1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs global common subexpression elimination on machine 10 // instructions using a scoped hash table based value numbering scheme. It 11 // must be run while the machine function is still in SSA form. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/ScopedHashTable.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/Passes.h" 31 #include "llvm/CodeGen/TargetInstrInfo.h" 32 #include "llvm/CodeGen/TargetOpcodes.h" 33 #include "llvm/CodeGen/TargetRegisterInfo.h" 34 #include "llvm/CodeGen/TargetSubtargetInfo.h" 35 #include "llvm/MC/MCInstrDesc.h" 36 #include "llvm/MC/MCRegisterInfo.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Allocator.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/RecyclingAllocator.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <cassert> 43 #include <iterator> 44 #include <utility> 45 #include <vector> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "machine-cse" 50 51 STATISTIC(NumCoalesces, "Number of copies coalesced"); 52 STATISTIC(NumCSEs, "Number of common subexpression eliminated"); 53 STATISTIC(NumPREs, "Number of partial redundant expression" 54 " transformed to fully redundant"); 55 STATISTIC(NumPhysCSEs, 56 "Number of physreg referencing common subexpr eliminated"); 57 STATISTIC(NumCrossBBCSEs, 58 "Number of cross-MBB physreg referencing CS eliminated"); 59 STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); 60 61 namespace { 62 63 class MachineCSE : public MachineFunctionPass { 64 const TargetInstrInfo *TII; 65 const TargetRegisterInfo *TRI; 66 AliasAnalysis *AA; 67 MachineDominatorTree *DT; 68 MachineRegisterInfo *MRI; 69 70 public: 71 static char ID; // Pass identification 72 73 MachineCSE() : MachineFunctionPass(ID) { 74 initializeMachineCSEPass(*PassRegistry::getPassRegistry()); 75 } 76 77 bool runOnMachineFunction(MachineFunction &MF) override; 78 79 void getAnalysisUsage(AnalysisUsage &AU) const override { 80 AU.setPreservesCFG(); 81 MachineFunctionPass::getAnalysisUsage(AU); 82 AU.addRequired<AAResultsWrapperPass>(); 83 AU.addPreservedID(MachineLoopInfoID); 84 AU.addRequired<MachineDominatorTree>(); 85 AU.addPreserved<MachineDominatorTree>(); 86 } 87 88 void releaseMemory() override { 89 ScopeMap.clear(); 90 PREMap.clear(); 91 Exps.clear(); 92 } 93 94 private: 95 using AllocatorTy = RecyclingAllocator<BumpPtrAllocator, 96 ScopedHashTableVal<MachineInstr *, unsigned>>; 97 using ScopedHTType = 98 ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait, 99 AllocatorTy>; 100 using ScopeType = ScopedHTType::ScopeTy; 101 using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>; 102 103 unsigned LookAheadLimit = 0; 104 DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap; 105 DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait> PREMap; 106 ScopedHTType VNT; 107 SmallVector<MachineInstr *, 64> Exps; 108 unsigned CurrVN = 0; 109 110 bool PerformTrivialCopyPropagation(MachineInstr *MI, 111 MachineBasicBlock *MBB); 112 bool isPhysDefTriviallyDead(unsigned Reg, 113 MachineBasicBlock::const_iterator I, 114 MachineBasicBlock::const_iterator E) const; 115 bool hasLivePhysRegDefUses(const MachineInstr *MI, 116 const MachineBasicBlock *MBB, 117 SmallSet<unsigned, 8> &PhysRefs, 118 PhysDefVector &PhysDefs, bool &PhysUseDef) const; 119 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 120 SmallSet<unsigned, 8> &PhysRefs, 121 PhysDefVector &PhysDefs, bool &NonLocal) const; 122 bool isCSECandidate(MachineInstr *MI); 123 bool isProfitableToCSE(unsigned CSReg, unsigned Reg, 124 MachineBasicBlock *CSBB, MachineInstr *MI); 125 void EnterScope(MachineBasicBlock *MBB); 126 void ExitScope(MachineBasicBlock *MBB); 127 bool ProcessBlockCSE(MachineBasicBlock *MBB); 128 void ExitScopeIfDone(MachineDomTreeNode *Node, 129 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren); 130 bool PerformCSE(MachineDomTreeNode *Node); 131 132 bool isPRECandidate(MachineInstr *MI); 133 bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB); 134 bool PerformSimplePRE(MachineDominatorTree *DT); 135 }; 136 137 } // end anonymous namespace 138 139 char MachineCSE::ID = 0; 140 141 char &llvm::MachineCSEID = MachineCSE::ID; 142 143 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE, 144 "Machine Common Subexpression Elimination", false, false) 145 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 146 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 147 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE, 148 "Machine Common Subexpression Elimination", false, false) 149 150 /// The source register of a COPY machine instruction can be propagated to all 151 /// its users, and this propagation could increase the probability of finding 152 /// common subexpressions. If the COPY has only one user, the COPY itself can 153 /// be removed. 154 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI, 155 MachineBasicBlock *MBB) { 156 bool Changed = false; 157 for (MachineOperand &MO : MI->operands()) { 158 if (!MO.isReg() || !MO.isUse()) 159 continue; 160 unsigned Reg = MO.getReg(); 161 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 162 continue; 163 bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg); 164 MachineInstr *DefMI = MRI->getVRegDef(Reg); 165 if (!DefMI->isCopy()) 166 continue; 167 unsigned SrcReg = DefMI->getOperand(1).getReg(); 168 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 169 continue; 170 if (DefMI->getOperand(0).getSubReg()) 171 continue; 172 // FIXME: We should trivially coalesce subregister copies to expose CSE 173 // opportunities on instructions with truncated operands (see 174 // cse-add-with-overflow.ll). This can be done here as follows: 175 // if (SrcSubReg) 176 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC, 177 // SrcSubReg); 178 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI); 179 // 180 // The 2-addr pass has been updated to handle coalesced subregs. However, 181 // some machine-specific code still can't handle it. 182 // To handle it properly we also need a way find a constrained subregister 183 // class given a super-reg class and subreg index. 184 if (DefMI->getOperand(1).getSubReg()) 185 continue; 186 if (!MRI->constrainRegAttrs(SrcReg, Reg)) 187 continue; 188 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 189 LLVM_DEBUG(dbgs() << "*** to: " << *MI); 190 191 // Update matching debug values. 192 DefMI->changeDebugValuesDefReg(SrcReg); 193 194 // Propagate SrcReg of copies to MI. 195 MO.setReg(SrcReg); 196 MRI->clearKillFlags(SrcReg); 197 // Coalesce single use copies. 198 if (OnlyOneUse) { 199 DefMI->eraseFromParent(); 200 ++NumCoalesces; 201 } 202 Changed = true; 203 } 204 205 return Changed; 206 } 207 208 bool 209 MachineCSE::isPhysDefTriviallyDead(unsigned Reg, 210 MachineBasicBlock::const_iterator I, 211 MachineBasicBlock::const_iterator E) const { 212 unsigned LookAheadLeft = LookAheadLimit; 213 while (LookAheadLeft) { 214 // Skip over dbg_value's. 215 I = skipDebugInstructionsForward(I, E); 216 217 if (I == E) 218 // Reached end of block, we don't know if register is dead or not. 219 return false; 220 221 bool SeenDef = false; 222 for (const MachineOperand &MO : I->operands()) { 223 if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) 224 SeenDef = true; 225 if (!MO.isReg() || !MO.getReg()) 226 continue; 227 if (!TRI->regsOverlap(MO.getReg(), Reg)) 228 continue; 229 if (MO.isUse()) 230 // Found a use! 231 return false; 232 SeenDef = true; 233 } 234 if (SeenDef) 235 // See a def of Reg (or an alias) before encountering any use, it's 236 // trivially dead. 237 return true; 238 239 --LookAheadLeft; 240 ++I; 241 } 242 return false; 243 } 244 245 static bool isCallerPreservedOrConstPhysReg(unsigned Reg, 246 const MachineFunction &MF, 247 const TargetRegisterInfo &TRI) { 248 // MachineRegisterInfo::isConstantPhysReg directly called by 249 // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the 250 // reserved registers to be frozen. That doesn't cause a problem post-ISel as 251 // most (if not all) targets freeze reserved registers right after ISel. 252 // 253 // It does cause issues mid-GlobalISel, however, hence the additional 254 // reservedRegsFrozen check. 255 const MachineRegisterInfo &MRI = MF.getRegInfo(); 256 return TRI.isCallerPreservedPhysReg(Reg, MF) || 257 (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg)); 258 } 259 260 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write 261 /// physical registers (except for dead defs of physical registers). It also 262 /// returns the physical register def by reference if it's the only one and the 263 /// instruction does not uses a physical register. 264 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, 265 const MachineBasicBlock *MBB, 266 SmallSet<unsigned, 8> &PhysRefs, 267 PhysDefVector &PhysDefs, 268 bool &PhysUseDef) const { 269 // First, add all uses to PhysRefs. 270 for (const MachineOperand &MO : MI->operands()) { 271 if (!MO.isReg() || MO.isDef()) 272 continue; 273 unsigned Reg = MO.getReg(); 274 if (!Reg) 275 continue; 276 if (TargetRegisterInfo::isVirtualRegister(Reg)) 277 continue; 278 // Reading either caller preserved or constant physregs is ok. 279 if (!isCallerPreservedOrConstPhysReg(Reg, *MI->getMF(), *TRI)) 280 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 281 PhysRefs.insert(*AI); 282 } 283 284 // Next, collect all defs into PhysDefs. If any is already in PhysRefs 285 // (which currently contains only uses), set the PhysUseDef flag. 286 PhysUseDef = false; 287 MachineBasicBlock::const_iterator I = MI; I = std::next(I); 288 for (const auto &MOP : llvm::enumerate(MI->operands())) { 289 const MachineOperand &MO = MOP.value(); 290 if (!MO.isReg() || !MO.isDef()) 291 continue; 292 unsigned Reg = MO.getReg(); 293 if (!Reg) 294 continue; 295 if (TargetRegisterInfo::isVirtualRegister(Reg)) 296 continue; 297 // Check against PhysRefs even if the def is "dead". 298 if (PhysRefs.count(Reg)) 299 PhysUseDef = true; 300 // If the def is dead, it's ok. But the def may not marked "dead". That's 301 // common since this pass is run before livevariables. We can scan 302 // forward a few instructions and check if it is obviously dead. 303 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end())) 304 PhysDefs.push_back(std::make_pair(MOP.index(), Reg)); 305 } 306 307 // Finally, add all defs to PhysRefs as well. 308 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) 309 for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid(); 310 ++AI) 311 PhysRefs.insert(*AI); 312 313 return !PhysRefs.empty(); 314 } 315 316 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 317 SmallSet<unsigned, 8> &PhysRefs, 318 PhysDefVector &PhysDefs, 319 bool &NonLocal) const { 320 // For now conservatively returns false if the common subexpression is 321 // not in the same basic block as the given instruction. The only exception 322 // is if the common subexpression is in the sole predecessor block. 323 const MachineBasicBlock *MBB = MI->getParent(); 324 const MachineBasicBlock *CSMBB = CSMI->getParent(); 325 326 bool CrossMBB = false; 327 if (CSMBB != MBB) { 328 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) 329 return false; 330 331 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { 332 if (MRI->isAllocatable(PhysDefs[i].second) || 333 MRI->isReserved(PhysDefs[i].second)) 334 // Avoid extending live range of physical registers if they are 335 //allocatable or reserved. 336 return false; 337 } 338 CrossMBB = true; 339 } 340 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I); 341 MachineBasicBlock::const_iterator E = MI; 342 MachineBasicBlock::const_iterator EE = CSMBB->end(); 343 unsigned LookAheadLeft = LookAheadLimit; 344 while (LookAheadLeft) { 345 // Skip over dbg_value's. 346 while (I != E && I != EE && I->isDebugInstr()) 347 ++I; 348 349 if (I == EE) { 350 assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); 351 (void)CrossMBB; 352 CrossMBB = false; 353 NonLocal = true; 354 I = MBB->begin(); 355 EE = MBB->end(); 356 continue; 357 } 358 359 if (I == E) 360 return true; 361 362 for (const MachineOperand &MO : I->operands()) { 363 // RegMasks go on instructions like calls that clobber lots of physregs. 364 // Don't attempt to CSE across such an instruction. 365 if (MO.isRegMask()) 366 return false; 367 if (!MO.isReg() || !MO.isDef()) 368 continue; 369 unsigned MOReg = MO.getReg(); 370 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 371 continue; 372 if (PhysRefs.count(MOReg)) 373 return false; 374 } 375 376 --LookAheadLeft; 377 ++I; 378 } 379 380 return false; 381 } 382 383 bool MachineCSE::isCSECandidate(MachineInstr *MI) { 384 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() || 385 MI->isInlineAsm() || MI->isDebugInstr()) 386 return false; 387 388 // Ignore copies. 389 if (MI->isCopyLike()) 390 return false; 391 392 // Ignore stuff that we obviously can't move. 393 if (MI->mayStore() || MI->isCall() || MI->isTerminator() || 394 MI->hasUnmodeledSideEffects()) 395 return false; 396 397 if (MI->mayLoad()) { 398 // Okay, this instruction does a load. As a refinement, we allow the target 399 // to decide whether the loaded value is actually a constant. If so, we can 400 // actually use it as a load. 401 if (!MI->isDereferenceableInvariantLoad(AA)) 402 // FIXME: we should be able to hoist loads with no other side effects if 403 // there are no other instructions which can change memory in this loop. 404 // This is a trivial form of alias analysis. 405 return false; 406 } 407 408 // Ignore stack guard loads, otherwise the register that holds CSEed value may 409 // be spilled and get loaded back with corrupted data. 410 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) 411 return false; 412 413 return true; 414 } 415 416 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a 417 /// common expression that defines Reg. CSBB is basic block where CSReg is 418 /// defined. 419 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg, 420 MachineBasicBlock *CSBB, MachineInstr *MI) { 421 // FIXME: Heuristics that works around the lack the live range splitting. 422 423 // If CSReg is used at all uses of Reg, CSE should not increase register 424 // pressure of CSReg. 425 bool MayIncreasePressure = true; 426 if (TargetRegisterInfo::isVirtualRegister(CSReg) && 427 TargetRegisterInfo::isVirtualRegister(Reg)) { 428 MayIncreasePressure = false; 429 SmallPtrSet<MachineInstr*, 8> CSUses; 430 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { 431 CSUses.insert(&MI); 432 } 433 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 434 if (!CSUses.count(&MI)) { 435 MayIncreasePressure = true; 436 break; 437 } 438 } 439 } 440 if (!MayIncreasePressure) return true; 441 442 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in 443 // an immediate predecessor. We don't want to increase register pressure and 444 // end up causing other computation to be spilled. 445 if (TII->isAsCheapAsAMove(*MI)) { 446 MachineBasicBlock *BB = MI->getParent(); 447 if (CSBB != BB && !CSBB->isSuccessor(BB)) 448 return false; 449 } 450 451 // Heuristics #2: If the expression doesn't not use a vr and the only use 452 // of the redundant computation are copies, do not cse. 453 bool HasVRegUse = false; 454 for (const MachineOperand &MO : MI->operands()) { 455 if (MO.isReg() && MO.isUse() && 456 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 457 HasVRegUse = true; 458 break; 459 } 460 } 461 if (!HasVRegUse) { 462 bool HasNonCopyUse = false; 463 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 464 // Ignore copies. 465 if (!MI.isCopyLike()) { 466 HasNonCopyUse = true; 467 break; 468 } 469 } 470 if (!HasNonCopyUse) 471 return false; 472 } 473 474 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse 475 // it unless the defined value is already used in the BB of the new use. 476 bool HasPHI = false; 477 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) { 478 HasPHI |= UseMI.isPHI(); 479 if (UseMI.getParent() == MI->getParent()) 480 return true; 481 } 482 483 return !HasPHI; 484 } 485 486 void MachineCSE::EnterScope(MachineBasicBlock *MBB) { 487 LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 488 ScopeType *Scope = new ScopeType(VNT); 489 ScopeMap[MBB] = Scope; 490 } 491 492 void MachineCSE::ExitScope(MachineBasicBlock *MBB) { 493 LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 494 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); 495 assert(SI != ScopeMap.end()); 496 delete SI->second; 497 ScopeMap.erase(SI); 498 } 499 500 bool MachineCSE::ProcessBlockCSE(MachineBasicBlock *MBB) { 501 bool Changed = false; 502 503 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; 504 SmallVector<unsigned, 2> ImplicitDefsToUpdate; 505 SmallVector<unsigned, 2> ImplicitDefs; 506 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { 507 MachineInstr *MI = &*I; 508 ++I; 509 510 if (!isCSECandidate(MI)) 511 continue; 512 513 bool FoundCSE = VNT.count(MI); 514 if (!FoundCSE) { 515 // Using trivial copy propagation to find more CSE opportunities. 516 if (PerformTrivialCopyPropagation(MI, MBB)) { 517 Changed = true; 518 519 // After coalescing MI itself may become a copy. 520 if (MI->isCopyLike()) 521 continue; 522 523 // Try again to see if CSE is possible. 524 FoundCSE = VNT.count(MI); 525 } 526 } 527 528 // Commute commutable instructions. 529 bool Commuted = false; 530 if (!FoundCSE && MI->isCommutable()) { 531 if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) { 532 Commuted = true; 533 FoundCSE = VNT.count(NewMI); 534 if (NewMI != MI) { 535 // New instruction. It doesn't need to be kept. 536 NewMI->eraseFromParent(); 537 Changed = true; 538 } else if (!FoundCSE) 539 // MI was changed but it didn't help, commute it back! 540 (void)TII->commuteInstruction(*MI); 541 } 542 } 543 544 // If the instruction defines physical registers and the values *may* be 545 // used, then it's not safe to replace it with a common subexpression. 546 // It's also not safe if the instruction uses physical registers. 547 bool CrossMBBPhysDef = false; 548 SmallSet<unsigned, 8> PhysRefs; 549 PhysDefVector PhysDefs; 550 bool PhysUseDef = false; 551 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, 552 PhysDefs, PhysUseDef)) { 553 FoundCSE = false; 554 555 // ... Unless the CS is local or is in the sole predecessor block 556 // and it also defines the physical register which is not clobbered 557 // in between and the physical register uses were not clobbered. 558 // This can never be the case if the instruction both uses and 559 // defines the same physical register, which was detected above. 560 if (!PhysUseDef) { 561 unsigned CSVN = VNT.lookup(MI); 562 MachineInstr *CSMI = Exps[CSVN]; 563 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) 564 FoundCSE = true; 565 } 566 } 567 568 if (!FoundCSE) { 569 VNT.insert(MI, CurrVN++); 570 Exps.push_back(MI); 571 continue; 572 } 573 574 // Found a common subexpression, eliminate it. 575 unsigned CSVN = VNT.lookup(MI); 576 MachineInstr *CSMI = Exps[CSVN]; 577 LLVM_DEBUG(dbgs() << "Examining: " << *MI); 578 LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); 579 580 // Check if it's profitable to perform this CSE. 581 bool DoCSE = true; 582 unsigned NumDefs = MI->getNumDefs(); 583 584 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { 585 MachineOperand &MO = MI->getOperand(i); 586 if (!MO.isReg() || !MO.isDef()) 587 continue; 588 unsigned OldReg = MO.getReg(); 589 unsigned NewReg = CSMI->getOperand(i).getReg(); 590 591 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 592 // we should make sure it is not dead at CSMI. 593 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) 594 ImplicitDefsToUpdate.push_back(i); 595 596 // Keep track of implicit defs of CSMI and MI, to clear possibly 597 // made-redundant kill flags. 598 if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg) 599 ImplicitDefs.push_back(OldReg); 600 601 if (OldReg == NewReg) { 602 --NumDefs; 603 continue; 604 } 605 606 assert(TargetRegisterInfo::isVirtualRegister(OldReg) && 607 TargetRegisterInfo::isVirtualRegister(NewReg) && 608 "Do not CSE physical register defs!"); 609 610 if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), MI)) { 611 LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); 612 DoCSE = false; 613 break; 614 } 615 616 // Don't perform CSE if the result of the new instruction cannot exist 617 // within the constraints (register class, bank, or low-level type) of 618 // the old instruction. 619 if (!MRI->constrainRegAttrs(NewReg, OldReg)) { 620 LLVM_DEBUG( 621 dbgs() << "*** Not the same register constraints, avoid CSE!\n"); 622 DoCSE = false; 623 break; 624 } 625 626 CSEPairs.push_back(std::make_pair(OldReg, NewReg)); 627 --NumDefs; 628 } 629 630 // Actually perform the elimination. 631 if (DoCSE) { 632 for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) { 633 unsigned OldReg = CSEPair.first; 634 unsigned NewReg = CSEPair.second; 635 // OldReg may have been unused but is used now, clear the Dead flag 636 MachineInstr *Def = MRI->getUniqueVRegDef(NewReg); 637 assert(Def != nullptr && "CSEd register has no unique definition?"); 638 Def->clearRegisterDeads(NewReg); 639 // Replace with NewReg and clear kill flags which may be wrong now. 640 MRI->replaceRegWith(OldReg, NewReg); 641 MRI->clearKillFlags(NewReg); 642 } 643 644 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 645 // we should make sure it is not dead at CSMI. 646 for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate) 647 CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false); 648 for (auto PhysDef : PhysDefs) 649 if (!MI->getOperand(PhysDef.first).isDead()) 650 CSMI->getOperand(PhysDef.first).setIsDead(false); 651 652 // Go through implicit defs of CSMI and MI, and clear the kill flags on 653 // their uses in all the instructions between CSMI and MI. 654 // We might have made some of the kill flags redundant, consider: 655 // subs ... implicit-def %nzcv <- CSMI 656 // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore 657 // subs ... implicit-def %nzcv <- MI, to be eliminated 658 // csinc ... implicit killed %nzcv 659 // Since we eliminated MI, and reused a register imp-def'd by CSMI 660 // (here %nzcv), that register, if it was killed before MI, should have 661 // that kill flag removed, because it's lifetime was extended. 662 if (CSMI->getParent() == MI->getParent()) { 663 for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II) 664 for (auto ImplicitDef : ImplicitDefs) 665 if (MachineOperand *MO = II->findRegisterUseOperand( 666 ImplicitDef, /*isKill=*/true, TRI)) 667 MO->setIsKill(false); 668 } else { 669 // If the instructions aren't in the same BB, bail out and clear the 670 // kill flag on all uses of the imp-def'd register. 671 for (auto ImplicitDef : ImplicitDefs) 672 MRI->clearKillFlags(ImplicitDef); 673 } 674 675 if (CrossMBBPhysDef) { 676 // Add physical register defs now coming in from a predecessor to MBB 677 // livein list. 678 while (!PhysDefs.empty()) { 679 auto LiveIn = PhysDefs.pop_back_val(); 680 if (!MBB->isLiveIn(LiveIn.second)) 681 MBB->addLiveIn(LiveIn.second); 682 } 683 ++NumCrossBBCSEs; 684 } 685 686 MI->eraseFromParent(); 687 ++NumCSEs; 688 if (!PhysRefs.empty()) 689 ++NumPhysCSEs; 690 if (Commuted) 691 ++NumCommutes; 692 Changed = true; 693 } else { 694 VNT.insert(MI, CurrVN++); 695 Exps.push_back(MI); 696 } 697 CSEPairs.clear(); 698 ImplicitDefsToUpdate.clear(); 699 ImplicitDefs.clear(); 700 } 701 702 return Changed; 703 } 704 705 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 706 /// dominator tree node if its a leaf or all of its children are done. Walk 707 /// up the dominator tree to destroy ancestors which are now done. 708 void 709 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, 710 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) { 711 if (OpenChildren[Node]) 712 return; 713 714 // Pop scope. 715 ExitScope(Node->getBlock()); 716 717 // Now traverse upwards to pop ancestors whose offsprings are all done. 718 while (MachineDomTreeNode *Parent = Node->getIDom()) { 719 unsigned Left = --OpenChildren[Parent]; 720 if (Left != 0) 721 break; 722 ExitScope(Parent->getBlock()); 723 Node = Parent; 724 } 725 } 726 727 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { 728 SmallVector<MachineDomTreeNode*, 32> Scopes; 729 SmallVector<MachineDomTreeNode*, 8> WorkList; 730 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 731 732 CurrVN = 0; 733 734 // Perform a DFS walk to determine the order of visit. 735 WorkList.push_back(Node); 736 do { 737 Node = WorkList.pop_back_val(); 738 Scopes.push_back(Node); 739 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 740 OpenChildren[Node] = Children.size(); 741 for (MachineDomTreeNode *Child : Children) 742 WorkList.push_back(Child); 743 } while (!WorkList.empty()); 744 745 // Now perform CSE. 746 bool Changed = false; 747 for (MachineDomTreeNode *Node : Scopes) { 748 MachineBasicBlock *MBB = Node->getBlock(); 749 EnterScope(MBB); 750 Changed |= ProcessBlockCSE(MBB); 751 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 752 ExitScopeIfDone(Node, OpenChildren); 753 } 754 755 return Changed; 756 } 757 758 // We use stronger checks for PRE candidate rather than for CSE ones to embrace 759 // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps 760 // to exclude instrs created by PRE that won't be CSEed later. 761 bool MachineCSE::isPRECandidate(MachineInstr *MI) { 762 if (!isCSECandidate(MI) || 763 MI->isNotDuplicable() || 764 MI->isAsCheapAsAMove() || 765 MI->getNumDefs() != 1 || 766 MI->getNumExplicitDefs() != 1) 767 return false; 768 769 for (auto def: MI->defs()) 770 if (!TRI->isVirtualRegister(def.getReg())) 771 return false; 772 773 for (auto use: MI->uses()) 774 if (use.isReg() && !TRI->isVirtualRegister(use.getReg())) 775 return false; 776 777 return true; 778 } 779 780 bool MachineCSE::ProcessBlockPRE(MachineDominatorTree *DT, MachineBasicBlock *MBB) { 781 bool Changed = false; 782 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { 783 MachineInstr *MI = &*I; 784 ++I; 785 786 if (!isPRECandidate(MI)) 787 continue; 788 789 if (!PREMap.count(MI)) { 790 PREMap[MI] = MBB; 791 continue; 792 } 793 794 auto MBB1 = PREMap[MI]; 795 assert(!DT->properlyDominates(MBB, MBB1) && 796 "MBB cannot properly dominate MBB1 while DFS through dominators tree!"); 797 auto CMBB = DT->findNearestCommonDominator(MBB, MBB1); 798 799 // Two instrs are partial redundant if their basic blocks are reachable 800 // from one to another but one doesn't dominate another. 801 if (CMBB != MBB1) { 802 auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock(); 803 if (BB != nullptr && BB1 != nullptr && 804 (isPotentiallyReachable(BB1, BB) || 805 isPotentiallyReachable(BB, BB1))) { 806 807 assert(MI->getOperand(0).isDef() && 808 "First operand of instr with one explicit def must be this def"); 809 unsigned VReg = MI->getOperand(0).getReg(); 810 unsigned NewReg = MRI->cloneVirtualRegister(VReg); 811 if (!isProfitableToCSE(NewReg, VReg, CMBB, MI)) 812 continue; 813 MachineInstr &NewMI = TII->duplicate(*CMBB, CMBB->getFirstTerminator(), *MI); 814 NewMI.getOperand(0).setReg(NewReg); 815 816 PREMap[MI] = CMBB; 817 ++NumPREs; 818 Changed = true; 819 } 820 } 821 } 822 return Changed; 823 } 824 825 // This simple PRE (partial redundancy elimination) pass doesn't actually 826 // eliminate partial redundancy but transforms it to full redundancy, 827 // anticipating that the next CSE step will eliminate this created redundancy. 828 // If CSE doesn't eliminate this, than created instruction will remain dead 829 // and eliminated later by Remove Dead Machine Instructions pass. 830 bool MachineCSE::PerformSimplePRE(MachineDominatorTree *DT) { 831 SmallVector<MachineDomTreeNode*, 32> BBs; 832 833 PREMap.clear(); 834 bool Changed = false; 835 BBs.push_back(DT->getRootNode()); 836 do { 837 auto Node = BBs.pop_back_val(); 838 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 839 for (MachineDomTreeNode *Child : Children) 840 BBs.push_back(Child); 841 842 MachineBasicBlock *MBB = Node->getBlock(); 843 Changed |= ProcessBlockPRE(DT, MBB); 844 845 } while (!BBs.empty()); 846 847 return Changed; 848 } 849 850 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { 851 if (skipFunction(MF.getFunction())) 852 return false; 853 854 TII = MF.getSubtarget().getInstrInfo(); 855 TRI = MF.getSubtarget().getRegisterInfo(); 856 MRI = &MF.getRegInfo(); 857 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 858 DT = &getAnalysis<MachineDominatorTree>(); 859 LookAheadLimit = TII->getMachineCSELookAheadLimit(); 860 bool ChangedPRE, ChangedCSE; 861 ChangedPRE = PerformSimplePRE(DT); 862 ChangedCSE = PerformCSE(DT->getRootNode()); 863 return ChangedPRE || ChangedCSE; 864 } 865