 93 MMI(mmi) { 94 if (STI->getRegisterInfo()) 95 RegInfo = new (Allocator) MachineRegisterInfo(this); 96 else 97 RegInfo = nullptr; 98 99 MFInfo = nullptr; 100 FrameInfo = new (Allocator) 101 MachineFrameInfo(STI->getFrameLowering()->getStackAlignment(), 102 STI->getFrameLowering()->isStackRealignable(), 103 !F->hasFnAttribute("no-realign-stack")); 104 105 if (Fn->hasFnAttribute(Attribute::StackAlignment)) 106 FrameInfo->ensureMaxAlignment(Fn->getFnStackAlignment()); 107 108 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 109 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 110 111 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 112 // FIXME: Use Function::optForSize(). 113 if (!Fn->hasFnAttribute(Attribute::OptimizeForSize)) 114 Alignment = std::max(Alignment, 115 STI->getTargetLowering()->getPrefFunctionAlignment()); 116 117 if (AlignAllFunctions) 118 Alignment = AlignAllFunctions; 119 120 FunctionNumber = FunctionNum; 121 JumpTableInfo = nullptr; 122 123 if (isFuncletEHPersonality(classifyEHPersonality( 124 F->hasPersonalityFn() ? F->getPersonalityFn() : nullptr))) { 125 WinEHInfo = new (Allocator) WinEHFuncInfo(); 126 } 127 128 assert(TM.isCompatibleDataLayout(getDataLayout()) && 129 "Can't create a MachineFunction using a Module with a " 130 "Target-incompatible DataLayout attached\n"); 131 132 PSVManager = llvm::make_unique<PseudoSourceValueManager>(); 133 } 134 135 MachineFunction::~MachineFunction() { 136 // Don't call destructors on MachineInstr and MachineOperand. All of their 137 // memory comes from the BumpPtrAllocator which is about to be purged. 138 // 139 // Do call MachineBasicBlock destructors, it contains std::vectors. 140 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 141 I->Insts.clearAndLeakNodesUnsafely(); 142 143 InstructionRecycler.clear(Allocator); 144 OperandRecycler.clear(Allocator); 145 BasicBlockRecycler.clear(Allocator); 146 if (RegInfo) { 147 RegInfo->~MachineRegisterInfo(); 148 Allocator.Deallocate(RegInfo); 149 } 150 if (MFInfo) { 151 MFInfo->~MachineFunctionInfo(); 152 Allocator.Deallocate(MFInfo); 153 } 154 155 FrameInfo->~MachineFrameInfo(); 156 Allocator.Deallocate(FrameInfo); 157 158 ConstantPool->~MachineConstantPool(); 159 Allocator.Deallocate(ConstantPool); 160 161 if (JumpTableInfo) { 162 JumpTableInfo->~MachineJumpTableInfo(); 163 Allocator.Deallocate(JumpTableInfo); 164 } 165 166 if (WinEHInfo) { 167 WinEHInfo->~WinEHFuncInfo(); 168 Allocator.Deallocate(WinEHInfo); 169 } 170 } 171 172 const DataLayout &MachineFunction::getDataLayout() const { 173 return Fn->getParent()->getDataLayout(); 174 } 175 176 /// Get the JumpTableInfo for this function. 177 /// If it does not already exist, allocate one. 178 MachineJumpTableInfo *MachineFunction:: 179 getOrCreateJumpTableInfo(unsigned EntryKind) { 180 if (JumpTableInfo) return JumpTableInfo; 181 182 JumpTableInfo = new (Allocator) 183 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 184 return JumpTableInfo; 185 } 186 187 /// Should we be emitting segmented stack stuff for the function 188 bool MachineFunction::shouldSplitStack() const { 189 return getFunction()->hasFnAttribute("split-stack"); 190 } 191 192 /// This discards all of the MachineBasicBlock numbers and recomputes them. 193 /// This guarantees that the MBB numbers are sequential, dense, and match the 194 /// ordering of the blocks within the function. If a specific MachineBasicBlock 195 /// is specified, only that block and those after it are renumbered. 196 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 197 if (empty()) { MBBNumbering.clear(); return; } 198 MachineFunction::iterator MBBI, E = end(); 199 if (MBB == nullptr) 200 MBBI = begin(); 201 else 202 MBBI = MBB->getIterator(); 203 204 // Figure out the block number this should have. 205 unsigned BlockNo = 0; 206 if (MBBI != begin()) 207 BlockNo = std::prev(MBBI)->getNumber() + 1; 208 209 for (; MBBI != E; ++MBBI, ++BlockNo) { 210 if (MBBI->getNumber() != (int)BlockNo) { 211 // Remove use of the old number. 212 if (MBBI->getNumber() != -1) { 213 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 214 "MBB number mismatch!"); 215 MBBNumbering[MBBI->getNumber()] = nullptr; 216 } 217 218 // If BlockNo is already taken, set that block's number to -1. 219 if (MBBNumbering[BlockNo]) 220 MBBNumbering[BlockNo]->setNumber(-1); 221 222 MBBNumbering[BlockNo] = &*MBBI; 223 MBBI->setNumber(BlockNo); 224 } 225 } 226 227 // Okay, all the blocks are renumbered. If we have compactified the block 228 // numbering, shrink MBBNumbering now. 229 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 230 MBBNumbering.resize(BlockNo); 231 } 232 233 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 234 MachineInstr * 235 MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 236 DebugLoc DL, bool NoImp) { 237 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 238 MachineInstr(*this, MCID, DL, NoImp); 239 } 240 241 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 242 /// identical in all ways except the instruction has no parent, prev, or next. 243 MachineInstr * 244 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 245 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 246 MachineInstr(*this, *Orig); 247 } 248 249 /// Delete the given MachineInstr. 250 /// 251 /// This function also serves as the MachineInstr destructor - the real 252 /// ~MachineInstr() destructor must be empty. 253 void 254 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 255 // Strip it for parts. The operand array and the MI object itself are 256 // independently recyclable. 257 if (MI->Operands) 258 deallocateOperandArray(MI->CapOperands, MI->Operands); 259 // Don't call ~MachineInstr() which must be trivial anyway because 260 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 261 // destructors. 262 InstructionRecycler.Deallocate(Allocator, MI); 263 } 264 265 /// Allocate a new MachineBasicBlock. Use this instead of 266 /// `new MachineBasicBlock'. 267 MachineBasicBlock * 268 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 269 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 270 MachineBasicBlock(*this, bb); 271 } 272 273 /// Delete the given MachineBasicBlock. 274 void 275 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 276 assert(MBB->getParent() == this && "MBB parent mismatch!"); 277 MBB->~MachineBasicBlock(); 278 BasicBlockRecycler.Deallocate(Allocator, MBB); 279 } 280 281 MachineMemOperand * 282 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 283 uint64_t s, unsigned base_alignment, 284 const AAMDNodes &AAInfo, 285 const MDNode *Ranges) { 286 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 287 AAInfo, Ranges); 288 } 289 290 MachineMemOperand * 291 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 292 int64_t Offset, uint64_t Size) { 293 if (MMO->getValue()) 294 return new (Allocator) 295 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 296 MMO->getOffset()+Offset), 297 MMO->getFlags(), Size, 298 MMO->getBaseAlignment()); 299 return new (Allocator) 300 MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(), 301 MMO->getOffset()+Offset), 302 MMO->getFlags(), Size, 303 MMO->getBaseAlignment()); 304 } 305 306 MachineInstr::mmo_iterator 307 MachineFunction::allocateMemRefsArray(unsigned long Num) { 308 return Allocator.Allocate<MachineMemOperand *>(Num); 309 } 310 311 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 312 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 313 MachineInstr::mmo_iterator End) { 314 // Count the number of load mem refs. 315 unsigned Num = 0; 316 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 317 if ((*I)->isLoad()) 318 ++Num; 319 320 // Allocate a new array and populate it with the load information. 321 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 322 unsigned Index = 0; 323 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 324 if ((*I)->isLoad()) { 325 if (!(*I)->isStore()) 326 // Reuse the MMO. 327 Result[Index] = *I; 328 else { 329 // Clone the MMO and unset the store flag. 330 MachineMemOperand *JustLoad = 331 getMachineMemOperand((*I)->getPointerInfo(), 332 (*I)->getFlags() & ~MachineMemOperand::MOStore, 333 (*I)->getSize(), (*I)->getBaseAlignment(), 334 (*I)->getAAInfo()); 335 Result[Index] = JustLoad; 336 } 337 ++Index; 338 } 339 } 340 return std::make_pair(Result, Result + Num); 341 } 342 343 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 344 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 345 MachineInstr::mmo_iterator End) { 346 // Count the number of load mem refs. 347 unsigned Num = 0; 348 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 349 if ((*I)->isStore()) 350 ++Num; 351 352 // Allocate a new array and populate it with the store information. 353 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 354 unsigned Index = 0; 355 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 356 if ((*I)->isStore()) { 357 if (!(*I)->isLoad()) 358 // Reuse the MMO. 359 Result[Index] = *I; 360 else { 361 // Clone the MMO and unset the load flag. 362 MachineMemOperand *JustStore = 363 getMachineMemOperand((*I)->getPointerInfo(), 364 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 365 (*I)->getSize(), (*I)->getBaseAlignment(), 366 (*I)->getAAInfo()); 367 Result[Index] = JustStore; 368 } 369 ++Index; 370 } 371 } 372 return std::make_pair(Result, Result + Num); 373 } 374 375 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 376 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 377 std::copy(Name.begin(), Name.end(), Dest); 378 Dest[Name.size()] = 0; 379 return Dest; 380 } 381 382 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 383 LLVM_DUMP_METHOD void MachineFunction::dump() const { 384 print(dbgs()); 385 } 386 #endif 387 388 StringRef MachineFunction::getName() const { 389 assert(getFunction() && "No function!"); 390 return getFunction()->getName(); 391 } 392 393 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const { 394 OS << "# Machine code for function " << getName() << ": "; 395 OS << "Properties: <"; 396 getProperties().print(OS); 397 OS << "> : "; 398 if (RegInfo) { 399 OS << (RegInfo->isSSA() ? "SSA" : "Post SSA"); 400 if (!RegInfo->tracksLiveness()) 401 OS << ", not tracking liveness"; 402 } 403 OS << '\n'; 404 405 // Print Frame Information 406 FrameInfo->print(*this, OS); 407 408 // Print JumpTable Information 409 if (JumpTableInfo) 410 JumpTableInfo->print(OS); 411 412 // Print Constant Pool 413 ConstantPool->print(OS); 414 415 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 416 417 if (RegInfo && !RegInfo->livein_empty()) { 418 OS << "Function Live Ins: "; 419 for (MachineRegisterInfo::livein_iterator 420 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 421 OS << PrintReg(I->first, TRI); 422 if (I->second) 423 OS << " in " << PrintReg(I->second, TRI); 424 if (std::next(I) != E) 425 OS << ", "; 426 } 427 OS << '\n'; 428 } 429 430 ModuleSlotTracker MST(getFunction()->getParent()); 431 MST.incorporateFunction(*getFunction()); 432 for (const auto &BB : *this) { 433 OS << '\n'; 434 BB.print(OS, MST, Indexes); 435 } 436 437 OS << "\n# End machine code for function " << getName() << ".\n\n"; 438 } 439 440 namespace llvm { 441 template<> 442 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 443 444 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 445 446 static std::string getGraphName(const MachineFunction *F) { 447 return ("CFG for '" + F->getName() + "' function").str(); 448 } 449 450 std::string getNodeLabel(const MachineBasicBlock *Node, 451 const MachineFunction *Graph) { 452 std::string OutStr; 453 { 454 raw_string_ostream OSS(OutStr); 455 456 if (isSimple()) { 457 OSS << "BB#" << Node->getNumber(); 458 if (const BasicBlock *BB = Node->getBasicBlock()) 459 OSS << ": " << BB->getName(); 460 } else 461 Node->print(OSS); 462 } 463 464 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 465 466 // Process string output to make it nicer... 467 for (unsigned i = 0; i != OutStr.length(); ++i) 468 if (OutStr[i] == '\n') { // Left justify 469 OutStr[i] = '\\'; 470 OutStr.insert(OutStr.begin()+i+1, 'l'); 471 } 472 return OutStr; 473 } 474 }; 475 } 476 477 void MachineFunction::viewCFG() const 478 { 479 #ifndef NDEBUG 480 ViewGraph(this, "mf" + getName()); 481 #else 482 errs() << "MachineFunction::viewCFG is only available in debug builds on " 483 << "systems with Graphviz or gv!\n"; 484 #endif // NDEBUG 485 } 486 487 void MachineFunction::viewCFGOnly() const 488 { 489 #ifndef NDEBUG 490 ViewGraph(this, "mf" + getName(), true); 491 #else 492 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 493 << "systems with Graphviz or gv!\n"; 494 #endif // NDEBUG 495 } 496 497 /// Add the specified physical register as a live-in value and 498 /// create a corresponding virtual register for it. 499 unsigned MachineFunction::addLiveIn(unsigned PReg, 500 const TargetRegisterClass *RC) { 501 MachineRegisterInfo &MRI = getRegInfo(); 502 unsigned VReg = MRI.getLiveInVirtReg(PReg); 503 if (VReg) { 504 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 505 (void)VRegRC; 506 // A physical register can be added several times. 507 // Between two calls, the register class of the related virtual register 508 // may have been constrained to match some operation constraints. 509 // In that case, check that the current register class includes the 510 // physical register and is a sub class of the specified RC. 511 assert((VRegRC == RC || (VRegRC->contains(PReg) && 512 RC->hasSubClassEq(VRegRC))) && 513 "Register class mismatch!"); 514 return VReg; 515 } 516 VReg = MRI.createVirtualRegister(RC); 517 MRI.addLiveIn(PReg, VReg); 518 return VReg; 519 } 520 521 /// Return the MCSymbol for the specified non-empty jump table. 522 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 523 /// normal 'L' label is returned. 524 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 525 bool isLinkerPrivate) const { 526 const DataLayout &DL = getDataLayout(); 527 assert(JumpTableInfo && "No jump tables"); 528 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 529 530 const char *Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 531 : DL.getPrivateGlobalPrefix(); 532 SmallString<60> Name; 533 raw_svector_ostream(Name) 534 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 535 return Ctx.getOrCreateSymbol(Name); 536 } 537 538 /// Return a function-local symbol to represent the PIC base. 539 MCSymbol *MachineFunction::getPICBaseSymbol() const { 540 const DataLayout &DL = getDataLayout(); 541 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 542 Twine(getFunctionNumber()) + "$pb"); 543 } 544 545 //===----------------------------------------------------------------------===// 546 // MachineFrameInfo implementation 547 //===----------------------------------------------------------------------===// 548 549 /// Make sure the function is at least Align bytes aligned. 550 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 551 if (!StackRealignable || !RealignOption) 552 assert(Align <= StackAlignment && 553 "For targets without stack realignment, Align is out of limit!"); 554 if (MaxAlignment < Align) MaxAlignment = Align; 555 } 556 557 /// Clamp the alignment if requested and emit a warning. 558 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align, 559 unsigned StackAlign) { 560 if (!ShouldClamp || Align <= StackAlign) 561 return Align; 562 DEBUG(dbgs() << "Warning: requested alignment " << Align 563 << " exceeds the stack alignment " << StackAlign 564 << " when stack realignment is off" << '\n'); 565 return StackAlign; 566 } 567 568 /// Create a new statically sized stack object, returning a nonnegative 569 /// identifier to represent it. 570 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment, 571 bool isSS, const AllocaInst *Alloca) { 572 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 573 Alignment = clampStackAlignment(!StackRealignable || !RealignOption, 574 Alignment, StackAlignment); 575 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca, 576 !isSS)); 577 int Index = (int)Objects.size() - NumFixedObjects - 1; 578 assert(Index >= 0 && "Bad frame index!"); 579 ensureMaxAlignment(Alignment); 580 return Index; 581 } 582 583 /// Create a new statically sized stack object that represents a spill slot, 584 /// returning a nonnegative identifier to represent it. 585 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 586 unsigned Alignment) { 587 Alignment = clampStackAlignment(!StackRealignable || !RealignOption, 588 Alignment, StackAlignment); 589 CreateStackObject(Size, Alignment, true); 590 int Index = (int)Objects.size() - NumFixedObjects - 1; 591 ensureMaxAlignment(Alignment); 592 return Index; 593 } 594 595 /// Notify the MachineFrameInfo object that a variable sized object has been 596 /// created. This must be created whenever a variable sized object is created, 597 /// whether or not the index returned is actually used. 598 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment, 599 const AllocaInst *Alloca) { 600 HasVarSizedObjects = true; 601 Alignment = clampStackAlignment(!StackRealignable || !RealignOption, 602 Alignment, StackAlignment); 603 Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca, true)); 604 ensureMaxAlignment(Alignment); 605 return (int)Objects.size()-NumFixedObjects-1; 606 } 607 608 /// Create a new object at a fixed location on the stack. 609 /// All fixed objects should be created before other objects are created for 610 /// efficiency. By default, fixed objects are immutable. This returns an 611 /// index with a negative value. 612 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 613 bool Immutable, bool isAliased) { 614 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 615 // The alignment of the frame index can be determined from its offset from 616 // the incoming frame position. If the frame object is at offset 32 and 617 // the stack is guaranteed to be 16-byte aligned, then we know that the 618 // object is 16-byte aligned. 619 unsigned Align = MinAlign(SPOffset, StackAlignment); 620 Align = clampStackAlignment(!StackRealignable || !RealignOption, Align, 621 StackAlignment); 622 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 623 /*isSS*/ false, 624 /*Alloca*/ nullptr, isAliased)); 625 return -++NumFixedObjects; 626 } 627 628 /// Create a spill slot at a fixed location on the stack. 629 /// Returns an index with a negative value. 630 int MachineFrameInfo::CreateFixedSpillStackObject(uint64_t Size, 631 int64_t SPOffset) { 632 unsigned Align = MinAlign(SPOffset, StackAlignment); 633 Align = clampStackAlignment(!StackRealignable || !RealignOption, Align, 634 StackAlignment); 635 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, 636 /*Immutable*/ true, 637 /*isSS*/ true, 638 /*Alloca*/ nullptr, 639 /*isAliased*/ false)); 640 return -++NumFixedObjects; 641 } 642 643 BitVector MachineFrameInfo::getPristineRegs(const MachineFunction &MF) const { 644 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 645 BitVector BV(TRI->getNumRegs()); 646 647 // Before CSI is calculated, no registers are considered pristine. They can be 648 // freely used and PEI will make sure they are saved. 649 if (!isCalleeSavedInfoValid()) 650 return BV; 651 652 for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR) 653 BV.set(*CSR); 654 655 // Saved CSRs are not pristine. 656 for (auto &I : getCalleeSavedInfo()) 657 for (MCSubRegIterator S(I.getReg(), TRI, true); S.isValid(); ++S) 658 BV.reset(*S); 659 660 return BV; 661 } 662 663 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const { 664 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 665 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 666 unsigned MaxAlign = getMaxAlignment(); 667 int Offset = 0; 668 669 // This code is very, very similar to PEI::calculateFrameObjectOffsets(). 670 // It really should be refactored to share code. Until then, changes 671 // should keep in mind that there's tight coupling between the two. 672 673 for (int i = getObjectIndexBegin(); i != 0; ++i) { 674 int FixedOff = -getObjectOffset(i); 675 if (FixedOff > Offset) Offset = FixedOff; 676 } 677 for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) { 678 if (isDeadObjectIndex(i)) 679 continue; 680 Offset += getObjectSize(i); 681 unsigned Align = getObjectAlignment(i); 682 // Adjust to alignment boundary 683 Offset = (Offset+Align-1)/Align*Align; 684 685 MaxAlign = std::max(Align, MaxAlign); 686 } 687 688 if (adjustsStack() && TFI->hasReservedCallFrame(MF)) 689 Offset += getMaxCallFrameSize(); 690 691 // Round up the size to a multiple of the alignment. If the function has 692 // any calls or alloca's, align to the target's StackAlignment value to 693 // ensure that the callee's frame or the alloca data is suitably aligned; 694 // otherwise, for leaf functions, align to the TransientStackAlignment 695 // value. 696 unsigned StackAlign; 697 if (adjustsStack() || hasVarSizedObjects() || 698 (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0)) 699 StackAlign = TFI->getStackAlignment(); 700 else 701 StackAlign = TFI->getTransientStackAlignment(); 702 703 // If the frame pointer is eliminated, all frame offsets will be relative to 704 // SP not FP. Align to MaxAlign so this works. 705 StackAlign = std::max(StackAlign, MaxAlign); 706 unsigned AlignMask = StackAlign - 1; 707 Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); 708 709 return (unsigned)Offset; 710 } 711 712 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 713 if (Objects.empty()) return; 714 715 const TargetFrameLowering *FI = MF.getSubtarget().getFrameLowering(); 716 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 717 718 OS << "Frame Objects:\n"; 719 720 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 721 const StackObject &SO = Objects[i]; 722 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 723 if (SO.Size == ~0ULL) { 724 OS << "dead\n"; 725 continue; 726 } 727 if (SO.Size == 0) 728 OS << "variable sized"; 729 else 730 OS << "size=" << SO.Size; 731 OS << ", align=" << SO.Alignment; 732 733 if (i < NumFixedObjects) 734 OS << ", fixed"; 735 if (i < NumFixedObjects || SO.SPOffset != -1) { 736 int64_t Off = SO.SPOffset - ValOffset; 737 OS << ", at location [SP"; 738 if (Off > 0) 739 OS << "+" << Off; 740 else if (Off < 0) 741 OS << Off; 742 OS << "]"; 743 } 744 OS << "\n"; 745 } 746 } 747 748 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 749 void MachineFrameInfo::dump(const MachineFunction &MF) const { 750 print(MF, dbgs()); 751 } 752 #endif 753 754 //===----------------------------------------------------------------------===// 755 // MachineJumpTableInfo implementation 756 //===----------------------------------------------------------------------===// 757 758 /// Return the size of each entry in the jump table. 759 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 760 // The size of a jump table entry is 4 bytes unless the entry is just the 761 // address of a block, in which case it is the pointer size. 762 switch (getEntryKind()) { 763 case MachineJumpTableInfo::EK_BlockAddress: 764 return TD.getPointerSize(); 765 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 766 return 8; 767 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 768 case MachineJumpTableInfo::EK_LabelDifference32: 769 case MachineJumpTableInfo::EK_Custom32: 770 return 4; 771 case MachineJumpTableInfo::EK_Inline: 772 return 0; 773 } 774 llvm_unreachable("Unknown jump table encoding!"); 775 } 776 777 /// Return the alignment of each entry in the jump table. 778 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 779 // The alignment of a jump table entry is the alignment of int32 unless the 780 // entry is just the address of a block, in which case it is the pointer 781 // alignment. 782 switch (getEntryKind()) { 783 case MachineJumpTableInfo::EK_BlockAddress: 784 return TD.getPointerABIAlignment(); 785 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 786 return TD.getABIIntegerTypeAlignment(64); 787 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 788 case MachineJumpTableInfo::EK_LabelDifference32: 789 case MachineJumpTableInfo::EK_Custom32: 790 return TD.getABIIntegerTypeAlignment(32); 791 case MachineJumpTableInfo::EK_Inline: 792 return 1; 793 } 794 llvm_unreachable("Unknown jump table encoding!"); 795 } 796 797 /// Create a new jump table entry in the jump table info. 798 unsigned MachineJumpTableInfo::createJumpTableIndex( 799 const std::vector<MachineBasicBlock*> &DestBBs) { 800 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 801 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 802 return JumpTables.size()-1; 803 } 804 805 /// If Old is the target of any jump tables, update the jump tables to branch 806 /// to New instead. 807 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 808 MachineBasicBlock *New) { 809 assert(Old != New && "Not making a change?"); 810 bool MadeChange = false; 811 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 812 ReplaceMBBInJumpTable(i, Old, New); 813 return MadeChange; 814 } 815 816 /// If Old is a target of the jump tables, update the jump table to branch to 817 /// New instead. 818 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 819 MachineBasicBlock *Old, 820 MachineBasicBlock *New) { 821 assert(Old != New && "Not making a change?"); 822 bool MadeChange = false; 823 MachineJumpTableEntry &JTE = JumpTables[Idx]; 824 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 825 if (JTE.MBBs[j] == Old) { 826 JTE.MBBs[j] = New; 827 MadeChange = true; 828 } 829 return MadeChange; 830 } 831 832 void MachineJumpTableInfo::print(raw_ostream &OS) const { 833 if (JumpTables.empty()) return; 834 835 OS << "Jump Tables:\n"; 836 837 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 838 OS << " jt#" << i << ": "; 839 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 840 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 841 } 842 843 OS << '\n'; 844 } 845 846 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 847 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 848 #endif 849 850 851 //===----------------------------------------------------------------------===// 852 // MachineConstantPool implementation 853 //===----------------------------------------------------------------------===// 854 855 void MachineConstantPoolValue::anchor() { } 856 857 Type *MachineConstantPoolEntry::getType() const { 858 if (isMachineConstantPoolEntry()) 859 return Val.MachineCPVal->getType(); 860 return Val.ConstVal->getType(); 861 } 862 863 bool MachineConstantPoolEntry::needsRelocation() const { 864 if (isMachineConstantPoolEntry()) 865 return true; 866 return Val.ConstVal->needsRelocation(); 867 } 868 869 SectionKind 870 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 871 if (needsRelocation()) 872 return SectionKind::getReadOnlyWithRel(); 873 switch (DL->getTypeAllocSize(getType())) { 874 case 4: 875 return SectionKind::getMergeableConst4(); 876 case 8: 877 return SectionKind::getMergeableConst8(); 878 case 16: 879 return SectionKind::getMergeableConst16(); 880 case 32: 881 return SectionKind::getMergeableConst32(); 882 default: 883 return SectionKind::getReadOnly(); 884 } 885 } 886 887 MachineConstantPool::~MachineConstantPool() { 888 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 889 if (Constants[i].isMachineConstantPoolEntry()) 890 delete Constants[i].Val.MachineCPVal; 891 for (DenseSet<MachineConstantPoolValue*>::iterator I = 892 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 893 I != E; ++I) 894 delete *I; 895 } 896 897 /// Test whether the given two constants can be allocated the same constant pool 898 /// entry. 899 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 900 const DataLayout &DL) { 901 // Handle the trivial case quickly. 902 if (A == B) return true; 903 904 // If they have the same type but weren't the same constant, quickly 905 // reject them. 906 if (A->getType() == B->getType()) return false; 907 908 // We can't handle structs or arrays. 909 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 910 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 911 return false; 912 913 // For now, only support constants with the same size. 914 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 915 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 916 return false; 917 918 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 919 920 // Try constant folding a bitcast of both instructions to an integer. If we 921 // get two identical ConstantInt's, then we are good to share them. We use 922 // the constant folding APIs to do this so that we get the benefit of 923 // DataLayout. 924 if (isa<PointerType>(A->getType())) 925 A = ConstantFoldCastOperand(Instruction::PtrToInt, 926 const_cast<Constant *>(A), IntTy, DL); 927 else if (A->getType() != IntTy) 928 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 929 IntTy, DL); 930 if (isa<PointerType>(B->getType())) 931 B = ConstantFoldCastOperand(Instruction::PtrToInt, 932 const_cast<Constant *>(B), IntTy, DL); 933 else if (B->getType() != IntTy) 934 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 935 IntTy, DL); 936 937 return A == B; 938 } 939 940 /// Create a new entry in the constant pool or return an existing one. 941 /// User must specify the log2 of the minimum required alignment for the object. 942 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 943 unsigned Alignment) { 944 assert(Alignment && "Alignment must be specified!"); 945 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 946 947 // Check to see if we already have this constant. 948 // 949 // FIXME, this could be made much more efficient for large constant pools. 950 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 951 if (!Constants[i].isMachineConstantPoolEntry() && 952 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 953 if ((unsigned)Constants[i].getAlignment() < Alignment) 954 Constants[i].Alignment = Alignment; 955 return i; 956 } 957 958 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 959 return Constants.size()-1; 960 } 961 962 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 963 unsigned Alignment) { 964 assert(Alignment && "Alignment must be specified!"); 965 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 966 967 // Check to see if we already have this constant. 968 // 969 // FIXME, this could be made much more efficient for large constant pools. 970 int Idx = V->getExistingMachineCPValue(this, Alignment); 971 if (Idx != -1) { 972 MachineCPVsSharingEntries.insert(V); 973 return (unsigned)Idx; 974 } 975 976 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 977 return Constants.size()-1; 978 } 979 980 void MachineConstantPool::print(raw_ostream &OS) const { 981 if (Constants.empty()) return; 982 983 OS << "Constant Pool:\n"; 984 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 985 OS << " cp#" << i << ": "; 986 if (Constants[i].isMachineConstantPoolEntry()) 987 Constants[i].Val.MachineCPVal->print(OS); 988 else 989 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 990 OS << ", align=" << Constants[i].getAlignment(); 991 OS << "\n"; 992 } 993 } 994 995 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 996 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 997 #endif 998