1 //===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The machine combiner pass uses machine trace metrics to ensure the combined 11 // instructions do not lengthen the critical path or the resource depth. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/CodeGen/MachineDominators.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineFunctionPass.h" 19 #include "llvm/CodeGen/MachineLoopInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/MachineTraceMetrics.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/TargetInstrInfo.h" 24 #include "llvm/CodeGen/TargetRegisterInfo.h" 25 #include "llvm/CodeGen/TargetSchedule.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "machine-combiner" 34 35 STATISTIC(NumInstCombined, "Number of machineinst combined"); 36 37 static cl::opt<unsigned> 38 inc_threshold("machine-combiner-inc-threshold", cl::Hidden, 39 cl::desc("Incremental depth computation will be used for basic " 40 "blocks with more instructions."), cl::init(500)); 41 42 #ifdef EXPENSIVE_CHECKS 43 static cl::opt<bool> VerifyPatternOrder( 44 "machine-combiner-verify-pattern-order", cl::Hidden, 45 cl::desc( 46 "Verify that the generated patterns are ordered by increasing latency"), 47 cl::init(true)); 48 #else 49 static cl::opt<bool> VerifyPatternOrder( 50 "machine-combiner-verify-pattern-order", cl::Hidden, 51 cl::desc( 52 "Verify that the generated patterns are ordered by increasing latency"), 53 cl::init(false)); 54 #endif 55 56 namespace { 57 class MachineCombiner : public MachineFunctionPass { 58 const TargetInstrInfo *TII; 59 const TargetRegisterInfo *TRI; 60 MCSchedModel SchedModel; 61 MachineRegisterInfo *MRI; 62 MachineLoopInfo *MLI; // Current MachineLoopInfo 63 MachineTraceMetrics *Traces; 64 MachineTraceMetrics::Ensemble *MinInstr; 65 66 TargetSchedModel TSchedModel; 67 68 /// True if optimizing for code size. 69 bool OptSize; 70 71 public: 72 static char ID; 73 MachineCombiner() : MachineFunctionPass(ID) { 74 initializeMachineCombinerPass(*PassRegistry::getPassRegistry()); 75 } 76 void getAnalysisUsage(AnalysisUsage &AU) const override; 77 bool runOnMachineFunction(MachineFunction &MF) override; 78 StringRef getPassName() const override { return "Machine InstCombiner"; } 79 80 private: 81 bool doSubstitute(unsigned NewSize, unsigned OldSize); 82 bool combineInstructions(MachineBasicBlock *); 83 MachineInstr *getOperandDef(const MachineOperand &MO); 84 unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs, 85 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 86 MachineTraceMetrics::Trace BlockTrace); 87 unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot, 88 MachineTraceMetrics::Trace BlockTrace); 89 bool 90 improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root, 91 MachineTraceMetrics::Trace BlockTrace, 92 SmallVectorImpl<MachineInstr *> &InsInstrs, 93 SmallVectorImpl<MachineInstr *> &DelInstrs, 94 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 95 MachineCombinerPattern Pattern, bool SlackIsAccurate); 96 bool preservesResourceLen(MachineBasicBlock *MBB, 97 MachineTraceMetrics::Trace BlockTrace, 98 SmallVectorImpl<MachineInstr *> &InsInstrs, 99 SmallVectorImpl<MachineInstr *> &DelInstrs); 100 void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs, 101 SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC); 102 std::pair<unsigned, unsigned> 103 getLatenciesForInstrSequences(MachineInstr &MI, 104 SmallVectorImpl<MachineInstr *> &InsInstrs, 105 SmallVectorImpl<MachineInstr *> &DelInstrs, 106 MachineTraceMetrics::Trace BlockTrace); 107 108 void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root, 109 SmallVector<MachineCombinerPattern, 16> &Patterns); 110 }; 111 } 112 113 char MachineCombiner::ID = 0; 114 char &llvm::MachineCombinerID = MachineCombiner::ID; 115 116 INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE, 117 "Machine InstCombiner", false, false) 118 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 119 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics) 120 INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner", 121 false, false) 122 123 void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const { 124 AU.setPreservesCFG(); 125 AU.addPreserved<MachineDominatorTree>(); 126 AU.addRequired<MachineLoopInfo>(); 127 AU.addPreserved<MachineLoopInfo>(); 128 AU.addRequired<MachineTraceMetrics>(); 129 AU.addPreserved<MachineTraceMetrics>(); 130 MachineFunctionPass::getAnalysisUsage(AU); 131 } 132 133 MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) { 134 MachineInstr *DefInstr = nullptr; 135 // We need a virtual register definition. 136 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 137 DefInstr = MRI->getUniqueVRegDef(MO.getReg()); 138 // PHI's have no depth etc. 139 if (DefInstr && DefInstr->isPHI()) 140 DefInstr = nullptr; 141 return DefInstr; 142 } 143 144 /// Computes depth of instructions in vector \InsInstr. 145 /// 146 /// \param InsInstrs is a vector of machine instructions 147 /// \param InstrIdxForVirtReg is a dense map of virtual register to index 148 /// of defining machine instruction in \p InsInstrs 149 /// \param BlockTrace is a trace of machine instructions 150 /// 151 /// \returns Depth of last instruction in \InsInstrs ("NewRoot") 152 unsigned 153 MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs, 154 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 155 MachineTraceMetrics::Trace BlockTrace) { 156 SmallVector<unsigned, 16> InstrDepth; 157 assert(TSchedModel.hasInstrSchedModelOrItineraries() && 158 "Missing machine model\n"); 159 160 // For each instruction in the new sequence compute the depth based on the 161 // operands. Use the trace information when possible. For new operands which 162 // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth 163 for (auto *InstrPtr : InsInstrs) { // for each Use 164 unsigned IDepth = 0; 165 DEBUG(dbgs() << "NEW INSTR "; 166 InstrPtr->print(dbgs(), TII); 167 dbgs() << "\n";); 168 for (const MachineOperand &MO : InstrPtr->operands()) { 169 // Check for virtual register operand. 170 if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))) 171 continue; 172 if (!MO.isUse()) 173 continue; 174 unsigned DepthOp = 0; 175 unsigned LatencyOp = 0; 176 DenseMap<unsigned, unsigned>::iterator II = 177 InstrIdxForVirtReg.find(MO.getReg()); 178 if (II != InstrIdxForVirtReg.end()) { 179 // Operand is new virtual register not in trace 180 assert(II->second < InstrDepth.size() && "Bad Index"); 181 MachineInstr *DefInstr = InsInstrs[II->second]; 182 assert(DefInstr && 183 "There must be a definition for a new virtual register"); 184 DepthOp = InstrDepth[II->second]; 185 int DefIdx = DefInstr->findRegisterDefOperandIdx(MO.getReg()); 186 int UseIdx = InstrPtr->findRegisterUseOperandIdx(MO.getReg()); 187 LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx, 188 InstrPtr, UseIdx); 189 } else { 190 MachineInstr *DefInstr = getOperandDef(MO); 191 if (DefInstr) { 192 DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth; 193 LatencyOp = TSchedModel.computeOperandLatency( 194 DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()), 195 InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg())); 196 } 197 } 198 IDepth = std::max(IDepth, DepthOp + LatencyOp); 199 } 200 InstrDepth.push_back(IDepth); 201 } 202 unsigned NewRootIdx = InsInstrs.size() - 1; 203 return InstrDepth[NewRootIdx]; 204 } 205 206 /// Computes instruction latency as max of latency of defined operands. 207 /// 208 /// \param Root is a machine instruction that could be replaced by NewRoot. 209 /// It is used to compute a more accurate latency information for NewRoot in 210 /// case there is a dependent instruction in the same trace (\p BlockTrace) 211 /// \param NewRoot is the instruction for which the latency is computed 212 /// \param BlockTrace is a trace of machine instructions 213 /// 214 /// \returns Latency of \p NewRoot 215 unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot, 216 MachineTraceMetrics::Trace BlockTrace) { 217 assert(TSchedModel.hasInstrSchedModelOrItineraries() && 218 "Missing machine model\n"); 219 220 // Check each definition in NewRoot and compute the latency 221 unsigned NewRootLatency = 0; 222 223 for (const MachineOperand &MO : NewRoot->operands()) { 224 // Check for virtual register operand. 225 if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))) 226 continue; 227 if (!MO.isDef()) 228 continue; 229 // Get the first instruction that uses MO 230 MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg()); 231 RI++; 232 MachineInstr *UseMO = RI->getParent(); 233 unsigned LatencyOp = 0; 234 if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) { 235 LatencyOp = TSchedModel.computeOperandLatency( 236 NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO, 237 UseMO->findRegisterUseOperandIdx(MO.getReg())); 238 } else { 239 LatencyOp = TSchedModel.computeInstrLatency(NewRoot); 240 } 241 NewRootLatency = std::max(NewRootLatency, LatencyOp); 242 } 243 return NewRootLatency; 244 } 245 246 /// The combiner's goal may differ based on which pattern it is attempting 247 /// to optimize. 248 enum class CombinerObjective { 249 MustReduceDepth, // The data dependency chain must be improved. 250 Default // The critical path must not be lengthened. 251 }; 252 253 static CombinerObjective getCombinerObjective(MachineCombinerPattern P) { 254 // TODO: If C++ ever gets a real enum class, make this part of the 255 // MachineCombinerPattern class. 256 switch (P) { 257 case MachineCombinerPattern::REASSOC_AX_BY: 258 case MachineCombinerPattern::REASSOC_AX_YB: 259 case MachineCombinerPattern::REASSOC_XA_BY: 260 case MachineCombinerPattern::REASSOC_XA_YB: 261 return CombinerObjective::MustReduceDepth; 262 default: 263 return CombinerObjective::Default; 264 } 265 } 266 267 /// Estimate the latency of the new and original instruction sequence by summing 268 /// up the latencies of the inserted and deleted instructions. This assumes 269 /// that the inserted and deleted instructions are dependent instruction chains, 270 /// which might not hold in all cases. 271 std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences( 272 MachineInstr &MI, SmallVectorImpl<MachineInstr *> &InsInstrs, 273 SmallVectorImpl<MachineInstr *> &DelInstrs, 274 MachineTraceMetrics::Trace BlockTrace) { 275 assert(!InsInstrs.empty() && "Only support sequences that insert instrs."); 276 unsigned NewRootLatency = 0; 277 // NewRoot is the last instruction in the \p InsInstrs vector. 278 MachineInstr *NewRoot = InsInstrs.back(); 279 for (unsigned i = 0; i < InsInstrs.size() - 1; i++) 280 NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]); 281 NewRootLatency += getLatency(&MI, NewRoot, BlockTrace); 282 283 unsigned RootLatency = 0; 284 for (auto I : DelInstrs) 285 RootLatency += TSchedModel.computeInstrLatency(I); 286 287 return {NewRootLatency, RootLatency}; 288 } 289 290 /// The DAGCombine code sequence ends in MI (Machine Instruction) Root. 291 /// The new code sequence ends in MI NewRoot. A necessary condition for the new 292 /// sequence to replace the old sequence is that it cannot lengthen the critical 293 /// path. The definition of "improve" may be restricted by specifying that the 294 /// new path improves the data dependency chain (MustReduceDepth). 295 bool MachineCombiner::improvesCriticalPathLen( 296 MachineBasicBlock *MBB, MachineInstr *Root, 297 MachineTraceMetrics::Trace BlockTrace, 298 SmallVectorImpl<MachineInstr *> &InsInstrs, 299 SmallVectorImpl<MachineInstr *> &DelInstrs, 300 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 301 MachineCombinerPattern Pattern, 302 bool SlackIsAccurate) { 303 assert(TSchedModel.hasInstrSchedModelOrItineraries() && 304 "Missing machine model\n"); 305 // Get depth and latency of NewRoot and Root. 306 unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace); 307 unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth; 308 309 DEBUG(dbgs() << "DEPENDENCE DATA FOR " << *Root << "\n"; 310 dbgs() << " NewRootDepth: " << NewRootDepth << "\n"; 311 dbgs() << " RootDepth: " << RootDepth << "\n"); 312 313 // For a transform such as reassociation, the cost equation is 314 // conservatively calculated so that we must improve the depth (data 315 // dependency cycles) in the critical path to proceed with the transform. 316 // Being conservative also protects against inaccuracies in the underlying 317 // machine trace metrics and CPU models. 318 if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) 319 return NewRootDepth < RootDepth; 320 321 // A more flexible cost calculation for the critical path includes the slack 322 // of the original code sequence. This may allow the transform to proceed 323 // even if the instruction depths (data dependency cycles) become worse. 324 325 // Account for the latency of the inserted and deleted instructions by 326 unsigned NewRootLatency, RootLatency; 327 std::tie(NewRootLatency, RootLatency) = 328 getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace); 329 330 unsigned RootSlack = BlockTrace.getInstrSlack(*Root); 331 unsigned NewCycleCount = NewRootDepth + NewRootLatency; 332 unsigned OldCycleCount = RootDepth + RootLatency + 333 (SlackIsAccurate ? RootSlack : 0); 334 DEBUG(dbgs() << " NewRootLatency: " << NewRootLatency << "\n"; 335 dbgs() << " RootLatency: " << RootLatency << "\n"; 336 dbgs() << " RootSlack: " << RootSlack << " SlackIsAccurate=" 337 << SlackIsAccurate << "\n"; 338 dbgs() << " NewRootDepth + NewRootLatency = " 339 << NewCycleCount << "\n"; 340 dbgs() << " RootDepth + RootLatency + RootSlack = " 341 << OldCycleCount << "\n"; 342 ); 343 344 return NewCycleCount <= OldCycleCount; 345 } 346 347 /// helper routine to convert instructions into SC 348 void MachineCombiner::instr2instrSC( 349 SmallVectorImpl<MachineInstr *> &Instrs, 350 SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) { 351 for (auto *InstrPtr : Instrs) { 352 unsigned Opc = InstrPtr->getOpcode(); 353 unsigned Idx = TII->get(Opc).getSchedClass(); 354 const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx); 355 InstrsSC.push_back(SC); 356 } 357 } 358 359 /// True when the new instructions do not increase resource length 360 bool MachineCombiner::preservesResourceLen( 361 MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace, 362 SmallVectorImpl<MachineInstr *> &InsInstrs, 363 SmallVectorImpl<MachineInstr *> &DelInstrs) { 364 if (!TSchedModel.hasInstrSchedModel()) 365 return true; 366 367 // Compute current resource length 368 369 //ArrayRef<const MachineBasicBlock *> MBBarr(MBB); 370 SmallVector <const MachineBasicBlock *, 1> MBBarr; 371 MBBarr.push_back(MBB); 372 unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr); 373 374 // Deal with SC rather than Instructions. 375 SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC; 376 SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC; 377 378 instr2instrSC(InsInstrs, InsInstrsSC); 379 instr2instrSC(DelInstrs, DelInstrsSC); 380 381 ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC); 382 ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC); 383 384 // Compute new resource length. 385 unsigned ResLenAfterCombine = 386 BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr); 387 388 DEBUG(dbgs() << "RESOURCE DATA: \n"; 389 dbgs() << " resource len before: " << ResLenBeforeCombine 390 << " after: " << ResLenAfterCombine << "\n";); 391 392 return ResLenAfterCombine <= ResLenBeforeCombine; 393 } 394 395 /// \returns true when new instruction sequence should be generated 396 /// independent if it lengthens critical path or not 397 bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize) { 398 if (OptSize && (NewSize < OldSize)) 399 return true; 400 if (!TSchedModel.hasInstrSchedModelOrItineraries()) 401 return true; 402 return false; 403 } 404 405 /// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction 406 /// depths if requested. 407 /// 408 /// \param MBB basic block to insert instructions in 409 /// \param MI current machine instruction 410 /// \param InsInstrs new instructions to insert in \p MBB 411 /// \param DelInstrs instruction to delete from \p MBB 412 /// \param MinInstr is a pointer to the machine trace information 413 /// \param RegUnits set of live registers, needed to compute instruction depths 414 /// \param IncrementalUpdate if true, compute instruction depths incrementally, 415 /// otherwise invalidate the trace 416 static void insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI, 417 SmallVector<MachineInstr *, 16> InsInstrs, 418 SmallVector<MachineInstr *, 16> DelInstrs, 419 MachineTraceMetrics::Ensemble *MinInstr, 420 SparseSet<LiveRegUnit> &RegUnits, 421 bool IncrementalUpdate) { 422 for (auto *InstrPtr : InsInstrs) 423 MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr); 424 425 for (auto *InstrPtr : DelInstrs) { 426 InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval(); 427 // Erase all LiveRegs defined by the removed instruction 428 for (auto I = RegUnits.begin(); I != RegUnits.end(); ) { 429 if (I->MI == InstrPtr) 430 I = RegUnits.erase(I); 431 else 432 I++; 433 } 434 } 435 436 if (IncrementalUpdate) 437 for (auto *InstrPtr : InsInstrs) 438 MinInstr->updateDepth(MBB, *InstrPtr, RegUnits); 439 else 440 MinInstr->invalidate(MBB); 441 442 NumInstCombined++; 443 } 444 445 // Check that the difference between original and new latency is decreasing for 446 // later patterns. This helps to discover sub-optimal pattern orderings. 447 void MachineCombiner::verifyPatternOrder( 448 MachineBasicBlock *MBB, MachineInstr &Root, 449 SmallVector<MachineCombinerPattern, 16> &Patterns) { 450 long PrevLatencyDiff = std::numeric_limits<long>::max(); 451 (void)PrevLatencyDiff; // Variable is used in assert only. 452 for (auto P : Patterns) { 453 SmallVector<MachineInstr *, 16> InsInstrs; 454 SmallVector<MachineInstr *, 16> DelInstrs; 455 DenseMap<unsigned, unsigned> InstrIdxForVirtReg; 456 TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs, 457 InstrIdxForVirtReg); 458 // Found pattern, but did not generate alternative sequence. 459 // This can happen e.g. when an immediate could not be materialized 460 // in a single instruction. 461 if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries()) 462 continue; 463 464 unsigned NewRootLatency, RootLatency; 465 std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences( 466 Root, InsInstrs, DelInstrs, MinInstr->getTrace(MBB)); 467 long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency); 468 assert(CurrentLatencyDiff <= PrevLatencyDiff && 469 "Current pattern is better than previous pattern."); 470 PrevLatencyDiff = CurrentLatencyDiff; 471 } 472 } 473 474 /// Substitute a slow code sequence with a faster one by 475 /// evaluating instruction combining pattern. 476 /// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction 477 /// combining based on machine trace metrics. Only combine a sequence of 478 /// instructions when this neither lengthens the critical path nor increases 479 /// resource pressure. When optimizing for codesize always combine when the new 480 /// sequence is shorter. 481 bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) { 482 bool Changed = false; 483 DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n"); 484 485 bool IncrementalUpdate = false; 486 auto BlockIter = MBB->begin(); 487 decltype(BlockIter) LastUpdate; 488 // Check if the block is in a loop. 489 const MachineLoop *ML = MLI->getLoopFor(MBB); 490 if (!MinInstr) 491 MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount); 492 493 SparseSet<LiveRegUnit> RegUnits; 494 RegUnits.setUniverse(TRI->getNumRegUnits()); 495 496 while (BlockIter != MBB->end()) { 497 auto &MI = *BlockIter++; 498 499 DEBUG(dbgs() << "INSTR "; MI.dump(); dbgs() << "\n";); 500 SmallVector<MachineCombinerPattern, 16> Patterns; 501 // The motivating example is: 502 // 503 // MUL Other MUL_op1 MUL_op2 Other 504 // \ / \ | / 505 // ADD/SUB => MADD/MSUB 506 // (=Root) (=NewRoot) 507 508 // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is 509 // usually beneficial for code size it unfortunately can hurt performance 510 // when the ADD is on the critical path, but the MUL is not. With the 511 // substitution the MUL becomes part of the critical path (in form of the 512 // MADD) and can lengthen it on architectures where the MADD latency is 513 // longer than the ADD latency. 514 // 515 // For each instruction we check if it can be the root of a combiner 516 // pattern. Then for each pattern the new code sequence in form of MI is 517 // generated and evaluated. When the efficiency criteria (don't lengthen 518 // critical path, don't use more resources) is met the new sequence gets 519 // hooked up into the basic block before the old sequence is removed. 520 // 521 // The algorithm does not try to evaluate all patterns and pick the best. 522 // This is only an artificial restriction though. In practice there is 523 // mostly one pattern, and getMachineCombinerPatterns() can order patterns 524 // based on an internal cost heuristic. If 525 // machine-combiner-verify-pattern-order is enabled, all patterns are 526 // checked to ensure later patterns do not provide better latency savings. 527 528 if (!TII->getMachineCombinerPatterns(MI, Patterns)) 529 continue; 530 531 if (VerifyPatternOrder) 532 verifyPatternOrder(MBB, MI, Patterns); 533 534 for (auto P : Patterns) { 535 SmallVector<MachineInstr *, 16> InsInstrs; 536 SmallVector<MachineInstr *, 16> DelInstrs; 537 DenseMap<unsigned, unsigned> InstrIdxForVirtReg; 538 TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs, 539 InstrIdxForVirtReg); 540 unsigned NewInstCount = InsInstrs.size(); 541 unsigned OldInstCount = DelInstrs.size(); 542 // Found pattern, but did not generate alternative sequence. 543 // This can happen e.g. when an immediate could not be materialized 544 // in a single instruction. 545 if (!NewInstCount) 546 continue; 547 548 bool SubstituteAlways = false; 549 if (ML && TII->isThroughputPattern(P)) 550 SubstituteAlways = true; 551 552 if (IncrementalUpdate) { 553 // Update depths since the last incremental update. 554 MinInstr->updateDepths(LastUpdate, BlockIter, RegUnits); 555 LastUpdate = BlockIter; 556 } 557 558 // Substitute when we optimize for codesize and the new sequence has 559 // fewer instructions OR 560 // the new sequence neither lengthens the critical path nor increases 561 // resource pressure. 562 if (SubstituteAlways || doSubstitute(NewInstCount, OldInstCount)) { 563 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr, 564 RegUnits, IncrementalUpdate); 565 // Eagerly stop after the first pattern fires. 566 Changed = true; 567 break; 568 } else { 569 // For big basic blocks, we only compute the full trace the first time 570 // we hit this. We do not invalidate the trace, but instead update the 571 // instruction depths incrementally. 572 // NOTE: Only the instruction depths up to MI are accurate. All other 573 // trace information is not updated. 574 MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB); 575 Traces->verifyAnalysis(); 576 if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs, 577 InstrIdxForVirtReg, P, 578 !IncrementalUpdate) && 579 preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) { 580 if (MBB->size() > inc_threshold) { 581 // Use incremental depth updates for basic blocks above treshold 582 IncrementalUpdate = true; 583 LastUpdate = BlockIter; 584 } 585 586 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr, 587 RegUnits, IncrementalUpdate); 588 589 // Eagerly stop after the first pattern fires. 590 Changed = true; 591 break; 592 } 593 // Cleanup instructions of the alternative code sequence. There is no 594 // use for them. 595 MachineFunction *MF = MBB->getParent(); 596 for (auto *InstrPtr : InsInstrs) 597 MF->DeleteMachineInstr(InstrPtr); 598 } 599 InstrIdxForVirtReg.clear(); 600 } 601 } 602 603 if (Changed && IncrementalUpdate) 604 Traces->invalidate(MBB); 605 return Changed; 606 } 607 608 bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) { 609 const TargetSubtargetInfo &STI = MF.getSubtarget(); 610 TII = STI.getInstrInfo(); 611 TRI = STI.getRegisterInfo(); 612 SchedModel = STI.getSchedModel(); 613 TSchedModel.init(SchedModel, &STI, TII); 614 MRI = &MF.getRegInfo(); 615 MLI = &getAnalysis<MachineLoopInfo>(); 616 Traces = &getAnalysis<MachineTraceMetrics>(); 617 MinInstr = nullptr; 618 OptSize = MF.getFunction().optForSize(); 619 620 DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n'); 621 if (!TII->useMachineCombiner()) { 622 DEBUG(dbgs() << " Skipping pass: Target does not support machine combiner\n"); 623 return false; 624 } 625 626 bool Changed = false; 627 628 // Try to combine instructions. 629 for (auto &MBB : MF) 630 Changed |= combineInstructions(&MBB); 631 632 return Changed; 633 } 634