1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs global common subexpression elimination on machine 11 // instructions using a scoped hash table based value numbering scheme. It 12 // must be run while the machine function is still in SSA form. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/ScopedHashTable.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/Passes.h" 31 #include "llvm/CodeGen/TargetInstrInfo.h" 32 #include "llvm/CodeGen/TargetOpcodes.h" 33 #include "llvm/CodeGen/TargetRegisterInfo.h" 34 #include "llvm/CodeGen/TargetSubtargetInfo.h" 35 #include "llvm/MC/MCInstrDesc.h" 36 #include "llvm/MC/MCRegisterInfo.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Allocator.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/RecyclingAllocator.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <cassert> 43 #include <iterator> 44 #include <utility> 45 #include <vector> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "machine-cse" 50 51 STATISTIC(NumCoalesces, "Number of copies coalesced"); 52 STATISTIC(NumCSEs, "Number of common subexpression eliminated"); 53 STATISTIC(NumPhysCSEs, 54 "Number of physreg referencing common subexpr eliminated"); 55 STATISTIC(NumCrossBBCSEs, 56 "Number of cross-MBB physreg referencing CS eliminated"); 57 STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); 58 59 namespace { 60 61 class MachineCSE : public MachineFunctionPass { 62 const TargetInstrInfo *TII; 63 const TargetRegisterInfo *TRI; 64 AliasAnalysis *AA; 65 MachineDominatorTree *DT; 66 MachineRegisterInfo *MRI; 67 68 public: 69 static char ID; // Pass identification 70 71 MachineCSE() : MachineFunctionPass(ID) { 72 initializeMachineCSEPass(*PassRegistry::getPassRegistry()); 73 } 74 75 bool runOnMachineFunction(MachineFunction &MF) override; 76 77 void getAnalysisUsage(AnalysisUsage &AU) const override { 78 AU.setPreservesCFG(); 79 MachineFunctionPass::getAnalysisUsage(AU); 80 AU.addRequired<AAResultsWrapperPass>(); 81 AU.addPreservedID(MachineLoopInfoID); 82 AU.addRequired<MachineDominatorTree>(); 83 AU.addPreserved<MachineDominatorTree>(); 84 } 85 86 void releaseMemory() override { 87 ScopeMap.clear(); 88 Exps.clear(); 89 } 90 91 private: 92 using AllocatorTy = RecyclingAllocator<BumpPtrAllocator, 93 ScopedHashTableVal<MachineInstr *, unsigned>>; 94 using ScopedHTType = 95 ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait, 96 AllocatorTy>; 97 using ScopeType = ScopedHTType::ScopeTy; 98 99 unsigned LookAheadLimit = 0; 100 DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap; 101 ScopedHTType VNT; 102 SmallVector<MachineInstr *, 64> Exps; 103 unsigned CurrVN = 0; 104 105 bool PerformTrivialCopyPropagation(MachineInstr *MI, 106 MachineBasicBlock *MBB); 107 bool isPhysDefTriviallyDead(unsigned Reg, 108 MachineBasicBlock::const_iterator I, 109 MachineBasicBlock::const_iterator E) const; 110 bool hasLivePhysRegDefUses(const MachineInstr *MI, 111 const MachineBasicBlock *MBB, 112 SmallSet<unsigned,8> &PhysRefs, 113 SmallVectorImpl<unsigned> &PhysDefs, 114 bool &PhysUseDef) const; 115 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 116 SmallSet<unsigned,8> &PhysRefs, 117 SmallVectorImpl<unsigned> &PhysDefs, 118 bool &NonLocal) const; 119 bool isCSECandidate(MachineInstr *MI); 120 bool isProfitableToCSE(unsigned CSReg, unsigned Reg, 121 MachineInstr *CSMI, MachineInstr *MI); 122 void EnterScope(MachineBasicBlock *MBB); 123 void ExitScope(MachineBasicBlock *MBB); 124 bool ProcessBlock(MachineBasicBlock *MBB); 125 void ExitScopeIfDone(MachineDomTreeNode *Node, 126 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren); 127 bool PerformCSE(MachineDomTreeNode *Node); 128 }; 129 130 } // end anonymous namespace 131 132 char MachineCSE::ID = 0; 133 134 char &llvm::MachineCSEID = MachineCSE::ID; 135 136 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE, 137 "Machine Common Subexpression Elimination", false, false) 138 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 139 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 140 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE, 141 "Machine Common Subexpression Elimination", false, false) 142 143 /// The source register of a COPY machine instruction can be propagated to all 144 /// its users, and this propagation could increase the probability of finding 145 /// common subexpressions. If the COPY has only one user, the COPY itself can 146 /// be removed. 147 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI, 148 MachineBasicBlock *MBB) { 149 bool Changed = false; 150 for (MachineOperand &MO : MI->operands()) { 151 if (!MO.isReg() || !MO.isUse()) 152 continue; 153 unsigned Reg = MO.getReg(); 154 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 155 continue; 156 bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg); 157 MachineInstr *DefMI = MRI->getVRegDef(Reg); 158 if (!DefMI->isCopy()) 159 continue; 160 unsigned SrcReg = DefMI->getOperand(1).getReg(); 161 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 162 continue; 163 if (DefMI->getOperand(0).getSubReg()) 164 continue; 165 // FIXME: We should trivially coalesce subregister copies to expose CSE 166 // opportunities on instructions with truncated operands (see 167 // cse-add-with-overflow.ll). This can be done here as follows: 168 // if (SrcSubReg) 169 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC, 170 // SrcSubReg); 171 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI); 172 // 173 // The 2-addr pass has been updated to handle coalesced subregs. However, 174 // some machine-specific code still can't handle it. 175 // To handle it properly we also need a way find a constrained subregister 176 // class given a super-reg class and subreg index. 177 if (DefMI->getOperand(1).getSubReg()) 178 continue; 179 if (!MRI->constrainRegAttrs(SrcReg, Reg)) 180 continue; 181 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 182 LLVM_DEBUG(dbgs() << "*** to: " << *MI); 183 184 // Update matching debug values. 185 DefMI->changeDebugValuesDefReg(SrcReg); 186 187 // Propagate SrcReg of copies to MI. 188 MO.setReg(SrcReg); 189 MRI->clearKillFlags(SrcReg); 190 // Coalesce single use copies. 191 if (OnlyOneUse) { 192 DefMI->eraseFromParent(); 193 ++NumCoalesces; 194 } 195 Changed = true; 196 } 197 198 return Changed; 199 } 200 201 bool 202 MachineCSE::isPhysDefTriviallyDead(unsigned Reg, 203 MachineBasicBlock::const_iterator I, 204 MachineBasicBlock::const_iterator E) const { 205 unsigned LookAheadLeft = LookAheadLimit; 206 while (LookAheadLeft) { 207 // Skip over dbg_value's. 208 I = skipDebugInstructionsForward(I, E); 209 210 if (I == E) 211 // Reached end of block, we don't know if register is dead or not. 212 return false; 213 214 bool SeenDef = false; 215 for (const MachineOperand &MO : I->operands()) { 216 if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) 217 SeenDef = true; 218 if (!MO.isReg() || !MO.getReg()) 219 continue; 220 if (!TRI->regsOverlap(MO.getReg(), Reg)) 221 continue; 222 if (MO.isUse()) 223 // Found a use! 224 return false; 225 SeenDef = true; 226 } 227 if (SeenDef) 228 // See a def of Reg (or an alias) before encountering any use, it's 229 // trivially dead. 230 return true; 231 232 --LookAheadLeft; 233 ++I; 234 } 235 return false; 236 } 237 238 static bool isCallerPreservedOrConstPhysReg(unsigned Reg, 239 const MachineFunction &MF, 240 const TargetRegisterInfo &TRI) { 241 // MachineRegisterInfo::isConstantPhysReg directly called by 242 // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the 243 // reserved registers to be frozen. That doesn't cause a problem post-ISel as 244 // most (if not all) targets freeze reserved registers right after ISel. 245 // 246 // It does cause issues mid-GlobalISel, however, hence the additional 247 // reservedRegsFrozen check. 248 const MachineRegisterInfo &MRI = MF.getRegInfo(); 249 return TRI.isCallerPreservedPhysReg(Reg, MF) || 250 (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg)); 251 } 252 253 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write 254 /// physical registers (except for dead defs of physical registers). It also 255 /// returns the physical register def by reference if it's the only one and the 256 /// instruction does not uses a physical register. 257 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, 258 const MachineBasicBlock *MBB, 259 SmallSet<unsigned,8> &PhysRefs, 260 SmallVectorImpl<unsigned> &PhysDefs, 261 bool &PhysUseDef) const{ 262 // First, add all uses to PhysRefs. 263 for (const MachineOperand &MO : MI->operands()) { 264 if (!MO.isReg() || MO.isDef()) 265 continue; 266 unsigned Reg = MO.getReg(); 267 if (!Reg) 268 continue; 269 if (TargetRegisterInfo::isVirtualRegister(Reg)) 270 continue; 271 // Reading either caller preserved or constant physregs is ok. 272 if (!isCallerPreservedOrConstPhysReg(Reg, *MI->getMF(), *TRI)) 273 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 274 PhysRefs.insert(*AI); 275 } 276 277 // Next, collect all defs into PhysDefs. If any is already in PhysRefs 278 // (which currently contains only uses), set the PhysUseDef flag. 279 PhysUseDef = false; 280 MachineBasicBlock::const_iterator I = MI; I = std::next(I); 281 for (const MachineOperand &MO : MI->operands()) { 282 if (!MO.isReg() || !MO.isDef()) 283 continue; 284 unsigned Reg = MO.getReg(); 285 if (!Reg) 286 continue; 287 if (TargetRegisterInfo::isVirtualRegister(Reg)) 288 continue; 289 // Check against PhysRefs even if the def is "dead". 290 if (PhysRefs.count(Reg)) 291 PhysUseDef = true; 292 // If the def is dead, it's ok. But the def may not marked "dead". That's 293 // common since this pass is run before livevariables. We can scan 294 // forward a few instructions and check if it is obviously dead. 295 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end())) 296 PhysDefs.push_back(Reg); 297 } 298 299 // Finally, add all defs to PhysRefs as well. 300 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) 301 for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI) 302 PhysRefs.insert(*AI); 303 304 return !PhysRefs.empty(); 305 } 306 307 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 308 SmallSet<unsigned,8> &PhysRefs, 309 SmallVectorImpl<unsigned> &PhysDefs, 310 bool &NonLocal) const { 311 // For now conservatively returns false if the common subexpression is 312 // not in the same basic block as the given instruction. The only exception 313 // is if the common subexpression is in the sole predecessor block. 314 const MachineBasicBlock *MBB = MI->getParent(); 315 const MachineBasicBlock *CSMBB = CSMI->getParent(); 316 317 bool CrossMBB = false; 318 if (CSMBB != MBB) { 319 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) 320 return false; 321 322 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { 323 if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i])) 324 // Avoid extending live range of physical registers if they are 325 //allocatable or reserved. 326 return false; 327 } 328 CrossMBB = true; 329 } 330 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I); 331 MachineBasicBlock::const_iterator E = MI; 332 MachineBasicBlock::const_iterator EE = CSMBB->end(); 333 unsigned LookAheadLeft = LookAheadLimit; 334 while (LookAheadLeft) { 335 // Skip over dbg_value's. 336 while (I != E && I != EE && I->isDebugInstr()) 337 ++I; 338 339 if (I == EE) { 340 assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); 341 (void)CrossMBB; 342 CrossMBB = false; 343 NonLocal = true; 344 I = MBB->begin(); 345 EE = MBB->end(); 346 continue; 347 } 348 349 if (I == E) 350 return true; 351 352 for (const MachineOperand &MO : I->operands()) { 353 // RegMasks go on instructions like calls that clobber lots of physregs. 354 // Don't attempt to CSE across such an instruction. 355 if (MO.isRegMask()) 356 return false; 357 if (!MO.isReg() || !MO.isDef()) 358 continue; 359 unsigned MOReg = MO.getReg(); 360 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 361 continue; 362 if (PhysRefs.count(MOReg)) 363 return false; 364 } 365 366 --LookAheadLeft; 367 ++I; 368 } 369 370 return false; 371 } 372 373 bool MachineCSE::isCSECandidate(MachineInstr *MI) { 374 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() || 375 MI->isInlineAsm() || MI->isDebugInstr()) 376 return false; 377 378 // Ignore copies. 379 if (MI->isCopyLike()) 380 return false; 381 382 // Ignore stuff that we obviously can't move. 383 if (MI->mayStore() || MI->isCall() || MI->isTerminator() || 384 MI->hasUnmodeledSideEffects()) 385 return false; 386 387 if (MI->mayLoad()) { 388 // Okay, this instruction does a load. As a refinement, we allow the target 389 // to decide whether the loaded value is actually a constant. If so, we can 390 // actually use it as a load. 391 if (!MI->isDereferenceableInvariantLoad(AA)) 392 // FIXME: we should be able to hoist loads with no other side effects if 393 // there are no other instructions which can change memory in this loop. 394 // This is a trivial form of alias analysis. 395 return false; 396 } 397 398 // Ignore stack guard loads, otherwise the register that holds CSEed value may 399 // be spilled and get loaded back with corrupted data. 400 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) 401 return false; 402 403 return true; 404 } 405 406 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a 407 /// common expression that defines Reg. 408 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg, 409 MachineInstr *CSMI, MachineInstr *MI) { 410 // FIXME: Heuristics that works around the lack the live range splitting. 411 412 // If CSReg is used at all uses of Reg, CSE should not increase register 413 // pressure of CSReg. 414 bool MayIncreasePressure = true; 415 if (TargetRegisterInfo::isVirtualRegister(CSReg) && 416 TargetRegisterInfo::isVirtualRegister(Reg)) { 417 MayIncreasePressure = false; 418 SmallPtrSet<MachineInstr*, 8> CSUses; 419 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { 420 CSUses.insert(&MI); 421 } 422 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 423 if (!CSUses.count(&MI)) { 424 MayIncreasePressure = true; 425 break; 426 } 427 } 428 } 429 if (!MayIncreasePressure) return true; 430 431 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in 432 // an immediate predecessor. We don't want to increase register pressure and 433 // end up causing other computation to be spilled. 434 if (TII->isAsCheapAsAMove(*MI)) { 435 MachineBasicBlock *CSBB = CSMI->getParent(); 436 MachineBasicBlock *BB = MI->getParent(); 437 if (CSBB != BB && !CSBB->isSuccessor(BB)) 438 return false; 439 } 440 441 // Heuristics #2: If the expression doesn't not use a vr and the only use 442 // of the redundant computation are copies, do not cse. 443 bool HasVRegUse = false; 444 for (const MachineOperand &MO : MI->operands()) { 445 if (MO.isReg() && MO.isUse() && 446 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 447 HasVRegUse = true; 448 break; 449 } 450 } 451 if (!HasVRegUse) { 452 bool HasNonCopyUse = false; 453 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 454 // Ignore copies. 455 if (!MI.isCopyLike()) { 456 HasNonCopyUse = true; 457 break; 458 } 459 } 460 if (!HasNonCopyUse) 461 return false; 462 } 463 464 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse 465 // it unless the defined value is already used in the BB of the new use. 466 bool HasPHI = false; 467 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) { 468 HasPHI |= UseMI.isPHI(); 469 if (UseMI.getParent() == MI->getParent()) 470 return true; 471 } 472 473 return !HasPHI; 474 } 475 476 void MachineCSE::EnterScope(MachineBasicBlock *MBB) { 477 LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 478 ScopeType *Scope = new ScopeType(VNT); 479 ScopeMap[MBB] = Scope; 480 } 481 482 void MachineCSE::ExitScope(MachineBasicBlock *MBB) { 483 LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 484 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); 485 assert(SI != ScopeMap.end()); 486 delete SI->second; 487 ScopeMap.erase(SI); 488 } 489 490 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) { 491 bool Changed = false; 492 493 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; 494 SmallVector<unsigned, 2> ImplicitDefsToUpdate; 495 SmallVector<unsigned, 2> ImplicitDefs; 496 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { 497 MachineInstr *MI = &*I; 498 ++I; 499 500 if (!isCSECandidate(MI)) 501 continue; 502 503 bool FoundCSE = VNT.count(MI); 504 if (!FoundCSE) { 505 // Using trivial copy propagation to find more CSE opportunities. 506 if (PerformTrivialCopyPropagation(MI, MBB)) { 507 Changed = true; 508 509 // After coalescing MI itself may become a copy. 510 if (MI->isCopyLike()) 511 continue; 512 513 // Try again to see if CSE is possible. 514 FoundCSE = VNT.count(MI); 515 } 516 } 517 518 // Commute commutable instructions. 519 bool Commuted = false; 520 if (!FoundCSE && MI->isCommutable()) { 521 if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) { 522 Commuted = true; 523 FoundCSE = VNT.count(NewMI); 524 if (NewMI != MI) { 525 // New instruction. It doesn't need to be kept. 526 NewMI->eraseFromParent(); 527 Changed = true; 528 } else if (!FoundCSE) 529 // MI was changed but it didn't help, commute it back! 530 (void)TII->commuteInstruction(*MI); 531 } 532 } 533 534 // If the instruction defines physical registers and the values *may* be 535 // used, then it's not safe to replace it with a common subexpression. 536 // It's also not safe if the instruction uses physical registers. 537 bool CrossMBBPhysDef = false; 538 SmallSet<unsigned, 8> PhysRefs; 539 SmallVector<unsigned, 2> PhysDefs; 540 bool PhysUseDef = false; 541 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, 542 PhysDefs, PhysUseDef)) { 543 FoundCSE = false; 544 545 // ... Unless the CS is local or is in the sole predecessor block 546 // and it also defines the physical register which is not clobbered 547 // in between and the physical register uses were not clobbered. 548 // This can never be the case if the instruction both uses and 549 // defines the same physical register, which was detected above. 550 if (!PhysUseDef) { 551 unsigned CSVN = VNT.lookup(MI); 552 MachineInstr *CSMI = Exps[CSVN]; 553 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) 554 FoundCSE = true; 555 } 556 } 557 558 if (!FoundCSE) { 559 VNT.insert(MI, CurrVN++); 560 Exps.push_back(MI); 561 continue; 562 } 563 564 // Found a common subexpression, eliminate it. 565 unsigned CSVN = VNT.lookup(MI); 566 MachineInstr *CSMI = Exps[CSVN]; 567 LLVM_DEBUG(dbgs() << "Examining: " << *MI); 568 LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); 569 570 // Check if it's profitable to perform this CSE. 571 bool DoCSE = true; 572 unsigned NumDefs = MI->getNumDefs(); 573 574 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { 575 MachineOperand &MO = MI->getOperand(i); 576 if (!MO.isReg() || !MO.isDef()) 577 continue; 578 unsigned OldReg = MO.getReg(); 579 unsigned NewReg = CSMI->getOperand(i).getReg(); 580 581 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 582 // we should make sure it is not dead at CSMI. 583 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) 584 ImplicitDefsToUpdate.push_back(i); 585 586 // Keep track of implicit defs of CSMI and MI, to clear possibly 587 // made-redundant kill flags. 588 if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg) 589 ImplicitDefs.push_back(OldReg); 590 591 if (OldReg == NewReg) { 592 --NumDefs; 593 continue; 594 } 595 596 assert(TargetRegisterInfo::isVirtualRegister(OldReg) && 597 TargetRegisterInfo::isVirtualRegister(NewReg) && 598 "Do not CSE physical register defs!"); 599 600 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) { 601 LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); 602 DoCSE = false; 603 break; 604 } 605 606 // Don't perform CSE if the result of the new instruction cannot exist 607 // within the constraints (register class, bank, or low-level type) of 608 // the old instruction. 609 if (!MRI->constrainRegAttrs(NewReg, OldReg)) { 610 LLVM_DEBUG( 611 dbgs() << "*** Not the same register constraints, avoid CSE!\n"); 612 DoCSE = false; 613 break; 614 } 615 616 CSEPairs.push_back(std::make_pair(OldReg, NewReg)); 617 --NumDefs; 618 } 619 620 // Actually perform the elimination. 621 if (DoCSE) { 622 for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) { 623 unsigned OldReg = CSEPair.first; 624 unsigned NewReg = CSEPair.second; 625 // OldReg may have been unused but is used now, clear the Dead flag 626 MachineInstr *Def = MRI->getUniqueVRegDef(NewReg); 627 assert(Def != nullptr && "CSEd register has no unique definition?"); 628 Def->clearRegisterDeads(NewReg); 629 // Replace with NewReg and clear kill flags which may be wrong now. 630 MRI->replaceRegWith(OldReg, NewReg); 631 MRI->clearKillFlags(NewReg); 632 } 633 634 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 635 // we should make sure it is not dead at CSMI. 636 for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate) 637 CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false); 638 639 // Go through implicit defs of CSMI and MI, and clear the kill flags on 640 // their uses in all the instructions between CSMI and MI. 641 // We might have made some of the kill flags redundant, consider: 642 // subs ... implicit-def %nzcv <- CSMI 643 // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore 644 // subs ... implicit-def %nzcv <- MI, to be eliminated 645 // csinc ... implicit killed %nzcv 646 // Since we eliminated MI, and reused a register imp-def'd by CSMI 647 // (here %nzcv), that register, if it was killed before MI, should have 648 // that kill flag removed, because it's lifetime was extended. 649 if (CSMI->getParent() == MI->getParent()) { 650 for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II) 651 for (auto ImplicitDef : ImplicitDefs) 652 if (MachineOperand *MO = II->findRegisterUseOperand( 653 ImplicitDef, /*isKill=*/true, TRI)) 654 MO->setIsKill(false); 655 } else { 656 // If the instructions aren't in the same BB, bail out and clear the 657 // kill flag on all uses of the imp-def'd register. 658 for (auto ImplicitDef : ImplicitDefs) 659 MRI->clearKillFlags(ImplicitDef); 660 } 661 662 if (CrossMBBPhysDef) { 663 // Add physical register defs now coming in from a predecessor to MBB 664 // livein list. 665 while (!PhysDefs.empty()) { 666 unsigned LiveIn = PhysDefs.pop_back_val(); 667 if (!MBB->isLiveIn(LiveIn)) 668 MBB->addLiveIn(LiveIn); 669 } 670 ++NumCrossBBCSEs; 671 } 672 673 MI->eraseFromParent(); 674 ++NumCSEs; 675 if (!PhysRefs.empty()) 676 ++NumPhysCSEs; 677 if (Commuted) 678 ++NumCommutes; 679 Changed = true; 680 } else { 681 VNT.insert(MI, CurrVN++); 682 Exps.push_back(MI); 683 } 684 CSEPairs.clear(); 685 ImplicitDefsToUpdate.clear(); 686 ImplicitDefs.clear(); 687 } 688 689 return Changed; 690 } 691 692 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 693 /// dominator tree node if its a leaf or all of its children are done. Walk 694 /// up the dominator tree to destroy ancestors which are now done. 695 void 696 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, 697 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) { 698 if (OpenChildren[Node]) 699 return; 700 701 // Pop scope. 702 ExitScope(Node->getBlock()); 703 704 // Now traverse upwards to pop ancestors whose offsprings are all done. 705 while (MachineDomTreeNode *Parent = Node->getIDom()) { 706 unsigned Left = --OpenChildren[Parent]; 707 if (Left != 0) 708 break; 709 ExitScope(Parent->getBlock()); 710 Node = Parent; 711 } 712 } 713 714 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { 715 SmallVector<MachineDomTreeNode*, 32> Scopes; 716 SmallVector<MachineDomTreeNode*, 8> WorkList; 717 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 718 719 CurrVN = 0; 720 721 // Perform a DFS walk to determine the order of visit. 722 WorkList.push_back(Node); 723 do { 724 Node = WorkList.pop_back_val(); 725 Scopes.push_back(Node); 726 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 727 OpenChildren[Node] = Children.size(); 728 for (MachineDomTreeNode *Child : Children) 729 WorkList.push_back(Child); 730 } while (!WorkList.empty()); 731 732 // Now perform CSE. 733 bool Changed = false; 734 for (MachineDomTreeNode *Node : Scopes) { 735 MachineBasicBlock *MBB = Node->getBlock(); 736 EnterScope(MBB); 737 Changed |= ProcessBlock(MBB); 738 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 739 ExitScopeIfDone(Node, OpenChildren); 740 } 741 742 return Changed; 743 } 744 745 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { 746 if (skipFunction(MF.getFunction())) 747 return false; 748 749 TII = MF.getSubtarget().getInstrInfo(); 750 TRI = MF.getSubtarget().getRegisterInfo(); 751 MRI = &MF.getRegInfo(); 752 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 753 DT = &getAnalysis<MachineDominatorTree>(); 754 LookAheadLimit = TII->getMachineCSELookAheadLimit(); 755 return PerformCSE(DT->getRootNode()); 756 } 757