1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs global common subexpression elimination on machine 10 // instructions using a scoped hash table based value numbering scheme. It 11 // must be run while the machine function is still in SSA form. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/ScopedHashTable.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineDominators.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/Passes.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/TargetOpcodes.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/MC/MCInstrDesc.h" 35 #include "llvm/MC/MCRegisterInfo.h" 36 #include "llvm/Pass.h" 37 #include "llvm/Support/Allocator.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/RecyclingAllocator.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <cassert> 42 #include <iterator> 43 #include <utility> 44 #include <vector> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "machine-cse" 49 50 STATISTIC(NumCoalesces, "Number of copies coalesced"); 51 STATISTIC(NumCSEs, "Number of common subexpression eliminated"); 52 STATISTIC(NumPhysCSEs, 53 "Number of physreg referencing common subexpr eliminated"); 54 STATISTIC(NumCrossBBCSEs, 55 "Number of cross-MBB physreg referencing CS eliminated"); 56 STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); 57 58 namespace { 59 60 class MachineCSE : public MachineFunctionPass { 61 const TargetInstrInfo *TII; 62 const TargetRegisterInfo *TRI; 63 AliasAnalysis *AA; 64 MachineDominatorTree *DT; 65 MachineRegisterInfo *MRI; 66 67 public: 68 static char ID; // Pass identification 69 70 MachineCSE() : MachineFunctionPass(ID) { 71 initializeMachineCSEPass(*PassRegistry::getPassRegistry()); 72 } 73 74 bool runOnMachineFunction(MachineFunction &MF) override; 75 76 void getAnalysisUsage(AnalysisUsage &AU) const override { 77 AU.setPreservesCFG(); 78 MachineFunctionPass::getAnalysisUsage(AU); 79 AU.addRequired<AAResultsWrapperPass>(); 80 AU.addPreservedID(MachineLoopInfoID); 81 AU.addRequired<MachineDominatorTree>(); 82 AU.addPreserved<MachineDominatorTree>(); 83 } 84 85 void releaseMemory() override { 86 ScopeMap.clear(); 87 Exps.clear(); 88 } 89 90 private: 91 using AllocatorTy = RecyclingAllocator<BumpPtrAllocator, 92 ScopedHashTableVal<MachineInstr *, unsigned>>; 93 using ScopedHTType = 94 ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait, 95 AllocatorTy>; 96 using ScopeType = ScopedHTType::ScopeTy; 97 using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>; 98 99 unsigned LookAheadLimit = 0; 100 DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap; 101 ScopedHTType VNT; 102 SmallVector<MachineInstr *, 64> Exps; 103 unsigned CurrVN = 0; 104 105 bool PerformTrivialCopyPropagation(MachineInstr *MI, 106 MachineBasicBlock *MBB); 107 bool isPhysDefTriviallyDead(unsigned Reg, 108 MachineBasicBlock::const_iterator I, 109 MachineBasicBlock::const_iterator E) const; 110 bool hasLivePhysRegDefUses(const MachineInstr *MI, 111 const MachineBasicBlock *MBB, 112 SmallSet<unsigned, 8> &PhysRefs, 113 PhysDefVector &PhysDefs, bool &PhysUseDef) const; 114 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 115 SmallSet<unsigned, 8> &PhysRefs, 116 PhysDefVector &PhysDefs, bool &NonLocal) const; 117 bool isCSECandidate(MachineInstr *MI); 118 bool isProfitableToCSE(unsigned CSReg, unsigned Reg, 119 MachineInstr *CSMI, MachineInstr *MI); 120 void EnterScope(MachineBasicBlock *MBB); 121 void ExitScope(MachineBasicBlock *MBB); 122 bool ProcessBlock(MachineBasicBlock *MBB); 123 void ExitScopeIfDone(MachineDomTreeNode *Node, 124 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren); 125 bool PerformCSE(MachineDomTreeNode *Node); 126 }; 127 128 } // end anonymous namespace 129 130 char MachineCSE::ID = 0; 131 132 char &llvm::MachineCSEID = MachineCSE::ID; 133 134 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE, 135 "Machine Common Subexpression Elimination", false, false) 136 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 137 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 138 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE, 139 "Machine Common Subexpression Elimination", false, false) 140 141 /// The source register of a COPY machine instruction can be propagated to all 142 /// its users, and this propagation could increase the probability of finding 143 /// common subexpressions. If the COPY has only one user, the COPY itself can 144 /// be removed. 145 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI, 146 MachineBasicBlock *MBB) { 147 bool Changed = false; 148 for (MachineOperand &MO : MI->operands()) { 149 if (!MO.isReg() || !MO.isUse()) 150 continue; 151 unsigned Reg = MO.getReg(); 152 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 153 continue; 154 bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg); 155 MachineInstr *DefMI = MRI->getVRegDef(Reg); 156 if (!DefMI->isCopy()) 157 continue; 158 unsigned SrcReg = DefMI->getOperand(1).getReg(); 159 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 160 continue; 161 if (DefMI->getOperand(0).getSubReg()) 162 continue; 163 // FIXME: We should trivially coalesce subregister copies to expose CSE 164 // opportunities on instructions with truncated operands (see 165 // cse-add-with-overflow.ll). This can be done here as follows: 166 // if (SrcSubReg) 167 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC, 168 // SrcSubReg); 169 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI); 170 // 171 // The 2-addr pass has been updated to handle coalesced subregs. However, 172 // some machine-specific code still can't handle it. 173 // To handle it properly we also need a way find a constrained subregister 174 // class given a super-reg class and subreg index. 175 if (DefMI->getOperand(1).getSubReg()) 176 continue; 177 if (!MRI->constrainRegAttrs(SrcReg, Reg)) 178 continue; 179 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 180 LLVM_DEBUG(dbgs() << "*** to: " << *MI); 181 182 // Update matching debug values. 183 DefMI->changeDebugValuesDefReg(SrcReg); 184 185 // Propagate SrcReg of copies to MI. 186 MO.setReg(SrcReg); 187 MRI->clearKillFlags(SrcReg); 188 // Coalesce single use copies. 189 if (OnlyOneUse) { 190 DefMI->eraseFromParent(); 191 ++NumCoalesces; 192 } 193 Changed = true; 194 } 195 196 return Changed; 197 } 198 199 bool 200 MachineCSE::isPhysDefTriviallyDead(unsigned Reg, 201 MachineBasicBlock::const_iterator I, 202 MachineBasicBlock::const_iterator E) const { 203 unsigned LookAheadLeft = LookAheadLimit; 204 while (LookAheadLeft) { 205 // Skip over dbg_value's. 206 I = skipDebugInstructionsForward(I, E); 207 208 if (I == E) 209 // Reached end of block, we don't know if register is dead or not. 210 return false; 211 212 bool SeenDef = false; 213 for (const MachineOperand &MO : I->operands()) { 214 if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) 215 SeenDef = true; 216 if (!MO.isReg() || !MO.getReg()) 217 continue; 218 if (!TRI->regsOverlap(MO.getReg(), Reg)) 219 continue; 220 if (MO.isUse()) 221 // Found a use! 222 return false; 223 SeenDef = true; 224 } 225 if (SeenDef) 226 // See a def of Reg (or an alias) before encountering any use, it's 227 // trivially dead. 228 return true; 229 230 --LookAheadLeft; 231 ++I; 232 } 233 return false; 234 } 235 236 static bool isCallerPreservedOrConstPhysReg(unsigned Reg, 237 const MachineFunction &MF, 238 const TargetRegisterInfo &TRI) { 239 // MachineRegisterInfo::isConstantPhysReg directly called by 240 // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the 241 // reserved registers to be frozen. That doesn't cause a problem post-ISel as 242 // most (if not all) targets freeze reserved registers right after ISel. 243 // 244 // It does cause issues mid-GlobalISel, however, hence the additional 245 // reservedRegsFrozen check. 246 const MachineRegisterInfo &MRI = MF.getRegInfo(); 247 return TRI.isCallerPreservedPhysReg(Reg, MF) || 248 (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg)); 249 } 250 251 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write 252 /// physical registers (except for dead defs of physical registers). It also 253 /// returns the physical register def by reference if it's the only one and the 254 /// instruction does not uses a physical register. 255 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, 256 const MachineBasicBlock *MBB, 257 SmallSet<unsigned, 8> &PhysRefs, 258 PhysDefVector &PhysDefs, 259 bool &PhysUseDef) const { 260 // First, add all uses to PhysRefs. 261 for (const MachineOperand &MO : MI->operands()) { 262 if (!MO.isReg() || MO.isDef()) 263 continue; 264 unsigned Reg = MO.getReg(); 265 if (!Reg) 266 continue; 267 if (TargetRegisterInfo::isVirtualRegister(Reg)) 268 continue; 269 // Reading either caller preserved or constant physregs is ok. 270 if (!isCallerPreservedOrConstPhysReg(Reg, *MI->getMF(), *TRI)) 271 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 272 PhysRefs.insert(*AI); 273 } 274 275 // Next, collect all defs into PhysDefs. If any is already in PhysRefs 276 // (which currently contains only uses), set the PhysUseDef flag. 277 PhysUseDef = false; 278 MachineBasicBlock::const_iterator I = MI; I = std::next(I); 279 for (const auto &MOP : llvm::enumerate(MI->operands())) { 280 const MachineOperand &MO = MOP.value(); 281 if (!MO.isReg() || !MO.isDef()) 282 continue; 283 unsigned Reg = MO.getReg(); 284 if (!Reg) 285 continue; 286 if (TargetRegisterInfo::isVirtualRegister(Reg)) 287 continue; 288 // Check against PhysRefs even if the def is "dead". 289 if (PhysRefs.count(Reg)) 290 PhysUseDef = true; 291 // If the def is dead, it's ok. But the def may not marked "dead". That's 292 // common since this pass is run before livevariables. We can scan 293 // forward a few instructions and check if it is obviously dead. 294 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end())) 295 PhysDefs.push_back(std::make_pair(MOP.index(), Reg)); 296 } 297 298 // Finally, add all defs to PhysRefs as well. 299 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) 300 for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid(); 301 ++AI) 302 PhysRefs.insert(*AI); 303 304 return !PhysRefs.empty(); 305 } 306 307 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 308 SmallSet<unsigned, 8> &PhysRefs, 309 PhysDefVector &PhysDefs, 310 bool &NonLocal) const { 311 // For now conservatively returns false if the common subexpression is 312 // not in the same basic block as the given instruction. The only exception 313 // is if the common subexpression is in the sole predecessor block. 314 const MachineBasicBlock *MBB = MI->getParent(); 315 const MachineBasicBlock *CSMBB = CSMI->getParent(); 316 317 bool CrossMBB = false; 318 if (CSMBB != MBB) { 319 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) 320 return false; 321 322 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { 323 if (MRI->isAllocatable(PhysDefs[i].second) || 324 MRI->isReserved(PhysDefs[i].second)) 325 // Avoid extending live range of physical registers if they are 326 //allocatable or reserved. 327 return false; 328 } 329 CrossMBB = true; 330 } 331 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I); 332 MachineBasicBlock::const_iterator E = MI; 333 MachineBasicBlock::const_iterator EE = CSMBB->end(); 334 unsigned LookAheadLeft = LookAheadLimit; 335 while (LookAheadLeft) { 336 // Skip over dbg_value's. 337 while (I != E && I != EE && I->isDebugInstr()) 338 ++I; 339 340 if (I == EE) { 341 assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); 342 (void)CrossMBB; 343 CrossMBB = false; 344 NonLocal = true; 345 I = MBB->begin(); 346 EE = MBB->end(); 347 continue; 348 } 349 350 if (I == E) 351 return true; 352 353 for (const MachineOperand &MO : I->operands()) { 354 // RegMasks go on instructions like calls that clobber lots of physregs. 355 // Don't attempt to CSE across such an instruction. 356 if (MO.isRegMask()) 357 return false; 358 if (!MO.isReg() || !MO.isDef()) 359 continue; 360 unsigned MOReg = MO.getReg(); 361 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 362 continue; 363 if (PhysRefs.count(MOReg)) 364 return false; 365 } 366 367 --LookAheadLeft; 368 ++I; 369 } 370 371 return false; 372 } 373 374 bool MachineCSE::isCSECandidate(MachineInstr *MI) { 375 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() || 376 MI->isInlineAsm() || MI->isDebugInstr()) 377 return false; 378 379 // Ignore copies. 380 if (MI->isCopyLike()) 381 return false; 382 383 // Ignore stuff that we obviously can't move. 384 if (MI->mayStore() || MI->isCall() || MI->isTerminator() || 385 MI->hasUnmodeledSideEffects()) 386 return false; 387 388 if (MI->mayLoad()) { 389 // Okay, this instruction does a load. As a refinement, we allow the target 390 // to decide whether the loaded value is actually a constant. If so, we can 391 // actually use it as a load. 392 if (!MI->isDereferenceableInvariantLoad(AA)) 393 // FIXME: we should be able to hoist loads with no other side effects if 394 // there are no other instructions which can change memory in this loop. 395 // This is a trivial form of alias analysis. 396 return false; 397 } 398 399 // Ignore stack guard loads, otherwise the register that holds CSEed value may 400 // be spilled and get loaded back with corrupted data. 401 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) 402 return false; 403 404 return true; 405 } 406 407 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a 408 /// common expression that defines Reg. 409 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg, 410 MachineInstr *CSMI, MachineInstr *MI) { 411 // FIXME: Heuristics that works around the lack the live range splitting. 412 413 // If CSReg is used at all uses of Reg, CSE should not increase register 414 // pressure of CSReg. 415 bool MayIncreasePressure = true; 416 if (TargetRegisterInfo::isVirtualRegister(CSReg) && 417 TargetRegisterInfo::isVirtualRegister(Reg)) { 418 MayIncreasePressure = false; 419 SmallPtrSet<MachineInstr*, 8> CSUses; 420 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { 421 CSUses.insert(&MI); 422 } 423 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 424 if (!CSUses.count(&MI)) { 425 MayIncreasePressure = true; 426 break; 427 } 428 } 429 } 430 if (!MayIncreasePressure) return true; 431 432 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in 433 // an immediate predecessor. We don't want to increase register pressure and 434 // end up causing other computation to be spilled. 435 if (TII->isAsCheapAsAMove(*MI)) { 436 MachineBasicBlock *CSBB = CSMI->getParent(); 437 MachineBasicBlock *BB = MI->getParent(); 438 if (CSBB != BB && !CSBB->isSuccessor(BB)) 439 return false; 440 } 441 442 // Heuristics #2: If the expression doesn't not use a vr and the only use 443 // of the redundant computation are copies, do not cse. 444 bool HasVRegUse = false; 445 for (const MachineOperand &MO : MI->operands()) { 446 if (MO.isReg() && MO.isUse() && 447 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 448 HasVRegUse = true; 449 break; 450 } 451 } 452 if (!HasVRegUse) { 453 bool HasNonCopyUse = false; 454 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 455 // Ignore copies. 456 if (!MI.isCopyLike()) { 457 HasNonCopyUse = true; 458 break; 459 } 460 } 461 if (!HasNonCopyUse) 462 return false; 463 } 464 465 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse 466 // it unless the defined value is already used in the BB of the new use. 467 bool HasPHI = false; 468 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) { 469 HasPHI |= UseMI.isPHI(); 470 if (UseMI.getParent() == MI->getParent()) 471 return true; 472 } 473 474 return !HasPHI; 475 } 476 477 void MachineCSE::EnterScope(MachineBasicBlock *MBB) { 478 LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 479 ScopeType *Scope = new ScopeType(VNT); 480 ScopeMap[MBB] = Scope; 481 } 482 483 void MachineCSE::ExitScope(MachineBasicBlock *MBB) { 484 LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 485 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); 486 assert(SI != ScopeMap.end()); 487 delete SI->second; 488 ScopeMap.erase(SI); 489 } 490 491 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) { 492 bool Changed = false; 493 494 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; 495 SmallVector<unsigned, 2> ImplicitDefsToUpdate; 496 SmallVector<unsigned, 2> ImplicitDefs; 497 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { 498 MachineInstr *MI = &*I; 499 ++I; 500 501 if (!isCSECandidate(MI)) 502 continue; 503 504 bool FoundCSE = VNT.count(MI); 505 if (!FoundCSE) { 506 // Using trivial copy propagation to find more CSE opportunities. 507 if (PerformTrivialCopyPropagation(MI, MBB)) { 508 Changed = true; 509 510 // After coalescing MI itself may become a copy. 511 if (MI->isCopyLike()) 512 continue; 513 514 // Try again to see if CSE is possible. 515 FoundCSE = VNT.count(MI); 516 } 517 } 518 519 // Commute commutable instructions. 520 bool Commuted = false; 521 if (!FoundCSE && MI->isCommutable()) { 522 if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) { 523 Commuted = true; 524 FoundCSE = VNT.count(NewMI); 525 if (NewMI != MI) { 526 // New instruction. It doesn't need to be kept. 527 NewMI->eraseFromParent(); 528 Changed = true; 529 } else if (!FoundCSE) 530 // MI was changed but it didn't help, commute it back! 531 (void)TII->commuteInstruction(*MI); 532 } 533 } 534 535 // If the instruction defines physical registers and the values *may* be 536 // used, then it's not safe to replace it with a common subexpression. 537 // It's also not safe if the instruction uses physical registers. 538 bool CrossMBBPhysDef = false; 539 SmallSet<unsigned, 8> PhysRefs; 540 PhysDefVector PhysDefs; 541 bool PhysUseDef = false; 542 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, 543 PhysDefs, PhysUseDef)) { 544 FoundCSE = false; 545 546 // ... Unless the CS is local or is in the sole predecessor block 547 // and it also defines the physical register which is not clobbered 548 // in between and the physical register uses were not clobbered. 549 // This can never be the case if the instruction both uses and 550 // defines the same physical register, which was detected above. 551 if (!PhysUseDef) { 552 unsigned CSVN = VNT.lookup(MI); 553 MachineInstr *CSMI = Exps[CSVN]; 554 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) 555 FoundCSE = true; 556 } 557 } 558 559 if (!FoundCSE) { 560 VNT.insert(MI, CurrVN++); 561 Exps.push_back(MI); 562 continue; 563 } 564 565 // Found a common subexpression, eliminate it. 566 unsigned CSVN = VNT.lookup(MI); 567 MachineInstr *CSMI = Exps[CSVN]; 568 LLVM_DEBUG(dbgs() << "Examining: " << *MI); 569 LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); 570 571 // Check if it's profitable to perform this CSE. 572 bool DoCSE = true; 573 unsigned NumDefs = MI->getNumDefs(); 574 575 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { 576 MachineOperand &MO = MI->getOperand(i); 577 if (!MO.isReg() || !MO.isDef()) 578 continue; 579 unsigned OldReg = MO.getReg(); 580 unsigned NewReg = CSMI->getOperand(i).getReg(); 581 582 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 583 // we should make sure it is not dead at CSMI. 584 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) 585 ImplicitDefsToUpdate.push_back(i); 586 587 // Keep track of implicit defs of CSMI and MI, to clear possibly 588 // made-redundant kill flags. 589 if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg) 590 ImplicitDefs.push_back(OldReg); 591 592 if (OldReg == NewReg) { 593 --NumDefs; 594 continue; 595 } 596 597 assert(TargetRegisterInfo::isVirtualRegister(OldReg) && 598 TargetRegisterInfo::isVirtualRegister(NewReg) && 599 "Do not CSE physical register defs!"); 600 601 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) { 602 LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); 603 DoCSE = false; 604 break; 605 } 606 607 // Don't perform CSE if the result of the new instruction cannot exist 608 // within the constraints (register class, bank, or low-level type) of 609 // the old instruction. 610 if (!MRI->constrainRegAttrs(NewReg, OldReg)) { 611 LLVM_DEBUG( 612 dbgs() << "*** Not the same register constraints, avoid CSE!\n"); 613 DoCSE = false; 614 break; 615 } 616 617 CSEPairs.push_back(std::make_pair(OldReg, NewReg)); 618 --NumDefs; 619 } 620 621 // Actually perform the elimination. 622 if (DoCSE) { 623 for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) { 624 unsigned OldReg = CSEPair.first; 625 unsigned NewReg = CSEPair.second; 626 // OldReg may have been unused but is used now, clear the Dead flag 627 MachineInstr *Def = MRI->getUniqueVRegDef(NewReg); 628 assert(Def != nullptr && "CSEd register has no unique definition?"); 629 Def->clearRegisterDeads(NewReg); 630 // Replace with NewReg and clear kill flags which may be wrong now. 631 MRI->replaceRegWith(OldReg, NewReg); 632 MRI->clearKillFlags(NewReg); 633 } 634 635 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 636 // we should make sure it is not dead at CSMI. 637 for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate) 638 CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false); 639 for (auto PhysDef : PhysDefs) 640 if (!MI->getOperand(PhysDef.first).isDead()) 641 CSMI->getOperand(PhysDef.first).setIsDead(false); 642 643 // Go through implicit defs of CSMI and MI, and clear the kill flags on 644 // their uses in all the instructions between CSMI and MI. 645 // We might have made some of the kill flags redundant, consider: 646 // subs ... implicit-def %nzcv <- CSMI 647 // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore 648 // subs ... implicit-def %nzcv <- MI, to be eliminated 649 // csinc ... implicit killed %nzcv 650 // Since we eliminated MI, and reused a register imp-def'd by CSMI 651 // (here %nzcv), that register, if it was killed before MI, should have 652 // that kill flag removed, because it's lifetime was extended. 653 if (CSMI->getParent() == MI->getParent()) { 654 for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II) 655 for (auto ImplicitDef : ImplicitDefs) 656 if (MachineOperand *MO = II->findRegisterUseOperand( 657 ImplicitDef, /*isKill=*/true, TRI)) 658 MO->setIsKill(false); 659 } else { 660 // If the instructions aren't in the same BB, bail out and clear the 661 // kill flag on all uses of the imp-def'd register. 662 for (auto ImplicitDef : ImplicitDefs) 663 MRI->clearKillFlags(ImplicitDef); 664 } 665 666 if (CrossMBBPhysDef) { 667 // Add physical register defs now coming in from a predecessor to MBB 668 // livein list. 669 while (!PhysDefs.empty()) { 670 auto LiveIn = PhysDefs.pop_back_val(); 671 if (!MBB->isLiveIn(LiveIn.second)) 672 MBB->addLiveIn(LiveIn.second); 673 } 674 ++NumCrossBBCSEs; 675 } 676 677 MI->eraseFromParent(); 678 ++NumCSEs; 679 if (!PhysRefs.empty()) 680 ++NumPhysCSEs; 681 if (Commuted) 682 ++NumCommutes; 683 Changed = true; 684 } else { 685 VNT.insert(MI, CurrVN++); 686 Exps.push_back(MI); 687 } 688 CSEPairs.clear(); 689 ImplicitDefsToUpdate.clear(); 690 ImplicitDefs.clear(); 691 } 692 693 return Changed; 694 } 695 696 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 697 /// dominator tree node if its a leaf or all of its children are done. Walk 698 /// up the dominator tree to destroy ancestors which are now done. 699 void 700 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, 701 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) { 702 if (OpenChildren[Node]) 703 return; 704 705 // Pop scope. 706 ExitScope(Node->getBlock()); 707 708 // Now traverse upwards to pop ancestors whose offsprings are all done. 709 while (MachineDomTreeNode *Parent = Node->getIDom()) { 710 unsigned Left = --OpenChildren[Parent]; 711 if (Left != 0) 712 break; 713 ExitScope(Parent->getBlock()); 714 Node = Parent; 715 } 716 } 717 718 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { 719 SmallVector<MachineDomTreeNode*, 32> Scopes; 720 SmallVector<MachineDomTreeNode*, 8> WorkList; 721 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 722 723 CurrVN = 0; 724 725 // Perform a DFS walk to determine the order of visit. 726 WorkList.push_back(Node); 727 do { 728 Node = WorkList.pop_back_val(); 729 Scopes.push_back(Node); 730 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 731 OpenChildren[Node] = Children.size(); 732 for (MachineDomTreeNode *Child : Children) 733 WorkList.push_back(Child); 734 } while (!WorkList.empty()); 735 736 // Now perform CSE. 737 bool Changed = false; 738 for (MachineDomTreeNode *Node : Scopes) { 739 MachineBasicBlock *MBB = Node->getBlock(); 740 EnterScope(MBB); 741 Changed |= ProcessBlock(MBB); 742 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 743 ExitScopeIfDone(Node, OpenChildren); 744 } 745 746 return Changed; 747 } 748 749 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { 750 if (skipFunction(MF.getFunction())) 751 return false; 752 753 TII = MF.getSubtarget().getInstrInfo(); 754 TRI = MF.getSubtarget().getRegisterInfo(); 755 MRI = &MF.getRegInfo(); 756 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 757 DT = &getAnalysis<MachineDominatorTree>(); 758 LookAheadLimit = TII->getMachineCSELookAheadLimit(); 759 return PerformCSE(DT->getRootNode()); 760 } 761