1 //===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The machine combiner pass uses machine trace metrics to ensure the combined
11 // instructions do not lengthen the critical path or the resource depth.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/CodeGen/MachineDominators.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/MachineTraceMetrics.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetSchedule.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Target/TargetInstrInfo.h"
29 #include "llvm/Target/TargetRegisterInfo.h"
30 #include "llvm/Target/TargetSubtargetInfo.h"
31 
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "machine-combiner"
35 
36 STATISTIC(NumInstCombined, "Number of machineinst combined");
37 
38 static cl::opt<unsigned>
39 inc_threshold("machine-combiner-inc-threshold", cl::Hidden,
40               cl::desc("Incremental depth computation will be used for basic "
41                        "blocks with more instructions."), cl::init(500));
42 
43 namespace {
44 class MachineCombiner : public MachineFunctionPass {
45   const TargetInstrInfo *TII;
46   const TargetRegisterInfo *TRI;
47   MCSchedModel SchedModel;
48   MachineRegisterInfo *MRI;
49   MachineLoopInfo *MLI; // Current MachineLoopInfo
50   MachineTraceMetrics *Traces;
51   MachineTraceMetrics::Ensemble *MinInstr;
52 
53   TargetSchedModel TSchedModel;
54 
55   /// True if optimizing for code size.
56   bool OptSize;
57 
58 public:
59   static char ID;
60   MachineCombiner() : MachineFunctionPass(ID) {
61     initializeMachineCombinerPass(*PassRegistry::getPassRegistry());
62   }
63   void getAnalysisUsage(AnalysisUsage &AU) const override;
64   bool runOnMachineFunction(MachineFunction &MF) override;
65   StringRef getPassName() const override { return "Machine InstCombiner"; }
66 
67 private:
68   bool doSubstitute(unsigned NewSize, unsigned OldSize);
69   bool combineInstructions(MachineBasicBlock *);
70   MachineInstr *getOperandDef(const MachineOperand &MO);
71   unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
72                     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
73                     MachineTraceMetrics::Trace BlockTrace);
74   unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
75                       MachineTraceMetrics::Trace BlockTrace);
76   bool
77   improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
78                           MachineTraceMetrics::Trace BlockTrace,
79                           SmallVectorImpl<MachineInstr *> &InsInstrs,
80                           SmallVectorImpl<MachineInstr *> &DelInstrs,
81                           DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
82                           MachineCombinerPattern Pattern, bool SlackIsAccurate);
83   bool preservesResourceLen(MachineBasicBlock *MBB,
84                             MachineTraceMetrics::Trace BlockTrace,
85                             SmallVectorImpl<MachineInstr *> &InsInstrs,
86                             SmallVectorImpl<MachineInstr *> &DelInstrs);
87   void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
88                      SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC);
89 };
90 }
91 
92 char MachineCombiner::ID = 0;
93 char &llvm::MachineCombinerID = MachineCombiner::ID;
94 
95 INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE,
96                       "Machine InstCombiner", false, false)
97 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
98 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
99 INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner",
100                     false, false)
101 
102 void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
103   AU.setPreservesCFG();
104   AU.addPreserved<MachineDominatorTree>();
105   AU.addRequired<MachineLoopInfo>();
106   AU.addPreserved<MachineLoopInfo>();
107   AU.addRequired<MachineTraceMetrics>();
108   AU.addPreserved<MachineTraceMetrics>();
109   MachineFunctionPass::getAnalysisUsage(AU);
110 }
111 
112 MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) {
113   MachineInstr *DefInstr = nullptr;
114   // We need a virtual register definition.
115   if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
116     DefInstr = MRI->getUniqueVRegDef(MO.getReg());
117   // PHI's have no depth etc.
118   if (DefInstr && DefInstr->isPHI())
119     DefInstr = nullptr;
120   return DefInstr;
121 }
122 
123 /// Computes depth of instructions in vector \InsInstr.
124 ///
125 /// \param InsInstrs is a vector of machine instructions
126 /// \param InstrIdxForVirtReg is a dense map of virtual register to index
127 /// of defining machine instruction in \p InsInstrs
128 /// \param BlockTrace is a trace of machine instructions
129 ///
130 /// \returns Depth of last instruction in \InsInstrs ("NewRoot")
131 unsigned
132 MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
133                           DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
134                           MachineTraceMetrics::Trace BlockTrace) {
135   SmallVector<unsigned, 16> InstrDepth;
136   assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
137          "Missing machine model\n");
138 
139   // For each instruction in the new sequence compute the depth based on the
140   // operands. Use the trace information when possible. For new operands which
141   // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
142   for (auto *InstrPtr : InsInstrs) { // for each Use
143     unsigned IDepth = 0;
144     DEBUG(dbgs() << "NEW INSTR ";
145           InstrPtr->print(dbgs(), TII);
146           dbgs() << "\n";);
147     for (const MachineOperand &MO : InstrPtr->operands()) {
148       // Check for virtual register operand.
149       if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
150         continue;
151       if (!MO.isUse())
152         continue;
153       unsigned DepthOp = 0;
154       unsigned LatencyOp = 0;
155       DenseMap<unsigned, unsigned>::iterator II =
156           InstrIdxForVirtReg.find(MO.getReg());
157       if (II != InstrIdxForVirtReg.end()) {
158         // Operand is new virtual register not in trace
159         assert(II->second < InstrDepth.size() && "Bad Index");
160         MachineInstr *DefInstr = InsInstrs[II->second];
161         assert(DefInstr &&
162                "There must be a definition for a new virtual register");
163         DepthOp = InstrDepth[II->second];
164         LatencyOp = TSchedModel.computeOperandLatency(
165             DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
166             InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
167       } else {
168         MachineInstr *DefInstr = getOperandDef(MO);
169         if (DefInstr) {
170           DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth;
171           LatencyOp = TSchedModel.computeOperandLatency(
172               DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
173               InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
174         }
175       }
176       IDepth = std::max(IDepth, DepthOp + LatencyOp);
177     }
178     InstrDepth.push_back(IDepth);
179   }
180   unsigned NewRootIdx = InsInstrs.size() - 1;
181   return InstrDepth[NewRootIdx];
182 }
183 
184 /// Computes instruction latency as max of latency of defined operands.
185 ///
186 /// \param Root is a machine instruction that could be replaced by NewRoot.
187 /// It is used to compute a more accurate latency information for NewRoot in
188 /// case there is a dependent instruction in the same trace (\p BlockTrace)
189 /// \param NewRoot is the instruction for which the latency is computed
190 /// \param BlockTrace is a trace of machine instructions
191 ///
192 /// \returns Latency of \p NewRoot
193 unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
194                                      MachineTraceMetrics::Trace BlockTrace) {
195   assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
196          "Missing machine model\n");
197 
198   // Check each definition in NewRoot and compute the latency
199   unsigned NewRootLatency = 0;
200 
201   for (const MachineOperand &MO : NewRoot->operands()) {
202     // Check for virtual register operand.
203     if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
204       continue;
205     if (!MO.isDef())
206       continue;
207     // Get the first instruction that uses MO
208     MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
209     RI++;
210     MachineInstr *UseMO = RI->getParent();
211     unsigned LatencyOp = 0;
212     if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) {
213       LatencyOp = TSchedModel.computeOperandLatency(
214           NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO,
215           UseMO->findRegisterUseOperandIdx(MO.getReg()));
216     } else {
217       LatencyOp = TSchedModel.computeInstrLatency(NewRoot);
218     }
219     NewRootLatency = std::max(NewRootLatency, LatencyOp);
220   }
221   return NewRootLatency;
222 }
223 
224 /// The combiner's goal may differ based on which pattern it is attempting
225 /// to optimize.
226 enum class CombinerObjective {
227   MustReduceDepth, // The data dependency chain must be improved.
228   Default          // The critical path must not be lengthened.
229 };
230 
231 static CombinerObjective getCombinerObjective(MachineCombinerPattern P) {
232   // TODO: If C++ ever gets a real enum class, make this part of the
233   // MachineCombinerPattern class.
234   switch (P) {
235   case MachineCombinerPattern::REASSOC_AX_BY:
236   case MachineCombinerPattern::REASSOC_AX_YB:
237   case MachineCombinerPattern::REASSOC_XA_BY:
238   case MachineCombinerPattern::REASSOC_XA_YB:
239     return CombinerObjective::MustReduceDepth;
240   default:
241     return CombinerObjective::Default;
242   }
243 }
244 
245 /// The DAGCombine code sequence ends in MI (Machine Instruction) Root.
246 /// The new code sequence ends in MI NewRoot. A necessary condition for the new
247 /// sequence to replace the old sequence is that it cannot lengthen the critical
248 /// path. The definition of "improve" may be restricted by specifying that the
249 /// new path improves the data dependency chain (MustReduceDepth).
250 bool MachineCombiner::improvesCriticalPathLen(
251     MachineBasicBlock *MBB, MachineInstr *Root,
252     MachineTraceMetrics::Trace BlockTrace,
253     SmallVectorImpl<MachineInstr *> &InsInstrs,
254     SmallVectorImpl<MachineInstr *> &DelInstrs,
255     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
256     MachineCombinerPattern Pattern,
257     bool SlackIsAccurate) {
258   assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
259          "Missing machine model\n");
260   // NewRoot is the last instruction in the \p InsInstrs vector.
261   unsigned NewRootIdx = InsInstrs.size() - 1;
262   MachineInstr *NewRoot = InsInstrs[NewRootIdx];
263 
264   // Get depth and latency of NewRoot and Root.
265   unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace);
266   unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth;
267 
268   DEBUG(dbgs() << "DEPENDENCE DATA FOR " << *Root << "\n";
269         dbgs() << " NewRootDepth: " << NewRootDepth << "\n";
270         dbgs() << " RootDepth: " << RootDepth << "\n");
271 
272   // For a transform such as reassociation, the cost equation is
273   // conservatively calculated so that we must improve the depth (data
274   // dependency cycles) in the critical path to proceed with the transform.
275   // Being conservative also protects against inaccuracies in the underlying
276   // machine trace metrics and CPU models.
277   if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth)
278     return NewRootDepth < RootDepth;
279 
280   // A more flexible cost calculation for the critical path includes the slack
281   // of the original code sequence. This may allow the transform to proceed
282   // even if the instruction depths (data dependency cycles) become worse.
283 
284   unsigned NewRootLatency = getLatency(Root, NewRoot, BlockTrace);
285   unsigned RootLatency = 0;
286 
287   for (auto I : DelInstrs)
288     RootLatency += TSchedModel.computeInstrLatency(I);
289 
290   unsigned RootSlack = BlockTrace.getInstrSlack(*Root);
291   unsigned NewCycleCount = NewRootDepth + NewRootLatency;
292   unsigned OldCycleCount = RootDepth + RootLatency +
293                            (SlackIsAccurate ? RootSlack : 0);
294   DEBUG(dbgs() << " NewRootLatency: " << NewRootLatency << "\n";
295         dbgs() << " RootLatency: " << RootLatency << "\n";
296         dbgs() << " RootSlack: " << RootSlack << " SlackIsAccurate="
297                << SlackIsAccurate << "\n";
298         dbgs() << " NewRootDepth + NewRootLatency = "
299                << NewCycleCount << "\n";
300         dbgs() << " RootDepth + RootLatency + RootSlack = "
301                << OldCycleCount << "\n";
302         );
303 
304   return NewCycleCount <= OldCycleCount;
305 }
306 
307 /// helper routine to convert instructions into SC
308 void MachineCombiner::instr2instrSC(
309     SmallVectorImpl<MachineInstr *> &Instrs,
310     SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) {
311   for (auto *InstrPtr : Instrs) {
312     unsigned Opc = InstrPtr->getOpcode();
313     unsigned Idx = TII->get(Opc).getSchedClass();
314     const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
315     InstrsSC.push_back(SC);
316   }
317 }
318 
319 /// True when the new instructions do not increase resource length
320 bool MachineCombiner::preservesResourceLen(
321     MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace,
322     SmallVectorImpl<MachineInstr *> &InsInstrs,
323     SmallVectorImpl<MachineInstr *> &DelInstrs) {
324   if (!TSchedModel.hasInstrSchedModel())
325     return true;
326 
327   // Compute current resource length
328 
329   //ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
330   SmallVector <const MachineBasicBlock *, 1> MBBarr;
331   MBBarr.push_back(MBB);
332   unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);
333 
334   // Deal with SC rather than Instructions.
335   SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC;
336   SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC;
337 
338   instr2instrSC(InsInstrs, InsInstrsSC);
339   instr2instrSC(DelInstrs, DelInstrsSC);
340 
341   ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC);
342   ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC);
343 
344   // Compute new resource length.
345   unsigned ResLenAfterCombine =
346       BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);
347 
348   DEBUG(dbgs() << "RESOURCE DATA: \n";
349         dbgs() << " resource len before: " << ResLenBeforeCombine
350                << " after: " << ResLenAfterCombine << "\n";);
351 
352   return ResLenAfterCombine <= ResLenBeforeCombine;
353 }
354 
355 /// \returns true when new instruction sequence should be generated
356 /// independent if it lengthens critical path or not
357 bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize) {
358   if (OptSize && (NewSize < OldSize))
359     return true;
360   if (!TSchedModel.hasInstrSchedModelOrItineraries())
361     return true;
362   return false;
363 }
364 
365 /// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction
366 /// depths if requested.
367 ///
368 /// \param MBB basic block to insert instructions in
369 /// \param MI current machine instruction
370 /// \param InsInstrs new instructions to insert in \p MBB
371 /// \param DelInstrs instruction to delete from \p MBB
372 /// \param MinInstr is a pointer to the machine trace information
373 /// \param RegUnits set of live registers, needed to compute instruction depths
374 /// \param IncrementalUpdate if true, compute instruction depths incrementally,
375 ///                          otherwise invalidate the trace
376 static void insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI,
377                                      SmallVector<MachineInstr *, 16> InsInstrs,
378                                      SmallVector<MachineInstr *, 16> DelInstrs,
379                                      MachineTraceMetrics::Ensemble *MinInstr,
380                                      SparseSet<LiveRegUnit> &RegUnits,
381                                      bool IncrementalUpdate) {
382   for (auto *InstrPtr : InsInstrs)
383     MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr);
384 
385   for (auto *InstrPtr : DelInstrs) {
386     InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval();
387     // Erase all LiveRegs defined by the removed instruction
388     for (auto I = RegUnits.begin(); I != RegUnits.end(); ) {
389       if (I->MI == InstrPtr)
390         I = RegUnits.erase(I);
391       else
392         I++;
393     }
394   }
395 
396   if (IncrementalUpdate)
397     for (auto *InstrPtr : InsInstrs)
398       MinInstr->updateDepth(MBB, *InstrPtr, RegUnits);
399   else
400     MinInstr->invalidate(MBB);
401 
402   NumInstCombined++;
403 }
404 
405 /// Substitute a slow code sequence with a faster one by
406 /// evaluating instruction combining pattern.
407 /// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
408 /// combining based on machine trace metrics. Only combine a sequence of
409 /// instructions  when this neither lengthens the critical path nor increases
410 /// resource pressure. When optimizing for codesize always combine when the new
411 /// sequence is shorter.
412 bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
413   bool Changed = false;
414   DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");
415 
416   bool IncrementalUpdate = false;
417   auto BlockIter = MBB->begin();
418   decltype(BlockIter) LastUpdate;
419   // Check if the block is in a loop.
420   const MachineLoop *ML = MLI->getLoopFor(MBB);
421   if (!MinInstr)
422     MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
423 
424   SparseSet<LiveRegUnit> RegUnits;
425   RegUnits.setUniverse(TRI->getNumRegUnits());
426 
427   while (BlockIter != MBB->end()) {
428     auto &MI = *BlockIter++;
429 
430     DEBUG(dbgs() << "INSTR "; MI.dump(); dbgs() << "\n";);
431     SmallVector<MachineCombinerPattern, 16> Patterns;
432     // The motivating example is:
433     //
434     //     MUL  Other        MUL_op1 MUL_op2  Other
435     //      \    /               \      |    /
436     //      ADD/SUB      =>        MADD/MSUB
437     //      (=Root)                (=NewRoot)
438 
439     // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
440     // usually beneficial for code size it unfortunately can hurt performance
441     // when the ADD is on the critical path, but the MUL is not. With the
442     // substitution the MUL becomes part of the critical path (in form of the
443     // MADD) and can lengthen it on architectures where the MADD latency is
444     // longer than the ADD latency.
445     //
446     // For each instruction we check if it can be the root of a combiner
447     // pattern. Then for each pattern the new code sequence in form of MI is
448     // generated and evaluated. When the efficiency criteria (don't lengthen
449     // critical path, don't use more resources) is met the new sequence gets
450     // hooked up into the basic block before the old sequence is removed.
451     //
452     // The algorithm does not try to evaluate all patterns and pick the best.
453     // This is only an artificial restriction though. In practice there is
454     // mostly one pattern, and getMachineCombinerPatterns() can order patterns
455     // based on an internal cost heuristic.
456 
457     if (!TII->getMachineCombinerPatterns(MI, Patterns))
458       continue;
459 
460     for (auto P : Patterns) {
461       SmallVector<MachineInstr *, 16> InsInstrs;
462       SmallVector<MachineInstr *, 16> DelInstrs;
463       DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
464       TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
465                                       InstrIdxForVirtReg);
466       unsigned NewInstCount = InsInstrs.size();
467       unsigned OldInstCount = DelInstrs.size();
468       // Found pattern, but did not generate alternative sequence.
469       // This can happen e.g. when an immediate could not be materialized
470       // in a single instruction.
471       if (!NewInstCount)
472         continue;
473 
474       bool SubstituteAlways = false;
475       if (ML && TII->isThroughputPattern(P))
476         SubstituteAlways = true;
477 
478       if (IncrementalUpdate) {
479         // Update depths since the last incremental update.
480         MinInstr->updateDepths(LastUpdate, BlockIter, RegUnits);
481         LastUpdate = BlockIter;
482       }
483 
484       // Substitute when we optimize for codesize and the new sequence has
485       // fewer instructions OR
486       // the new sequence neither lengthens the critical path nor increases
487       // resource pressure.
488       if (SubstituteAlways || doSubstitute(NewInstCount, OldInstCount)) {
489         insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
490                                  RegUnits, IncrementalUpdate);
491         // Eagerly stop after the first pattern fires.
492         Changed = true;
493         break;
494       } else {
495         // For big basic blocks, we only compute the full trace the first time
496         // we hit this. We do not invalidate the trace, but instead update the
497         // instruction depths incrementally.
498         // NOTE: Only the instruction depths up to MI are accurate. All other
499         // trace information is not updated.
500         MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB);
501         Traces->verifyAnalysis();
502         if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs,
503                                     InstrIdxForVirtReg, P,
504                                     !IncrementalUpdate) &&
505             preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) {
506           if (MBB->size() > inc_threshold) {
507             // Use incremental depth updates for basic blocks above treshold
508             IncrementalUpdate = true;
509             LastUpdate = BlockIter;
510           }
511 
512           insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
513                                    RegUnits, IncrementalUpdate);
514 
515           // Eagerly stop after the first pattern fires.
516           Changed = true;
517           break;
518         }
519         // Cleanup instructions of the alternative code sequence. There is no
520         // use for them.
521         MachineFunction *MF = MBB->getParent();
522         for (auto *InstrPtr : InsInstrs)
523           MF->DeleteMachineInstr(InstrPtr);
524       }
525       InstrIdxForVirtReg.clear();
526     }
527   }
528 
529   if (Changed && IncrementalUpdate)
530     Traces->invalidate(MBB);
531   return Changed;
532 }
533 
534 bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
535   const TargetSubtargetInfo &STI = MF.getSubtarget();
536   TII = STI.getInstrInfo();
537   TRI = STI.getRegisterInfo();
538   SchedModel = STI.getSchedModel();
539   TSchedModel.init(SchedModel, &STI, TII);
540   MRI = &MF.getRegInfo();
541   MLI = &getAnalysis<MachineLoopInfo>();
542   Traces = &getAnalysis<MachineTraceMetrics>();
543   MinInstr = nullptr;
544   OptSize = MF.getFunction()->optForSize();
545 
546   DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
547   if (!TII->useMachineCombiner()) {
548     DEBUG(dbgs() << "  Skipping pass: Target does not support machine combiner\n");
549     return false;
550   }
551 
552   bool Changed = false;
553 
554   // Try to combine instructions.
555   for (auto &MBB : MF)
556     Changed |= combineInstructions(&MBB);
557 
558   return Changed;
559 }
560