1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs global common subexpression elimination on machine 11 // instructions using a scoped hash table based value numbering scheme. It 12 // must be run while the machine function is still in SSA form. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/ScopedHashTable.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/Passes.h" 31 #include "llvm/CodeGen/TargetInstrInfo.h" 32 #include "llvm/CodeGen/TargetOpcodes.h" 33 #include "llvm/CodeGen/TargetRegisterInfo.h" 34 #include "llvm/CodeGen/TargetSubtargetInfo.h" 35 #include "llvm/MC/MCInstrDesc.h" 36 #include "llvm/MC/MCRegisterInfo.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Allocator.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/RecyclingAllocator.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <cassert> 43 #include <iterator> 44 #include <utility> 45 #include <vector> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "machine-cse" 50 51 STATISTIC(NumCoalesces, "Number of copies coalesced"); 52 STATISTIC(NumCSEs, "Number of common subexpression eliminated"); 53 STATISTIC(NumPhysCSEs, 54 "Number of physreg referencing common subexpr eliminated"); 55 STATISTIC(NumCrossBBCSEs, 56 "Number of cross-MBB physreg referencing CS eliminated"); 57 STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); 58 59 namespace { 60 61 class MachineCSE : public MachineFunctionPass { 62 const TargetInstrInfo *TII; 63 const TargetRegisterInfo *TRI; 64 AliasAnalysis *AA; 65 MachineDominatorTree *DT; 66 MachineRegisterInfo *MRI; 67 68 public: 69 static char ID; // Pass identification 70 71 MachineCSE() : MachineFunctionPass(ID) { 72 initializeMachineCSEPass(*PassRegistry::getPassRegistry()); 73 } 74 75 bool runOnMachineFunction(MachineFunction &MF) override; 76 77 void getAnalysisUsage(AnalysisUsage &AU) const override { 78 AU.setPreservesCFG(); 79 MachineFunctionPass::getAnalysisUsage(AU); 80 AU.addRequired<AAResultsWrapperPass>(); 81 AU.addPreservedID(MachineLoopInfoID); 82 AU.addRequired<MachineDominatorTree>(); 83 AU.addPreserved<MachineDominatorTree>(); 84 } 85 86 void releaseMemory() override { 87 ScopeMap.clear(); 88 Exps.clear(); 89 } 90 91 private: 92 using AllocatorTy = RecyclingAllocator<BumpPtrAllocator, 93 ScopedHashTableVal<MachineInstr *, unsigned>>; 94 using ScopedHTType = 95 ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait, 96 AllocatorTy>; 97 using ScopeType = ScopedHTType::ScopeTy; 98 99 unsigned LookAheadLimit = 0; 100 DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap; 101 ScopedHTType VNT; 102 SmallVector<MachineInstr *, 64> Exps; 103 unsigned CurrVN = 0; 104 105 bool PerformTrivialCopyPropagation(MachineInstr *MI, 106 MachineBasicBlock *MBB); 107 bool isPhysDefTriviallyDead(unsigned Reg, 108 MachineBasicBlock::const_iterator I, 109 MachineBasicBlock::const_iterator E) const; 110 bool hasLivePhysRegDefUses(const MachineInstr *MI, 111 const MachineBasicBlock *MBB, 112 SmallSet<unsigned,8> &PhysRefs, 113 SmallVectorImpl<unsigned> &PhysDefs, 114 bool &PhysUseDef) const; 115 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 116 SmallSet<unsigned,8> &PhysRefs, 117 SmallVectorImpl<unsigned> &PhysDefs, 118 bool &NonLocal) const; 119 bool isCSECandidate(MachineInstr *MI); 120 bool isProfitableToCSE(unsigned CSReg, unsigned Reg, 121 MachineInstr *CSMI, MachineInstr *MI); 122 void EnterScope(MachineBasicBlock *MBB); 123 void ExitScope(MachineBasicBlock *MBB); 124 bool ProcessBlock(MachineBasicBlock *MBB); 125 void ExitScopeIfDone(MachineDomTreeNode *Node, 126 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren); 127 bool PerformCSE(MachineDomTreeNode *Node); 128 }; 129 130 } // end anonymous namespace 131 132 char MachineCSE::ID = 0; 133 134 char &llvm::MachineCSEID = MachineCSE::ID; 135 136 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE, 137 "Machine Common Subexpression Elimination", false, false) 138 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 139 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 140 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE, 141 "Machine Common Subexpression Elimination", false, false) 142 143 /// The source register of a COPY machine instruction can be propagated to all 144 /// its users, and this propagation could increase the probability of finding 145 /// common subexpressions. If the COPY has only one user, the COPY itself can 146 /// be removed. 147 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI, 148 MachineBasicBlock *MBB) { 149 bool Changed = false; 150 for (MachineOperand &MO : MI->operands()) { 151 if (!MO.isReg() || !MO.isUse()) 152 continue; 153 unsigned Reg = MO.getReg(); 154 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 155 continue; 156 bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg); 157 MachineInstr *DefMI = MRI->getVRegDef(Reg); 158 if (!DefMI->isCopy()) 159 continue; 160 unsigned SrcReg = DefMI->getOperand(1).getReg(); 161 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 162 continue; 163 if (DefMI->getOperand(0).getSubReg()) 164 continue; 165 // FIXME: We should trivially coalesce subregister copies to expose CSE 166 // opportunities on instructions with truncated operands (see 167 // cse-add-with-overflow.ll). This can be done here as follows: 168 // if (SrcSubReg) 169 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC, 170 // SrcSubReg); 171 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI); 172 // 173 // The 2-addr pass has been updated to handle coalesced subregs. However, 174 // some machine-specific code still can't handle it. 175 // To handle it properly we also need a way find a constrained subregister 176 // class given a super-reg class and subreg index. 177 if (DefMI->getOperand(1).getSubReg()) 178 continue; 179 if (!MRI->constrainRegAttrs(SrcReg, Reg)) 180 continue; 181 DEBUG(dbgs() << "Coalescing: " << *DefMI); 182 DEBUG(dbgs() << "*** to: " << *MI); 183 // Propagate SrcReg of copies to MI. 184 MO.setReg(SrcReg); 185 MRI->clearKillFlags(SrcReg); 186 // Coalesce single use copies. 187 if (OnlyOneUse) { 188 DefMI->eraseFromParent(); 189 ++NumCoalesces; 190 } 191 Changed = true; 192 } 193 194 return Changed; 195 } 196 197 bool 198 MachineCSE::isPhysDefTriviallyDead(unsigned Reg, 199 MachineBasicBlock::const_iterator I, 200 MachineBasicBlock::const_iterator E) const { 201 unsigned LookAheadLeft = LookAheadLimit; 202 while (LookAheadLeft) { 203 // Skip over dbg_value's. 204 I = skipDebugInstructionsForward(I, E); 205 206 if (I == E) 207 // Reached end of block, we don't know if register is dead or not. 208 return false; 209 210 bool SeenDef = false; 211 for (const MachineOperand &MO : I->operands()) { 212 if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) 213 SeenDef = true; 214 if (!MO.isReg() || !MO.getReg()) 215 continue; 216 if (!TRI->regsOverlap(MO.getReg(), Reg)) 217 continue; 218 if (MO.isUse()) 219 // Found a use! 220 return false; 221 SeenDef = true; 222 } 223 if (SeenDef) 224 // See a def of Reg (or an alias) before encountering any use, it's 225 // trivially dead. 226 return true; 227 228 --LookAheadLeft; 229 ++I; 230 } 231 return false; 232 } 233 234 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write 235 /// physical registers (except for dead defs of physical registers). It also 236 /// returns the physical register def by reference if it's the only one and the 237 /// instruction does not uses a physical register. 238 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, 239 const MachineBasicBlock *MBB, 240 SmallSet<unsigned,8> &PhysRefs, 241 SmallVectorImpl<unsigned> &PhysDefs, 242 bool &PhysUseDef) const{ 243 // First, add all uses to PhysRefs. 244 for (const MachineOperand &MO : MI->operands()) { 245 if (!MO.isReg() || MO.isDef()) 246 continue; 247 unsigned Reg = MO.getReg(); 248 if (!Reg) 249 continue; 250 if (TargetRegisterInfo::isVirtualRegister(Reg)) 251 continue; 252 // Reading either caller preserved or constant physregs is ok. 253 if (!MRI->isCallerPreservedOrConstPhysReg(Reg)) 254 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 255 PhysRefs.insert(*AI); 256 } 257 258 // Next, collect all defs into PhysDefs. If any is already in PhysRefs 259 // (which currently contains only uses), set the PhysUseDef flag. 260 PhysUseDef = false; 261 MachineBasicBlock::const_iterator I = MI; I = std::next(I); 262 for (const MachineOperand &MO : MI->operands()) { 263 if (!MO.isReg() || !MO.isDef()) 264 continue; 265 unsigned Reg = MO.getReg(); 266 if (!Reg) 267 continue; 268 if (TargetRegisterInfo::isVirtualRegister(Reg)) 269 continue; 270 // Check against PhysRefs even if the def is "dead". 271 if (PhysRefs.count(Reg)) 272 PhysUseDef = true; 273 // If the def is dead, it's ok. But the def may not marked "dead". That's 274 // common since this pass is run before livevariables. We can scan 275 // forward a few instructions and check if it is obviously dead. 276 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end())) 277 PhysDefs.push_back(Reg); 278 } 279 280 // Finally, add all defs to PhysRefs as well. 281 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) 282 for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI) 283 PhysRefs.insert(*AI); 284 285 return !PhysRefs.empty(); 286 } 287 288 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 289 SmallSet<unsigned,8> &PhysRefs, 290 SmallVectorImpl<unsigned> &PhysDefs, 291 bool &NonLocal) const { 292 // For now conservatively returns false if the common subexpression is 293 // not in the same basic block as the given instruction. The only exception 294 // is if the common subexpression is in the sole predecessor block. 295 const MachineBasicBlock *MBB = MI->getParent(); 296 const MachineBasicBlock *CSMBB = CSMI->getParent(); 297 298 bool CrossMBB = false; 299 if (CSMBB != MBB) { 300 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) 301 return false; 302 303 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { 304 if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i])) 305 // Avoid extending live range of physical registers if they are 306 //allocatable or reserved. 307 return false; 308 } 309 CrossMBB = true; 310 } 311 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I); 312 MachineBasicBlock::const_iterator E = MI; 313 MachineBasicBlock::const_iterator EE = CSMBB->end(); 314 unsigned LookAheadLeft = LookAheadLimit; 315 while (LookAheadLeft) { 316 // Skip over dbg_value's. 317 while (I != E && I != EE && I->isDebugValue()) 318 ++I; 319 320 if (I == EE) { 321 assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); 322 (void)CrossMBB; 323 CrossMBB = false; 324 NonLocal = true; 325 I = MBB->begin(); 326 EE = MBB->end(); 327 continue; 328 } 329 330 if (I == E) 331 return true; 332 333 for (const MachineOperand &MO : I->operands()) { 334 // RegMasks go on instructions like calls that clobber lots of physregs. 335 // Don't attempt to CSE across such an instruction. 336 if (MO.isRegMask()) 337 return false; 338 if (!MO.isReg() || !MO.isDef()) 339 continue; 340 unsigned MOReg = MO.getReg(); 341 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 342 continue; 343 if (PhysRefs.count(MOReg)) 344 return false; 345 } 346 347 --LookAheadLeft; 348 ++I; 349 } 350 351 return false; 352 } 353 354 bool MachineCSE::isCSECandidate(MachineInstr *MI) { 355 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() || 356 MI->isInlineAsm() || MI->isDebugValue()) 357 return false; 358 359 // Ignore copies. 360 if (MI->isCopyLike()) 361 return false; 362 363 // Ignore stuff that we obviously can't move. 364 if (MI->mayStore() || MI->isCall() || MI->isTerminator() || 365 MI->hasUnmodeledSideEffects()) 366 return false; 367 368 if (MI->mayLoad()) { 369 // Okay, this instruction does a load. As a refinement, we allow the target 370 // to decide whether the loaded value is actually a constant. If so, we can 371 // actually use it as a load. 372 if (!MI->isDereferenceableInvariantLoad(AA)) 373 // FIXME: we should be able to hoist loads with no other side effects if 374 // there are no other instructions which can change memory in this loop. 375 // This is a trivial form of alias analysis. 376 return false; 377 } 378 379 // Ignore stack guard loads, otherwise the register that holds CSEed value may 380 // be spilled and get loaded back with corrupted data. 381 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) 382 return false; 383 384 return true; 385 } 386 387 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a 388 /// common expression that defines Reg. 389 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg, 390 MachineInstr *CSMI, MachineInstr *MI) { 391 // FIXME: Heuristics that works around the lack the live range splitting. 392 393 // If CSReg is used at all uses of Reg, CSE should not increase register 394 // pressure of CSReg. 395 bool MayIncreasePressure = true; 396 if (TargetRegisterInfo::isVirtualRegister(CSReg) && 397 TargetRegisterInfo::isVirtualRegister(Reg)) { 398 MayIncreasePressure = false; 399 SmallPtrSet<MachineInstr*, 8> CSUses; 400 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { 401 CSUses.insert(&MI); 402 } 403 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 404 if (!CSUses.count(&MI)) { 405 MayIncreasePressure = true; 406 break; 407 } 408 } 409 } 410 if (!MayIncreasePressure) return true; 411 412 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in 413 // an immediate predecessor. We don't want to increase register pressure and 414 // end up causing other computation to be spilled. 415 if (TII->isAsCheapAsAMove(*MI)) { 416 MachineBasicBlock *CSBB = CSMI->getParent(); 417 MachineBasicBlock *BB = MI->getParent(); 418 if (CSBB != BB && !CSBB->isSuccessor(BB)) 419 return false; 420 } 421 422 // Heuristics #2: If the expression doesn't not use a vr and the only use 423 // of the redundant computation are copies, do not cse. 424 bool HasVRegUse = false; 425 for (const MachineOperand &MO : MI->operands()) { 426 if (MO.isReg() && MO.isUse() && 427 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 428 HasVRegUse = true; 429 break; 430 } 431 } 432 if (!HasVRegUse) { 433 bool HasNonCopyUse = false; 434 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 435 // Ignore copies. 436 if (!MI.isCopyLike()) { 437 HasNonCopyUse = true; 438 break; 439 } 440 } 441 if (!HasNonCopyUse) 442 return false; 443 } 444 445 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse 446 // it unless the defined value is already used in the BB of the new use. 447 bool HasPHI = false; 448 SmallPtrSet<MachineBasicBlock*, 4> CSBBs; 449 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { 450 HasPHI |= MI.isPHI(); 451 CSBBs.insert(MI.getParent()); 452 } 453 454 if (!HasPHI) 455 return true; 456 return CSBBs.count(MI->getParent()); 457 } 458 459 void MachineCSE::EnterScope(MachineBasicBlock *MBB) { 460 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 461 ScopeType *Scope = new ScopeType(VNT); 462 ScopeMap[MBB] = Scope; 463 } 464 465 void MachineCSE::ExitScope(MachineBasicBlock *MBB) { 466 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 467 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); 468 assert(SI != ScopeMap.end()); 469 delete SI->second; 470 ScopeMap.erase(SI); 471 } 472 473 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) { 474 bool Changed = false; 475 476 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; 477 SmallVector<unsigned, 2> ImplicitDefsToUpdate; 478 SmallVector<unsigned, 2> ImplicitDefs; 479 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { 480 MachineInstr *MI = &*I; 481 ++I; 482 483 if (!isCSECandidate(MI)) 484 continue; 485 486 bool FoundCSE = VNT.count(MI); 487 if (!FoundCSE) { 488 // Using trivial copy propagation to find more CSE opportunities. 489 if (PerformTrivialCopyPropagation(MI, MBB)) { 490 Changed = true; 491 492 // After coalescing MI itself may become a copy. 493 if (MI->isCopyLike()) 494 continue; 495 496 // Try again to see if CSE is possible. 497 FoundCSE = VNT.count(MI); 498 } 499 } 500 501 // Commute commutable instructions. 502 bool Commuted = false; 503 if (!FoundCSE && MI->isCommutable()) { 504 if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) { 505 Commuted = true; 506 FoundCSE = VNT.count(NewMI); 507 if (NewMI != MI) { 508 // New instruction. It doesn't need to be kept. 509 NewMI->eraseFromParent(); 510 Changed = true; 511 } else if (!FoundCSE) 512 // MI was changed but it didn't help, commute it back! 513 (void)TII->commuteInstruction(*MI); 514 } 515 } 516 517 // If the instruction defines physical registers and the values *may* be 518 // used, then it's not safe to replace it with a common subexpression. 519 // It's also not safe if the instruction uses physical registers. 520 bool CrossMBBPhysDef = false; 521 SmallSet<unsigned, 8> PhysRefs; 522 SmallVector<unsigned, 2> PhysDefs; 523 bool PhysUseDef = false; 524 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, 525 PhysDefs, PhysUseDef)) { 526 FoundCSE = false; 527 528 // ... Unless the CS is local or is in the sole predecessor block 529 // and it also defines the physical register which is not clobbered 530 // in between and the physical register uses were not clobbered. 531 // This can never be the case if the instruction both uses and 532 // defines the same physical register, which was detected above. 533 if (!PhysUseDef) { 534 unsigned CSVN = VNT.lookup(MI); 535 MachineInstr *CSMI = Exps[CSVN]; 536 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) 537 FoundCSE = true; 538 } 539 } 540 541 if (!FoundCSE) { 542 VNT.insert(MI, CurrVN++); 543 Exps.push_back(MI); 544 continue; 545 } 546 547 // Found a common subexpression, eliminate it. 548 unsigned CSVN = VNT.lookup(MI); 549 MachineInstr *CSMI = Exps[CSVN]; 550 DEBUG(dbgs() << "Examining: " << *MI); 551 DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); 552 553 // Check if it's profitable to perform this CSE. 554 bool DoCSE = true; 555 unsigned NumDefs = MI->getDesc().getNumDefs() + 556 MI->getDesc().getNumImplicitDefs(); 557 558 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { 559 MachineOperand &MO = MI->getOperand(i); 560 if (!MO.isReg() || !MO.isDef()) 561 continue; 562 unsigned OldReg = MO.getReg(); 563 unsigned NewReg = CSMI->getOperand(i).getReg(); 564 565 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 566 // we should make sure it is not dead at CSMI. 567 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) 568 ImplicitDefsToUpdate.push_back(i); 569 570 // Keep track of implicit defs of CSMI and MI, to clear possibly 571 // made-redundant kill flags. 572 if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg) 573 ImplicitDefs.push_back(OldReg); 574 575 if (OldReg == NewReg) { 576 --NumDefs; 577 continue; 578 } 579 580 assert(TargetRegisterInfo::isVirtualRegister(OldReg) && 581 TargetRegisterInfo::isVirtualRegister(NewReg) && 582 "Do not CSE physical register defs!"); 583 584 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) { 585 DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); 586 DoCSE = false; 587 break; 588 } 589 590 // Don't perform CSE if the result of the new instruction cannot exist 591 // within the constraints (register class, bank, or low-level type) of 592 // the old instruction. 593 if (!MRI->constrainRegAttrs(NewReg, OldReg)) { 594 DEBUG(dbgs() << "*** Not the same register constraints, avoid CSE!\n"); 595 DoCSE = false; 596 break; 597 } 598 599 CSEPairs.push_back(std::make_pair(OldReg, NewReg)); 600 --NumDefs; 601 } 602 603 // Actually perform the elimination. 604 if (DoCSE) { 605 for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) { 606 unsigned OldReg = CSEPair.first; 607 unsigned NewReg = CSEPair.second; 608 // OldReg may have been unused but is used now, clear the Dead flag 609 MachineInstr *Def = MRI->getUniqueVRegDef(NewReg); 610 assert(Def != nullptr && "CSEd register has no unique definition?"); 611 Def->clearRegisterDeads(NewReg); 612 // Replace with NewReg and clear kill flags which may be wrong now. 613 MRI->replaceRegWith(OldReg, NewReg); 614 MRI->clearKillFlags(NewReg); 615 } 616 617 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 618 // we should make sure it is not dead at CSMI. 619 for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate) 620 CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false); 621 622 // Go through implicit defs of CSMI and MI, and clear the kill flags on 623 // their uses in all the instructions between CSMI and MI. 624 // We might have made some of the kill flags redundant, consider: 625 // subs ... implicit-def %nzcv <- CSMI 626 // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore 627 // subs ... implicit-def %nzcv <- MI, to be eliminated 628 // csinc ... implicit killed %nzcv 629 // Since we eliminated MI, and reused a register imp-def'd by CSMI 630 // (here %nzcv), that register, if it was killed before MI, should have 631 // that kill flag removed, because it's lifetime was extended. 632 if (CSMI->getParent() == MI->getParent()) { 633 for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II) 634 for (auto ImplicitDef : ImplicitDefs) 635 if (MachineOperand *MO = II->findRegisterUseOperand( 636 ImplicitDef, /*isKill=*/true, TRI)) 637 MO->setIsKill(false); 638 } else { 639 // If the instructions aren't in the same BB, bail out and clear the 640 // kill flag on all uses of the imp-def'd register. 641 for (auto ImplicitDef : ImplicitDefs) 642 MRI->clearKillFlags(ImplicitDef); 643 } 644 645 if (CrossMBBPhysDef) { 646 // Add physical register defs now coming in from a predecessor to MBB 647 // livein list. 648 while (!PhysDefs.empty()) { 649 unsigned LiveIn = PhysDefs.pop_back_val(); 650 if (!MBB->isLiveIn(LiveIn)) 651 MBB->addLiveIn(LiveIn); 652 } 653 ++NumCrossBBCSEs; 654 } 655 656 MI->eraseFromParent(); 657 ++NumCSEs; 658 if (!PhysRefs.empty()) 659 ++NumPhysCSEs; 660 if (Commuted) 661 ++NumCommutes; 662 Changed = true; 663 } else { 664 VNT.insert(MI, CurrVN++); 665 Exps.push_back(MI); 666 } 667 CSEPairs.clear(); 668 ImplicitDefsToUpdate.clear(); 669 ImplicitDefs.clear(); 670 } 671 672 return Changed; 673 } 674 675 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 676 /// dominator tree node if its a leaf or all of its children are done. Walk 677 /// up the dominator tree to destroy ancestors which are now done. 678 void 679 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, 680 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) { 681 if (OpenChildren[Node]) 682 return; 683 684 // Pop scope. 685 ExitScope(Node->getBlock()); 686 687 // Now traverse upwards to pop ancestors whose offsprings are all done. 688 while (MachineDomTreeNode *Parent = Node->getIDom()) { 689 unsigned Left = --OpenChildren[Parent]; 690 if (Left != 0) 691 break; 692 ExitScope(Parent->getBlock()); 693 Node = Parent; 694 } 695 } 696 697 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { 698 SmallVector<MachineDomTreeNode*, 32> Scopes; 699 SmallVector<MachineDomTreeNode*, 8> WorkList; 700 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 701 702 CurrVN = 0; 703 704 // Perform a DFS walk to determine the order of visit. 705 WorkList.push_back(Node); 706 do { 707 Node = WorkList.pop_back_val(); 708 Scopes.push_back(Node); 709 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 710 OpenChildren[Node] = Children.size(); 711 for (MachineDomTreeNode *Child : Children) 712 WorkList.push_back(Child); 713 } while (!WorkList.empty()); 714 715 // Now perform CSE. 716 bool Changed = false; 717 for (MachineDomTreeNode *Node : Scopes) { 718 MachineBasicBlock *MBB = Node->getBlock(); 719 EnterScope(MBB); 720 Changed |= ProcessBlock(MBB); 721 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 722 ExitScopeIfDone(Node, OpenChildren); 723 } 724 725 return Changed; 726 } 727 728 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { 729 if (skipFunction(MF.getFunction())) 730 return false; 731 732 TII = MF.getSubtarget().getInstrInfo(); 733 TRI = MF.getSubtarget().getRegisterInfo(); 734 MRI = &MF.getRegInfo(); 735 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 736 DT = &getAnalysis<MachineDominatorTree>(); 737 LookAheadLimit = TII->getMachineCSELookAheadLimit(); 738 return PerformCSE(DT->getRootNode()); 739 } 740