1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "BranchFolding.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
37 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
38 #include "llvm/CodeGen/MachineDominators.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/TailDuplicator.h"
44 #include "llvm/Support/Allocator.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetInstrInfo.h"
49 #include "llvm/Target/TargetLowering.h"
50 #include "llvm/Target/TargetSubtargetInfo.h"
51 #include <algorithm>
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "block-placement"
55 
56 STATISTIC(NumCondBranches, "Number of conditional branches");
57 STATISTIC(NumUncondBranches, "Number of unconditional branches");
58 STATISTIC(CondBranchTakenFreq,
59           "Potential frequency of taking conditional branches");
60 STATISTIC(UncondBranchTakenFreq,
61           "Potential frequency of taking unconditional branches");
62 
63 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
64                                        cl::desc("Force the alignment of all "
65                                                 "blocks in the function."),
66                                        cl::init(0), cl::Hidden);
67 
68 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
69     "align-all-nofallthru-blocks",
70     cl::desc("Force the alignment of all "
71              "blocks that have no fall-through predecessors (i.e. don't add "
72              "nops that are executed)."),
73     cl::init(0), cl::Hidden);
74 
75 // FIXME: Find a good default for this flag and remove the flag.
76 static cl::opt<unsigned> ExitBlockBias(
77     "block-placement-exit-block-bias",
78     cl::desc("Block frequency percentage a loop exit block needs "
79              "over the original exit to be considered the new exit."),
80     cl::init(0), cl::Hidden);
81 
82 // Definition:
83 // - Outlining: placement of a basic block outside the chain or hot path.
84 
85 static cl::opt<bool> OutlineOptionalBranches(
86     "outline-optional-branches",
87     cl::desc("Outlining optional branches will place blocks that are optional "
88               "branches, i.e. branches with a common post dominator, outside "
89               "the hot path or chain"),
90     cl::init(false), cl::Hidden);
91 
92 static cl::opt<unsigned> OutlineOptionalThreshold(
93     "outline-optional-threshold",
94     cl::desc("Don't outline optional branches that are a single block with an "
95              "instruction count below this threshold"),
96     cl::init(4), cl::Hidden);
97 
98 static cl::opt<unsigned> LoopToColdBlockRatio(
99     "loop-to-cold-block-ratio",
100     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
101              "(frequency of block) is greater than this ratio"),
102     cl::init(5), cl::Hidden);
103 
104 static cl::opt<bool>
105     PreciseRotationCost("precise-rotation-cost",
106                         cl::desc("Model the cost of loop rotation more "
107                                  "precisely by using profile data."),
108                         cl::init(false), cl::Hidden);
109 static cl::opt<bool>
110     ForcePreciseRotationCost("force-precise-rotation-cost",
111                              cl::desc("Force the use of precise cost "
112                                       "loop rotation strategy."),
113                              cl::init(false), cl::Hidden);
114 
115 static cl::opt<unsigned> MisfetchCost(
116     "misfetch-cost",
117     cl::desc("Cost that models the probabilistic risk of an instruction "
118              "misfetch due to a jump comparing to falling through, whose cost "
119              "is zero."),
120     cl::init(1), cl::Hidden);
121 
122 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
123                                       cl::desc("Cost of jump instructions."),
124                                       cl::init(1), cl::Hidden);
125 static cl::opt<bool>
126 TailDupPlacement("tail-dup-placement",
127               cl::desc("Perform tail duplication during placement. "
128                        "Creates more fallthrough opportunites in "
129                        "outline branches."),
130               cl::init(true), cl::Hidden);
131 
132 static cl::opt<bool>
133 BranchFoldPlacement("branch-fold-placement",
134               cl::desc("Perform branch folding during placement. "
135                        "Reduces code size."),
136               cl::init(true), cl::Hidden);
137 
138 // Heuristic for tail duplication.
139 static cl::opt<unsigned> TailDuplicatePlacementThreshold(
140     "tail-dup-placement-threshold",
141     cl::desc("Instruction cutoff for tail duplication during layout. "
142              "Tail merging during layout is forced to have a threshold "
143              "that won't conflict."), cl::init(2),
144     cl::Hidden);
145 
146 extern cl::opt<unsigned> StaticLikelyProb;
147 extern cl::opt<unsigned> ProfileLikelyProb;
148 
149 namespace {
150 class BlockChain;
151 /// \brief Type for our function-wide basic block -> block chain mapping.
152 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
153 }
154 
155 namespace {
156 /// \brief A chain of blocks which will be laid out contiguously.
157 ///
158 /// This is the datastructure representing a chain of consecutive blocks that
159 /// are profitable to layout together in order to maximize fallthrough
160 /// probabilities and code locality. We also can use a block chain to represent
161 /// a sequence of basic blocks which have some external (correctness)
162 /// requirement for sequential layout.
163 ///
164 /// Chains can be built around a single basic block and can be merged to grow
165 /// them. They participate in a block-to-chain mapping, which is updated
166 /// automatically as chains are merged together.
167 class BlockChain {
168   /// \brief The sequence of blocks belonging to this chain.
169   ///
170   /// This is the sequence of blocks for a particular chain. These will be laid
171   /// out in-order within the function.
172   SmallVector<MachineBasicBlock *, 4> Blocks;
173 
174   /// \brief A handle to the function-wide basic block to block chain mapping.
175   ///
176   /// This is retained in each block chain to simplify the computation of child
177   /// block chains for SCC-formation and iteration. We store the edges to child
178   /// basic blocks, and map them back to their associated chains using this
179   /// structure.
180   BlockToChainMapType &BlockToChain;
181 
182 public:
183   /// \brief Construct a new BlockChain.
184   ///
185   /// This builds a new block chain representing a single basic block in the
186   /// function. It also registers itself as the chain that block participates
187   /// in with the BlockToChain mapping.
188   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
189       : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) {
190     assert(BB && "Cannot create a chain with a null basic block");
191     BlockToChain[BB] = this;
192   }
193 
194   /// \brief Iterator over blocks within the chain.
195   typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
196 
197   /// \brief Beginning of blocks within the chain.
198   iterator begin() { return Blocks.begin(); }
199 
200   /// \brief End of blocks within the chain.
201   iterator end() { return Blocks.end(); }
202 
203   bool remove(MachineBasicBlock* BB) {
204     for(iterator i = begin(); i != end(); ++i) {
205       if (*i == BB) {
206         Blocks.erase(i);
207         return true;
208       }
209     }
210     return false;
211   }
212 
213   /// \brief Merge a block chain into this one.
214   ///
215   /// This routine merges a block chain into this one. It takes care of forming
216   /// a contiguous sequence of basic blocks, updating the edge list, and
217   /// updating the block -> chain mapping. It does not free or tear down the
218   /// old chain, but the old chain's block list is no longer valid.
219   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
220     assert(BB);
221     assert(!Blocks.empty());
222 
223     // Fast path in case we don't have a chain already.
224     if (!Chain) {
225       assert(!BlockToChain[BB]);
226       Blocks.push_back(BB);
227       BlockToChain[BB] = this;
228       return;
229     }
230 
231     assert(BB == *Chain->begin());
232     assert(Chain->begin() != Chain->end());
233 
234     // Update the incoming blocks to point to this chain, and add them to the
235     // chain structure.
236     for (MachineBasicBlock *ChainBB : *Chain) {
237       Blocks.push_back(ChainBB);
238       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
239       BlockToChain[ChainBB] = this;
240     }
241   }
242 
243 #ifndef NDEBUG
244   /// \brief Dump the blocks in this chain.
245   LLVM_DUMP_METHOD void dump() {
246     for (MachineBasicBlock *MBB : *this)
247       MBB->dump();
248   }
249 #endif // NDEBUG
250 
251   /// \brief Count of predecessors of any block within the chain which have not
252   /// yet been scheduled.  In general, we will delay scheduling this chain
253   /// until those predecessors are scheduled (or we find a sufficiently good
254   /// reason to override this heuristic.)  Note that when forming loop chains,
255   /// blocks outside the loop are ignored and treated as if they were already
256   /// scheduled.
257   ///
258   /// Note: This field is reinitialized multiple times - once for each loop,
259   /// and then once for the function as a whole.
260   unsigned UnscheduledPredecessors;
261 };
262 }
263 
264 namespace {
265 class MachineBlockPlacement : public MachineFunctionPass {
266   /// \brief A typedef for a block filter set.
267   typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
268 
269   /// \brief work lists of blocks that are ready to be laid out
270   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
271   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
272 
273   /// \brief Machine Function
274   MachineFunction *F;
275 
276   /// \brief A handle to the branch probability pass.
277   const MachineBranchProbabilityInfo *MBPI;
278 
279   /// \brief A handle to the function-wide block frequency pass.
280   std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
281 
282   /// \brief A handle to the loop info.
283   MachineLoopInfo *MLI;
284 
285   /// \brief A handle to the target's instruction info.
286   const TargetInstrInfo *TII;
287 
288   /// \brief A handle to the target's lowering info.
289   const TargetLoweringBase *TLI;
290 
291   /// \brief A handle to the post dominator tree.
292   MachineDominatorTree *MDT;
293 
294   /// \brief Duplicator used to duplicate tails during placement.
295   ///
296   /// Placement decisions can open up new tail duplication opportunities, but
297   /// since tail duplication affects placement decisions of later blocks, it
298   /// must be done inline.
299   TailDuplicator TailDup;
300 
301   /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
302   /// all terminators of the MachineFunction.
303   SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
304 
305   /// \brief Allocator and owner of BlockChain structures.
306   ///
307   /// We build BlockChains lazily while processing the loop structure of
308   /// a function. To reduce malloc traffic, we allocate them using this
309   /// slab-like allocator, and destroy them after the pass completes. An
310   /// important guarantee is that this allocator produces stable pointers to
311   /// the chains.
312   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
313 
314   /// \brief Function wide BasicBlock to BlockChain mapping.
315   ///
316   /// This mapping allows efficiently moving from any given basic block to the
317   /// BlockChain it participates in, if any. We use it to, among other things,
318   /// allow implicitly defining edges between chains as the existing edges
319   /// between basic blocks.
320   DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
321 
322   /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
323   /// if the count goes to 0, add them to the appropriate work list.
324   void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
325                            const BlockFilterSet *BlockFilter = nullptr);
326 
327   /// Decrease the UnscheduledPredecessors count for a single block, and
328   /// if the count goes to 0, add them to the appropriate work list.
329   void markBlockSuccessors(
330       BlockChain &Chain, MachineBasicBlock *BB, MachineBasicBlock *LoopHeaderBB,
331       const BlockFilterSet *BlockFilter = nullptr);
332 
333 
334   BranchProbability
335   collectViableSuccessors(MachineBasicBlock *BB, BlockChain &Chain,
336                           const BlockFilterSet *BlockFilter,
337                           SmallVector<MachineBasicBlock *, 4> &Successors);
338   bool shouldPredBlockBeOutlined(MachineBasicBlock *BB, MachineBasicBlock *Succ,
339                                  BlockChain &Chain,
340                                  const BlockFilterSet *BlockFilter,
341                                  BranchProbability SuccProb,
342                                  BranchProbability HotProb);
343   bool repeatedlyTailDuplicateBlock(
344       MachineBasicBlock *BB, MachineBasicBlock *&LPred,
345       MachineBasicBlock *LoopHeaderBB,
346       BlockChain &Chain, BlockFilterSet *BlockFilter,
347       MachineFunction::iterator &PrevUnplacedBlockIt);
348   bool maybeTailDuplicateBlock(MachineBasicBlock *BB, MachineBasicBlock *LPred,
349                                const BlockChain &Chain,
350                                BlockFilterSet *BlockFilter,
351                                MachineFunction::iterator &PrevUnplacedBlockIt,
352                                bool &DuplicatedToPred);
353   bool
354   hasBetterLayoutPredecessor(MachineBasicBlock *BB, MachineBasicBlock *Succ,
355                              BlockChain &SuccChain, BranchProbability SuccProb,
356                              BranchProbability RealSuccProb, BlockChain &Chain,
357                              const BlockFilterSet *BlockFilter);
358   MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
359                                          BlockChain &Chain,
360                                          const BlockFilterSet *BlockFilter);
361   MachineBasicBlock *
362   selectBestCandidateBlock(BlockChain &Chain,
363                            SmallVectorImpl<MachineBasicBlock *> &WorkList);
364   MachineBasicBlock *
365   getFirstUnplacedBlock(const BlockChain &PlacedChain,
366                         MachineFunction::iterator &PrevUnplacedBlockIt,
367                         const BlockFilterSet *BlockFilter);
368 
369   /// \brief Add a basic block to the work list if it is appropriate.
370   ///
371   /// If the optional parameter BlockFilter is provided, only MBB
372   /// present in the set will be added to the worklist. If nullptr
373   /// is provided, no filtering occurs.
374   void fillWorkLists(MachineBasicBlock *MBB,
375                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
376                      const BlockFilterSet *BlockFilter);
377   void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
378                   BlockFilterSet *BlockFilter = nullptr);
379   MachineBasicBlock *findBestLoopTop(MachineLoop &L,
380                                      const BlockFilterSet &LoopBlockSet);
381   MachineBasicBlock *findBestLoopExit(MachineLoop &L,
382                                       const BlockFilterSet &LoopBlockSet);
383   BlockFilterSet collectLoopBlockSet(MachineLoop &L);
384   void buildLoopChains(MachineLoop &L);
385   void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
386                   const BlockFilterSet &LoopBlockSet);
387   void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L,
388                              const BlockFilterSet &LoopBlockSet);
389   void collectMustExecuteBBs();
390   void buildCFGChains();
391   void optimizeBranches();
392   void alignBlocks();
393 
394 public:
395   static char ID; // Pass identification, replacement for typeid
396   MachineBlockPlacement() : MachineFunctionPass(ID) {
397     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
398   }
399 
400   bool runOnMachineFunction(MachineFunction &F) override;
401 
402   void getAnalysisUsage(AnalysisUsage &AU) const override {
403     AU.addRequired<MachineBranchProbabilityInfo>();
404     AU.addRequired<MachineBlockFrequencyInfo>();
405     AU.addRequired<MachineDominatorTree>();
406     AU.addRequired<MachineLoopInfo>();
407     AU.addRequired<TargetPassConfig>();
408     MachineFunctionPass::getAnalysisUsage(AU);
409   }
410 };
411 }
412 
413 char MachineBlockPlacement::ID = 0;
414 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
415 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
416                       "Branch Probability Basic Block Placement", false, false)
417 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
418 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
419 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
420 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
421 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
422                     "Branch Probability Basic Block Placement", false, false)
423 
424 #ifndef NDEBUG
425 /// \brief Helper to print the name of a MBB.
426 ///
427 /// Only used by debug logging.
428 static std::string getBlockName(MachineBasicBlock *BB) {
429   std::string Result;
430   raw_string_ostream OS(Result);
431   OS << "BB#" << BB->getNumber();
432   OS << " ('" << BB->getName() << "')";
433   OS.flush();
434   return Result;
435 }
436 #endif
437 
438 /// \brief Mark a chain's successors as having one fewer preds.
439 ///
440 /// When a chain is being merged into the "placed" chain, this routine will
441 /// quickly walk the successors of each block in the chain and mark them as
442 /// having one fewer active predecessor. It also adds any successors of this
443 /// chain which reach the zero-predecessor state to the appropriate worklist.
444 void MachineBlockPlacement::markChainSuccessors(
445     BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
446     const BlockFilterSet *BlockFilter) {
447   // Walk all the blocks in this chain, marking their successors as having
448   // a predecessor placed.
449   for (MachineBasicBlock *MBB : Chain) {
450     markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
451   }
452 }
453 
454 /// \brief Mark a single block's successors as having one fewer preds.
455 ///
456 /// Under normal circumstances, this is only called by markChainSuccessors,
457 /// but if a block that was to be placed is completely tail-duplicated away,
458 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
459 /// for just that block.
460 void MachineBlockPlacement::markBlockSuccessors(
461     BlockChain &Chain, MachineBasicBlock *MBB, MachineBasicBlock *LoopHeaderBB,
462     const BlockFilterSet *BlockFilter) {
463   // Add any successors for which this is the only un-placed in-loop
464   // predecessor to the worklist as a viable candidate for CFG-neutral
465   // placement. No subsequent placement of this block will violate the CFG
466   // shape, so we get to use heuristics to choose a favorable placement.
467   for (MachineBasicBlock *Succ : MBB->successors()) {
468     if (BlockFilter && !BlockFilter->count(Succ))
469       continue;
470     BlockChain &SuccChain = *BlockToChain[Succ];
471     // Disregard edges within a fixed chain, or edges to the loop header.
472     if (&Chain == &SuccChain || Succ == LoopHeaderBB)
473       continue;
474 
475     // This is a cross-chain edge that is within the loop, so decrement the
476     // loop predecessor count of the destination chain.
477     if (SuccChain.UnscheduledPredecessors == 0 ||
478         --SuccChain.UnscheduledPredecessors > 0)
479       continue;
480 
481     auto *NewBB = *SuccChain.begin();
482     if (NewBB->isEHPad())
483       EHPadWorkList.push_back(NewBB);
484     else
485       BlockWorkList.push_back(NewBB);
486   }
487 }
488 
489 /// This helper function collects the set of successors of block
490 /// \p BB that are allowed to be its layout successors, and return
491 /// the total branch probability of edges from \p BB to those
492 /// blocks.
493 BranchProbability MachineBlockPlacement::collectViableSuccessors(
494     MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter,
495     SmallVector<MachineBasicBlock *, 4> &Successors) {
496   // Adjust edge probabilities by excluding edges pointing to blocks that is
497   // either not in BlockFilter or is already in the current chain. Consider the
498   // following CFG:
499   //
500   //     --->A
501   //     |  / \
502   //     | B   C
503   //     |  \ / \
504   //     ----D   E
505   //
506   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
507   // A->C is chosen as a fall-through, D won't be selected as a successor of C
508   // due to CFG constraint (the probability of C->D is not greater than
509   // HotProb to break top-order). If we exclude E that is not in BlockFilter
510   // when calculating the  probability of C->D, D will be selected and we
511   // will get A C D B as the layout of this loop.
512   auto AdjustedSumProb = BranchProbability::getOne();
513   for (MachineBasicBlock *Succ : BB->successors()) {
514     bool SkipSucc = false;
515     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
516       SkipSucc = true;
517     } else {
518       BlockChain *SuccChain = BlockToChain[Succ];
519       if (SuccChain == &Chain) {
520         SkipSucc = true;
521       } else if (Succ != *SuccChain->begin()) {
522         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Mid chain!\n");
523         continue;
524       }
525     }
526     if (SkipSucc)
527       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
528     else
529       Successors.push_back(Succ);
530   }
531 
532   return AdjustedSumProb;
533 }
534 
535 /// The helper function returns the branch probability that is adjusted
536 /// or normalized over the new total \p AdjustedSumProb.
537 static BranchProbability
538 getAdjustedProbability(BranchProbability OrigProb,
539                        BranchProbability AdjustedSumProb) {
540   BranchProbability SuccProb;
541   uint32_t SuccProbN = OrigProb.getNumerator();
542   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
543   if (SuccProbN >= SuccProbD)
544     SuccProb = BranchProbability::getOne();
545   else
546     SuccProb = BranchProbability(SuccProbN, SuccProbD);
547 
548   return SuccProb;
549 }
550 
551 /// When the option OutlineOptionalBranches is on, this method
552 /// checks if the fallthrough candidate block \p Succ (of block
553 /// \p BB) also has other unscheduled predecessor blocks which
554 /// are also successors of \p BB (forming triangular shape CFG).
555 /// If none of such predecessors are small, it returns true.
556 /// The caller can choose to select \p Succ as the layout successors
557 /// so that \p Succ's predecessors (optional branches) can be
558 /// outlined.
559 /// FIXME: fold this with more general layout cost analysis.
560 bool MachineBlockPlacement::shouldPredBlockBeOutlined(
561     MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain,
562     const BlockFilterSet *BlockFilter, BranchProbability SuccProb,
563     BranchProbability HotProb) {
564   if (!OutlineOptionalBranches)
565     return false;
566   // If we outline optional branches, look whether Succ is unavoidable, i.e.
567   // dominates all terminators of the MachineFunction. If it does, other
568   // successors must be optional. Don't do this for cold branches.
569   if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) {
570     for (MachineBasicBlock *Pred : Succ->predecessors()) {
571       // Check whether there is an unplaced optional branch.
572       if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
573           BlockToChain[Pred] == &Chain)
574         continue;
575       // Check whether the optional branch has exactly one BB.
576       if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
577         continue;
578       // Check whether the optional branch is small.
579       if (Pred->size() < OutlineOptionalThreshold)
580         return false;
581     }
582     return true;
583   } else
584     return false;
585 }
586 
587 // When profile is not present, return the StaticLikelyProb.
588 // When profile is available, we need to handle the triangle-shape CFG.
589 static BranchProbability getLayoutSuccessorProbThreshold(
590       MachineBasicBlock *BB) {
591   if (!BB->getParent()->getFunction()->getEntryCount())
592     return BranchProbability(StaticLikelyProb, 100);
593   if (BB->succ_size() == 2) {
594     const MachineBasicBlock *Succ1 = *BB->succ_begin();
595     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
596     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
597       /* See case 1 below for the cost analysis. For BB->Succ to
598        * be taken with smaller cost, the following needs to hold:
599        *   Prob(BB->Succ) > 2* Prob(BB->Pred)
600        *   So the threshold T
601        *   T = 2 * (1-Prob(BB->Pred). Since T + Prob(BB->Pred) == 1,
602        * We have  T + T/2 = 1, i.e. T = 2/3. Also adding user specified
603        * branch bias, we have
604        *   T = (2/3)*(ProfileLikelyProb/50)
605        *     = (2*ProfileLikelyProb)/150)
606        */
607       return BranchProbability(2 * ProfileLikelyProb, 150);
608     }
609   }
610   return BranchProbability(ProfileLikelyProb, 100);
611 }
612 
613 /// Checks to see if the layout candidate block \p Succ has a better layout
614 /// predecessor than \c BB. If yes, returns true.
615 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
616     MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &SuccChain,
617     BranchProbability SuccProb, BranchProbability RealSuccProb,
618     BlockChain &Chain, const BlockFilterSet *BlockFilter) {
619 
620   // There isn't a better layout when there are no unscheduled predecessors.
621   if (SuccChain.UnscheduledPredecessors == 0)
622     return false;
623 
624   // There are two basic scenarios here:
625   // -------------------------------------
626   // Case 1: triangular shape CFG (if-then):
627   //     BB
628   //     | \
629   //     |  \
630   //     |   Pred
631   //     |   /
632   //     Succ
633   // In this case, we are evaluating whether to select edge -> Succ, e.g.
634   // set Succ as the layout successor of BB. Picking Succ as BB's
635   // successor breaks the CFG constraints (FIXME: define these constraints).
636   // With this layout, Pred BB
637   // is forced to be outlined, so the overall cost will be cost of the
638   // branch taken from BB to Pred, plus the cost of back taken branch
639   // from Pred to Succ, as well as the additional cost associated
640   // with the needed unconditional jump instruction from Pred To Succ.
641 
642   // The cost of the topological order layout is the taken branch cost
643   // from BB to Succ, so to make BB->Succ a viable candidate, the following
644   // must hold:
645   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
646   //      < freq(BB->Succ) *  taken_branch_cost.
647   // Ignoring unconditional jump cost, we get
648   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
649   //    prob(BB->Succ) > 2 * prob(BB->Pred)
650   //
651   // When real profile data is available, we can precisely compute the
652   // probability threshold that is needed for edge BB->Succ to be considered.
653   // Without profile data, the heuristic requires the branch bias to be
654   // a lot larger to make sure the signal is very strong (e.g. 80% default).
655   // -----------------------------------------------------------------
656   // Case 2: diamond like CFG (if-then-else):
657   //     S
658   //    / \
659   //   |   \
660   //  BB    Pred
661   //   \    /
662   //    Succ
663   //    ..
664   //
665   // The current block is BB and edge BB->Succ is now being evaluated.
666   // Note that edge S->BB was previously already selected because
667   // prob(S->BB) > prob(S->Pred).
668   // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
669   // choose Pred, we will have a topological ordering as shown on the left
670   // in the picture below. If we choose Succ, we have the solution as shown
671   // on the right:
672   //
673   //   topo-order:
674   //
675   //       S-----                             ---S
676   //       |    |                             |  |
677   //    ---BB   |                             |  BB
678   //    |       |                             |  |
679   //    |  pred--                             |  Succ--
680   //    |  |                                  |       |
681   //    ---succ                               ---pred--
682   //
683   // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
684   //      = freq(S->Pred) + freq(S->BB)
685   //
686   // If we have profile data (i.e, branch probabilities can be trusted), the
687   // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
688   // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
689   // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
690   // means the cost of topological order is greater.
691   // When profile data is not available, however, we need to be more
692   // conservative. If the branch prediction is wrong, breaking the topo-order
693   // will actually yield a layout with large cost. For this reason, we need
694   // strong biased branch at block S with Prob(S->BB) in order to select
695   // BB->Succ. This is equivalent to looking the CFG backward with backward
696   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
697   // profile data).
698   // --------------------------------------------------------------------------
699   // Case 3: forked diamond
700   //       S
701   //      / \
702   //     /   \
703   //   BB    Pred
704   //   | \   / |
705   //   |  \ /  |
706   //   |   X   |
707   //   |  / \  |
708   //   | /   \ |
709   //   S1     S2
710   //
711   // The current block is BB and edge BB->S1 is now being evaluated.
712   // As above S->BB was already selected because
713   // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
714   //
715   // topo-order:
716   //
717   //     S-------|                     ---S
718   //     |       |                     |  |
719   //  ---BB      |                     |  BB
720   //  |          |                     |  |
721   //  |  Pred----|                     |  S1----
722   //  |  |                             |       |
723   //  --(S1 or S2)                     ---Pred--
724   //
725   // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
726   //    + min(freq(Pred->S1), freq(Pred->S2))
727   // Non-topo-order cost:
728   // In the worst case, S2 will not get laid out after Pred.
729   // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
730   // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
731   // is 0. Then the non topo layout is better when
732   // freq(S->Pred) < freq(BB->S1).
733   // This is exactly what is checked below.
734   // Note there are other shapes that apply (Pred may not be a single block,
735   // but they all fit this general pattern.)
736   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
737 
738   // Make sure that a hot successor doesn't have a globally more
739   // important predecessor.
740   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
741   bool BadCFGConflict = false;
742 
743   for (MachineBasicBlock *Pred : Succ->predecessors()) {
744     if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
745         (BlockFilter && !BlockFilter->count(Pred)) ||
746         BlockToChain[Pred] == &Chain)
747       continue;
748     // Do backward checking.
749     // For all cases above, we need a backward checking to filter out edges that
750     // are not 'strongly' biased. With profile data available, the check is
751     // mostly redundant for case 2 (when threshold prob is set at 50%) unless S
752     // has more than two successors.
753     // BB  Pred
754     //  \ /
755     //  Succ
756     // We select edge BB->Succ if
757     //      freq(BB->Succ) > freq(Succ) * HotProb
758     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
759     //      HotProb
760     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
761     // Case 1 is covered too, because the first equation reduces to:
762     // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
763     BlockFrequency PredEdgeFreq =
764         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
765     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
766       BadCFGConflict = true;
767       break;
768     }
769   }
770 
771   if (BadCFGConflict) {
772     DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb
773                  << " (prob) (non-cold CFG conflict)\n");
774     return true;
775   }
776 
777   return false;
778 }
779 
780 /// \brief Select the best successor for a block.
781 ///
782 /// This looks across all successors of a particular block and attempts to
783 /// select the "best" one to be the layout successor. It only considers direct
784 /// successors which also pass the block filter. It will attempt to avoid
785 /// breaking CFG structure, but cave and break such structures in the case of
786 /// very hot successor edges.
787 ///
788 /// \returns The best successor block found, or null if none are viable.
789 MachineBasicBlock *
790 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
791                                            BlockChain &Chain,
792                                            const BlockFilterSet *BlockFilter) {
793   const BranchProbability HotProb(StaticLikelyProb, 100);
794 
795   MachineBasicBlock *BestSucc = nullptr;
796   auto BestProb = BranchProbability::getZero();
797 
798   SmallVector<MachineBasicBlock *, 4> Successors;
799   auto AdjustedSumProb =
800       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
801 
802   DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n");
803   for (MachineBasicBlock *Succ : Successors) {
804     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
805     BranchProbability SuccProb =
806         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
807 
808     // This heuristic is off by default.
809     if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb,
810                                   HotProb))
811       return Succ;
812 
813     BlockChain &SuccChain = *BlockToChain[Succ];
814     // Skip the edge \c BB->Succ if block \c Succ has a better layout
815     // predecessor that yields lower global cost.
816     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
817                                    Chain, BlockFilter))
818       continue;
819 
820     DEBUG(
821         dbgs() << "    Candidate: " << getBlockName(Succ) << ", probability: "
822                << SuccProb
823                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
824                << "\n");
825 
826     if (BestSucc && BestProb >= SuccProb) {
827       DEBUG(dbgs() << "    Not the best candidate, continuing\n");
828       continue;
829     }
830 
831     DEBUG(dbgs() << "    Setting it as best candidate\n");
832     BestSucc = Succ;
833     BestProb = SuccProb;
834   }
835   if (BestSucc)
836     DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc) << "\n");
837 
838   return BestSucc;
839 }
840 
841 /// \brief Select the best block from a worklist.
842 ///
843 /// This looks through the provided worklist as a list of candidate basic
844 /// blocks and select the most profitable one to place. The definition of
845 /// profitable only really makes sense in the context of a loop. This returns
846 /// the most frequently visited block in the worklist, which in the case of
847 /// a loop, is the one most desirable to be physically close to the rest of the
848 /// loop body in order to improve i-cache behavior.
849 ///
850 /// \returns The best block found, or null if none are viable.
851 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
852     BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
853   // Once we need to walk the worklist looking for a candidate, cleanup the
854   // worklist of already placed entries.
855   // FIXME: If this shows up on profiles, it could be folded (at the cost of
856   // some code complexity) into the loop below.
857   WorkList.erase(remove_if(WorkList,
858                            [&](MachineBasicBlock *BB) {
859                              return BlockToChain.lookup(BB) == &Chain;
860                            }),
861                  WorkList.end());
862 
863   if (WorkList.empty())
864     return nullptr;
865 
866   bool IsEHPad = WorkList[0]->isEHPad();
867 
868   MachineBasicBlock *BestBlock = nullptr;
869   BlockFrequency BestFreq;
870   for (MachineBasicBlock *MBB : WorkList) {
871     assert(MBB->isEHPad() == IsEHPad);
872 
873     BlockChain &SuccChain = *BlockToChain[MBB];
874     if (&SuccChain == &Chain)
875       continue;
876 
877     assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block");
878 
879     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
880     DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
881           MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
882 
883     // For ehpad, we layout the least probable first as to avoid jumping back
884     // from least probable landingpads to more probable ones.
885     //
886     // FIXME: Using probability is probably (!) not the best way to achieve
887     // this. We should probably have a more principled approach to layout
888     // cleanup code.
889     //
890     // The goal is to get:
891     //
892     //                 +--------------------------+
893     //                 |                          V
894     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
895     //
896     // Rather than:
897     //
898     //                 +-------------------------------------+
899     //                 V                                     |
900     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
901     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
902       continue;
903 
904     BestBlock = MBB;
905     BestFreq = CandidateFreq;
906   }
907 
908   return BestBlock;
909 }
910 
911 /// \brief Retrieve the first unplaced basic block.
912 ///
913 /// This routine is called when we are unable to use the CFG to walk through
914 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
915 /// We walk through the function's blocks in order, starting from the
916 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
917 /// re-scanning the entire sequence on repeated calls to this routine.
918 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
919     const BlockChain &PlacedChain,
920     MachineFunction::iterator &PrevUnplacedBlockIt,
921     const BlockFilterSet *BlockFilter) {
922   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
923        ++I) {
924     if (BlockFilter && !BlockFilter->count(&*I))
925       continue;
926     if (BlockToChain[&*I] != &PlacedChain) {
927       PrevUnplacedBlockIt = I;
928       // Now select the head of the chain to which the unplaced block belongs
929       // as the block to place. This will force the entire chain to be placed,
930       // and satisfies the requirements of merging chains.
931       return *BlockToChain[&*I]->begin();
932     }
933   }
934   return nullptr;
935 }
936 
937 void MachineBlockPlacement::fillWorkLists(
938     MachineBasicBlock *MBB,
939     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
940     const BlockFilterSet *BlockFilter = nullptr) {
941   BlockChain &Chain = *BlockToChain[MBB];
942   if (!UpdatedPreds.insert(&Chain).second)
943     return;
944 
945   assert(Chain.UnscheduledPredecessors == 0);
946   for (MachineBasicBlock *ChainBB : Chain) {
947     assert(BlockToChain[ChainBB] == &Chain);
948     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
949       if (BlockFilter && !BlockFilter->count(Pred))
950         continue;
951       if (BlockToChain[Pred] == &Chain)
952         continue;
953       ++Chain.UnscheduledPredecessors;
954     }
955   }
956 
957   if (Chain.UnscheduledPredecessors != 0)
958     return;
959 
960   MBB = *Chain.begin();
961   if (MBB->isEHPad())
962     EHPadWorkList.push_back(MBB);
963   else
964     BlockWorkList.push_back(MBB);
965 }
966 
967 void MachineBlockPlacement::buildChain(
968     MachineBasicBlock *BB, BlockChain &Chain,
969     BlockFilterSet *BlockFilter) {
970   assert(BB && "BB must not be null.\n");
971   assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match.\n");
972   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
973 
974   MachineBasicBlock *LoopHeaderBB = BB;
975   markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
976   BB = *std::prev(Chain.end());
977   for (;;) {
978     assert(BB && "null block found at end of chain in loop.");
979     assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
980     assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
981 
982 
983     // Look for the best viable successor if there is one to place immediately
984     // after this block.
985     MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
986 
987     // If an immediate successor isn't available, look for the best viable
988     // block among those we've identified as not violating the loop's CFG at
989     // this point. This won't be a fallthrough, but it will increase locality.
990     if (!BestSucc)
991       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
992     if (!BestSucc)
993       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
994 
995     if (!BestSucc) {
996       BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
997       if (!BestSucc)
998         break;
999 
1000       DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1001                       "layout successor until the CFG reduces\n");
1002     }
1003 
1004     // Placement may have changed tail duplication opportunities.
1005     // Check for that now.
1006     if (TailDupPlacement && BestSucc) {
1007       // If the chosen successor was duplicated into all its predecessors,
1008       // don't bother laying it out, just go round the loop again with BB as
1009       // the chain end.
1010       if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1011                                        BlockFilter, PrevUnplacedBlockIt))
1012         continue;
1013     }
1014 
1015     // Place this block, updating the datastructures to reflect its placement.
1016     BlockChain &SuccChain = *BlockToChain[BestSucc];
1017     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1018     // we selected a successor that didn't fit naturally into the CFG.
1019     SuccChain.UnscheduledPredecessors = 0;
1020     DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1021                  << getBlockName(BestSucc) << "\n");
1022     markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1023     Chain.merge(BestSucc, &SuccChain);
1024     BB = *std::prev(Chain.end());
1025   }
1026 
1027   DEBUG(dbgs() << "Finished forming chain for header block "
1028                << getBlockName(*Chain.begin()) << "\n");
1029 }
1030 
1031 /// \brief Find the best loop top block for layout.
1032 ///
1033 /// Look for a block which is strictly better than the loop header for laying
1034 /// out at the top of the loop. This looks for one and only one pattern:
1035 /// a latch block with no conditional exit. This block will cause a conditional
1036 /// jump around it or will be the bottom of the loop if we lay it out in place,
1037 /// but if it it doesn't end up at the bottom of the loop for any reason,
1038 /// rotation alone won't fix it. Because such a block will always result in an
1039 /// unconditional jump (for the backedge) rotating it in front of the loop
1040 /// header is always profitable.
1041 MachineBasicBlock *
1042 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
1043                                        const BlockFilterSet &LoopBlockSet) {
1044   // Placing the latch block before the header may introduce an extra branch
1045   // that skips this block the first time the loop is executed, which we want
1046   // to avoid when optimising for size.
1047   // FIXME: in theory there is a case that does not introduce a new branch,
1048   // i.e. when the layout predecessor does not fallthrough to the loop header.
1049   // In practice this never happens though: there always seems to be a preheader
1050   // that can fallthrough and that is also placed before the header.
1051   if (F->getFunction()->optForSize())
1052     return L.getHeader();
1053 
1054   // Check that the header hasn't been fused with a preheader block due to
1055   // crazy branches. If it has, we need to start with the header at the top to
1056   // prevent pulling the preheader into the loop body.
1057   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
1058   if (!LoopBlockSet.count(*HeaderChain.begin()))
1059     return L.getHeader();
1060 
1061   DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
1062                << "\n");
1063 
1064   BlockFrequency BestPredFreq;
1065   MachineBasicBlock *BestPred = nullptr;
1066   for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
1067     if (!LoopBlockSet.count(Pred))
1068       continue;
1069     DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", has "
1070                  << Pred->succ_size() << " successors, ";
1071           MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
1072     if (Pred->succ_size() > 1)
1073       continue;
1074 
1075     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
1076     if (!BestPred || PredFreq > BestPredFreq ||
1077         (!(PredFreq < BestPredFreq) &&
1078          Pred->isLayoutSuccessor(L.getHeader()))) {
1079       BestPred = Pred;
1080       BestPredFreq = PredFreq;
1081     }
1082   }
1083 
1084   // If no direct predecessor is fine, just use the loop header.
1085   if (!BestPred) {
1086     DEBUG(dbgs() << "    final top unchanged\n");
1087     return L.getHeader();
1088   }
1089 
1090   // Walk backwards through any straight line of predecessors.
1091   while (BestPred->pred_size() == 1 &&
1092          (*BestPred->pred_begin())->succ_size() == 1 &&
1093          *BestPred->pred_begin() != L.getHeader())
1094     BestPred = *BestPred->pred_begin();
1095 
1096   DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
1097   return BestPred;
1098 }
1099 
1100 /// \brief Find the best loop exiting block for layout.
1101 ///
1102 /// This routine implements the logic to analyze the loop looking for the best
1103 /// block to layout at the top of the loop. Typically this is done to maximize
1104 /// fallthrough opportunities.
1105 MachineBasicBlock *
1106 MachineBlockPlacement::findBestLoopExit(MachineLoop &L,
1107                                         const BlockFilterSet &LoopBlockSet) {
1108   // We don't want to layout the loop linearly in all cases. If the loop header
1109   // is just a normal basic block in the loop, we want to look for what block
1110   // within the loop is the best one to layout at the top. However, if the loop
1111   // header has be pre-merged into a chain due to predecessors not having
1112   // analyzable branches, *and* the predecessor it is merged with is *not* part
1113   // of the loop, rotating the header into the middle of the loop will create
1114   // a non-contiguous range of blocks which is Very Bad. So start with the
1115   // header and only rotate if safe.
1116   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
1117   if (!LoopBlockSet.count(*HeaderChain.begin()))
1118     return nullptr;
1119 
1120   BlockFrequency BestExitEdgeFreq;
1121   unsigned BestExitLoopDepth = 0;
1122   MachineBasicBlock *ExitingBB = nullptr;
1123   // If there are exits to outer loops, loop rotation can severely limit
1124   // fallthrough opportunities unless it selects such an exit. Keep a set of
1125   // blocks where rotating to exit with that block will reach an outer loop.
1126   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
1127 
1128   DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
1129                << "\n");
1130   for (MachineBasicBlock *MBB : L.getBlocks()) {
1131     BlockChain &Chain = *BlockToChain[MBB];
1132     // Ensure that this block is at the end of a chain; otherwise it could be
1133     // mid-way through an inner loop or a successor of an unanalyzable branch.
1134     if (MBB != *std::prev(Chain.end()))
1135       continue;
1136 
1137     // Now walk the successors. We need to establish whether this has a viable
1138     // exiting successor and whether it has a viable non-exiting successor.
1139     // We store the old exiting state and restore it if a viable looping
1140     // successor isn't found.
1141     MachineBasicBlock *OldExitingBB = ExitingBB;
1142     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
1143     bool HasLoopingSucc = false;
1144     for (MachineBasicBlock *Succ : MBB->successors()) {
1145       if (Succ->isEHPad())
1146         continue;
1147       if (Succ == MBB)
1148         continue;
1149       BlockChain &SuccChain = *BlockToChain[Succ];
1150       // Don't split chains, either this chain or the successor's chain.
1151       if (&Chain == &SuccChain) {
1152         DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1153                      << getBlockName(Succ) << " (chain conflict)\n");
1154         continue;
1155       }
1156 
1157       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
1158       if (LoopBlockSet.count(Succ)) {
1159         DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
1160                      << getBlockName(Succ) << " (" << SuccProb << ")\n");
1161         HasLoopingSucc = true;
1162         continue;
1163       }
1164 
1165       unsigned SuccLoopDepth = 0;
1166       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
1167         SuccLoopDepth = ExitLoop->getLoopDepth();
1168         if (ExitLoop->contains(&L))
1169           BlocksExitingToOuterLoop.insert(MBB);
1170       }
1171 
1172       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
1173       DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1174                    << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
1175             MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
1176       // Note that we bias this toward an existing layout successor to retain
1177       // incoming order in the absence of better information. The exit must have
1178       // a frequency higher than the current exit before we consider breaking
1179       // the layout.
1180       BranchProbability Bias(100 - ExitBlockBias, 100);
1181       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
1182           ExitEdgeFreq > BestExitEdgeFreq ||
1183           (MBB->isLayoutSuccessor(Succ) &&
1184            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
1185         BestExitEdgeFreq = ExitEdgeFreq;
1186         ExitingBB = MBB;
1187       }
1188     }
1189 
1190     if (!HasLoopingSucc) {
1191       // Restore the old exiting state, no viable looping successor was found.
1192       ExitingBB = OldExitingBB;
1193       BestExitEdgeFreq = OldBestExitEdgeFreq;
1194     }
1195   }
1196   // Without a candidate exiting block or with only a single block in the
1197   // loop, just use the loop header to layout the loop.
1198   if (!ExitingBB) {
1199     DEBUG(dbgs() << "    No other candidate exit blocks, using loop header\n");
1200     return nullptr;
1201   }
1202   if (L.getNumBlocks() == 1) {
1203     DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
1204     return nullptr;
1205   }
1206 
1207   // Also, if we have exit blocks which lead to outer loops but didn't select
1208   // one of them as the exiting block we are rotating toward, disable loop
1209   // rotation altogether.
1210   if (!BlocksExitingToOuterLoop.empty() &&
1211       !BlocksExitingToOuterLoop.count(ExitingBB))
1212     return nullptr;
1213 
1214   DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
1215   return ExitingBB;
1216 }
1217 
1218 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
1219 ///
1220 /// Once we have built a chain, try to rotate it to line up the hot exit block
1221 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
1222 /// branches. For example, if the loop has fallthrough into its header and out
1223 /// of its bottom already, don't rotate it.
1224 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
1225                                        MachineBasicBlock *ExitingBB,
1226                                        const BlockFilterSet &LoopBlockSet) {
1227   if (!ExitingBB)
1228     return;
1229 
1230   MachineBasicBlock *Top = *LoopChain.begin();
1231   bool ViableTopFallthrough = false;
1232   for (MachineBasicBlock *Pred : Top->predecessors()) {
1233     BlockChain *PredChain = BlockToChain[Pred];
1234     if (!LoopBlockSet.count(Pred) &&
1235         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1236       ViableTopFallthrough = true;
1237       break;
1238     }
1239   }
1240 
1241   // If the header has viable fallthrough, check whether the current loop
1242   // bottom is a viable exiting block. If so, bail out as rotating will
1243   // introduce an unnecessary branch.
1244   if (ViableTopFallthrough) {
1245     MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
1246     for (MachineBasicBlock *Succ : Bottom->successors()) {
1247       BlockChain *SuccChain = BlockToChain[Succ];
1248       if (!LoopBlockSet.count(Succ) &&
1249           (!SuccChain || Succ == *SuccChain->begin()))
1250         return;
1251     }
1252   }
1253 
1254   BlockChain::iterator ExitIt = find(LoopChain, ExitingBB);
1255   if (ExitIt == LoopChain.end())
1256     return;
1257 
1258   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
1259 }
1260 
1261 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
1262 ///
1263 /// With profile data, we can determine the cost in terms of missed fall through
1264 /// opportunities when rotating a loop chain and select the best rotation.
1265 /// Basically, there are three kinds of cost to consider for each rotation:
1266 ///    1. The possibly missed fall through edge (if it exists) from BB out of
1267 ///    the loop to the loop header.
1268 ///    2. The possibly missed fall through edges (if they exist) from the loop
1269 ///    exits to BB out of the loop.
1270 ///    3. The missed fall through edge (if it exists) from the last BB to the
1271 ///    first BB in the loop chain.
1272 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
1273 ///  We select the best rotation with the smallest cost.
1274 void MachineBlockPlacement::rotateLoopWithProfile(
1275     BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) {
1276   auto HeaderBB = L.getHeader();
1277   auto HeaderIter = find(LoopChain, HeaderBB);
1278   auto RotationPos = LoopChain.end();
1279 
1280   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
1281 
1282   // A utility lambda that scales up a block frequency by dividing it by a
1283   // branch probability which is the reciprocal of the scale.
1284   auto ScaleBlockFrequency = [](BlockFrequency Freq,
1285                                 unsigned Scale) -> BlockFrequency {
1286     if (Scale == 0)
1287       return 0;
1288     // Use operator / between BlockFrequency and BranchProbability to implement
1289     // saturating multiplication.
1290     return Freq / BranchProbability(1, Scale);
1291   };
1292 
1293   // Compute the cost of the missed fall-through edge to the loop header if the
1294   // chain head is not the loop header. As we only consider natural loops with
1295   // single header, this computation can be done only once.
1296   BlockFrequency HeaderFallThroughCost(0);
1297   for (auto *Pred : HeaderBB->predecessors()) {
1298     BlockChain *PredChain = BlockToChain[Pred];
1299     if (!LoopBlockSet.count(Pred) &&
1300         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1301       auto EdgeFreq =
1302           MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
1303       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
1304       // If the predecessor has only an unconditional jump to the header, we
1305       // need to consider the cost of this jump.
1306       if (Pred->succ_size() == 1)
1307         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
1308       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
1309     }
1310   }
1311 
1312   // Here we collect all exit blocks in the loop, and for each exit we find out
1313   // its hottest exit edge. For each loop rotation, we define the loop exit cost
1314   // as the sum of frequencies of exit edges we collect here, excluding the exit
1315   // edge from the tail of the loop chain.
1316   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
1317   for (auto BB : LoopChain) {
1318     auto LargestExitEdgeProb = BranchProbability::getZero();
1319     for (auto *Succ : BB->successors()) {
1320       BlockChain *SuccChain = BlockToChain[Succ];
1321       if (!LoopBlockSet.count(Succ) &&
1322           (!SuccChain || Succ == *SuccChain->begin())) {
1323         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
1324         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
1325       }
1326     }
1327     if (LargestExitEdgeProb > BranchProbability::getZero()) {
1328       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
1329       ExitsWithFreq.emplace_back(BB, ExitFreq);
1330     }
1331   }
1332 
1333   // In this loop we iterate every block in the loop chain and calculate the
1334   // cost assuming the block is the head of the loop chain. When the loop ends,
1335   // we should have found the best candidate as the loop chain's head.
1336   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
1337             EndIter = LoopChain.end();
1338        Iter != EndIter; Iter++, TailIter++) {
1339     // TailIter is used to track the tail of the loop chain if the block we are
1340     // checking (pointed by Iter) is the head of the chain.
1341     if (TailIter == LoopChain.end())
1342       TailIter = LoopChain.begin();
1343 
1344     auto TailBB = *TailIter;
1345 
1346     // Calculate the cost by putting this BB to the top.
1347     BlockFrequency Cost = 0;
1348 
1349     // If the current BB is the loop header, we need to take into account the
1350     // cost of the missed fall through edge from outside of the loop to the
1351     // header.
1352     if (Iter != HeaderIter)
1353       Cost += HeaderFallThroughCost;
1354 
1355     // Collect the loop exit cost by summing up frequencies of all exit edges
1356     // except the one from the chain tail.
1357     for (auto &ExitWithFreq : ExitsWithFreq)
1358       if (TailBB != ExitWithFreq.first)
1359         Cost += ExitWithFreq.second;
1360 
1361     // The cost of breaking the once fall-through edge from the tail to the top
1362     // of the loop chain. Here we need to consider three cases:
1363     // 1. If the tail node has only one successor, then we will get an
1364     //    additional jmp instruction. So the cost here is (MisfetchCost +
1365     //    JumpInstCost) * tail node frequency.
1366     // 2. If the tail node has two successors, then we may still get an
1367     //    additional jmp instruction if the layout successor after the loop
1368     //    chain is not its CFG successor. Note that the more frequently executed
1369     //    jmp instruction will be put ahead of the other one. Assume the
1370     //    frequency of those two branches are x and y, where x is the frequency
1371     //    of the edge to the chain head, then the cost will be
1372     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
1373     // 3. If the tail node has more than two successors (this rarely happens),
1374     //    we won't consider any additional cost.
1375     if (TailBB->isSuccessor(*Iter)) {
1376       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
1377       if (TailBB->succ_size() == 1)
1378         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
1379                                     MisfetchCost + JumpInstCost);
1380       else if (TailBB->succ_size() == 2) {
1381         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
1382         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
1383         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
1384                                   ? TailBBFreq * TailToHeadProb.getCompl()
1385                                   : TailToHeadFreq;
1386         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
1387                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
1388       }
1389     }
1390 
1391     DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter)
1392                  << " to the top: " << Cost.getFrequency() << "\n");
1393 
1394     if (Cost < SmallestRotationCost) {
1395       SmallestRotationCost = Cost;
1396       RotationPos = Iter;
1397     }
1398   }
1399 
1400   if (RotationPos != LoopChain.end()) {
1401     DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
1402                  << " to the top\n");
1403     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
1404   }
1405 }
1406 
1407 /// \brief Collect blocks in the given loop that are to be placed.
1408 ///
1409 /// When profile data is available, exclude cold blocks from the returned set;
1410 /// otherwise, collect all blocks in the loop.
1411 MachineBlockPlacement::BlockFilterSet
1412 MachineBlockPlacement::collectLoopBlockSet(MachineLoop &L) {
1413   BlockFilterSet LoopBlockSet;
1414 
1415   // Filter cold blocks off from LoopBlockSet when profile data is available.
1416   // Collect the sum of frequencies of incoming edges to the loop header from
1417   // outside. If we treat the loop as a super block, this is the frequency of
1418   // the loop. Then for each block in the loop, we calculate the ratio between
1419   // its frequency and the frequency of the loop block. When it is too small,
1420   // don't add it to the loop chain. If there are outer loops, then this block
1421   // will be merged into the first outer loop chain for which this block is not
1422   // cold anymore. This needs precise profile data and we only do this when
1423   // profile data is available.
1424   if (F->getFunction()->getEntryCount()) {
1425     BlockFrequency LoopFreq(0);
1426     for (auto LoopPred : L.getHeader()->predecessors())
1427       if (!L.contains(LoopPred))
1428         LoopFreq += MBFI->getBlockFreq(LoopPred) *
1429                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
1430 
1431     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
1432       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
1433       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
1434         continue;
1435       LoopBlockSet.insert(LoopBB);
1436     }
1437   } else
1438     LoopBlockSet.insert(L.block_begin(), L.block_end());
1439 
1440   return LoopBlockSet;
1441 }
1442 
1443 /// \brief Forms basic block chains from the natural loop structures.
1444 ///
1445 /// These chains are designed to preserve the existing *structure* of the code
1446 /// as much as possible. We can then stitch the chains together in a way which
1447 /// both preserves the topological structure and minimizes taken conditional
1448 /// branches.
1449 void MachineBlockPlacement::buildLoopChains(MachineLoop &L) {
1450   // First recurse through any nested loops, building chains for those inner
1451   // loops.
1452   for (MachineLoop *InnerLoop : L)
1453     buildLoopChains(*InnerLoop);
1454 
1455   assert(BlockWorkList.empty());
1456   assert(EHPadWorkList.empty());
1457   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
1458 
1459   // Check if we have profile data for this function. If yes, we will rotate
1460   // this loop by modeling costs more precisely which requires the profile data
1461   // for better layout.
1462   bool RotateLoopWithProfile =
1463       ForcePreciseRotationCost ||
1464       (PreciseRotationCost && F->getFunction()->getEntryCount());
1465 
1466   // First check to see if there is an obviously preferable top block for the
1467   // loop. This will default to the header, but may end up as one of the
1468   // predecessors to the header if there is one which will result in strictly
1469   // fewer branches in the loop body.
1470   // When we use profile data to rotate the loop, this is unnecessary.
1471   MachineBasicBlock *LoopTop =
1472       RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
1473 
1474   // If we selected just the header for the loop top, look for a potentially
1475   // profitable exit block in the event that rotating the loop can eliminate
1476   // branches by placing an exit edge at the bottom.
1477   MachineBasicBlock *ExitingBB = nullptr;
1478   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
1479     ExitingBB = findBestLoopExit(L, LoopBlockSet);
1480 
1481   BlockChain &LoopChain = *BlockToChain[LoopTop];
1482 
1483   // FIXME: This is a really lame way of walking the chains in the loop: we
1484   // walk the blocks, and use a set to prevent visiting a particular chain
1485   // twice.
1486   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1487   assert(LoopChain.UnscheduledPredecessors == 0);
1488   UpdatedPreds.insert(&LoopChain);
1489 
1490   for (MachineBasicBlock *LoopBB : LoopBlockSet)
1491     fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
1492 
1493   buildChain(LoopTop, LoopChain, &LoopBlockSet);
1494 
1495   if (RotateLoopWithProfile)
1496     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
1497   else
1498     rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
1499 
1500   DEBUG({
1501     // Crash at the end so we get all of the debugging output first.
1502     bool BadLoop = false;
1503     if (LoopChain.UnscheduledPredecessors) {
1504       BadLoop = true;
1505       dbgs() << "Loop chain contains a block without its preds placed!\n"
1506              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1507              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
1508     }
1509     for (MachineBasicBlock *ChainBB : LoopChain) {
1510       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
1511       if (!LoopBlockSet.erase(ChainBB)) {
1512         // We don't mark the loop as bad here because there are real situations
1513         // where this can occur. For example, with an unanalyzable fallthrough
1514         // from a loop block to a non-loop block or vice versa.
1515         dbgs() << "Loop chain contains a block not contained by the loop!\n"
1516                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1517                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1518                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1519       }
1520     }
1521 
1522     if (!LoopBlockSet.empty()) {
1523       BadLoop = true;
1524       for (MachineBasicBlock *LoopBB : LoopBlockSet)
1525         dbgs() << "Loop contains blocks never placed into a chain!\n"
1526                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1527                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1528                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
1529     }
1530     assert(!BadLoop && "Detected problems with the placement of this loop.");
1531   });
1532 
1533   BlockWorkList.clear();
1534   EHPadWorkList.clear();
1535 }
1536 
1537 /// When OutlineOpitonalBranches is on, this method collects BBs that
1538 /// dominates all terminator blocks of the function \p F.
1539 void MachineBlockPlacement::collectMustExecuteBBs() {
1540   if (OutlineOptionalBranches) {
1541     // Find the nearest common dominator of all of F's terminators.
1542     MachineBasicBlock *Terminator = nullptr;
1543     for (MachineBasicBlock &MBB : *F) {
1544       if (MBB.succ_size() == 0) {
1545         if (Terminator == nullptr)
1546           Terminator = &MBB;
1547         else
1548           Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
1549       }
1550     }
1551 
1552     // MBBs dominating this common dominator are unavoidable.
1553     UnavoidableBlocks.clear();
1554     for (MachineBasicBlock &MBB : *F) {
1555       if (MDT->dominates(&MBB, Terminator)) {
1556         UnavoidableBlocks.insert(&MBB);
1557       }
1558     }
1559   }
1560 }
1561 
1562 void MachineBlockPlacement::buildCFGChains() {
1563   // Ensure that every BB in the function has an associated chain to simplify
1564   // the assumptions of the remaining algorithm.
1565   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1566   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
1567        ++FI) {
1568     MachineBasicBlock *BB = &*FI;
1569     BlockChain *Chain =
1570         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
1571     // Also, merge any blocks which we cannot reason about and must preserve
1572     // the exact fallthrough behavior for.
1573     for (;;) {
1574       Cond.clear();
1575       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1576       if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
1577         break;
1578 
1579       MachineFunction::iterator NextFI = std::next(FI);
1580       MachineBasicBlock *NextBB = &*NextFI;
1581       // Ensure that the layout successor is a viable block, as we know that
1582       // fallthrough is a possibility.
1583       assert(NextFI != FE && "Can't fallthrough past the last block.");
1584       DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
1585                    << getBlockName(BB) << " -> " << getBlockName(NextBB)
1586                    << "\n");
1587       Chain->merge(NextBB, nullptr);
1588       FI = NextFI;
1589       BB = NextBB;
1590     }
1591   }
1592 
1593   // Turned on with OutlineOptionalBranches option
1594   collectMustExecuteBBs();
1595 
1596   // Build any loop-based chains.
1597   for (MachineLoop *L : *MLI)
1598     buildLoopChains(*L);
1599 
1600   assert(BlockWorkList.empty());
1601   assert(EHPadWorkList.empty());
1602 
1603   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1604   for (MachineBasicBlock &MBB : *F)
1605     fillWorkLists(&MBB, UpdatedPreds);
1606 
1607   BlockChain &FunctionChain = *BlockToChain[&F->front()];
1608   buildChain(&F->front(), FunctionChain);
1609 
1610 #ifndef NDEBUG
1611   typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
1612 #endif
1613   DEBUG({
1614     // Crash at the end so we get all of the debugging output first.
1615     bool BadFunc = false;
1616     FunctionBlockSetType FunctionBlockSet;
1617     for (MachineBasicBlock &MBB : *F)
1618       FunctionBlockSet.insert(&MBB);
1619 
1620     for (MachineBasicBlock *ChainBB : FunctionChain)
1621       if (!FunctionBlockSet.erase(ChainBB)) {
1622         BadFunc = true;
1623         dbgs() << "Function chain contains a block not in the function!\n"
1624                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1625       }
1626 
1627     if (!FunctionBlockSet.empty()) {
1628       BadFunc = true;
1629       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
1630         dbgs() << "Function contains blocks never placed into a chain!\n"
1631                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
1632     }
1633     assert(!BadFunc && "Detected problems with the block placement.");
1634   });
1635 
1636   // Splice the blocks into place.
1637   MachineFunction::iterator InsertPos = F->begin();
1638   DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n");
1639   for (MachineBasicBlock *ChainBB : FunctionChain) {
1640     DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
1641                                                        : "          ... ")
1642                  << getBlockName(ChainBB) << "\n");
1643     if (InsertPos != MachineFunction::iterator(ChainBB))
1644       F->splice(InsertPos, ChainBB);
1645     else
1646       ++InsertPos;
1647 
1648     // Update the terminator of the previous block.
1649     if (ChainBB == *FunctionChain.begin())
1650       continue;
1651     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
1652 
1653     // FIXME: It would be awesome of updateTerminator would just return rather
1654     // than assert when the branch cannot be analyzed in order to remove this
1655     // boiler plate.
1656     Cond.clear();
1657     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1658 
1659     // The "PrevBB" is not yet updated to reflect current code layout, so,
1660     //   o. it may fall-through to a block without explicit "goto" instruction
1661     //      before layout, and no longer fall-through it after layout; or
1662     //   o. just opposite.
1663     //
1664     // analyzeBranch() may return erroneous value for FBB when these two
1665     // situations take place. For the first scenario FBB is mistakenly set NULL;
1666     // for the 2nd scenario, the FBB, which is expected to be NULL, is
1667     // mistakenly pointing to "*BI".
1668     // Thus, if the future change needs to use FBB before the layout is set, it
1669     // has to correct FBB first by using the code similar to the following:
1670     //
1671     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
1672     //   PrevBB->updateTerminator();
1673     //   Cond.clear();
1674     //   TBB = FBB = nullptr;
1675     //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1676     //     // FIXME: This should never take place.
1677     //     TBB = FBB = nullptr;
1678     //   }
1679     // }
1680     if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
1681       PrevBB->updateTerminator();
1682   }
1683 
1684   // Fixup the last block.
1685   Cond.clear();
1686   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1687   if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
1688     F->back().updateTerminator();
1689 
1690   BlockWorkList.clear();
1691   EHPadWorkList.clear();
1692 }
1693 
1694 void MachineBlockPlacement::optimizeBranches() {
1695   BlockChain &FunctionChain = *BlockToChain[&F->front()];
1696   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1697 
1698   // Now that all the basic blocks in the chain have the proper layout,
1699   // make a final call to AnalyzeBranch with AllowModify set.
1700   // Indeed, the target may be able to optimize the branches in a way we
1701   // cannot because all branches may not be analyzable.
1702   // E.g., the target may be able to remove an unconditional branch to
1703   // a fallthrough when it occurs after predicated terminators.
1704   for (MachineBasicBlock *ChainBB : FunctionChain) {
1705     Cond.clear();
1706     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1707     if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
1708       // If PrevBB has a two-way branch, try to re-order the branches
1709       // such that we branch to the successor with higher probability first.
1710       if (TBB && !Cond.empty() && FBB &&
1711           MBPI->getEdgeProbability(ChainBB, FBB) >
1712               MBPI->getEdgeProbability(ChainBB, TBB) &&
1713           !TII->reverseBranchCondition(Cond)) {
1714         DEBUG(dbgs() << "Reverse order of the two branches: "
1715                      << getBlockName(ChainBB) << "\n");
1716         DEBUG(dbgs() << "    Edge probability: "
1717                      << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
1718                      << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
1719         DebugLoc dl; // FIXME: this is nowhere
1720         TII->removeBranch(*ChainBB);
1721         TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
1722         ChainBB->updateTerminator();
1723       }
1724     }
1725   }
1726 }
1727 
1728 void MachineBlockPlacement::alignBlocks() {
1729   // Walk through the backedges of the function now that we have fully laid out
1730   // the basic blocks and align the destination of each backedge. We don't rely
1731   // exclusively on the loop info here so that we can align backedges in
1732   // unnatural CFGs and backedges that were introduced purely because of the
1733   // loop rotations done during this layout pass.
1734   if (F->getFunction()->optForSize())
1735     return;
1736   BlockChain &FunctionChain = *BlockToChain[&F->front()];
1737   if (FunctionChain.begin() == FunctionChain.end())
1738     return; // Empty chain.
1739 
1740   const BranchProbability ColdProb(1, 5); // 20%
1741   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
1742   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1743   for (MachineBasicBlock *ChainBB : FunctionChain) {
1744     if (ChainBB == *FunctionChain.begin())
1745       continue;
1746 
1747     // Don't align non-looping basic blocks. These are unlikely to execute
1748     // enough times to matter in practice. Note that we'll still handle
1749     // unnatural CFGs inside of a natural outer loop (the common case) and
1750     // rotated loops.
1751     MachineLoop *L = MLI->getLoopFor(ChainBB);
1752     if (!L)
1753       continue;
1754 
1755     unsigned Align = TLI->getPrefLoopAlignment(L);
1756     if (!Align)
1757       continue; // Don't care about loop alignment.
1758 
1759     // If the block is cold relative to the function entry don't waste space
1760     // aligning it.
1761     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
1762     if (Freq < WeightedEntryFreq)
1763       continue;
1764 
1765     // If the block is cold relative to its loop header, don't align it
1766     // regardless of what edges into the block exist.
1767     MachineBasicBlock *LoopHeader = L->getHeader();
1768     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1769     if (Freq < (LoopHeaderFreq * ColdProb))
1770       continue;
1771 
1772     // Check for the existence of a non-layout predecessor which would benefit
1773     // from aligning this block.
1774     MachineBasicBlock *LayoutPred =
1775         &*std::prev(MachineFunction::iterator(ChainBB));
1776 
1777     // Force alignment if all the predecessors are jumps. We already checked
1778     // that the block isn't cold above.
1779     if (!LayoutPred->isSuccessor(ChainBB)) {
1780       ChainBB->setAlignment(Align);
1781       continue;
1782     }
1783 
1784     // Align this block if the layout predecessor's edge into this block is
1785     // cold relative to the block. When this is true, other predecessors make up
1786     // all of the hot entries into the block and thus alignment is likely to be
1787     // important.
1788     BranchProbability LayoutProb =
1789         MBPI->getEdgeProbability(LayoutPred, ChainBB);
1790     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1791     if (LayoutEdgeFreq <= (Freq * ColdProb))
1792       ChainBB->setAlignment(Align);
1793   }
1794 }
1795 
1796 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
1797 /// it was duplicated into its chain predecessor and removed.
1798 /// \p BB    - Basic block that may be duplicated.
1799 ///
1800 /// \p LPred - Chosen layout predecessor of \p BB.
1801 ///            Updated to be the chain end if LPred is removed.
1802 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
1803 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
1804 ///                  Used to identify which blocks to update predecessor
1805 ///                  counts.
1806 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
1807 ///                          chosen in the given order due to unnatural CFG
1808 ///                          only needed if \p BB is removed and
1809 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
1810 /// @return true if \p BB was removed.
1811 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
1812     MachineBasicBlock *BB, MachineBasicBlock *&LPred,
1813     MachineBasicBlock *LoopHeaderBB,
1814     BlockChain &Chain, BlockFilterSet *BlockFilter,
1815     MachineFunction::iterator &PrevUnplacedBlockIt) {
1816   bool Removed, DuplicatedToLPred;
1817   bool DuplicatedToOriginalLPred;
1818   Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
1819                                     PrevUnplacedBlockIt,
1820                                     DuplicatedToLPred);
1821   if (!Removed)
1822     return false;
1823   DuplicatedToOriginalLPred = DuplicatedToLPred;
1824   // Iteratively try to duplicate again. It can happen that a block that is
1825   // duplicated into is still small enough to be duplicated again.
1826   // No need to call markBlockSuccessors in this case, as the blocks being
1827   // duplicated from here on are already scheduled.
1828   // Note that DuplicatedToLPred always implies Removed.
1829   while (DuplicatedToLPred) {
1830     assert (Removed && "Block must have been removed to be duplicated into its "
1831             "layout predecessor.");
1832     MachineBasicBlock *DupBB, *DupPred;
1833     // The removal callback causes Chain.end() to be updated when a block is
1834     // removed. On the first pass through the loop, the chain end should be the
1835     // same as it was on function entry. On subsequent passes, because we are
1836     // duplicating the block at the end of the chain, if it is removed the
1837     // chain will have shrunk by one block.
1838     BlockChain::iterator ChainEnd = Chain.end();
1839     DupBB = *(--ChainEnd);
1840     // Now try to duplicate again.
1841     if (ChainEnd == Chain.begin())
1842       break;
1843     DupPred = *std::prev(ChainEnd);
1844     Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
1845                                       PrevUnplacedBlockIt,
1846                                       DuplicatedToLPred);
1847   }
1848   // If BB was duplicated into LPred, it is now scheduled. But because it was
1849   // removed, markChainSuccessors won't be called for its chain. Instead we
1850   // call markBlockSuccessors for LPred to achieve the same effect. This must go
1851   // at the end because repeating the tail duplication can increase the number
1852   // of unscheduled predecessors.
1853   if (DuplicatedToOriginalLPred)
1854     markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
1855 
1856   LPred = *std::prev(Chain.end());
1857   return true;
1858 }
1859 
1860 /// Tail duplicate \p BB into (some) predecessors if profitable.
1861 /// \p BB    - Basic block that may be duplicated
1862 /// \p LPred - Chosen layout predecessor of \p BB
1863 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
1864 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
1865 ///                  Used to identify which blocks to update predecessor
1866 ///                  counts.
1867 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
1868 ///                          chosen in the given order due to unnatural CFG
1869 ///                          only needed if \p BB is removed and
1870 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
1871 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
1872 ///                        only be true if the block was removed.
1873 /// \return  - True if the block was duplicated into all preds and removed.
1874 bool MachineBlockPlacement::maybeTailDuplicateBlock(
1875     MachineBasicBlock *BB, MachineBasicBlock *LPred,
1876     const BlockChain &Chain, BlockFilterSet *BlockFilter,
1877     MachineFunction::iterator &PrevUnplacedBlockIt,
1878     bool &DuplicatedToLPred) {
1879 
1880   DuplicatedToLPred = false;
1881   DEBUG(dbgs() << "Redoing tail duplication for Succ#"
1882         << BB->getNumber() << "\n");
1883   bool IsSimple = TailDup.isSimpleBB(BB);
1884   // Blocks with single successors don't create additional fallthrough
1885   // opportunities. Don't duplicate them. TODO: When conditional exits are
1886   // analyzable, allow them to be duplicated.
1887   if (!IsSimple && BB->succ_size() == 1)
1888     return false;
1889   if (!TailDup.shouldTailDuplicate(IsSimple, *BB))
1890     return false;
1891   // This has to be a callback because none of it can be done after
1892   // BB is deleted.
1893   bool Removed = false;
1894   auto RemovalCallback =
1895       [&](MachineBasicBlock *RemBB) {
1896         // Signal to outer function
1897         Removed = true;
1898 
1899         // Conservative default.
1900         bool InWorkList = true;
1901         // Remove from the Chain and Chain Map
1902         if (BlockToChain.count(RemBB)) {
1903           BlockChain *Chain = BlockToChain[RemBB];
1904           InWorkList = Chain->UnscheduledPredecessors == 0;
1905           Chain->remove(RemBB);
1906           BlockToChain.erase(RemBB);
1907         }
1908 
1909         // Handle the unplaced block iterator
1910         if (&(*PrevUnplacedBlockIt) == RemBB) {
1911           PrevUnplacedBlockIt++;
1912         }
1913 
1914         // Handle the Work Lists
1915         if (InWorkList) {
1916           SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
1917           if (RemBB->isEHPad())
1918             RemoveList = EHPadWorkList;
1919           RemoveList.erase(
1920               remove_if(RemoveList,
1921                         [RemBB](MachineBasicBlock *BB) {return BB == RemBB;}),
1922               RemoveList.end());
1923         }
1924 
1925         // Handle the filter set
1926         if (BlockFilter) {
1927           BlockFilter->erase(RemBB);
1928         }
1929 
1930         // Remove the block from loop info.
1931         MLI->removeBlock(RemBB);
1932 
1933         // TailDuplicator handles removing it from loops.
1934         DEBUG(dbgs() << "TailDuplicator deleted block: "
1935               << getBlockName(RemBB) << "\n");
1936       };
1937   auto RemovalCallbackRef =
1938       llvm::function_ref<void(MachineBasicBlock*)>(RemovalCallback);
1939 
1940   SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
1941   TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
1942                                  &DuplicatedPreds, &RemovalCallbackRef);
1943 
1944   // Update UnscheduledPredecessors to reflect tail-duplication.
1945   DuplicatedToLPred = false;
1946   for (MachineBasicBlock *Pred : DuplicatedPreds) {
1947     // We're only looking for unscheduled predecessors that match the filter.
1948     BlockChain* PredChain = BlockToChain[Pred];
1949     if (Pred == LPred)
1950       DuplicatedToLPred = true;
1951     if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
1952         || PredChain == &Chain)
1953       continue;
1954     for (MachineBasicBlock *NewSucc : Pred->successors()) {
1955       if (BlockFilter && !BlockFilter->count(NewSucc))
1956         continue;
1957       BlockChain *NewChain = BlockToChain[NewSucc];
1958       if (NewChain != &Chain && NewChain != PredChain)
1959         NewChain->UnscheduledPredecessors++;
1960     }
1961   }
1962   return Removed;
1963 }
1964 
1965 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
1966   if (skipFunction(*MF.getFunction()))
1967     return false;
1968 
1969   // Check for single-block functions and skip them.
1970   if (std::next(MF.begin()) == MF.end())
1971     return false;
1972 
1973   F = &MF;
1974   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1975   MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>(
1976       getAnalysis<MachineBlockFrequencyInfo>());
1977   MLI = &getAnalysis<MachineLoopInfo>();
1978   TII = MF.getSubtarget().getInstrInfo();
1979   TLI = MF.getSubtarget().getTargetLowering();
1980   MDT = &getAnalysis<MachineDominatorTree>();
1981   if (TailDupPlacement) {
1982     unsigned TailDupSize = TailDuplicatePlacementThreshold;
1983     if (MF.getFunction()->optForSize())
1984       TailDupSize = 1;
1985     TailDup.initMF(MF, MBPI, /* LayoutMode */ true, TailDupSize);
1986   }
1987 
1988   assert(BlockToChain.empty());
1989 
1990   buildCFGChains();
1991 
1992   // Changing the layout can create new tail merging opportunities.
1993   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
1994   // TailMerge can create jump into if branches that make CFG irreducible for
1995   // HW that requires structured CFG.
1996   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
1997                          PassConfig->getEnableTailMerge() &&
1998                          BranchFoldPlacement;
1999   // No tail merging opportunities if the block number is less than four.
2000   if (MF.size() > 3 && EnableTailMerge) {
2001     unsigned TailMergeSize = TailDuplicatePlacementThreshold + 1;
2002     BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
2003                     *MBPI, TailMergeSize);
2004 
2005     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
2006                             getAnalysisIfAvailable<MachineModuleInfo>(), MLI,
2007                             /*AfterBlockPlacement=*/true)) {
2008       // Redo the layout if tail merging creates/removes/moves blocks.
2009       BlockToChain.clear();
2010       // Must redo the dominator tree if blocks were changed.
2011       MDT->runOnMachineFunction(MF);
2012       ChainAllocator.DestroyAll();
2013       buildCFGChains();
2014     }
2015   }
2016 
2017   optimizeBranches();
2018   alignBlocks();
2019 
2020   BlockToChain.clear();
2021   ChainAllocator.DestroyAll();
2022 
2023   if (AlignAllBlock)
2024     // Align all of the blocks in the function to a specific alignment.
2025     for (MachineBasicBlock &MBB : MF)
2026       MBB.setAlignment(AlignAllBlock);
2027   else if (AlignAllNonFallThruBlocks) {
2028     // Align all of the blocks that have no fall-through predecessors to a
2029     // specific alignment.
2030     for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
2031       auto LayoutPred = std::prev(MBI);
2032       if (!LayoutPred->isSuccessor(&*MBI))
2033         MBI->setAlignment(AlignAllNonFallThruBlocks);
2034     }
2035   }
2036 
2037   // We always return true as we have no way to track whether the final order
2038   // differs from the original order.
2039   return true;
2040 }
2041 
2042 namespace {
2043 /// \brief A pass to compute block placement statistics.
2044 ///
2045 /// A separate pass to compute interesting statistics for evaluating block
2046 /// placement. This is separate from the actual placement pass so that they can
2047 /// be computed in the absence of any placement transformations or when using
2048 /// alternative placement strategies.
2049 class MachineBlockPlacementStats : public MachineFunctionPass {
2050   /// \brief A handle to the branch probability pass.
2051   const MachineBranchProbabilityInfo *MBPI;
2052 
2053   /// \brief A handle to the function-wide block frequency pass.
2054   const MachineBlockFrequencyInfo *MBFI;
2055 
2056 public:
2057   static char ID; // Pass identification, replacement for typeid
2058   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
2059     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
2060   }
2061 
2062   bool runOnMachineFunction(MachineFunction &F) override;
2063 
2064   void getAnalysisUsage(AnalysisUsage &AU) const override {
2065     AU.addRequired<MachineBranchProbabilityInfo>();
2066     AU.addRequired<MachineBlockFrequencyInfo>();
2067     AU.setPreservesAll();
2068     MachineFunctionPass::getAnalysisUsage(AU);
2069   }
2070 };
2071 }
2072 
2073 char MachineBlockPlacementStats::ID = 0;
2074 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
2075 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
2076                       "Basic Block Placement Stats", false, false)
2077 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
2078 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
2079 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
2080                     "Basic Block Placement Stats", false, false)
2081 
2082 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
2083   // Check for single-block functions and skip them.
2084   if (std::next(F.begin()) == F.end())
2085     return false;
2086 
2087   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
2088   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2089 
2090   for (MachineBasicBlock &MBB : F) {
2091     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
2092     Statistic &NumBranches =
2093         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
2094     Statistic &BranchTakenFreq =
2095         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
2096     for (MachineBasicBlock *Succ : MBB.successors()) {
2097       // Skip if this successor is a fallthrough.
2098       if (MBB.isLayoutSuccessor(Succ))
2099         continue;
2100 
2101       BlockFrequency EdgeFreq =
2102           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
2103       ++NumBranches;
2104       BranchTakenFreq += EdgeFreq.getFrequency();
2105     }
2106   }
2107 
2108   return false;
2109 }
2110