1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global common subexpression elimination on machine
11 // instructions using a scoped hash table based value numbering scheme. It
12 // must be run while the machine function is still in SSA form.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/ScopedHashTable.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/CodeGen/TargetInstrInfo.h"
32 #include "llvm/CodeGen/TargetOpcodes.h"
33 #include "llvm/CodeGen/TargetRegisterInfo.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/MC/MCInstrDesc.h"
36 #include "llvm/MC/MCRegisterInfo.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Allocator.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/RecyclingAllocator.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <cassert>
43 #include <iterator>
44 #include <utility>
45 #include <vector>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "machine-cse"
50 
51 STATISTIC(NumCoalesces, "Number of copies coalesced");
52 STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
53 STATISTIC(NumPhysCSEs,
54           "Number of physreg referencing common subexpr eliminated");
55 STATISTIC(NumCrossBBCSEs,
56           "Number of cross-MBB physreg referencing CS eliminated");
57 STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
58 
59 namespace {
60 
61   class MachineCSE : public MachineFunctionPass {
62     const TargetInstrInfo *TII;
63     const TargetRegisterInfo *TRI;
64     AliasAnalysis *AA;
65     MachineDominatorTree *DT;
66     MachineRegisterInfo *MRI;
67 
68   public:
69     static char ID; // Pass identification
70 
71     MachineCSE() : MachineFunctionPass(ID) {
72       initializeMachineCSEPass(*PassRegistry::getPassRegistry());
73     }
74 
75     bool runOnMachineFunction(MachineFunction &MF) override;
76 
77     void getAnalysisUsage(AnalysisUsage &AU) const override {
78       AU.setPreservesCFG();
79       MachineFunctionPass::getAnalysisUsage(AU);
80       AU.addRequired<AAResultsWrapperPass>();
81       AU.addPreservedID(MachineLoopInfoID);
82       AU.addRequired<MachineDominatorTree>();
83       AU.addPreserved<MachineDominatorTree>();
84     }
85 
86     void releaseMemory() override {
87       ScopeMap.clear();
88       Exps.clear();
89     }
90 
91   private:
92     using AllocatorTy = RecyclingAllocator<BumpPtrAllocator,
93                             ScopedHashTableVal<MachineInstr *, unsigned>>;
94     using ScopedHTType =
95         ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
96                         AllocatorTy>;
97     using ScopeType = ScopedHTType::ScopeTy;
98 
99     unsigned LookAheadLimit = 0;
100     DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
101     ScopedHTType VNT;
102     SmallVector<MachineInstr *, 64> Exps;
103     unsigned CurrVN = 0;
104 
105     bool PerformTrivialCopyPropagation(MachineInstr *MI,
106                                        MachineBasicBlock *MBB);
107     bool isPhysDefTriviallyDead(unsigned Reg,
108                                 MachineBasicBlock::const_iterator I,
109                                 MachineBasicBlock::const_iterator E) const;
110     bool hasLivePhysRegDefUses(const MachineInstr *MI,
111                                const MachineBasicBlock *MBB,
112                                SmallSet<unsigned,8> &PhysRefs,
113                                SmallVectorImpl<unsigned> &PhysDefs,
114                                bool &PhysUseDef) const;
115     bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
116                           SmallSet<unsigned,8> &PhysRefs,
117                           SmallVectorImpl<unsigned> &PhysDefs,
118                           bool &NonLocal) const;
119     bool isCSECandidate(MachineInstr *MI);
120     bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
121                            MachineInstr *CSMI, MachineInstr *MI);
122     void EnterScope(MachineBasicBlock *MBB);
123     void ExitScope(MachineBasicBlock *MBB);
124     bool ProcessBlock(MachineBasicBlock *MBB);
125     void ExitScopeIfDone(MachineDomTreeNode *Node,
126                          DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
127     bool PerformCSE(MachineDomTreeNode *Node);
128   };
129 
130 } // end anonymous namespace
131 
132 char MachineCSE::ID = 0;
133 
134 char &llvm::MachineCSEID = MachineCSE::ID;
135 
136 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE,
137                       "Machine Common Subexpression Elimination", false, false)
138 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
139 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
140 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE,
141                     "Machine Common Subexpression Elimination", false, false)
142 
143 /// The source register of a COPY machine instruction can be propagated to all
144 /// its users, and this propagation could increase the probability of finding
145 /// common subexpressions. If the COPY has only one user, the COPY itself can
146 /// be removed.
147 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
148                                                MachineBasicBlock *MBB) {
149   bool Changed = false;
150   for (MachineOperand &MO : MI->operands()) {
151     if (!MO.isReg() || !MO.isUse())
152       continue;
153     unsigned Reg = MO.getReg();
154     if (!TargetRegisterInfo::isVirtualRegister(Reg))
155       continue;
156     bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
157     MachineInstr *DefMI = MRI->getVRegDef(Reg);
158     if (!DefMI->isCopy())
159       continue;
160     unsigned SrcReg = DefMI->getOperand(1).getReg();
161     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
162       continue;
163     if (DefMI->getOperand(0).getSubReg())
164       continue;
165     // FIXME: We should trivially coalesce subregister copies to expose CSE
166     // opportunities on instructions with truncated operands (see
167     // cse-add-with-overflow.ll). This can be done here as follows:
168     // if (SrcSubReg)
169     //  RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
170     //                                     SrcSubReg);
171     // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
172     //
173     // The 2-addr pass has been updated to handle coalesced subregs. However,
174     // some machine-specific code still can't handle it.
175     // To handle it properly we also need a way find a constrained subregister
176     // class given a super-reg class and subreg index.
177     if (DefMI->getOperand(1).getSubReg())
178       continue;
179     if (!MRI->constrainRegAttrs(SrcReg, Reg))
180       continue;
181     LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
182     LLVM_DEBUG(dbgs() << "***     to: " << *MI);
183 
184     // Collect matching debug values.
185     SmallVector<MachineInstr *, 2> DbgValues;
186     DefMI->collectDebugValues(DbgValues);
187     // Propagate SrcReg to debug value instructions.
188     for (auto *DBI : DbgValues)
189       DBI->getOperand(0).setReg(SrcReg);
190 
191     // Propagate SrcReg of copies to MI.
192     MO.setReg(SrcReg);
193     MRI->clearKillFlags(SrcReg);
194     // Coalesce single use copies.
195     if (OnlyOneUse) {
196       DefMI->eraseFromParent();
197       ++NumCoalesces;
198     }
199     Changed = true;
200   }
201 
202   return Changed;
203 }
204 
205 bool
206 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
207                                    MachineBasicBlock::const_iterator I,
208                                    MachineBasicBlock::const_iterator E) const {
209   unsigned LookAheadLeft = LookAheadLimit;
210   while (LookAheadLeft) {
211     // Skip over dbg_value's.
212     I = skipDebugInstructionsForward(I, E);
213 
214     if (I == E)
215       // Reached end of block, we don't know if register is dead or not.
216       return false;
217 
218     bool SeenDef = false;
219     for (const MachineOperand &MO : I->operands()) {
220       if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
221         SeenDef = true;
222       if (!MO.isReg() || !MO.getReg())
223         continue;
224       if (!TRI->regsOverlap(MO.getReg(), Reg))
225         continue;
226       if (MO.isUse())
227         // Found a use!
228         return false;
229       SeenDef = true;
230     }
231     if (SeenDef)
232       // See a def of Reg (or an alias) before encountering any use, it's
233       // trivially dead.
234       return true;
235 
236     --LookAheadLeft;
237     ++I;
238   }
239   return false;
240 }
241 
242 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
243 /// physical registers (except for dead defs of physical registers). It also
244 /// returns the physical register def by reference if it's the only one and the
245 /// instruction does not uses a physical register.
246 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
247                                        const MachineBasicBlock *MBB,
248                                        SmallSet<unsigned,8> &PhysRefs,
249                                        SmallVectorImpl<unsigned> &PhysDefs,
250                                        bool &PhysUseDef) const{
251   // First, add all uses to PhysRefs.
252   for (const MachineOperand &MO : MI->operands()) {
253     if (!MO.isReg() || MO.isDef())
254       continue;
255     unsigned Reg = MO.getReg();
256     if (!Reg)
257       continue;
258     if (TargetRegisterInfo::isVirtualRegister(Reg))
259       continue;
260     // Reading either caller preserved or constant physregs is ok.
261     if (!MRI->isCallerPreservedOrConstPhysReg(Reg))
262       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
263         PhysRefs.insert(*AI);
264   }
265 
266   // Next, collect all defs into PhysDefs.  If any is already in PhysRefs
267   // (which currently contains only uses), set the PhysUseDef flag.
268   PhysUseDef = false;
269   MachineBasicBlock::const_iterator I = MI; I = std::next(I);
270   for (const MachineOperand &MO : MI->operands()) {
271     if (!MO.isReg() || !MO.isDef())
272       continue;
273     unsigned Reg = MO.getReg();
274     if (!Reg)
275       continue;
276     if (TargetRegisterInfo::isVirtualRegister(Reg))
277       continue;
278     // Check against PhysRefs even if the def is "dead".
279     if (PhysRefs.count(Reg))
280       PhysUseDef = true;
281     // If the def is dead, it's ok. But the def may not marked "dead". That's
282     // common since this pass is run before livevariables. We can scan
283     // forward a few instructions and check if it is obviously dead.
284     if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
285       PhysDefs.push_back(Reg);
286   }
287 
288   // Finally, add all defs to PhysRefs as well.
289   for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
290     for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI)
291       PhysRefs.insert(*AI);
292 
293   return !PhysRefs.empty();
294 }
295 
296 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
297                                   SmallSet<unsigned,8> &PhysRefs,
298                                   SmallVectorImpl<unsigned> &PhysDefs,
299                                   bool &NonLocal) const {
300   // For now conservatively returns false if the common subexpression is
301   // not in the same basic block as the given instruction. The only exception
302   // is if the common subexpression is in the sole predecessor block.
303   const MachineBasicBlock *MBB = MI->getParent();
304   const MachineBasicBlock *CSMBB = CSMI->getParent();
305 
306   bool CrossMBB = false;
307   if (CSMBB != MBB) {
308     if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
309       return false;
310 
311     for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
312       if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i]))
313         // Avoid extending live range of physical registers if they are
314         //allocatable or reserved.
315         return false;
316     }
317     CrossMBB = true;
318   }
319   MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
320   MachineBasicBlock::const_iterator E = MI;
321   MachineBasicBlock::const_iterator EE = CSMBB->end();
322   unsigned LookAheadLeft = LookAheadLimit;
323   while (LookAheadLeft) {
324     // Skip over dbg_value's.
325     while (I != E && I != EE && I->isDebugInstr())
326       ++I;
327 
328     if (I == EE) {
329       assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
330       (void)CrossMBB;
331       CrossMBB = false;
332       NonLocal = true;
333       I = MBB->begin();
334       EE = MBB->end();
335       continue;
336     }
337 
338     if (I == E)
339       return true;
340 
341     for (const MachineOperand &MO : I->operands()) {
342       // RegMasks go on instructions like calls that clobber lots of physregs.
343       // Don't attempt to CSE across such an instruction.
344       if (MO.isRegMask())
345         return false;
346       if (!MO.isReg() || !MO.isDef())
347         continue;
348       unsigned MOReg = MO.getReg();
349       if (TargetRegisterInfo::isVirtualRegister(MOReg))
350         continue;
351       if (PhysRefs.count(MOReg))
352         return false;
353     }
354 
355     --LookAheadLeft;
356     ++I;
357   }
358 
359   return false;
360 }
361 
362 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
363   if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
364       MI->isInlineAsm() || MI->isDebugInstr())
365     return false;
366 
367   // Ignore copies.
368   if (MI->isCopyLike())
369     return false;
370 
371   // Ignore stuff that we obviously can't move.
372   if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
373       MI->hasUnmodeledSideEffects())
374     return false;
375 
376   if (MI->mayLoad()) {
377     // Okay, this instruction does a load. As a refinement, we allow the target
378     // to decide whether the loaded value is actually a constant. If so, we can
379     // actually use it as a load.
380     if (!MI->isDereferenceableInvariantLoad(AA))
381       // FIXME: we should be able to hoist loads with no other side effects if
382       // there are no other instructions which can change memory in this loop.
383       // This is a trivial form of alias analysis.
384       return false;
385   }
386 
387   // Ignore stack guard loads, otherwise the register that holds CSEed value may
388   // be spilled and get loaded back with corrupted data.
389   if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
390     return false;
391 
392   return true;
393 }
394 
395 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
396 /// common expression that defines Reg.
397 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
398                                    MachineInstr *CSMI, MachineInstr *MI) {
399   // FIXME: Heuristics that works around the lack the live range splitting.
400 
401   // If CSReg is used at all uses of Reg, CSE should not increase register
402   // pressure of CSReg.
403   bool MayIncreasePressure = true;
404   if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
405       TargetRegisterInfo::isVirtualRegister(Reg)) {
406     MayIncreasePressure = false;
407     SmallPtrSet<MachineInstr*, 8> CSUses;
408     for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
409       CSUses.insert(&MI);
410     }
411     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
412       if (!CSUses.count(&MI)) {
413         MayIncreasePressure = true;
414         break;
415       }
416     }
417   }
418   if (!MayIncreasePressure) return true;
419 
420   // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
421   // an immediate predecessor. We don't want to increase register pressure and
422   // end up causing other computation to be spilled.
423   if (TII->isAsCheapAsAMove(*MI)) {
424     MachineBasicBlock *CSBB = CSMI->getParent();
425     MachineBasicBlock *BB = MI->getParent();
426     if (CSBB != BB && !CSBB->isSuccessor(BB))
427       return false;
428   }
429 
430   // Heuristics #2: If the expression doesn't not use a vr and the only use
431   // of the redundant computation are copies, do not cse.
432   bool HasVRegUse = false;
433   for (const MachineOperand &MO : MI->operands()) {
434     if (MO.isReg() && MO.isUse() &&
435         TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
436       HasVRegUse = true;
437       break;
438     }
439   }
440   if (!HasVRegUse) {
441     bool HasNonCopyUse = false;
442     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
443       // Ignore copies.
444       if (!MI.isCopyLike()) {
445         HasNonCopyUse = true;
446         break;
447       }
448     }
449     if (!HasNonCopyUse)
450       return false;
451   }
452 
453   // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
454   // it unless the defined value is already used in the BB of the new use.
455   bool HasPHI = false;
456   for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) {
457     HasPHI |= UseMI.isPHI();
458     if (UseMI.getParent() == MI->getParent())
459       return true;
460   }
461 
462   return !HasPHI;
463 }
464 
465 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
466   LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
467   ScopeType *Scope = new ScopeType(VNT);
468   ScopeMap[MBB] = Scope;
469 }
470 
471 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
472   LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
473   DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
474   assert(SI != ScopeMap.end());
475   delete SI->second;
476   ScopeMap.erase(SI);
477 }
478 
479 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
480   bool Changed = false;
481 
482   SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
483   SmallVector<unsigned, 2> ImplicitDefsToUpdate;
484   SmallVector<unsigned, 2> ImplicitDefs;
485   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
486     MachineInstr *MI = &*I;
487     ++I;
488 
489     if (!isCSECandidate(MI))
490       continue;
491 
492     bool FoundCSE = VNT.count(MI);
493     if (!FoundCSE) {
494       // Using trivial copy propagation to find more CSE opportunities.
495       if (PerformTrivialCopyPropagation(MI, MBB)) {
496         Changed = true;
497 
498         // After coalescing MI itself may become a copy.
499         if (MI->isCopyLike())
500           continue;
501 
502         // Try again to see if CSE is possible.
503         FoundCSE = VNT.count(MI);
504       }
505     }
506 
507     // Commute commutable instructions.
508     bool Commuted = false;
509     if (!FoundCSE && MI->isCommutable()) {
510       if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) {
511         Commuted = true;
512         FoundCSE = VNT.count(NewMI);
513         if (NewMI != MI) {
514           // New instruction. It doesn't need to be kept.
515           NewMI->eraseFromParent();
516           Changed = true;
517         } else if (!FoundCSE)
518           // MI was changed but it didn't help, commute it back!
519           (void)TII->commuteInstruction(*MI);
520       }
521     }
522 
523     // If the instruction defines physical registers and the values *may* be
524     // used, then it's not safe to replace it with a common subexpression.
525     // It's also not safe if the instruction uses physical registers.
526     bool CrossMBBPhysDef = false;
527     SmallSet<unsigned, 8> PhysRefs;
528     SmallVector<unsigned, 2> PhysDefs;
529     bool PhysUseDef = false;
530     if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
531                                           PhysDefs, PhysUseDef)) {
532       FoundCSE = false;
533 
534       // ... Unless the CS is local or is in the sole predecessor block
535       // and it also defines the physical register which is not clobbered
536       // in between and the physical register uses were not clobbered.
537       // This can never be the case if the instruction both uses and
538       // defines the same physical register, which was detected above.
539       if (!PhysUseDef) {
540         unsigned CSVN = VNT.lookup(MI);
541         MachineInstr *CSMI = Exps[CSVN];
542         if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
543           FoundCSE = true;
544       }
545     }
546 
547     if (!FoundCSE) {
548       VNT.insert(MI, CurrVN++);
549       Exps.push_back(MI);
550       continue;
551     }
552 
553     // Found a common subexpression, eliminate it.
554     unsigned CSVN = VNT.lookup(MI);
555     MachineInstr *CSMI = Exps[CSVN];
556     LLVM_DEBUG(dbgs() << "Examining: " << *MI);
557     LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
558 
559     // Check if it's profitable to perform this CSE.
560     bool DoCSE = true;
561     unsigned NumDefs = MI->getNumDefs();
562 
563     for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
564       MachineOperand &MO = MI->getOperand(i);
565       if (!MO.isReg() || !MO.isDef())
566         continue;
567       unsigned OldReg = MO.getReg();
568       unsigned NewReg = CSMI->getOperand(i).getReg();
569 
570       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
571       // we should make sure it is not dead at CSMI.
572       if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
573         ImplicitDefsToUpdate.push_back(i);
574 
575       // Keep track of implicit defs of CSMI and MI, to clear possibly
576       // made-redundant kill flags.
577       if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
578         ImplicitDefs.push_back(OldReg);
579 
580       if (OldReg == NewReg) {
581         --NumDefs;
582         continue;
583       }
584 
585       assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
586              TargetRegisterInfo::isVirtualRegister(NewReg) &&
587              "Do not CSE physical register defs!");
588 
589       if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
590         LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
591         DoCSE = false;
592         break;
593       }
594 
595       // Don't perform CSE if the result of the new instruction cannot exist
596       // within the constraints (register class, bank, or low-level type) of
597       // the old instruction.
598       if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
599         LLVM_DEBUG(
600             dbgs() << "*** Not the same register constraints, avoid CSE!\n");
601         DoCSE = false;
602         break;
603       }
604 
605       CSEPairs.push_back(std::make_pair(OldReg, NewReg));
606       --NumDefs;
607     }
608 
609     // Actually perform the elimination.
610     if (DoCSE) {
611       for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
612         unsigned OldReg = CSEPair.first;
613         unsigned NewReg = CSEPair.second;
614         // OldReg may have been unused but is used now, clear the Dead flag
615         MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
616         assert(Def != nullptr && "CSEd register has no unique definition?");
617         Def->clearRegisterDeads(NewReg);
618         // Replace with NewReg and clear kill flags which may be wrong now.
619         MRI->replaceRegWith(OldReg, NewReg);
620         MRI->clearKillFlags(NewReg);
621       }
622 
623       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
624       // we should make sure it is not dead at CSMI.
625       for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
626         CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
627 
628       // Go through implicit defs of CSMI and MI, and clear the kill flags on
629       // their uses in all the instructions between CSMI and MI.
630       // We might have made some of the kill flags redundant, consider:
631       //   subs  ... implicit-def %nzcv    <- CSMI
632       //   csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
633       //   subs  ... implicit-def %nzcv    <- MI, to be eliminated
634       //   csinc ... implicit killed %nzcv
635       // Since we eliminated MI, and reused a register imp-def'd by CSMI
636       // (here %nzcv), that register, if it was killed before MI, should have
637       // that kill flag removed, because it's lifetime was extended.
638       if (CSMI->getParent() == MI->getParent()) {
639         for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
640           for (auto ImplicitDef : ImplicitDefs)
641             if (MachineOperand *MO = II->findRegisterUseOperand(
642                     ImplicitDef, /*isKill=*/true, TRI))
643               MO->setIsKill(false);
644       } else {
645         // If the instructions aren't in the same BB, bail out and clear the
646         // kill flag on all uses of the imp-def'd register.
647         for (auto ImplicitDef : ImplicitDefs)
648           MRI->clearKillFlags(ImplicitDef);
649       }
650 
651       if (CrossMBBPhysDef) {
652         // Add physical register defs now coming in from a predecessor to MBB
653         // livein list.
654         while (!PhysDefs.empty()) {
655           unsigned LiveIn = PhysDefs.pop_back_val();
656           if (!MBB->isLiveIn(LiveIn))
657             MBB->addLiveIn(LiveIn);
658         }
659         ++NumCrossBBCSEs;
660       }
661 
662       MI->eraseFromParent();
663       ++NumCSEs;
664       if (!PhysRefs.empty())
665         ++NumPhysCSEs;
666       if (Commuted)
667         ++NumCommutes;
668       Changed = true;
669     } else {
670       VNT.insert(MI, CurrVN++);
671       Exps.push_back(MI);
672     }
673     CSEPairs.clear();
674     ImplicitDefsToUpdate.clear();
675     ImplicitDefs.clear();
676   }
677 
678   return Changed;
679 }
680 
681 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
682 /// dominator tree node if its a leaf or all of its children are done. Walk
683 /// up the dominator tree to destroy ancestors which are now done.
684 void
685 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
686                         DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
687   if (OpenChildren[Node])
688     return;
689 
690   // Pop scope.
691   ExitScope(Node->getBlock());
692 
693   // Now traverse upwards to pop ancestors whose offsprings are all done.
694   while (MachineDomTreeNode *Parent = Node->getIDom()) {
695     unsigned Left = --OpenChildren[Parent];
696     if (Left != 0)
697       break;
698     ExitScope(Parent->getBlock());
699     Node = Parent;
700   }
701 }
702 
703 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
704   SmallVector<MachineDomTreeNode*, 32> Scopes;
705   SmallVector<MachineDomTreeNode*, 8> WorkList;
706   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
707 
708   CurrVN = 0;
709 
710   // Perform a DFS walk to determine the order of visit.
711   WorkList.push_back(Node);
712   do {
713     Node = WorkList.pop_back_val();
714     Scopes.push_back(Node);
715     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
716     OpenChildren[Node] = Children.size();
717     for (MachineDomTreeNode *Child : Children)
718       WorkList.push_back(Child);
719   } while (!WorkList.empty());
720 
721   // Now perform CSE.
722   bool Changed = false;
723   for (MachineDomTreeNode *Node : Scopes) {
724     MachineBasicBlock *MBB = Node->getBlock();
725     EnterScope(MBB);
726     Changed |= ProcessBlock(MBB);
727     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
728     ExitScopeIfDone(Node, OpenChildren);
729   }
730 
731   return Changed;
732 }
733 
734 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
735   if (skipFunction(MF.getFunction()))
736     return false;
737 
738   TII = MF.getSubtarget().getInstrInfo();
739   TRI = MF.getSubtarget().getRegisterInfo();
740   MRI = &MF.getRegInfo();
741   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
742   DT = &getAnalysis<MachineDominatorTree>();
743   LookAheadLimit = TII->getMachineCSELookAheadLimit();
744   return PerformCSE(DT->getRootNode());
745 }
746