1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "BranchFolding.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 37 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 38 #include "llvm/CodeGen/MachineDominators.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineLoopInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/Support/Allocator.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetLowering.h" 49 #include "llvm/Target/TargetSubtargetInfo.h" 50 #include <algorithm> 51 using namespace llvm; 52 53 #define DEBUG_TYPE "block-placement" 54 55 STATISTIC(NumCondBranches, "Number of conditional branches"); 56 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 57 STATISTIC(CondBranchTakenFreq, 58 "Potential frequency of taking conditional branches"); 59 STATISTIC(UncondBranchTakenFreq, 60 "Potential frequency of taking unconditional branches"); 61 62 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 63 cl::desc("Force the alignment of all " 64 "blocks in the function."), 65 cl::init(0), cl::Hidden); 66 67 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 68 "align-all-nofallthru-blocks", 69 cl::desc("Force the alignment of all " 70 "blocks that have no fall-through predecessors (i.e. don't add " 71 "nops that are executed)."), 72 cl::init(0), cl::Hidden); 73 74 // FIXME: Find a good default for this flag and remove the flag. 75 static cl::opt<unsigned> ExitBlockBias( 76 "block-placement-exit-block-bias", 77 cl::desc("Block frequency percentage a loop exit block needs " 78 "over the original exit to be considered the new exit."), 79 cl::init(0), cl::Hidden); 80 81 static cl::opt<bool> OutlineOptionalBranches( 82 "outline-optional-branches", 83 cl::desc("Put completely optional branches, i.e. branches with a common " 84 "post dominator, out of line."), 85 cl::init(false), cl::Hidden); 86 87 static cl::opt<unsigned> OutlineOptionalThreshold( 88 "outline-optional-threshold", 89 cl::desc("Don't outline optional branches that are a single block with an " 90 "instruction count below this threshold"), 91 cl::init(4), cl::Hidden); 92 93 static cl::opt<unsigned> LoopToColdBlockRatio( 94 "loop-to-cold-block-ratio", 95 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 96 "(frequency of block) is greater than this ratio"), 97 cl::init(5), cl::Hidden); 98 99 static cl::opt<bool> 100 PreciseRotationCost("precise-rotation-cost", 101 cl::desc("Model the cost of loop rotation more " 102 "precisely by using profile data."), 103 cl::init(false), cl::Hidden); 104 static cl::opt<bool> 105 ForcePreciseRotationCost("force-precise-rotation-cost", 106 cl::desc("Force the use of precise cost " 107 "loop rotation strategy."), 108 cl::init(false), cl::Hidden); 109 110 static cl::opt<unsigned> MisfetchCost( 111 "misfetch-cost", 112 cl::desc("Cost that models the probablistic risk of an instruction " 113 "misfetch due to a jump comparing to falling through, whose cost " 114 "is zero."), 115 cl::init(1), cl::Hidden); 116 117 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 118 cl::desc("Cost of jump instructions."), 119 cl::init(1), cl::Hidden); 120 121 static cl::opt<bool> 122 BranchFoldPlacement("branch-fold-placement", 123 cl::desc("Perform branch folding during placement. " 124 "Reduces code size."), 125 cl::init(true), cl::Hidden); 126 127 extern cl::opt<unsigned> StaticLikelyProb; 128 129 namespace { 130 class BlockChain; 131 /// \brief Type for our function-wide basic block -> block chain mapping. 132 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 133 } 134 135 namespace { 136 /// \brief A chain of blocks which will be laid out contiguously. 137 /// 138 /// This is the datastructure representing a chain of consecutive blocks that 139 /// are profitable to layout together in order to maximize fallthrough 140 /// probabilities and code locality. We also can use a block chain to represent 141 /// a sequence of basic blocks which have some external (correctness) 142 /// requirement for sequential layout. 143 /// 144 /// Chains can be built around a single basic block and can be merged to grow 145 /// them. They participate in a block-to-chain mapping, which is updated 146 /// automatically as chains are merged together. 147 class BlockChain { 148 /// \brief The sequence of blocks belonging to this chain. 149 /// 150 /// This is the sequence of blocks for a particular chain. These will be laid 151 /// out in-order within the function. 152 SmallVector<MachineBasicBlock *, 4> Blocks; 153 154 /// \brief A handle to the function-wide basic block to block chain mapping. 155 /// 156 /// This is retained in each block chain to simplify the computation of child 157 /// block chains for SCC-formation and iteration. We store the edges to child 158 /// basic blocks, and map them back to their associated chains using this 159 /// structure. 160 BlockToChainMapType &BlockToChain; 161 162 public: 163 /// \brief Construct a new BlockChain. 164 /// 165 /// This builds a new block chain representing a single basic block in the 166 /// function. It also registers itself as the chain that block participates 167 /// in with the BlockToChain mapping. 168 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 169 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 170 assert(BB && "Cannot create a chain with a null basic block"); 171 BlockToChain[BB] = this; 172 } 173 174 /// \brief Iterator over blocks within the chain. 175 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 176 177 /// \brief Beginning of blocks within the chain. 178 iterator begin() { return Blocks.begin(); } 179 180 /// \brief End of blocks within the chain. 181 iterator end() { return Blocks.end(); } 182 183 /// \brief Merge a block chain into this one. 184 /// 185 /// This routine merges a block chain into this one. It takes care of forming 186 /// a contiguous sequence of basic blocks, updating the edge list, and 187 /// updating the block -> chain mapping. It does not free or tear down the 188 /// old chain, but the old chain's block list is no longer valid. 189 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 190 assert(BB); 191 assert(!Blocks.empty()); 192 193 // Fast path in case we don't have a chain already. 194 if (!Chain) { 195 assert(!BlockToChain[BB]); 196 Blocks.push_back(BB); 197 BlockToChain[BB] = this; 198 return; 199 } 200 201 assert(BB == *Chain->begin()); 202 assert(Chain->begin() != Chain->end()); 203 204 // Update the incoming blocks to point to this chain, and add them to the 205 // chain structure. 206 for (MachineBasicBlock *ChainBB : *Chain) { 207 Blocks.push_back(ChainBB); 208 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 209 BlockToChain[ChainBB] = this; 210 } 211 } 212 213 #ifndef NDEBUG 214 /// \brief Dump the blocks in this chain. 215 LLVM_DUMP_METHOD void dump() { 216 for (MachineBasicBlock *MBB : *this) 217 MBB->dump(); 218 } 219 #endif // NDEBUG 220 221 /// \brief Count of predecessors of any block within the chain which have not 222 /// yet been scheduled. In general, we will delay scheduling this chain 223 /// until those predecessors are scheduled (or we find a sufficiently good 224 /// reason to override this heuristic.) Note that when forming loop chains, 225 /// blocks outside the loop are ignored and treated as if they were already 226 /// scheduled. 227 /// 228 /// Note: This field is reinitialized multiple times - once for each loop, 229 /// and then once for the function as a whole. 230 unsigned UnscheduledPredecessors; 231 }; 232 } 233 234 namespace { 235 class MachineBlockPlacement : public MachineFunctionPass { 236 /// \brief A typedef for a block filter set. 237 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 238 239 /// \brief Machine Function 240 MachineFunction *F; 241 242 /// \brief A handle to the branch probability pass. 243 const MachineBranchProbabilityInfo *MBPI; 244 245 /// \brief A handle to the function-wide block frequency pass. 246 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 247 248 /// \brief A handle to the loop info. 249 MachineLoopInfo *MLI; 250 251 /// \brief A handle to the target's instruction info. 252 const TargetInstrInfo *TII; 253 254 /// \brief A handle to the target's lowering info. 255 const TargetLoweringBase *TLI; 256 257 /// \brief A handle to the post dominator tree. 258 MachineDominatorTree *MDT; 259 260 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 261 /// all terminators of the MachineFunction. 262 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; 263 264 /// \brief Allocator and owner of BlockChain structures. 265 /// 266 /// We build BlockChains lazily while processing the loop structure of 267 /// a function. To reduce malloc traffic, we allocate them using this 268 /// slab-like allocator, and destroy them after the pass completes. An 269 /// important guarantee is that this allocator produces stable pointers to 270 /// the chains. 271 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 272 273 /// \brief Function wide BasicBlock to BlockChain mapping. 274 /// 275 /// This mapping allows efficiently moving from any given basic block to the 276 /// BlockChain it participates in, if any. We use it to, among other things, 277 /// allow implicitly defining edges between chains as the existing edges 278 /// between basic blocks. 279 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 280 281 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 282 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 283 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 284 const BlockFilterSet *BlockFilter = nullptr); 285 BranchProbability 286 collectViableSuccessors(MachineBasicBlock *BB, BlockChain &Chain, 287 const BlockFilterSet *BlockFilter, 288 SmallVector<MachineBasicBlock *, 4> &Successors); 289 bool shouldPredBlockBeOutlined(MachineBasicBlock *BB, MachineBasicBlock *Succ, 290 BlockChain &Chain, 291 const BlockFilterSet *BlockFilter, 292 BranchProbability SuccProb, 293 BranchProbability HotProb); 294 bool 295 hasBetterLayoutPredecessor(MachineBasicBlock *BB, MachineBasicBlock *Succ, 296 BlockChain &SuccChain, BranchProbability SuccProb, 297 BranchProbability RealSuccProb, BlockChain &Chain, 298 const BlockFilterSet *BlockFilter); 299 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 300 BlockChain &Chain, 301 const BlockFilterSet *BlockFilter); 302 MachineBasicBlock * 303 selectBestCandidateBlock(BlockChain &Chain, 304 SmallVectorImpl<MachineBasicBlock *> &WorkList); 305 MachineBasicBlock * 306 getFirstUnplacedBlock(const BlockChain &PlacedChain, 307 MachineFunction::iterator &PrevUnplacedBlockIt, 308 const BlockFilterSet *BlockFilter); 309 310 /// \brief Add a basic block to the work list if it is apropriate. 311 /// 312 /// If the optional parameter BlockFilter is provided, only MBB 313 /// present in the set will be added to the worklist. If nullptr 314 /// is provided, no filtering occurs. 315 void fillWorkLists(MachineBasicBlock *MBB, 316 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 317 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 318 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 319 const BlockFilterSet *BlockFilter); 320 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 321 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 322 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 323 const BlockFilterSet *BlockFilter = nullptr); 324 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 325 const BlockFilterSet &LoopBlockSet); 326 MachineBasicBlock *findBestLoopExit(MachineLoop &L, 327 const BlockFilterSet &LoopBlockSet); 328 BlockFilterSet collectLoopBlockSet(MachineLoop &L); 329 void buildLoopChains(MachineLoop &L); 330 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 331 const BlockFilterSet &LoopBlockSet); 332 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L, 333 const BlockFilterSet &LoopBlockSet); 334 void collectMustExecuteBBs(); 335 void buildCFGChains(); 336 void optimizeBranches(); 337 void alignBlocks(); 338 339 public: 340 static char ID; // Pass identification, replacement for typeid 341 MachineBlockPlacement() : MachineFunctionPass(ID) { 342 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 343 } 344 345 bool runOnMachineFunction(MachineFunction &F) override; 346 347 void getAnalysisUsage(AnalysisUsage &AU) const override { 348 AU.addRequired<MachineBranchProbabilityInfo>(); 349 AU.addRequired<MachineBlockFrequencyInfo>(); 350 AU.addRequired<MachineDominatorTree>(); 351 AU.addRequired<MachineLoopInfo>(); 352 AU.addRequired<TargetPassConfig>(); 353 MachineFunctionPass::getAnalysisUsage(AU); 354 } 355 }; 356 } 357 358 char MachineBlockPlacement::ID = 0; 359 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 360 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 361 "Branch Probability Basic Block Placement", false, false) 362 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 363 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 364 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 365 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 366 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 367 "Branch Probability Basic Block Placement", false, false) 368 369 #ifndef NDEBUG 370 /// \brief Helper to print the name of a MBB. 371 /// 372 /// Only used by debug logging. 373 static std::string getBlockName(MachineBasicBlock *BB) { 374 std::string Result; 375 raw_string_ostream OS(Result); 376 OS << "BB#" << BB->getNumber(); 377 OS << " ('" << BB->getName() << "')"; 378 OS.flush(); 379 return Result; 380 } 381 #endif 382 383 /// \brief Mark a chain's successors as having one fewer preds. 384 /// 385 /// When a chain is being merged into the "placed" chain, this routine will 386 /// quickly walk the successors of each block in the chain and mark them as 387 /// having one fewer active predecessor. It also adds any successors of this 388 /// chain which reach the zero-predecessor state to the worklist passed in. 389 void MachineBlockPlacement::markChainSuccessors( 390 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 391 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 392 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 393 const BlockFilterSet *BlockFilter) { 394 // Walk all the blocks in this chain, marking their successors as having 395 // a predecessor placed. 396 for (MachineBasicBlock *MBB : Chain) { 397 // Add any successors for which this is the only un-placed in-loop 398 // predecessor to the worklist as a viable candidate for CFG-neutral 399 // placement. No subsequent placement of this block will violate the CFG 400 // shape, so we get to use heuristics to choose a favorable placement. 401 for (MachineBasicBlock *Succ : MBB->successors()) { 402 if (BlockFilter && !BlockFilter->count(Succ)) 403 continue; 404 BlockChain &SuccChain = *BlockToChain[Succ]; 405 // Disregard edges within a fixed chain, or edges to the loop header. 406 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 407 continue; 408 409 // This is a cross-chain edge that is within the loop, so decrement the 410 // loop predecessor count of the destination chain. 411 if (SuccChain.UnscheduledPredecessors == 0 || 412 --SuccChain.UnscheduledPredecessors > 0) 413 continue; 414 415 auto *MBB = *SuccChain.begin(); 416 if (MBB->isEHPad()) 417 EHPadWorkList.push_back(MBB); 418 else 419 BlockWorkList.push_back(MBB); 420 } 421 } 422 } 423 424 /// This helper function collects the set of successors of block 425 /// \p BB that are allowed to be its layout successors, and return 426 /// the total branch probability of edges from \p BB to those 427 /// blocks. 428 BranchProbability MachineBlockPlacement::collectViableSuccessors( 429 MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter, 430 SmallVector<MachineBasicBlock *, 4> &Successors) { 431 // Adjust edge probabilities by excluding edges pointing to blocks that is 432 // either not in BlockFilter or is already in the current chain. Consider the 433 // following CFG: 434 // 435 // --->A 436 // | / \ 437 // | B C 438 // | \ / \ 439 // ----D E 440 // 441 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 442 // A->C is chosen as a fall-through, D won't be selected as a successor of C 443 // due to CFG constraint (the probability of C->D is not greater than 444 // HotProb to break top-oorder). If we exclude E that is not in BlockFilter 445 // when calculating the probability of C->D, D will be selected and we 446 // will get A C D B as the layout of this loop. 447 auto AdjustedSumProb = BranchProbability::getOne(); 448 for (MachineBasicBlock *Succ : BB->successors()) { 449 bool SkipSucc = false; 450 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 451 SkipSucc = true; 452 } else { 453 BlockChain *SuccChain = BlockToChain[Succ]; 454 if (SuccChain == &Chain) { 455 SkipSucc = true; 456 } else if (Succ != *SuccChain->begin()) { 457 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 458 continue; 459 } 460 } 461 if (SkipSucc) 462 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 463 else 464 Successors.push_back(Succ); 465 } 466 467 return AdjustedSumProb; 468 } 469 470 /// The helper function returns the branch probability that is adjusted 471 /// or normalized over the new total \p AdjustedSumProb. 472 473 static BranchProbability 474 getAdjustedProbability(BranchProbability OrigProb, 475 BranchProbability AdjustedSumProb) { 476 BranchProbability SuccProb; 477 uint32_t SuccProbN = OrigProb.getNumerator(); 478 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 479 if (SuccProbN >= SuccProbD) 480 SuccProb = BranchProbability::getOne(); 481 else 482 SuccProb = BranchProbability(SuccProbN, SuccProbD); 483 484 return SuccProb; 485 } 486 487 /// When the option OutlineOptionalBranches is on, this method 488 /// checks if the fallthrough candidate block \p Succ (of block 489 /// \p BB) also has other unscheduled predecessor blocks which 490 /// are also successors of \p BB (forming triagular shape CFG). 491 /// If none of such predecessors are small, it returns true. 492 /// The caller can choose to select \p Succ as the layout successors 493 /// so that \p Succ's predecessors (optional branches) can be 494 /// outlined. 495 /// FIXME: fold this with more general layout cost analysis. 496 bool MachineBlockPlacement::shouldPredBlockBeOutlined( 497 MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain, 498 const BlockFilterSet *BlockFilter, BranchProbability SuccProb, 499 BranchProbability HotProb) { 500 if (!OutlineOptionalBranches) 501 return false; 502 // If we outline optional branches, look whether Succ is unavoidable, i.e. 503 // dominates all terminators of the MachineFunction. If it does, other 504 // successors must be optional. Don't do this for cold branches. 505 if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) { 506 for (MachineBasicBlock *Pred : Succ->predecessors()) { 507 // Check whether there is an unplaced optional branch. 508 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 509 BlockToChain[Pred] == &Chain) 510 continue; 511 // Check whether the optional branch has exactly one BB. 512 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 513 continue; 514 // Check whether the optional branch is small. 515 if (Pred->size() < OutlineOptionalThreshold) 516 return false; 517 } 518 return true; 519 } else 520 return false; 521 } 522 523 // FIXME (PGO handling) 524 // For now this method just returns a fixed threshold. It needs to be enhanced 525 // such that BB and Succ is passed in so that CFG shapes are examined such that 526 // the threshold is computed with more precise cost model when PGO is on. 527 static BranchProbability getLayoutSuccessorProbThreshold() { 528 BranchProbability HotProb(StaticLikelyProb, 100); 529 return HotProb; 530 } 531 532 /// Checks to see if the layout candidate block \p Succ has a better layout 533 /// predecessor than \c BB. If yes, returns true. 534 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 535 MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &SuccChain, 536 BranchProbability SuccProb, BranchProbability RealSuccProb, 537 BlockChain &Chain, const BlockFilterSet *BlockFilter) { 538 539 // This is no global conflict, just return false. 540 if (SuccChain.UnscheduledPredecessors == 0) 541 return false; 542 543 // There are two basic scenarios here: 544 // ------------------------------------- 545 // Case 1: triagular shape CFG: 546 // BB 547 // | \ 548 // | \ 549 // | Pred 550 // | / 551 // Succ 552 // In this case, we are evaluating whether to select edge -> Succ, e.g. 553 // set Succ as the layout successor of BB. Picking Succ as BB's 554 // successor breaks the CFG constraints. With this layout, Pred BB 555 // is forced to be outlined, so the overall cost will be cost of the 556 // branch taken from BB to Pred, plus the cost of back taken branch 557 // from Pred to Succ, as well as the additional cost asssociated 558 // with the needed unconditional jump instruction from Pred To Succ. 559 // The cost of the topological order layout is the taken branch cost 560 // from BB to Succ, so to make BB->Succ a viable candidate, the following 561 // must hold: 562 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 563 // < freq(BB->Succ) * taken_branch_cost. 564 // Ignoring unconditional jump cost, we get 565 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 566 // prob(BB->Succ) > 2 * prob(BB->Pred) 567 // 568 // When real profile data is available, we can precisely compute the the 569 // probabililty threshold that is needed for edge BB->Succ to be considered. 570 // With out profile data, the heuristic requires the branch bias to be 571 // a lot larger to make sure the signal is very strong (e.g. 80% default). 572 // ----------------------------------------------------------------- 573 // Case 2: diamond like CFG: 574 // S 575 // / \ 576 // | \ 577 // BB Pred 578 // \ / 579 // Succ 580 // .. 581 // In this case, edge S->BB has already been selected, and we are evaluating 582 // candidate edge BB->Succ. Edge S->BB is selected because prob(S->BB) 583 // is no less than prob(S->Pred). When real profile data is *available*, if 584 // the condition is true, it will be always better to continue the trace with 585 // edge BB->Succ instead of laying out with topological order (i.e. laying 586 // Pred first). The cost of S->BB->Succ is 2 * freq (S->Pred), while with 587 // the topo order, the cost is freq(S-> Pred) + Pred(S->BB) which is larger. 588 // When profile data is not available, however, we need to be more 589 // conservative. If the branch prediction is wrong, breaking the topo-order 590 // will actually yield a layout with large cost. For this reason, we need 591 // strong biaaed branch at block S with Prob(S->BB) in order to select 592 // BB->Succ. This is equialant to looking the CFG backward with backward 593 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 594 // profile data). 595 596 BranchProbability HotProb = getLayoutSuccessorProbThreshold(); 597 598 // Forward checking. For case 2, SuccProb will be 1. 599 if (SuccProb < HotProb) { 600 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 601 << " (prob) (CFG conflict)\n"); 602 return true; 603 } 604 605 // Make sure that a hot successor doesn't have a globally more 606 // important predecessor. 607 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 608 bool BadCFGConflict = false; 609 610 for (MachineBasicBlock *Pred : Succ->predecessors()) { 611 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 612 (BlockFilter && !BlockFilter->count(Pred)) || 613 BlockToChain[Pred] == &Chain) 614 continue; 615 // Do backward checking. For case 1, it is actually redundant check. For 616 // case 2 above, we need a backward checking to filter out edges that are 617 // not 'strongly' biased. With profile data available, the check is mostly 618 // redundant too (when threshold prob is set at 50%) unless S has more than 619 // two successors. 620 // BB Pred 621 // \ / 622 // Succ 623 // We select edgee BB->Succ if 624 // freq(BB->Succ) > freq(Succ) * HotProb 625 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 626 // HotProb 627 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 628 BlockFrequency PredEdgeFreq = 629 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 630 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 631 BadCFGConflict = true; 632 break; 633 } 634 } 635 636 if (BadCFGConflict) { 637 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 638 << " (prob) (non-cold CFG conflict)\n"); 639 return true; 640 } 641 642 return false; 643 } 644 645 /// \brief Select the best successor for a block. 646 /// 647 /// This looks across all successors of a particular block and attempts to 648 /// select the "best" one to be the layout successor. It only considers direct 649 /// successors which also pass the block filter. It will attempt to avoid 650 /// breaking CFG structure, but cave and break such structures in the case of 651 /// very hot successor edges. 652 /// 653 /// \returns The best successor block found, or null if none are viable. 654 MachineBasicBlock * 655 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, 656 BlockChain &Chain, 657 const BlockFilterSet *BlockFilter) { 658 const BranchProbability HotProb(StaticLikelyProb, 100); 659 660 MachineBasicBlock *BestSucc = nullptr; 661 auto BestProb = BranchProbability::getZero(); 662 663 SmallVector<MachineBasicBlock *, 4> Successors; 664 auto AdjustedSumProb = 665 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 666 667 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 668 for (MachineBasicBlock *Succ : Successors) { 669 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 670 BranchProbability SuccProb = 671 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 672 673 // This heuristic is off by default. 674 if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb, 675 HotProb)) 676 return Succ; 677 678 BlockChain &SuccChain = *BlockToChain[Succ]; 679 // Skip the edge \c BB->Succ if block \c Succ has a better layout 680 // predecessor that yields lower global cost. 681 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 682 Chain, BlockFilter)) 683 continue; 684 685 DEBUG( 686 dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 687 << " (prob)" 688 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 689 << "\n"); 690 if (BestSucc && BestProb >= SuccProb) 691 continue; 692 BestSucc = Succ; 693 BestProb = SuccProb; 694 } 695 return BestSucc; 696 } 697 698 /// \brief Select the best block from a worklist. 699 /// 700 /// This looks through the provided worklist as a list of candidate basic 701 /// blocks and select the most profitable one to place. The definition of 702 /// profitable only really makes sense in the context of a loop. This returns 703 /// the most frequently visited block in the worklist, which in the case of 704 /// a loop, is the one most desirable to be physically close to the rest of the 705 /// loop body in order to improve icache behavior. 706 /// 707 /// \returns The best block found, or null if none are viable. 708 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 709 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 710 // Once we need to walk the worklist looking for a candidate, cleanup the 711 // worklist of already placed entries. 712 // FIXME: If this shows up on profiles, it could be folded (at the cost of 713 // some code complexity) into the loop below. 714 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 715 [&](MachineBasicBlock *BB) { 716 return BlockToChain.lookup(BB) == &Chain; 717 }), 718 WorkList.end()); 719 720 if (WorkList.empty()) 721 return nullptr; 722 723 bool IsEHPad = WorkList[0]->isEHPad(); 724 725 MachineBasicBlock *BestBlock = nullptr; 726 BlockFrequency BestFreq; 727 for (MachineBasicBlock *MBB : WorkList) { 728 assert(MBB->isEHPad() == IsEHPad); 729 730 BlockChain &SuccChain = *BlockToChain[MBB]; 731 if (&SuccChain == &Chain) 732 continue; 733 734 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); 735 736 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 737 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 738 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 739 740 // For ehpad, we layout the least probable first as to avoid jumping back 741 // from least probable landingpads to more probable ones. 742 // 743 // FIXME: Using probability is probably (!) not the best way to achieve 744 // this. We should probably have a more principled approach to layout 745 // cleanup code. 746 // 747 // The goal is to get: 748 // 749 // +--------------------------+ 750 // | V 751 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 752 // 753 // Rather than: 754 // 755 // +-------------------------------------+ 756 // V | 757 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 758 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 759 continue; 760 761 BestBlock = MBB; 762 BestFreq = CandidateFreq; 763 } 764 765 return BestBlock; 766 } 767 768 /// \brief Retrieve the first unplaced basic block. 769 /// 770 /// This routine is called when we are unable to use the CFG to walk through 771 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 772 /// We walk through the function's blocks in order, starting from the 773 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 774 /// re-scanning the entire sequence on repeated calls to this routine. 775 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 776 const BlockChain &PlacedChain, 777 MachineFunction::iterator &PrevUnplacedBlockIt, 778 const BlockFilterSet *BlockFilter) { 779 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 780 ++I) { 781 if (BlockFilter && !BlockFilter->count(&*I)) 782 continue; 783 if (BlockToChain[&*I] != &PlacedChain) { 784 PrevUnplacedBlockIt = I; 785 // Now select the head of the chain to which the unplaced block belongs 786 // as the block to place. This will force the entire chain to be placed, 787 // and satisfies the requirements of merging chains. 788 return *BlockToChain[&*I]->begin(); 789 } 790 } 791 return nullptr; 792 } 793 794 void MachineBlockPlacement::fillWorkLists( 795 MachineBasicBlock *MBB, 796 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 797 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 798 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 799 const BlockFilterSet *BlockFilter = nullptr) { 800 BlockChain &Chain = *BlockToChain[MBB]; 801 if (!UpdatedPreds.insert(&Chain).second) 802 return; 803 804 assert(Chain.UnscheduledPredecessors == 0); 805 for (MachineBasicBlock *ChainBB : Chain) { 806 assert(BlockToChain[ChainBB] == &Chain); 807 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 808 if (BlockFilter && !BlockFilter->count(Pred)) 809 continue; 810 if (BlockToChain[Pred] == &Chain) 811 continue; 812 ++Chain.UnscheduledPredecessors; 813 } 814 } 815 816 if (Chain.UnscheduledPredecessors != 0) 817 return; 818 819 MBB = *Chain.begin(); 820 if (MBB->isEHPad()) 821 EHPadWorkList.push_back(MBB); 822 else 823 BlockWorkList.push_back(MBB); 824 } 825 826 void MachineBlockPlacement::buildChain( 827 MachineBasicBlock *BB, BlockChain &Chain, 828 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 829 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 830 const BlockFilterSet *BlockFilter) { 831 assert(BB); 832 assert(BlockToChain[BB] == &Chain); 833 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 834 835 MachineBasicBlock *LoopHeaderBB = BB; 836 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, EHPadWorkList, 837 BlockFilter); 838 BB = *std::prev(Chain.end()); 839 for (;;) { 840 assert(BB); 841 assert(BlockToChain[BB] == &Chain); 842 assert(*std::prev(Chain.end()) == BB); 843 844 // Look for the best viable successor if there is one to place immediately 845 // after this block. 846 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 847 848 // If an immediate successor isn't available, look for the best viable 849 // block among those we've identified as not violating the loop's CFG at 850 // this point. This won't be a fallthrough, but it will increase locality. 851 if (!BestSucc) 852 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 853 if (!BestSucc) 854 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 855 856 if (!BestSucc) { 857 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 858 if (!BestSucc) 859 break; 860 861 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 862 "layout successor until the CFG reduces\n"); 863 } 864 865 // Place this block, updating the datastructures to reflect its placement. 866 BlockChain &SuccChain = *BlockToChain[BestSucc]; 867 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 868 // we selected a successor that didn't fit naturally into the CFG. 869 SuccChain.UnscheduledPredecessors = 0; 870 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 871 << getBlockName(BestSucc) << "\n"); 872 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, EHPadWorkList, 873 BlockFilter); 874 Chain.merge(BestSucc, &SuccChain); 875 BB = *std::prev(Chain.end()); 876 } 877 878 DEBUG(dbgs() << "Finished forming chain for header block " 879 << getBlockName(*Chain.begin()) << "\n"); 880 } 881 882 /// \brief Find the best loop top block for layout. 883 /// 884 /// Look for a block which is strictly better than the loop header for laying 885 /// out at the top of the loop. This looks for one and only one pattern: 886 /// a latch block with no conditional exit. This block will cause a conditional 887 /// jump around it or will be the bottom of the loop if we lay it out in place, 888 /// but if it it doesn't end up at the bottom of the loop for any reason, 889 /// rotation alone won't fix it. Because such a block will always result in an 890 /// unconditional jump (for the backedge) rotating it in front of the loop 891 /// header is always profitable. 892 MachineBasicBlock * 893 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 894 const BlockFilterSet &LoopBlockSet) { 895 // Check that the header hasn't been fused with a preheader block due to 896 // crazy branches. If it has, we need to start with the header at the top to 897 // prevent pulling the preheader into the loop body. 898 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 899 if (!LoopBlockSet.count(*HeaderChain.begin())) 900 return L.getHeader(); 901 902 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 903 << "\n"); 904 905 BlockFrequency BestPredFreq; 906 MachineBasicBlock *BestPred = nullptr; 907 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 908 if (!LoopBlockSet.count(Pred)) 909 continue; 910 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 911 << Pred->succ_size() << " successors, "; 912 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 913 if (Pred->succ_size() > 1) 914 continue; 915 916 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 917 if (!BestPred || PredFreq > BestPredFreq || 918 (!(PredFreq < BestPredFreq) && 919 Pred->isLayoutSuccessor(L.getHeader()))) { 920 BestPred = Pred; 921 BestPredFreq = PredFreq; 922 } 923 } 924 925 // If no direct predecessor is fine, just use the loop header. 926 if (!BestPred) { 927 DEBUG(dbgs() << " final top unchanged\n"); 928 return L.getHeader(); 929 } 930 931 // Walk backwards through any straight line of predecessors. 932 while (BestPred->pred_size() == 1 && 933 (*BestPred->pred_begin())->succ_size() == 1 && 934 *BestPred->pred_begin() != L.getHeader()) 935 BestPred = *BestPred->pred_begin(); 936 937 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 938 return BestPred; 939 } 940 941 /// \brief Find the best loop exiting block for layout. 942 /// 943 /// This routine implements the logic to analyze the loop looking for the best 944 /// block to layout at the top of the loop. Typically this is done to maximize 945 /// fallthrough opportunities. 946 MachineBasicBlock * 947 MachineBlockPlacement::findBestLoopExit(MachineLoop &L, 948 const BlockFilterSet &LoopBlockSet) { 949 // We don't want to layout the loop linearly in all cases. If the loop header 950 // is just a normal basic block in the loop, we want to look for what block 951 // within the loop is the best one to layout at the top. However, if the loop 952 // header has be pre-merged into a chain due to predecessors not having 953 // analyzable branches, *and* the predecessor it is merged with is *not* part 954 // of the loop, rotating the header into the middle of the loop will create 955 // a non-contiguous range of blocks which is Very Bad. So start with the 956 // header and only rotate if safe. 957 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 958 if (!LoopBlockSet.count(*HeaderChain.begin())) 959 return nullptr; 960 961 BlockFrequency BestExitEdgeFreq; 962 unsigned BestExitLoopDepth = 0; 963 MachineBasicBlock *ExitingBB = nullptr; 964 // If there are exits to outer loops, loop rotation can severely limit 965 // fallthrough opportunites unless it selects such an exit. Keep a set of 966 // blocks where rotating to exit with that block will reach an outer loop. 967 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 968 969 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 970 << "\n"); 971 for (MachineBasicBlock *MBB : L.getBlocks()) { 972 BlockChain &Chain = *BlockToChain[MBB]; 973 // Ensure that this block is at the end of a chain; otherwise it could be 974 // mid-way through an inner loop or a successor of an unanalyzable branch. 975 if (MBB != *std::prev(Chain.end())) 976 continue; 977 978 // Now walk the successors. We need to establish whether this has a viable 979 // exiting successor and whether it has a viable non-exiting successor. 980 // We store the old exiting state and restore it if a viable looping 981 // successor isn't found. 982 MachineBasicBlock *OldExitingBB = ExitingBB; 983 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 984 bool HasLoopingSucc = false; 985 for (MachineBasicBlock *Succ : MBB->successors()) { 986 if (Succ->isEHPad()) 987 continue; 988 if (Succ == MBB) 989 continue; 990 BlockChain &SuccChain = *BlockToChain[Succ]; 991 // Don't split chains, either this chain or the successor's chain. 992 if (&Chain == &SuccChain) { 993 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 994 << getBlockName(Succ) << " (chain conflict)\n"); 995 continue; 996 } 997 998 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 999 if (LoopBlockSet.count(Succ)) { 1000 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 1001 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 1002 HasLoopingSucc = true; 1003 continue; 1004 } 1005 1006 unsigned SuccLoopDepth = 0; 1007 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 1008 SuccLoopDepth = ExitLoop->getLoopDepth(); 1009 if (ExitLoop->contains(&L)) 1010 BlocksExitingToOuterLoop.insert(MBB); 1011 } 1012 1013 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 1014 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1015 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 1016 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 1017 // Note that we bias this toward an existing layout successor to retain 1018 // incoming order in the absence of better information. The exit must have 1019 // a frequency higher than the current exit before we consider breaking 1020 // the layout. 1021 BranchProbability Bias(100 - ExitBlockBias, 100); 1022 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 1023 ExitEdgeFreq > BestExitEdgeFreq || 1024 (MBB->isLayoutSuccessor(Succ) && 1025 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 1026 BestExitEdgeFreq = ExitEdgeFreq; 1027 ExitingBB = MBB; 1028 } 1029 } 1030 1031 if (!HasLoopingSucc) { 1032 // Restore the old exiting state, no viable looping successor was found. 1033 ExitingBB = OldExitingBB; 1034 BestExitEdgeFreq = OldBestExitEdgeFreq; 1035 } 1036 } 1037 // Without a candidate exiting block or with only a single block in the 1038 // loop, just use the loop header to layout the loop. 1039 if (!ExitingBB || L.getNumBlocks() == 1) 1040 return nullptr; 1041 1042 // Also, if we have exit blocks which lead to outer loops but didn't select 1043 // one of them as the exiting block we are rotating toward, disable loop 1044 // rotation altogether. 1045 if (!BlocksExitingToOuterLoop.empty() && 1046 !BlocksExitingToOuterLoop.count(ExitingBB)) 1047 return nullptr; 1048 1049 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 1050 return ExitingBB; 1051 } 1052 1053 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 1054 /// 1055 /// Once we have built a chain, try to rotate it to line up the hot exit block 1056 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 1057 /// branches. For example, if the loop has fallthrough into its header and out 1058 /// of its bottom already, don't rotate it. 1059 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 1060 MachineBasicBlock *ExitingBB, 1061 const BlockFilterSet &LoopBlockSet) { 1062 if (!ExitingBB) 1063 return; 1064 1065 MachineBasicBlock *Top = *LoopChain.begin(); 1066 bool ViableTopFallthrough = false; 1067 for (MachineBasicBlock *Pred : Top->predecessors()) { 1068 BlockChain *PredChain = BlockToChain[Pred]; 1069 if (!LoopBlockSet.count(Pred) && 1070 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1071 ViableTopFallthrough = true; 1072 break; 1073 } 1074 } 1075 1076 // If the header has viable fallthrough, check whether the current loop 1077 // bottom is a viable exiting block. If so, bail out as rotating will 1078 // introduce an unnecessary branch. 1079 if (ViableTopFallthrough) { 1080 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 1081 for (MachineBasicBlock *Succ : Bottom->successors()) { 1082 BlockChain *SuccChain = BlockToChain[Succ]; 1083 if (!LoopBlockSet.count(Succ) && 1084 (!SuccChain || Succ == *SuccChain->begin())) 1085 return; 1086 } 1087 } 1088 1089 BlockChain::iterator ExitIt = 1090 std::find(LoopChain.begin(), LoopChain.end(), ExitingBB); 1091 if (ExitIt == LoopChain.end()) 1092 return; 1093 1094 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 1095 } 1096 1097 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 1098 /// 1099 /// With profile data, we can determine the cost in terms of missed fall through 1100 /// opportunities when rotating a loop chain and select the best rotation. 1101 /// Basically, there are three kinds of cost to consider for each rotation: 1102 /// 1. The possibly missed fall through edge (if it exists) from BB out of 1103 /// the loop to the loop header. 1104 /// 2. The possibly missed fall through edges (if they exist) from the loop 1105 /// exits to BB out of the loop. 1106 /// 3. The missed fall through edge (if it exists) from the last BB to the 1107 /// first BB in the loop chain. 1108 /// Therefore, the cost for a given rotation is the sum of costs listed above. 1109 /// We select the best rotation with the smallest cost. 1110 void MachineBlockPlacement::rotateLoopWithProfile( 1111 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) { 1112 auto HeaderBB = L.getHeader(); 1113 auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB); 1114 auto RotationPos = LoopChain.end(); 1115 1116 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 1117 1118 // A utility lambda that scales up a block frequency by dividing it by a 1119 // branch probability which is the reciprocal of the scale. 1120 auto ScaleBlockFrequency = [](BlockFrequency Freq, 1121 unsigned Scale) -> BlockFrequency { 1122 if (Scale == 0) 1123 return 0; 1124 // Use operator / between BlockFrequency and BranchProbability to implement 1125 // saturating multiplication. 1126 return Freq / BranchProbability(1, Scale); 1127 }; 1128 1129 // Compute the cost of the missed fall-through edge to the loop header if the 1130 // chain head is not the loop header. As we only consider natural loops with 1131 // single header, this computation can be done only once. 1132 BlockFrequency HeaderFallThroughCost(0); 1133 for (auto *Pred : HeaderBB->predecessors()) { 1134 BlockChain *PredChain = BlockToChain[Pred]; 1135 if (!LoopBlockSet.count(Pred) && 1136 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1137 auto EdgeFreq = 1138 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 1139 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 1140 // If the predecessor has only an unconditional jump to the header, we 1141 // need to consider the cost of this jump. 1142 if (Pred->succ_size() == 1) 1143 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 1144 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 1145 } 1146 } 1147 1148 // Here we collect all exit blocks in the loop, and for each exit we find out 1149 // its hottest exit edge. For each loop rotation, we define the loop exit cost 1150 // as the sum of frequencies of exit edges we collect here, excluding the exit 1151 // edge from the tail of the loop chain. 1152 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 1153 for (auto BB : LoopChain) { 1154 auto LargestExitEdgeProb = BranchProbability::getZero(); 1155 for (auto *Succ : BB->successors()) { 1156 BlockChain *SuccChain = BlockToChain[Succ]; 1157 if (!LoopBlockSet.count(Succ) && 1158 (!SuccChain || Succ == *SuccChain->begin())) { 1159 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 1160 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 1161 } 1162 } 1163 if (LargestExitEdgeProb > BranchProbability::getZero()) { 1164 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 1165 ExitsWithFreq.emplace_back(BB, ExitFreq); 1166 } 1167 } 1168 1169 // In this loop we iterate every block in the loop chain and calculate the 1170 // cost assuming the block is the head of the loop chain. When the loop ends, 1171 // we should have found the best candidate as the loop chain's head. 1172 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 1173 EndIter = LoopChain.end(); 1174 Iter != EndIter; Iter++, TailIter++) { 1175 // TailIter is used to track the tail of the loop chain if the block we are 1176 // checking (pointed by Iter) is the head of the chain. 1177 if (TailIter == LoopChain.end()) 1178 TailIter = LoopChain.begin(); 1179 1180 auto TailBB = *TailIter; 1181 1182 // Calculate the cost by putting this BB to the top. 1183 BlockFrequency Cost = 0; 1184 1185 // If the current BB is the loop header, we need to take into account the 1186 // cost of the missed fall through edge from outside of the loop to the 1187 // header. 1188 if (Iter != HeaderIter) 1189 Cost += HeaderFallThroughCost; 1190 1191 // Collect the loop exit cost by summing up frequencies of all exit edges 1192 // except the one from the chain tail. 1193 for (auto &ExitWithFreq : ExitsWithFreq) 1194 if (TailBB != ExitWithFreq.first) 1195 Cost += ExitWithFreq.second; 1196 1197 // The cost of breaking the once fall-through edge from the tail to the top 1198 // of the loop chain. Here we need to consider three cases: 1199 // 1. If the tail node has only one successor, then we will get an 1200 // additional jmp instruction. So the cost here is (MisfetchCost + 1201 // JumpInstCost) * tail node frequency. 1202 // 2. If the tail node has two successors, then we may still get an 1203 // additional jmp instruction if the layout successor after the loop 1204 // chain is not its CFG successor. Note that the more frequently executed 1205 // jmp instruction will be put ahead of the other one. Assume the 1206 // frequency of those two branches are x and y, where x is the frequency 1207 // of the edge to the chain head, then the cost will be 1208 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 1209 // 3. If the tail node has more than two successors (this rarely happens), 1210 // we won't consider any additional cost. 1211 if (TailBB->isSuccessor(*Iter)) { 1212 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 1213 if (TailBB->succ_size() == 1) 1214 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 1215 MisfetchCost + JumpInstCost); 1216 else if (TailBB->succ_size() == 2) { 1217 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 1218 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 1219 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 1220 ? TailBBFreq * TailToHeadProb.getCompl() 1221 : TailToHeadFreq; 1222 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 1223 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 1224 } 1225 } 1226 1227 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 1228 << " to the top: " << Cost.getFrequency() << "\n"); 1229 1230 if (Cost < SmallestRotationCost) { 1231 SmallestRotationCost = Cost; 1232 RotationPos = Iter; 1233 } 1234 } 1235 1236 if (RotationPos != LoopChain.end()) { 1237 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 1238 << " to the top\n"); 1239 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 1240 } 1241 } 1242 1243 /// \brief Collect blocks in the given loop that are to be placed. 1244 /// 1245 /// When profile data is available, exclude cold blocks from the returned set; 1246 /// otherwise, collect all blocks in the loop. 1247 MachineBlockPlacement::BlockFilterSet 1248 MachineBlockPlacement::collectLoopBlockSet(MachineLoop &L) { 1249 BlockFilterSet LoopBlockSet; 1250 1251 // Filter cold blocks off from LoopBlockSet when profile data is available. 1252 // Collect the sum of frequencies of incoming edges to the loop header from 1253 // outside. If we treat the loop as a super block, this is the frequency of 1254 // the loop. Then for each block in the loop, we calculate the ratio between 1255 // its frequency and the frequency of the loop block. When it is too small, 1256 // don't add it to the loop chain. If there are outer loops, then this block 1257 // will be merged into the first outer loop chain for which this block is not 1258 // cold anymore. This needs precise profile data and we only do this when 1259 // profile data is available. 1260 if (F->getFunction()->getEntryCount()) { 1261 BlockFrequency LoopFreq(0); 1262 for (auto LoopPred : L.getHeader()->predecessors()) 1263 if (!L.contains(LoopPred)) 1264 LoopFreq += MBFI->getBlockFreq(LoopPred) * 1265 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 1266 1267 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 1268 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 1269 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 1270 continue; 1271 LoopBlockSet.insert(LoopBB); 1272 } 1273 } else 1274 LoopBlockSet.insert(L.block_begin(), L.block_end()); 1275 1276 return LoopBlockSet; 1277 } 1278 1279 /// \brief Forms basic block chains from the natural loop structures. 1280 /// 1281 /// These chains are designed to preserve the existing *structure* of the code 1282 /// as much as possible. We can then stitch the chains together in a way which 1283 /// both preserves the topological structure and minimizes taken conditional 1284 /// branches. 1285 void MachineBlockPlacement::buildLoopChains(MachineLoop &L) { 1286 // First recurse through any nested loops, building chains for those inner 1287 // loops. 1288 for (MachineLoop *InnerLoop : L) 1289 buildLoopChains(*InnerLoop); 1290 1291 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1292 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 1293 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 1294 1295 // Check if we have profile data for this function. If yes, we will rotate 1296 // this loop by modeling costs more precisely which requires the profile data 1297 // for better layout. 1298 bool RotateLoopWithProfile = 1299 ForcePreciseRotationCost || 1300 (PreciseRotationCost && F->getFunction()->getEntryCount()); 1301 1302 // First check to see if there is an obviously preferable top block for the 1303 // loop. This will default to the header, but may end up as one of the 1304 // predecessors to the header if there is one which will result in strictly 1305 // fewer branches in the loop body. 1306 // When we use profile data to rotate the loop, this is unnecessary. 1307 MachineBasicBlock *LoopTop = 1308 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 1309 1310 // If we selected just the header for the loop top, look for a potentially 1311 // profitable exit block in the event that rotating the loop can eliminate 1312 // branches by placing an exit edge at the bottom. 1313 MachineBasicBlock *ExitingBB = nullptr; 1314 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 1315 ExitingBB = findBestLoopExit(L, LoopBlockSet); 1316 1317 BlockChain &LoopChain = *BlockToChain[LoopTop]; 1318 1319 // FIXME: This is a really lame way of walking the chains in the loop: we 1320 // walk the blocks, and use a set to prevent visiting a particular chain 1321 // twice. 1322 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1323 assert(LoopChain.UnscheduledPredecessors == 0); 1324 UpdatedPreds.insert(&LoopChain); 1325 1326 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1327 fillWorkLists(LoopBB, UpdatedPreds, BlockWorkList, EHPadWorkList, 1328 &LoopBlockSet); 1329 1330 buildChain(LoopTop, LoopChain, BlockWorkList, EHPadWorkList, &LoopBlockSet); 1331 1332 if (RotateLoopWithProfile) 1333 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 1334 else 1335 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 1336 1337 DEBUG({ 1338 // Crash at the end so we get all of the debugging output first. 1339 bool BadLoop = false; 1340 if (LoopChain.UnscheduledPredecessors) { 1341 BadLoop = true; 1342 dbgs() << "Loop chain contains a block without its preds placed!\n" 1343 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1344 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 1345 } 1346 for (MachineBasicBlock *ChainBB : LoopChain) { 1347 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 1348 if (!LoopBlockSet.erase(ChainBB)) { 1349 // We don't mark the loop as bad here because there are real situations 1350 // where this can occur. For example, with an unanalyzable fallthrough 1351 // from a loop block to a non-loop block or vice versa. 1352 dbgs() << "Loop chain contains a block not contained by the loop!\n" 1353 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1354 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1355 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1356 } 1357 } 1358 1359 if (!LoopBlockSet.empty()) { 1360 BadLoop = true; 1361 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1362 dbgs() << "Loop contains blocks never placed into a chain!\n" 1363 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1364 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1365 << " Bad block: " << getBlockName(LoopBB) << "\n"; 1366 } 1367 assert(!BadLoop && "Detected problems with the placement of this loop."); 1368 }); 1369 } 1370 1371 /// When OutlineOpitonalBranches is on, this method colects BBs that 1372 /// dominates all terminator blocks of the function \p F. 1373 void MachineBlockPlacement::collectMustExecuteBBs() { 1374 if (OutlineOptionalBranches) { 1375 // Find the nearest common dominator of all of F's terminators. 1376 MachineBasicBlock *Terminator = nullptr; 1377 for (MachineBasicBlock &MBB : *F) { 1378 if (MBB.succ_size() == 0) { 1379 if (Terminator == nullptr) 1380 Terminator = &MBB; 1381 else 1382 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 1383 } 1384 } 1385 1386 // MBBs dominating this common dominator are unavoidable. 1387 UnavoidableBlocks.clear(); 1388 for (MachineBasicBlock &MBB : *F) { 1389 if (MDT->dominates(&MBB, Terminator)) { 1390 UnavoidableBlocks.insert(&MBB); 1391 } 1392 } 1393 } 1394 } 1395 1396 void MachineBlockPlacement::buildCFGChains() { 1397 // Ensure that every BB in the function has an associated chain to simplify 1398 // the assumptions of the remaining algorithm. 1399 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1400 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 1401 ++FI) { 1402 MachineBasicBlock *BB = &*FI; 1403 BlockChain *Chain = 1404 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 1405 // Also, merge any blocks which we cannot reason about and must preserve 1406 // the exact fallthrough behavior for. 1407 for (;;) { 1408 Cond.clear(); 1409 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1410 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 1411 break; 1412 1413 MachineFunction::iterator NextFI = std::next(FI); 1414 MachineBasicBlock *NextBB = &*NextFI; 1415 // Ensure that the layout successor is a viable block, as we know that 1416 // fallthrough is a possibility. 1417 assert(NextFI != FE && "Can't fallthrough past the last block."); 1418 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 1419 << getBlockName(BB) << " -> " << getBlockName(NextBB) 1420 << "\n"); 1421 Chain->merge(NextBB, nullptr); 1422 FI = NextFI; 1423 BB = NextBB; 1424 } 1425 } 1426 1427 // Turned on with OutlineOptionalBranches option 1428 collectMustExecuteBBs(); 1429 1430 // Build any loop-based chains. 1431 for (MachineLoop *L : *MLI) 1432 buildLoopChains(*L); 1433 1434 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1435 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 1436 1437 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1438 for (MachineBasicBlock &MBB : *F) 1439 fillWorkLists(&MBB, UpdatedPreds, BlockWorkList, EHPadWorkList); 1440 1441 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 1442 buildChain(&F->front(), FunctionChain, BlockWorkList, EHPadWorkList); 1443 1444 #ifndef NDEBUG 1445 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 1446 #endif 1447 DEBUG({ 1448 // Crash at the end so we get all of the debugging output first. 1449 bool BadFunc = false; 1450 FunctionBlockSetType FunctionBlockSet; 1451 for (MachineBasicBlock &MBB : *F) 1452 FunctionBlockSet.insert(&MBB); 1453 1454 for (MachineBasicBlock *ChainBB : FunctionChain) 1455 if (!FunctionBlockSet.erase(ChainBB)) { 1456 BadFunc = true; 1457 dbgs() << "Function chain contains a block not in the function!\n" 1458 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1459 } 1460 1461 if (!FunctionBlockSet.empty()) { 1462 BadFunc = true; 1463 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 1464 dbgs() << "Function contains blocks never placed into a chain!\n" 1465 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 1466 } 1467 assert(!BadFunc && "Detected problems with the block placement."); 1468 }); 1469 1470 // Splice the blocks into place. 1471 MachineFunction::iterator InsertPos = F->begin(); 1472 for (MachineBasicBlock *ChainBB : FunctionChain) { 1473 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 1474 : " ... ") 1475 << getBlockName(ChainBB) << "\n"); 1476 if (InsertPos != MachineFunction::iterator(ChainBB)) 1477 F->splice(InsertPos, ChainBB); 1478 else 1479 ++InsertPos; 1480 1481 // Update the terminator of the previous block. 1482 if (ChainBB == *FunctionChain.begin()) 1483 continue; 1484 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 1485 1486 // FIXME: It would be awesome of updateTerminator would just return rather 1487 // than assert when the branch cannot be analyzed in order to remove this 1488 // boiler plate. 1489 Cond.clear(); 1490 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1491 1492 // The "PrevBB" is not yet updated to reflect current code layout, so, 1493 // o. it may fall-through to a block without explict "goto" instruction 1494 // before layout, and no longer fall-through it after layout; or 1495 // o. just opposite. 1496 // 1497 // AnalyzeBranch() may return erroneous value for FBB when these two 1498 // situations take place. For the first scenario FBB is mistakenly set NULL; 1499 // for the 2nd scenario, the FBB, which is expected to be NULL, is 1500 // mistakenly pointing to "*BI". 1501 // Thus, if the future change needs to use FBB before the layout is set, it 1502 // has to correct FBB first by using the code similar to the following: 1503 // 1504 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 1505 // PrevBB->updateTerminator(); 1506 // Cond.clear(); 1507 // TBB = FBB = nullptr; 1508 // if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1509 // // FIXME: This should never take place. 1510 // TBB = FBB = nullptr; 1511 // } 1512 // } 1513 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) 1514 PrevBB->updateTerminator(); 1515 } 1516 1517 // Fixup the last block. 1518 Cond.clear(); 1519 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1520 if (!TII->AnalyzeBranch(F->back(), TBB, FBB, Cond)) 1521 F->back().updateTerminator(); 1522 } 1523 1524 void MachineBlockPlacement::optimizeBranches() { 1525 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 1526 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1527 1528 // Now that all the basic blocks in the chain have the proper layout, 1529 // make a final call to AnalyzeBranch with AllowModify set. 1530 // Indeed, the target may be able to optimize the branches in a way we 1531 // cannot because all branches may not be analyzable. 1532 // E.g., the target may be able to remove an unconditional branch to 1533 // a fallthrough when it occurs after predicated terminators. 1534 for (MachineBasicBlock *ChainBB : FunctionChain) { 1535 Cond.clear(); 1536 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1537 if (!TII->AnalyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 1538 // If PrevBB has a two-way branch, try to re-order the branches 1539 // such that we branch to the successor with higher probability first. 1540 if (TBB && !Cond.empty() && FBB && 1541 MBPI->getEdgeProbability(ChainBB, FBB) > 1542 MBPI->getEdgeProbability(ChainBB, TBB) && 1543 !TII->ReverseBranchCondition(Cond)) { 1544 DEBUG(dbgs() << "Reverse order of the two branches: " 1545 << getBlockName(ChainBB) << "\n"); 1546 DEBUG(dbgs() << " Edge probability: " 1547 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 1548 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 1549 DebugLoc dl; // FIXME: this is nowhere 1550 TII->RemoveBranch(*ChainBB); 1551 TII->InsertBranch(*ChainBB, FBB, TBB, Cond, dl); 1552 ChainBB->updateTerminator(); 1553 } 1554 } 1555 } 1556 } 1557 1558 void MachineBlockPlacement::alignBlocks() { 1559 // Walk through the backedges of the function now that we have fully laid out 1560 // the basic blocks and align the destination of each backedge. We don't rely 1561 // exclusively on the loop info here so that we can align backedges in 1562 // unnatural CFGs and backedges that were introduced purely because of the 1563 // loop rotations done during this layout pass. 1564 if (F->getFunction()->optForSize()) 1565 return; 1566 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 1567 if (FunctionChain.begin() == FunctionChain.end()) 1568 return; // Empty chain. 1569 1570 const BranchProbability ColdProb(1, 5); // 20% 1571 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 1572 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1573 for (MachineBasicBlock *ChainBB : FunctionChain) { 1574 if (ChainBB == *FunctionChain.begin()) 1575 continue; 1576 1577 // Don't align non-looping basic blocks. These are unlikely to execute 1578 // enough times to matter in practice. Note that we'll still handle 1579 // unnatural CFGs inside of a natural outer loop (the common case) and 1580 // rotated loops. 1581 MachineLoop *L = MLI->getLoopFor(ChainBB); 1582 if (!L) 1583 continue; 1584 1585 unsigned Align = TLI->getPrefLoopAlignment(L); 1586 if (!Align) 1587 continue; // Don't care about loop alignment. 1588 1589 // If the block is cold relative to the function entry don't waste space 1590 // aligning it. 1591 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 1592 if (Freq < WeightedEntryFreq) 1593 continue; 1594 1595 // If the block is cold relative to its loop header, don't align it 1596 // regardless of what edges into the block exist. 1597 MachineBasicBlock *LoopHeader = L->getHeader(); 1598 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1599 if (Freq < (LoopHeaderFreq * ColdProb)) 1600 continue; 1601 1602 // Check for the existence of a non-layout predecessor which would benefit 1603 // from aligning this block. 1604 MachineBasicBlock *LayoutPred = 1605 &*std::prev(MachineFunction::iterator(ChainBB)); 1606 1607 // Force alignment if all the predecessors are jumps. We already checked 1608 // that the block isn't cold above. 1609 if (!LayoutPred->isSuccessor(ChainBB)) { 1610 ChainBB->setAlignment(Align); 1611 continue; 1612 } 1613 1614 // Align this block if the layout predecessor's edge into this block is 1615 // cold relative to the block. When this is true, other predecessors make up 1616 // all of the hot entries into the block and thus alignment is likely to be 1617 // important. 1618 BranchProbability LayoutProb = 1619 MBPI->getEdgeProbability(LayoutPred, ChainBB); 1620 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1621 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1622 ChainBB->setAlignment(Align); 1623 } 1624 } 1625 1626 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 1627 if (skipFunction(*MF.getFunction())) 1628 return false; 1629 1630 // Check for single-block functions and skip them. 1631 if (std::next(MF.begin()) == MF.end()) 1632 return false; 1633 1634 F = &MF; 1635 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1636 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 1637 getAnalysis<MachineBlockFrequencyInfo>()); 1638 MLI = &getAnalysis<MachineLoopInfo>(); 1639 TII = MF.getSubtarget().getInstrInfo(); 1640 TLI = MF.getSubtarget().getTargetLowering(); 1641 MDT = &getAnalysis<MachineDominatorTree>(); 1642 assert(BlockToChain.empty()); 1643 1644 buildCFGChains(); 1645 1646 // Changing the layout can create new tail merging opportunities. 1647 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 1648 // TailMerge can create jump into if branches that make CFG irreducible for 1649 // HW that requires structurized CFG. 1650 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 1651 PassConfig->getEnableTailMerge() && 1652 BranchFoldPlacement; 1653 // No tail merging opportunities if the block number is less than four. 1654 if (MF.size() > 3 && EnableTailMerge) { 1655 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 1656 *MBPI); 1657 1658 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 1659 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 1660 /*AfterBlockPlacement=*/true)) { 1661 // Redo the layout if tail merging creates/removes/moves blocks. 1662 BlockToChain.clear(); 1663 ChainAllocator.DestroyAll(); 1664 buildCFGChains(); 1665 } 1666 } 1667 1668 optimizeBranches(); 1669 alignBlocks(); 1670 1671 BlockToChain.clear(); 1672 ChainAllocator.DestroyAll(); 1673 1674 if (AlignAllBlock) 1675 // Align all of the blocks in the function to a specific alignment. 1676 for (MachineBasicBlock &MBB : MF) 1677 MBB.setAlignment(AlignAllBlock); 1678 else if (AlignAllNonFallThruBlocks) { 1679 // Align all of the blocks that have no fall-through predecessors to a 1680 // specific alignment. 1681 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 1682 auto LayoutPred = std::prev(MBI); 1683 if (!LayoutPred->isSuccessor(&*MBI)) 1684 MBI->setAlignment(AlignAllNonFallThruBlocks); 1685 } 1686 } 1687 1688 // We always return true as we have no way to track whether the final order 1689 // differs from the original order. 1690 return true; 1691 } 1692 1693 namespace { 1694 /// \brief A pass to compute block placement statistics. 1695 /// 1696 /// A separate pass to compute interesting statistics for evaluating block 1697 /// placement. This is separate from the actual placement pass so that they can 1698 /// be computed in the absence of any placement transformations or when using 1699 /// alternative placement strategies. 1700 class MachineBlockPlacementStats : public MachineFunctionPass { 1701 /// \brief A handle to the branch probability pass. 1702 const MachineBranchProbabilityInfo *MBPI; 1703 1704 /// \brief A handle to the function-wide block frequency pass. 1705 const MachineBlockFrequencyInfo *MBFI; 1706 1707 public: 1708 static char ID; // Pass identification, replacement for typeid 1709 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1710 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1711 } 1712 1713 bool runOnMachineFunction(MachineFunction &F) override; 1714 1715 void getAnalysisUsage(AnalysisUsage &AU) const override { 1716 AU.addRequired<MachineBranchProbabilityInfo>(); 1717 AU.addRequired<MachineBlockFrequencyInfo>(); 1718 AU.setPreservesAll(); 1719 MachineFunctionPass::getAnalysisUsage(AU); 1720 } 1721 }; 1722 } 1723 1724 char MachineBlockPlacementStats::ID = 0; 1725 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1726 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1727 "Basic Block Placement Stats", false, false) 1728 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1729 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1730 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1731 "Basic Block Placement Stats", false, false) 1732 1733 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1734 // Check for single-block functions and skip them. 1735 if (std::next(F.begin()) == F.end()) 1736 return false; 1737 1738 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1739 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1740 1741 for (MachineBasicBlock &MBB : F) { 1742 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 1743 Statistic &NumBranches = 1744 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 1745 Statistic &BranchTakenFreq = 1746 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 1747 for (MachineBasicBlock *Succ : MBB.successors()) { 1748 // Skip if this successor is a fallthrough. 1749 if (MBB.isLayoutSuccessor(Succ)) 1750 continue; 1751 1752 BlockFrequency EdgeFreq = 1753 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 1754 ++NumBranches; 1755 BranchTakenFreq += EdgeFreq.getFrequency(); 1756 } 1757 } 1758 1759 return false; 1760 } 1761