1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global common subexpression elimination on machine
11 // instructions using a scoped hash table based value numbering scheme. It
12 // must be run while the machine function is still in SSA form.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/ScopedHashTable.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/CodeGen/TargetInstrInfo.h"
32 #include "llvm/CodeGen/TargetOpcodes.h"
33 #include "llvm/CodeGen/TargetRegisterInfo.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/MC/MCInstrDesc.h"
36 #include "llvm/MC/MCRegisterInfo.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Allocator.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/RecyclingAllocator.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <cassert>
43 #include <iterator>
44 #include <utility>
45 #include <vector>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "machine-cse"
50 
51 STATISTIC(NumCoalesces, "Number of copies coalesced");
52 STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
53 STATISTIC(NumPhysCSEs,
54           "Number of physreg referencing common subexpr eliminated");
55 STATISTIC(NumCrossBBCSEs,
56           "Number of cross-MBB physreg referencing CS eliminated");
57 STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
58 
59 namespace {
60 
61   class MachineCSE : public MachineFunctionPass {
62     const TargetInstrInfo *TII;
63     const TargetRegisterInfo *TRI;
64     AliasAnalysis *AA;
65     MachineDominatorTree *DT;
66     MachineRegisterInfo *MRI;
67 
68   public:
69     static char ID; // Pass identification
70 
71     MachineCSE() : MachineFunctionPass(ID) {
72       initializeMachineCSEPass(*PassRegistry::getPassRegistry());
73     }
74 
75     bool runOnMachineFunction(MachineFunction &MF) override;
76 
77     void getAnalysisUsage(AnalysisUsage &AU) const override {
78       AU.setPreservesCFG();
79       MachineFunctionPass::getAnalysisUsage(AU);
80       AU.addRequired<AAResultsWrapperPass>();
81       AU.addPreservedID(MachineLoopInfoID);
82       AU.addRequired<MachineDominatorTree>();
83       AU.addPreserved<MachineDominatorTree>();
84     }
85 
86     void releaseMemory() override {
87       ScopeMap.clear();
88       Exps.clear();
89     }
90 
91   private:
92     using AllocatorTy = RecyclingAllocator<BumpPtrAllocator,
93                             ScopedHashTableVal<MachineInstr *, unsigned>>;
94     using ScopedHTType =
95         ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
96                         AllocatorTy>;
97     using ScopeType = ScopedHTType::ScopeTy;
98 
99     unsigned LookAheadLimit = 0;
100     DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
101     ScopedHTType VNT;
102     SmallVector<MachineInstr *, 64> Exps;
103     unsigned CurrVN = 0;
104 
105     bool PerformTrivialCopyPropagation(MachineInstr *MI,
106                                        MachineBasicBlock *MBB);
107     bool isPhysDefTriviallyDead(unsigned Reg,
108                                 MachineBasicBlock::const_iterator I,
109                                 MachineBasicBlock::const_iterator E) const;
110     bool hasLivePhysRegDefUses(const MachineInstr *MI,
111                                const MachineBasicBlock *MBB,
112                                SmallSet<unsigned,8> &PhysRefs,
113                                SmallVectorImpl<unsigned> &PhysDefs,
114                                bool &PhysUseDef) const;
115     bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
116                           SmallSet<unsigned,8> &PhysRefs,
117                           SmallVectorImpl<unsigned> &PhysDefs,
118                           bool &NonLocal) const;
119     bool isCSECandidate(MachineInstr *MI);
120     bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
121                            MachineInstr *CSMI, MachineInstr *MI);
122     void EnterScope(MachineBasicBlock *MBB);
123     void ExitScope(MachineBasicBlock *MBB);
124     bool ProcessBlock(MachineBasicBlock *MBB);
125     void ExitScopeIfDone(MachineDomTreeNode *Node,
126                          DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
127     bool PerformCSE(MachineDomTreeNode *Node);
128   };
129 
130 } // end anonymous namespace
131 
132 char MachineCSE::ID = 0;
133 
134 char &llvm::MachineCSEID = MachineCSE::ID;
135 
136 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE,
137                       "Machine Common Subexpression Elimination", false, false)
138 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
139 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
140 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE,
141                     "Machine Common Subexpression Elimination", false, false)
142 
143 /// The source register of a COPY machine instruction can be propagated to all
144 /// its users, and this propagation could increase the probability of finding
145 /// common subexpressions. If the COPY has only one user, the COPY itself can
146 /// be removed.
147 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
148                                                MachineBasicBlock *MBB) {
149   bool Changed = false;
150   for (MachineOperand &MO : MI->operands()) {
151     if (!MO.isReg() || !MO.isUse())
152       continue;
153     unsigned Reg = MO.getReg();
154     if (!TargetRegisterInfo::isVirtualRegister(Reg))
155       continue;
156     bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
157     MachineInstr *DefMI = MRI->getVRegDef(Reg);
158     if (!DefMI->isCopy())
159       continue;
160     unsigned SrcReg = DefMI->getOperand(1).getReg();
161     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
162       continue;
163     if (DefMI->getOperand(0).getSubReg())
164       continue;
165     // FIXME: We should trivially coalesce subregister copies to expose CSE
166     // opportunities on instructions with truncated operands (see
167     // cse-add-with-overflow.ll). This can be done here as follows:
168     // if (SrcSubReg)
169     //  RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
170     //                                     SrcSubReg);
171     // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
172     //
173     // The 2-addr pass has been updated to handle coalesced subregs. However,
174     // some machine-specific code still can't handle it.
175     // To handle it properly we also need a way find a constrained subregister
176     // class given a super-reg class and subreg index.
177     if (DefMI->getOperand(1).getSubReg())
178       continue;
179     if (!MRI->constrainRegAttrs(SrcReg, Reg))
180       continue;
181     DEBUG(dbgs() << "Coalescing: " << *DefMI);
182     DEBUG(dbgs() << "***     to: " << *MI);
183     // Propagate SrcReg of copies to MI.
184     MO.setReg(SrcReg);
185     MRI->clearKillFlags(SrcReg);
186     // Coalesce single use copies.
187     if (OnlyOneUse) {
188       DefMI->eraseFromParent();
189       ++NumCoalesces;
190     }
191     Changed = true;
192   }
193 
194   return Changed;
195 }
196 
197 bool
198 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
199                                    MachineBasicBlock::const_iterator I,
200                                    MachineBasicBlock::const_iterator E) const {
201   unsigned LookAheadLeft = LookAheadLimit;
202   while (LookAheadLeft) {
203     // Skip over dbg_value's.
204     I = skipDebugInstructionsForward(I, E);
205 
206     if (I == E)
207       // Reached end of block, we don't know if register is dead or not.
208       return false;
209 
210     bool SeenDef = false;
211     for (const MachineOperand &MO : I->operands()) {
212       if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
213         SeenDef = true;
214       if (!MO.isReg() || !MO.getReg())
215         continue;
216       if (!TRI->regsOverlap(MO.getReg(), Reg))
217         continue;
218       if (MO.isUse())
219         // Found a use!
220         return false;
221       SeenDef = true;
222     }
223     if (SeenDef)
224       // See a def of Reg (or an alias) before encountering any use, it's
225       // trivially dead.
226       return true;
227 
228     --LookAheadLeft;
229     ++I;
230   }
231   return false;
232 }
233 
234 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
235 /// physical registers (except for dead defs of physical registers). It also
236 /// returns the physical register def by reference if it's the only one and the
237 /// instruction does not uses a physical register.
238 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
239                                        const MachineBasicBlock *MBB,
240                                        SmallSet<unsigned,8> &PhysRefs,
241                                        SmallVectorImpl<unsigned> &PhysDefs,
242                                        bool &PhysUseDef) const{
243   // First, add all uses to PhysRefs.
244   for (const MachineOperand &MO : MI->operands()) {
245     if (!MO.isReg() || MO.isDef())
246       continue;
247     unsigned Reg = MO.getReg();
248     if (!Reg)
249       continue;
250     if (TargetRegisterInfo::isVirtualRegister(Reg))
251       continue;
252     // Reading either caller preserved or constant physregs is ok.
253     if (!MRI->isCallerPreservedOrConstPhysReg(Reg))
254       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
255         PhysRefs.insert(*AI);
256   }
257 
258   // Next, collect all defs into PhysDefs.  If any is already in PhysRefs
259   // (which currently contains only uses), set the PhysUseDef flag.
260   PhysUseDef = false;
261   MachineBasicBlock::const_iterator I = MI; I = std::next(I);
262   for (const MachineOperand &MO : MI->operands()) {
263     if (!MO.isReg() || !MO.isDef())
264       continue;
265     unsigned Reg = MO.getReg();
266     if (!Reg)
267       continue;
268     if (TargetRegisterInfo::isVirtualRegister(Reg))
269       continue;
270     // Check against PhysRefs even if the def is "dead".
271     if (PhysRefs.count(Reg))
272       PhysUseDef = true;
273     // If the def is dead, it's ok. But the def may not marked "dead". That's
274     // common since this pass is run before livevariables. We can scan
275     // forward a few instructions and check if it is obviously dead.
276     if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
277       PhysDefs.push_back(Reg);
278   }
279 
280   // Finally, add all defs to PhysRefs as well.
281   for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
282     for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI)
283       PhysRefs.insert(*AI);
284 
285   return !PhysRefs.empty();
286 }
287 
288 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
289                                   SmallSet<unsigned,8> &PhysRefs,
290                                   SmallVectorImpl<unsigned> &PhysDefs,
291                                   bool &NonLocal) const {
292   // For now conservatively returns false if the common subexpression is
293   // not in the same basic block as the given instruction. The only exception
294   // is if the common subexpression is in the sole predecessor block.
295   const MachineBasicBlock *MBB = MI->getParent();
296   const MachineBasicBlock *CSMBB = CSMI->getParent();
297 
298   bool CrossMBB = false;
299   if (CSMBB != MBB) {
300     if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
301       return false;
302 
303     for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
304       if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i]))
305         // Avoid extending live range of physical registers if they are
306         //allocatable or reserved.
307         return false;
308     }
309     CrossMBB = true;
310   }
311   MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
312   MachineBasicBlock::const_iterator E = MI;
313   MachineBasicBlock::const_iterator EE = CSMBB->end();
314   unsigned LookAheadLeft = LookAheadLimit;
315   while (LookAheadLeft) {
316     // Skip over dbg_value's.
317     while (I != E && I != EE && I->isDebugValue())
318       ++I;
319 
320     if (I == EE) {
321       assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
322       (void)CrossMBB;
323       CrossMBB = false;
324       NonLocal = true;
325       I = MBB->begin();
326       EE = MBB->end();
327       continue;
328     }
329 
330     if (I == E)
331       return true;
332 
333     for (const MachineOperand &MO : I->operands()) {
334       // RegMasks go on instructions like calls that clobber lots of physregs.
335       // Don't attempt to CSE across such an instruction.
336       if (MO.isRegMask())
337         return false;
338       if (!MO.isReg() || !MO.isDef())
339         continue;
340       unsigned MOReg = MO.getReg();
341       if (TargetRegisterInfo::isVirtualRegister(MOReg))
342         continue;
343       if (PhysRefs.count(MOReg))
344         return false;
345     }
346 
347     --LookAheadLeft;
348     ++I;
349   }
350 
351   return false;
352 }
353 
354 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
355   if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
356       MI->isInlineAsm() || MI->isDebugValue())
357     return false;
358 
359   // Ignore copies.
360   if (MI->isCopyLike())
361     return false;
362 
363   // Ignore stuff that we obviously can't move.
364   if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
365       MI->hasUnmodeledSideEffects())
366     return false;
367 
368   if (MI->mayLoad()) {
369     // Okay, this instruction does a load. As a refinement, we allow the target
370     // to decide whether the loaded value is actually a constant. If so, we can
371     // actually use it as a load.
372     if (!MI->isDereferenceableInvariantLoad(AA))
373       // FIXME: we should be able to hoist loads with no other side effects if
374       // there are no other instructions which can change memory in this loop.
375       // This is a trivial form of alias analysis.
376       return false;
377   }
378 
379   // Ignore stack guard loads, otherwise the register that holds CSEed value may
380   // be spilled and get loaded back with corrupted data.
381   if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
382     return false;
383 
384   return true;
385 }
386 
387 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
388 /// common expression that defines Reg.
389 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
390                                    MachineInstr *CSMI, MachineInstr *MI) {
391   // FIXME: Heuristics that works around the lack the live range splitting.
392 
393   // If CSReg is used at all uses of Reg, CSE should not increase register
394   // pressure of CSReg.
395   bool MayIncreasePressure = true;
396   if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
397       TargetRegisterInfo::isVirtualRegister(Reg)) {
398     MayIncreasePressure = false;
399     SmallPtrSet<MachineInstr*, 8> CSUses;
400     for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
401       CSUses.insert(&MI);
402     }
403     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
404       if (!CSUses.count(&MI)) {
405         MayIncreasePressure = true;
406         break;
407       }
408     }
409   }
410   if (!MayIncreasePressure) return true;
411 
412   // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
413   // an immediate predecessor. We don't want to increase register pressure and
414   // end up causing other computation to be spilled.
415   if (TII->isAsCheapAsAMove(*MI)) {
416     MachineBasicBlock *CSBB = CSMI->getParent();
417     MachineBasicBlock *BB = MI->getParent();
418     if (CSBB != BB && !CSBB->isSuccessor(BB))
419       return false;
420   }
421 
422   // Heuristics #2: If the expression doesn't not use a vr and the only use
423   // of the redundant computation are copies, do not cse.
424   bool HasVRegUse = false;
425   for (const MachineOperand &MO : MI->operands()) {
426     if (MO.isReg() && MO.isUse() &&
427         TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
428       HasVRegUse = true;
429       break;
430     }
431   }
432   if (!HasVRegUse) {
433     bool HasNonCopyUse = false;
434     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
435       // Ignore copies.
436       if (!MI.isCopyLike()) {
437         HasNonCopyUse = true;
438         break;
439       }
440     }
441     if (!HasNonCopyUse)
442       return false;
443   }
444 
445   // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
446   // it unless the defined value is already used in the BB of the new use.
447   bool HasPHI = false;
448   SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
449   for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
450     HasPHI |= MI.isPHI();
451     CSBBs.insert(MI.getParent());
452   }
453 
454   if (!HasPHI)
455     return true;
456   return CSBBs.count(MI->getParent());
457 }
458 
459 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
460   DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
461   ScopeType *Scope = new ScopeType(VNT);
462   ScopeMap[MBB] = Scope;
463 }
464 
465 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
466   DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
467   DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
468   assert(SI != ScopeMap.end());
469   delete SI->second;
470   ScopeMap.erase(SI);
471 }
472 
473 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
474   bool Changed = false;
475 
476   SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
477   SmallVector<unsigned, 2> ImplicitDefsToUpdate;
478   SmallVector<unsigned, 2> ImplicitDefs;
479   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
480     MachineInstr *MI = &*I;
481     ++I;
482 
483     if (!isCSECandidate(MI))
484       continue;
485 
486     bool FoundCSE = VNT.count(MI);
487     if (!FoundCSE) {
488       // Using trivial copy propagation to find more CSE opportunities.
489       if (PerformTrivialCopyPropagation(MI, MBB)) {
490         Changed = true;
491 
492         // After coalescing MI itself may become a copy.
493         if (MI->isCopyLike())
494           continue;
495 
496         // Try again to see if CSE is possible.
497         FoundCSE = VNT.count(MI);
498       }
499     }
500 
501     // Commute commutable instructions.
502     bool Commuted = false;
503     if (!FoundCSE && MI->isCommutable()) {
504       if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) {
505         Commuted = true;
506         FoundCSE = VNT.count(NewMI);
507         if (NewMI != MI) {
508           // New instruction. It doesn't need to be kept.
509           NewMI->eraseFromParent();
510           Changed = true;
511         } else if (!FoundCSE)
512           // MI was changed but it didn't help, commute it back!
513           (void)TII->commuteInstruction(*MI);
514       }
515     }
516 
517     // If the instruction defines physical registers and the values *may* be
518     // used, then it's not safe to replace it with a common subexpression.
519     // It's also not safe if the instruction uses physical registers.
520     bool CrossMBBPhysDef = false;
521     SmallSet<unsigned, 8> PhysRefs;
522     SmallVector<unsigned, 2> PhysDefs;
523     bool PhysUseDef = false;
524     if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
525                                           PhysDefs, PhysUseDef)) {
526       FoundCSE = false;
527 
528       // ... Unless the CS is local or is in the sole predecessor block
529       // and it also defines the physical register which is not clobbered
530       // in between and the physical register uses were not clobbered.
531       // This can never be the case if the instruction both uses and
532       // defines the same physical register, which was detected above.
533       if (!PhysUseDef) {
534         unsigned CSVN = VNT.lookup(MI);
535         MachineInstr *CSMI = Exps[CSVN];
536         if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
537           FoundCSE = true;
538       }
539     }
540 
541     if (!FoundCSE) {
542       VNT.insert(MI, CurrVN++);
543       Exps.push_back(MI);
544       continue;
545     }
546 
547     // Found a common subexpression, eliminate it.
548     unsigned CSVN = VNT.lookup(MI);
549     MachineInstr *CSMI = Exps[CSVN];
550     DEBUG(dbgs() << "Examining: " << *MI);
551     DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
552 
553     // Check if it's profitable to perform this CSE.
554     bool DoCSE = true;
555     unsigned NumDefs = MI->getDesc().getNumDefs() +
556                        MI->getDesc().getNumImplicitDefs();
557 
558     for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
559       MachineOperand &MO = MI->getOperand(i);
560       if (!MO.isReg() || !MO.isDef())
561         continue;
562       unsigned OldReg = MO.getReg();
563       unsigned NewReg = CSMI->getOperand(i).getReg();
564 
565       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
566       // we should make sure it is not dead at CSMI.
567       if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
568         ImplicitDefsToUpdate.push_back(i);
569 
570       // Keep track of implicit defs of CSMI and MI, to clear possibly
571       // made-redundant kill flags.
572       if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
573         ImplicitDefs.push_back(OldReg);
574 
575       if (OldReg == NewReg) {
576         --NumDefs;
577         continue;
578       }
579 
580       assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
581              TargetRegisterInfo::isVirtualRegister(NewReg) &&
582              "Do not CSE physical register defs!");
583 
584       if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
585         DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
586         DoCSE = false;
587         break;
588       }
589 
590       // Don't perform CSE if the result of the new instruction cannot exist
591       // within the constraints (register class, bank, or low-level type) of
592       // the old instruction.
593       if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
594         DEBUG(dbgs() << "*** Not the same register constraints, avoid CSE!\n");
595         DoCSE = false;
596         break;
597       }
598 
599       CSEPairs.push_back(std::make_pair(OldReg, NewReg));
600       --NumDefs;
601     }
602 
603     // Actually perform the elimination.
604     if (DoCSE) {
605       for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
606         unsigned OldReg = CSEPair.first;
607         unsigned NewReg = CSEPair.second;
608         // OldReg may have been unused but is used now, clear the Dead flag
609         MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
610         assert(Def != nullptr && "CSEd register has no unique definition?");
611         Def->clearRegisterDeads(NewReg);
612         // Replace with NewReg and clear kill flags which may be wrong now.
613         MRI->replaceRegWith(OldReg, NewReg);
614         MRI->clearKillFlags(NewReg);
615       }
616 
617       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
618       // we should make sure it is not dead at CSMI.
619       for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
620         CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
621 
622       // Go through implicit defs of CSMI and MI, and clear the kill flags on
623       // their uses in all the instructions between CSMI and MI.
624       // We might have made some of the kill flags redundant, consider:
625       //   subs  ... implicit-def %nzcv    <- CSMI
626       //   csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
627       //   subs  ... implicit-def %nzcv    <- MI, to be eliminated
628       //   csinc ... implicit killed %nzcv
629       // Since we eliminated MI, and reused a register imp-def'd by CSMI
630       // (here %nzcv), that register, if it was killed before MI, should have
631       // that kill flag removed, because it's lifetime was extended.
632       if (CSMI->getParent() == MI->getParent()) {
633         for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
634           for (auto ImplicitDef : ImplicitDefs)
635             if (MachineOperand *MO = II->findRegisterUseOperand(
636                     ImplicitDef, /*isKill=*/true, TRI))
637               MO->setIsKill(false);
638       } else {
639         // If the instructions aren't in the same BB, bail out and clear the
640         // kill flag on all uses of the imp-def'd register.
641         for (auto ImplicitDef : ImplicitDefs)
642           MRI->clearKillFlags(ImplicitDef);
643       }
644 
645       if (CrossMBBPhysDef) {
646         // Add physical register defs now coming in from a predecessor to MBB
647         // livein list.
648         while (!PhysDefs.empty()) {
649           unsigned LiveIn = PhysDefs.pop_back_val();
650           if (!MBB->isLiveIn(LiveIn))
651             MBB->addLiveIn(LiveIn);
652         }
653         ++NumCrossBBCSEs;
654       }
655 
656       MI->eraseFromParent();
657       ++NumCSEs;
658       if (!PhysRefs.empty())
659         ++NumPhysCSEs;
660       if (Commuted)
661         ++NumCommutes;
662       Changed = true;
663     } else {
664       VNT.insert(MI, CurrVN++);
665       Exps.push_back(MI);
666     }
667     CSEPairs.clear();
668     ImplicitDefsToUpdate.clear();
669     ImplicitDefs.clear();
670   }
671 
672   return Changed;
673 }
674 
675 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
676 /// dominator tree node if its a leaf or all of its children are done. Walk
677 /// up the dominator tree to destroy ancestors which are now done.
678 void
679 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
680                         DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
681   if (OpenChildren[Node])
682     return;
683 
684   // Pop scope.
685   ExitScope(Node->getBlock());
686 
687   // Now traverse upwards to pop ancestors whose offsprings are all done.
688   while (MachineDomTreeNode *Parent = Node->getIDom()) {
689     unsigned Left = --OpenChildren[Parent];
690     if (Left != 0)
691       break;
692     ExitScope(Parent->getBlock());
693     Node = Parent;
694   }
695 }
696 
697 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
698   SmallVector<MachineDomTreeNode*, 32> Scopes;
699   SmallVector<MachineDomTreeNode*, 8> WorkList;
700   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
701 
702   CurrVN = 0;
703 
704   // Perform a DFS walk to determine the order of visit.
705   WorkList.push_back(Node);
706   do {
707     Node = WorkList.pop_back_val();
708     Scopes.push_back(Node);
709     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
710     OpenChildren[Node] = Children.size();
711     for (MachineDomTreeNode *Child : Children)
712       WorkList.push_back(Child);
713   } while (!WorkList.empty());
714 
715   // Now perform CSE.
716   bool Changed = false;
717   for (MachineDomTreeNode *Node : Scopes) {
718     MachineBasicBlock *MBB = Node->getBlock();
719     EnterScope(MBB);
720     Changed |= ProcessBlock(MBB);
721     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
722     ExitScopeIfDone(Node, OpenChildren);
723   }
724 
725   return Changed;
726 }
727 
728 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
729   if (skipFunction(MF.getFunction()))
730     return false;
731 
732   TII = MF.getSubtarget().getInstrInfo();
733   TRI = MF.getSubtarget().getRegisterInfo();
734   MRI = &MF.getRegInfo();
735   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
736   DT = &getAnalysis<MachineDominatorTree>();
737   LookAheadLimit = TII->getMachineCSELookAheadLimit();
738   return PerformCSE(DT->getRootNode());
739 }
740