1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs global common subexpression elimination on machine 11 // instructions using a scoped hash table based value numbering scheme. It 12 // must be run while the machine function is still in SSA form. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "machine-cse" 17 #include "llvm/CodeGen/Passes.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineInstr.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Target/TargetInstrInfo.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/ScopedHashTable.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/RecyclingAllocator.h" 29 using namespace llvm; 30 31 STATISTIC(NumCoalesces, "Number of copies coalesced"); 32 STATISTIC(NumCSEs, "Number of common subexpression eliminated"); 33 STATISTIC(NumPhysCSEs, 34 "Number of physreg referencing common subexpr eliminated"); 35 STATISTIC(NumCrossBBCSEs, 36 "Number of cross-MBB physreg referencing CS eliminated"); 37 STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); 38 39 namespace { 40 class MachineCSE : public MachineFunctionPass { 41 const TargetInstrInfo *TII; 42 const TargetRegisterInfo *TRI; 43 AliasAnalysis *AA; 44 MachineDominatorTree *DT; 45 MachineRegisterInfo *MRI; 46 public: 47 static char ID; // Pass identification 48 MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) { 49 initializeMachineCSEPass(*PassRegistry::getPassRegistry()); 50 } 51 52 virtual bool runOnMachineFunction(MachineFunction &MF); 53 54 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 55 AU.setPreservesCFG(); 56 MachineFunctionPass::getAnalysisUsage(AU); 57 AU.addRequired<AliasAnalysis>(); 58 AU.addPreservedID(MachineLoopInfoID); 59 AU.addRequired<MachineDominatorTree>(); 60 AU.addPreserved<MachineDominatorTree>(); 61 } 62 63 virtual void releaseMemory() { 64 ScopeMap.clear(); 65 Exps.clear(); 66 } 67 68 private: 69 const unsigned LookAheadLimit; 70 typedef RecyclingAllocator<BumpPtrAllocator, 71 ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy; 72 typedef ScopedHashTable<MachineInstr*, unsigned, 73 MachineInstrExpressionTrait, AllocatorTy> ScopedHTType; 74 typedef ScopedHTType::ScopeTy ScopeType; 75 DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap; 76 ScopedHTType VNT; 77 SmallVector<MachineInstr*, 64> Exps; 78 unsigned CurrVN; 79 80 bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB); 81 bool isPhysDefTriviallyDead(unsigned Reg, 82 MachineBasicBlock::const_iterator I, 83 MachineBasicBlock::const_iterator E) const; 84 bool hasLivePhysRegDefUses(const MachineInstr *MI, 85 const MachineBasicBlock *MBB, 86 SmallSet<unsigned,8> &PhysRefs, 87 SmallVector<unsigned,2> &PhysDefs) const; 88 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 89 SmallSet<unsigned,8> &PhysRefs, 90 SmallVector<unsigned,2> &PhysDefs, 91 bool &NonLocal) const; 92 bool isCSECandidate(MachineInstr *MI); 93 bool isProfitableToCSE(unsigned CSReg, unsigned Reg, 94 MachineInstr *CSMI, MachineInstr *MI); 95 void EnterScope(MachineBasicBlock *MBB); 96 void ExitScope(MachineBasicBlock *MBB); 97 bool ProcessBlock(MachineBasicBlock *MBB); 98 void ExitScopeIfDone(MachineDomTreeNode *Node, 99 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren); 100 bool PerformCSE(MachineDomTreeNode *Node); 101 }; 102 } // end anonymous namespace 103 104 char MachineCSE::ID = 0; 105 char &llvm::MachineCSEID = MachineCSE::ID; 106 INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse", 107 "Machine Common Subexpression Elimination", false, false) 108 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 109 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 110 INITIALIZE_PASS_END(MachineCSE, "machine-cse", 111 "Machine Common Subexpression Elimination", false, false) 112 113 bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI, 114 MachineBasicBlock *MBB) { 115 bool Changed = false; 116 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 117 MachineOperand &MO = MI->getOperand(i); 118 if (!MO.isReg() || !MO.isUse()) 119 continue; 120 unsigned Reg = MO.getReg(); 121 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 122 continue; 123 if (!MRI->hasOneNonDBGUse(Reg)) 124 // Only coalesce single use copies. This ensure the copy will be 125 // deleted. 126 continue; 127 MachineInstr *DefMI = MRI->getVRegDef(Reg); 128 if (DefMI->getParent() != MBB) 129 continue; 130 if (!DefMI->isCopy()) 131 continue; 132 unsigned SrcReg = DefMI->getOperand(1).getReg(); 133 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 134 continue; 135 if (DefMI->getOperand(0).getSubReg() || DefMI->getOperand(1).getSubReg()) 136 continue; 137 if (!MRI->constrainRegClass(SrcReg, MRI->getRegClass(Reg))) 138 continue; 139 DEBUG(dbgs() << "Coalescing: " << *DefMI); 140 DEBUG(dbgs() << "*** to: " << *MI); 141 MO.setReg(SrcReg); 142 MRI->clearKillFlags(SrcReg); 143 DefMI->eraseFromParent(); 144 ++NumCoalesces; 145 Changed = true; 146 } 147 148 return Changed; 149 } 150 151 bool 152 MachineCSE::isPhysDefTriviallyDead(unsigned Reg, 153 MachineBasicBlock::const_iterator I, 154 MachineBasicBlock::const_iterator E) const { 155 unsigned LookAheadLeft = LookAheadLimit; 156 while (LookAheadLeft) { 157 // Skip over dbg_value's. 158 while (I != E && I->isDebugValue()) 159 ++I; 160 161 if (I == E) 162 // Reached end of block, register is obviously dead. 163 return true; 164 165 bool SeenDef = false; 166 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 167 const MachineOperand &MO = I->getOperand(i); 168 if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) 169 SeenDef = true; 170 if (!MO.isReg() || !MO.getReg()) 171 continue; 172 if (!TRI->regsOverlap(MO.getReg(), Reg)) 173 continue; 174 if (MO.isUse()) 175 // Found a use! 176 return false; 177 SeenDef = true; 178 } 179 if (SeenDef) 180 // See a def of Reg (or an alias) before encountering any use, it's 181 // trivially dead. 182 return true; 183 184 --LookAheadLeft; 185 ++I; 186 } 187 return false; 188 } 189 190 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write 191 /// physical registers (except for dead defs of physical registers). It also 192 /// returns the physical register def by reference if it's the only one and the 193 /// instruction does not uses a physical register. 194 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, 195 const MachineBasicBlock *MBB, 196 SmallSet<unsigned,8> &PhysRefs, 197 SmallVector<unsigned,2> &PhysDefs) const{ 198 MachineBasicBlock::const_iterator I = MI; I = llvm::next(I); 199 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 200 const MachineOperand &MO = MI->getOperand(i); 201 if (!MO.isReg()) 202 continue; 203 unsigned Reg = MO.getReg(); 204 if (!Reg) 205 continue; 206 if (TargetRegisterInfo::isVirtualRegister(Reg)) 207 continue; 208 // If the def is dead, it's ok. But the def may not marked "dead". That's 209 // common since this pass is run before livevariables. We can scan 210 // forward a few instructions and check if it is obviously dead. 211 if (MO.isDef() && 212 (MO.isDead() || isPhysDefTriviallyDead(Reg, I, MBB->end()))) 213 continue; 214 // Reading constant physregs is ok. 215 if (!MRI->isConstantPhysReg(Reg, *MBB->getParent())) 216 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 217 PhysRefs.insert(*AI); 218 if (MO.isDef()) 219 PhysDefs.push_back(Reg); 220 } 221 222 return !PhysRefs.empty(); 223 } 224 225 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 226 SmallSet<unsigned,8> &PhysRefs, 227 SmallVector<unsigned,2> &PhysDefs, 228 bool &NonLocal) const { 229 // For now conservatively returns false if the common subexpression is 230 // not in the same basic block as the given instruction. The only exception 231 // is if the common subexpression is in the sole predecessor block. 232 const MachineBasicBlock *MBB = MI->getParent(); 233 const MachineBasicBlock *CSMBB = CSMI->getParent(); 234 235 bool CrossMBB = false; 236 if (CSMBB != MBB) { 237 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) 238 return false; 239 240 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { 241 if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i])) 242 // Avoid extending live range of physical registers if they are 243 //allocatable or reserved. 244 return false; 245 } 246 CrossMBB = true; 247 } 248 MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I); 249 MachineBasicBlock::const_iterator E = MI; 250 MachineBasicBlock::const_iterator EE = CSMBB->end(); 251 unsigned LookAheadLeft = LookAheadLimit; 252 while (LookAheadLeft) { 253 // Skip over dbg_value's. 254 while (I != E && I != EE && I->isDebugValue()) 255 ++I; 256 257 if (I == EE) { 258 assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); 259 (void)CrossMBB; 260 CrossMBB = false; 261 NonLocal = true; 262 I = MBB->begin(); 263 EE = MBB->end(); 264 continue; 265 } 266 267 if (I == E) 268 return true; 269 270 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 271 const MachineOperand &MO = I->getOperand(i); 272 // RegMasks go on instructions like calls that clobber lots of physregs. 273 // Don't attempt to CSE across such an instruction. 274 if (MO.isRegMask()) 275 return false; 276 if (!MO.isReg() || !MO.isDef()) 277 continue; 278 unsigned MOReg = MO.getReg(); 279 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 280 continue; 281 if (PhysRefs.count(MOReg)) 282 return false; 283 } 284 285 --LookAheadLeft; 286 ++I; 287 } 288 289 return false; 290 } 291 292 bool MachineCSE::isCSECandidate(MachineInstr *MI) { 293 if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() || 294 MI->isKill() || MI->isInlineAsm() || MI->isDebugValue()) 295 return false; 296 297 // Ignore copies. 298 if (MI->isCopyLike()) 299 return false; 300 301 // Ignore stuff that we obviously can't move. 302 if (MI->mayStore() || MI->isCall() || MI->isTerminator() || 303 MI->hasUnmodeledSideEffects()) 304 return false; 305 306 if (MI->mayLoad()) { 307 // Okay, this instruction does a load. As a refinement, we allow the target 308 // to decide whether the loaded value is actually a constant. If so, we can 309 // actually use it as a load. 310 if (!MI->isInvariantLoad(AA)) 311 // FIXME: we should be able to hoist loads with no other side effects if 312 // there are no other instructions which can change memory in this loop. 313 // This is a trivial form of alias analysis. 314 return false; 315 } 316 return true; 317 } 318 319 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a 320 /// common expression that defines Reg. 321 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg, 322 MachineInstr *CSMI, MachineInstr *MI) { 323 // FIXME: Heuristics that works around the lack the live range splitting. 324 325 // If CSReg is used at all uses of Reg, CSE should not increase register 326 // pressure of CSReg. 327 bool MayIncreasePressure = true; 328 if (TargetRegisterInfo::isVirtualRegister(CSReg) && 329 TargetRegisterInfo::isVirtualRegister(Reg)) { 330 MayIncreasePressure = false; 331 SmallPtrSet<MachineInstr*, 8> CSUses; 332 for (MachineRegisterInfo::use_nodbg_iterator I =MRI->use_nodbg_begin(CSReg), 333 E = MRI->use_nodbg_end(); I != E; ++I) { 334 MachineInstr *Use = &*I; 335 CSUses.insert(Use); 336 } 337 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg), 338 E = MRI->use_nodbg_end(); I != E; ++I) { 339 MachineInstr *Use = &*I; 340 if (!CSUses.count(Use)) { 341 MayIncreasePressure = true; 342 break; 343 } 344 } 345 } 346 if (!MayIncreasePressure) return true; 347 348 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in 349 // an immediate predecessor. We don't want to increase register pressure and 350 // end up causing other computation to be spilled. 351 if (MI->isAsCheapAsAMove()) { 352 MachineBasicBlock *CSBB = CSMI->getParent(); 353 MachineBasicBlock *BB = MI->getParent(); 354 if (CSBB != BB && !CSBB->isSuccessor(BB)) 355 return false; 356 } 357 358 // Heuristics #2: If the expression doesn't not use a vr and the only use 359 // of the redundant computation are copies, do not cse. 360 bool HasVRegUse = false; 361 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 362 const MachineOperand &MO = MI->getOperand(i); 363 if (MO.isReg() && MO.isUse() && 364 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 365 HasVRegUse = true; 366 break; 367 } 368 } 369 if (!HasVRegUse) { 370 bool HasNonCopyUse = false; 371 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg), 372 E = MRI->use_nodbg_end(); I != E; ++I) { 373 MachineInstr *Use = &*I; 374 // Ignore copies. 375 if (!Use->isCopyLike()) { 376 HasNonCopyUse = true; 377 break; 378 } 379 } 380 if (!HasNonCopyUse) 381 return false; 382 } 383 384 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse 385 // it unless the defined value is already used in the BB of the new use. 386 bool HasPHI = false; 387 SmallPtrSet<MachineBasicBlock*, 4> CSBBs; 388 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(CSReg), 389 E = MRI->use_nodbg_end(); I != E; ++I) { 390 MachineInstr *Use = &*I; 391 HasPHI |= Use->isPHI(); 392 CSBBs.insert(Use->getParent()); 393 } 394 395 if (!HasPHI) 396 return true; 397 return CSBBs.count(MI->getParent()); 398 } 399 400 void MachineCSE::EnterScope(MachineBasicBlock *MBB) { 401 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 402 ScopeType *Scope = new ScopeType(VNT); 403 ScopeMap[MBB] = Scope; 404 } 405 406 void MachineCSE::ExitScope(MachineBasicBlock *MBB) { 407 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 408 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); 409 assert(SI != ScopeMap.end()); 410 ScopeMap.erase(SI); 411 delete SI->second; 412 } 413 414 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) { 415 bool Changed = false; 416 417 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; 418 SmallVector<unsigned, 2> ImplicitDefsToUpdate; 419 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { 420 MachineInstr *MI = &*I; 421 ++I; 422 423 if (!isCSECandidate(MI)) 424 continue; 425 426 bool FoundCSE = VNT.count(MI); 427 if (!FoundCSE) { 428 // Look for trivial copy coalescing opportunities. 429 if (PerformTrivialCoalescing(MI, MBB)) { 430 Changed = true; 431 432 // After coalescing MI itself may become a copy. 433 if (MI->isCopyLike()) 434 continue; 435 FoundCSE = VNT.count(MI); 436 } 437 } 438 439 // Commute commutable instructions. 440 bool Commuted = false; 441 if (!FoundCSE && MI->isCommutable()) { 442 MachineInstr *NewMI = TII->commuteInstruction(MI); 443 if (NewMI) { 444 Commuted = true; 445 FoundCSE = VNT.count(NewMI); 446 if (NewMI != MI) { 447 // New instruction. It doesn't need to be kept. 448 NewMI->eraseFromParent(); 449 Changed = true; 450 } else if (!FoundCSE) 451 // MI was changed but it didn't help, commute it back! 452 (void)TII->commuteInstruction(MI); 453 } 454 } 455 456 // If the instruction defines physical registers and the values *may* be 457 // used, then it's not safe to replace it with a common subexpression. 458 // It's also not safe if the instruction uses physical registers. 459 bool CrossMBBPhysDef = false; 460 SmallSet<unsigned, 8> PhysRefs; 461 SmallVector<unsigned, 2> PhysDefs; 462 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, PhysDefs)) { 463 FoundCSE = false; 464 465 // ... Unless the CS is local or is in the sole predecessor block 466 // and it also defines the physical register which is not clobbered 467 // in between and the physical register uses were not clobbered. 468 unsigned CSVN = VNT.lookup(MI); 469 MachineInstr *CSMI = Exps[CSVN]; 470 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) 471 FoundCSE = true; 472 } 473 474 if (!FoundCSE) { 475 VNT.insert(MI, CurrVN++); 476 Exps.push_back(MI); 477 continue; 478 } 479 480 // Found a common subexpression, eliminate it. 481 unsigned CSVN = VNT.lookup(MI); 482 MachineInstr *CSMI = Exps[CSVN]; 483 DEBUG(dbgs() << "Examining: " << *MI); 484 DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); 485 486 // Check if it's profitable to perform this CSE. 487 bool DoCSE = true; 488 unsigned NumDefs = MI->getDesc().getNumDefs() + 489 MI->getDesc().getNumImplicitDefs(); 490 491 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { 492 MachineOperand &MO = MI->getOperand(i); 493 if (!MO.isReg() || !MO.isDef()) 494 continue; 495 unsigned OldReg = MO.getReg(); 496 unsigned NewReg = CSMI->getOperand(i).getReg(); 497 498 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 499 // we should make sure it is not dead at CSMI. 500 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) 501 ImplicitDefsToUpdate.push_back(i); 502 if (OldReg == NewReg) { 503 --NumDefs; 504 continue; 505 } 506 507 assert(TargetRegisterInfo::isVirtualRegister(OldReg) && 508 TargetRegisterInfo::isVirtualRegister(NewReg) && 509 "Do not CSE physical register defs!"); 510 511 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) { 512 DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); 513 DoCSE = false; 514 break; 515 } 516 517 // Don't perform CSE if the result of the old instruction cannot exist 518 // within the register class of the new instruction. 519 const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg); 520 if (!MRI->constrainRegClass(NewReg, OldRC)) { 521 DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n"); 522 DoCSE = false; 523 break; 524 } 525 526 CSEPairs.push_back(std::make_pair(OldReg, NewReg)); 527 --NumDefs; 528 } 529 530 // Actually perform the elimination. 531 if (DoCSE) { 532 for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) { 533 MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second); 534 MRI->clearKillFlags(CSEPairs[i].second); 535 } 536 537 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 538 // we should make sure it is not dead at CSMI. 539 for (unsigned i = 0, e = ImplicitDefsToUpdate.size(); i != e; ++i) 540 CSMI->getOperand(ImplicitDefsToUpdate[i]).setIsDead(false); 541 542 if (CrossMBBPhysDef) { 543 // Add physical register defs now coming in from a predecessor to MBB 544 // livein list. 545 while (!PhysDefs.empty()) { 546 unsigned LiveIn = PhysDefs.pop_back_val(); 547 if (!MBB->isLiveIn(LiveIn)) 548 MBB->addLiveIn(LiveIn); 549 } 550 ++NumCrossBBCSEs; 551 } 552 553 MI->eraseFromParent(); 554 ++NumCSEs; 555 if (!PhysRefs.empty()) 556 ++NumPhysCSEs; 557 if (Commuted) 558 ++NumCommutes; 559 Changed = true; 560 } else { 561 VNT.insert(MI, CurrVN++); 562 Exps.push_back(MI); 563 } 564 CSEPairs.clear(); 565 ImplicitDefsToUpdate.clear(); 566 } 567 568 return Changed; 569 } 570 571 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 572 /// dominator tree node if its a leaf or all of its children are done. Walk 573 /// up the dominator tree to destroy ancestors which are now done. 574 void 575 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, 576 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) { 577 if (OpenChildren[Node]) 578 return; 579 580 // Pop scope. 581 ExitScope(Node->getBlock()); 582 583 // Now traverse upwards to pop ancestors whose offsprings are all done. 584 while (MachineDomTreeNode *Parent = Node->getIDom()) { 585 unsigned Left = --OpenChildren[Parent]; 586 if (Left != 0) 587 break; 588 ExitScope(Parent->getBlock()); 589 Node = Parent; 590 } 591 } 592 593 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { 594 SmallVector<MachineDomTreeNode*, 32> Scopes; 595 SmallVector<MachineDomTreeNode*, 8> WorkList; 596 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 597 598 CurrVN = 0; 599 600 // Perform a DFS walk to determine the order of visit. 601 WorkList.push_back(Node); 602 do { 603 Node = WorkList.pop_back_val(); 604 Scopes.push_back(Node); 605 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 606 unsigned NumChildren = Children.size(); 607 OpenChildren[Node] = NumChildren; 608 for (unsigned i = 0; i != NumChildren; ++i) { 609 MachineDomTreeNode *Child = Children[i]; 610 WorkList.push_back(Child); 611 } 612 } while (!WorkList.empty()); 613 614 // Now perform CSE. 615 bool Changed = false; 616 for (unsigned i = 0, e = Scopes.size(); i != e; ++i) { 617 MachineDomTreeNode *Node = Scopes[i]; 618 MachineBasicBlock *MBB = Node->getBlock(); 619 EnterScope(MBB); 620 Changed |= ProcessBlock(MBB); 621 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 622 ExitScopeIfDone(Node, OpenChildren); 623 } 624 625 return Changed; 626 } 627 628 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { 629 TII = MF.getTarget().getInstrInfo(); 630 TRI = MF.getTarget().getRegisterInfo(); 631 MRI = &MF.getRegInfo(); 632 AA = &getAnalysis<AliasAnalysis>(); 633 DT = &getAnalysis<MachineDominatorTree>(); 634 return PerformCSE(DT->getRootNode()); 635 } 636