1 //===- MachineBranchProbabilityInfo.cpp - Machine Branch Probability Info -===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This analysis uses probability info stored in Machine Basic Blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 15 #include "llvm/CodeGen/MachineBasicBlock.h" 16 #include "llvm/IR/Instructions.h" 17 #include "llvm/Support/Debug.h" 18 #include "llvm/Support/raw_ostream.h" 19 20 using namespace llvm; 21 22 INITIALIZE_PASS_BEGIN(MachineBranchProbabilityInfo, "machine-branch-prob", 23 "Machine Branch Probability Analysis", false, true) 24 INITIALIZE_PASS_END(MachineBranchProbabilityInfo, "machine-branch-prob", 25 "Machine Branch Probability Analysis", false, true) 26 27 char MachineBranchProbabilityInfo::ID = 0; 28 29 void MachineBranchProbabilityInfo::anchor() { } 30 31 uint32_t 32 MachineBranchProbabilityInfo::getSumForBlock(MachineBasicBlock *MBB) const { 33 // Normalize the weights of MBB's all successors so that the sum is guaranteed 34 // to be no greater than UINT32_MAX. 35 MBB->normalizeSuccWeights(); 36 37 SmallVector<uint32_t, 8> Weights; 38 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 39 E = MBB->succ_end(); 40 I != E; ++I) 41 Weights.push_back(getEdgeWeight(MBB, I)); 42 43 return std::accumulate(Weights.begin(), Weights.end(), 0u); 44 } 45 46 uint32_t 47 MachineBranchProbabilityInfo::getSumForBlock(const MachineBasicBlock *MBB, 48 uint32_t &Scale) const { 49 SmallVector<uint32_t, 8> Weights; 50 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 51 E = MBB->succ_end(); 52 I != E; ++I) 53 Weights.push_back(getEdgeWeight(MBB, I)); 54 55 if (MBB->areSuccWeightsNormalized()) 56 Scale = 1; 57 else 58 Scale = MachineBranchProbabilityInfo::normalizeEdgeWeights(Weights); 59 return std::accumulate(Weights.begin(), Weights.end(), 0u); 60 } 61 62 uint32_t MachineBranchProbabilityInfo:: 63 getEdgeWeight(const MachineBasicBlock *Src, 64 MachineBasicBlock::const_succ_iterator Dst) const { 65 uint32_t Weight = Src->getSuccWeight(Dst); 66 if (!Weight) 67 return DEFAULT_WEIGHT; 68 return Weight; 69 } 70 71 uint32_t MachineBranchProbabilityInfo:: 72 getEdgeWeight(const MachineBasicBlock *Src, 73 const MachineBasicBlock *Dst) const { 74 // This is a linear search. Try to use the const_succ_iterator version when 75 // possible. 76 return getEdgeWeight(Src, std::find(Src->succ_begin(), Src->succ_end(), Dst)); 77 } 78 79 bool 80 MachineBranchProbabilityInfo::isEdgeHot(const MachineBasicBlock *Src, 81 const MachineBasicBlock *Dst) const { 82 // Hot probability is at least 4/5 = 80% 83 // FIXME: Compare against a static "hot" BranchProbability. 84 return getEdgeProbability(Src, Dst) > BranchProbability(4, 5); 85 } 86 87 MachineBasicBlock * 88 MachineBranchProbabilityInfo::getHotSucc(MachineBasicBlock *MBB) const { 89 uint32_t MaxWeight = 0; 90 MachineBasicBlock *MaxSucc = nullptr; 91 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 92 E = MBB->succ_end(); I != E; ++I) { 93 uint32_t Weight = getEdgeWeight(MBB, I); 94 if (Weight > MaxWeight) { 95 MaxWeight = Weight; 96 MaxSucc = *I; 97 } 98 } 99 100 if (getEdgeProbability(MBB, MaxSucc) >= BranchProbability(4, 5)) 101 return MaxSucc; 102 103 return nullptr; 104 } 105 106 BranchProbability MachineBranchProbabilityInfo::getEdgeProbability( 107 const MachineBasicBlock *Src, const MachineBasicBlock *Dst) const { 108 uint32_t Scale = 1; 109 uint32_t D = getSumForBlock(Src, Scale); 110 uint32_t N = getEdgeWeight(Src, Dst) / Scale; 111 112 return BranchProbability(N, D); 113 } 114 115 raw_ostream &MachineBranchProbabilityInfo::printEdgeProbability( 116 raw_ostream &OS, const MachineBasicBlock *Src, 117 const MachineBasicBlock *Dst) const { 118 119 const BranchProbability Prob = getEdgeProbability(Src, Dst); 120 OS << "edge MBB#" << Src->getNumber() << " -> MBB#" << Dst->getNumber() 121 << " probability is " << Prob 122 << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n"); 123 124 return OS; 125 } 126