1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "BranchFolding.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
37 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
38 #include "llvm/CodeGen/MachineDominators.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/Support/Allocator.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetInstrInfo.h"
48 #include "llvm/Target/TargetLowering.h"
49 #include "llvm/Target/TargetSubtargetInfo.h"
50 #include <algorithm>
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "block-placement"
54 
55 STATISTIC(NumCondBranches, "Number of conditional branches");
56 STATISTIC(NumUncondBranches, "Number of unconditional branches");
57 STATISTIC(CondBranchTakenFreq,
58           "Potential frequency of taking conditional branches");
59 STATISTIC(UncondBranchTakenFreq,
60           "Potential frequency of taking unconditional branches");
61 
62 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
63                                        cl::desc("Force the alignment of all "
64                                                 "blocks in the function."),
65                                        cl::init(0), cl::Hidden);
66 
67 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
68     "align-all-nofallthru-blocks",
69     cl::desc("Force the alignment of all "
70              "blocks that have no fall-through predecessors (i.e. don't add "
71              "nops that are executed)."),
72     cl::init(0), cl::Hidden);
73 
74 // FIXME: Find a good default for this flag and remove the flag.
75 static cl::opt<unsigned> ExitBlockBias(
76     "block-placement-exit-block-bias",
77     cl::desc("Block frequency percentage a loop exit block needs "
78              "over the original exit to be considered the new exit."),
79     cl::init(0), cl::Hidden);
80 
81 static cl::opt<bool> OutlineOptionalBranches(
82     "outline-optional-branches",
83     cl::desc("Put completely optional branches, i.e. branches with a common "
84              "post dominator, out of line."),
85     cl::init(false), cl::Hidden);
86 
87 static cl::opt<unsigned> OutlineOptionalThreshold(
88     "outline-optional-threshold",
89     cl::desc("Don't outline optional branches that are a single block with an "
90              "instruction count below this threshold"),
91     cl::init(4), cl::Hidden);
92 
93 static cl::opt<unsigned> LoopToColdBlockRatio(
94     "loop-to-cold-block-ratio",
95     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
96              "(frequency of block) is greater than this ratio"),
97     cl::init(5), cl::Hidden);
98 
99 static cl::opt<bool>
100     PreciseRotationCost("precise-rotation-cost",
101                         cl::desc("Model the cost of loop rotation more "
102                                  "precisely by using profile data."),
103                         cl::init(false), cl::Hidden);
104 static cl::opt<bool>
105     ForcePreciseRotationCost("force-precise-rotation-cost",
106                              cl::desc("Force the use of precise cost "
107                                       "loop rotation strategy."),
108                              cl::init(false), cl::Hidden);
109 
110 static cl::opt<unsigned> MisfetchCost(
111     "misfetch-cost",
112     cl::desc("Cost that models the probablistic risk of an instruction "
113              "misfetch due to a jump comparing to falling through, whose cost "
114              "is zero."),
115     cl::init(1), cl::Hidden);
116 
117 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
118                                       cl::desc("Cost of jump instructions."),
119                                       cl::init(1), cl::Hidden);
120 
121 static cl::opt<bool>
122 BranchFoldPlacement("branch-fold-placement",
123               cl::desc("Perform branch folding during placement. "
124                        "Reduces code size."),
125               cl::init(true), cl::Hidden);
126 
127 extern cl::opt<unsigned> StaticLikelyProb;
128 extern cl::opt<unsigned> ProfileLikelyProb;
129 
130 namespace {
131 class BlockChain;
132 /// \brief Type for our function-wide basic block -> block chain mapping.
133 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
134 }
135 
136 namespace {
137 /// \brief A chain of blocks which will be laid out contiguously.
138 ///
139 /// This is the datastructure representing a chain of consecutive blocks that
140 /// are profitable to layout together in order to maximize fallthrough
141 /// probabilities and code locality. We also can use a block chain to represent
142 /// a sequence of basic blocks which have some external (correctness)
143 /// requirement for sequential layout.
144 ///
145 /// Chains can be built around a single basic block and can be merged to grow
146 /// them. They participate in a block-to-chain mapping, which is updated
147 /// automatically as chains are merged together.
148 class BlockChain {
149   /// \brief The sequence of blocks belonging to this chain.
150   ///
151   /// This is the sequence of blocks for a particular chain. These will be laid
152   /// out in-order within the function.
153   SmallVector<MachineBasicBlock *, 4> Blocks;
154 
155   /// \brief A handle to the function-wide basic block to block chain mapping.
156   ///
157   /// This is retained in each block chain to simplify the computation of child
158   /// block chains for SCC-formation and iteration. We store the edges to child
159   /// basic blocks, and map them back to their associated chains using this
160   /// structure.
161   BlockToChainMapType &BlockToChain;
162 
163 public:
164   /// \brief Construct a new BlockChain.
165   ///
166   /// This builds a new block chain representing a single basic block in the
167   /// function. It also registers itself as the chain that block participates
168   /// in with the BlockToChain mapping.
169   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
170       : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) {
171     assert(BB && "Cannot create a chain with a null basic block");
172     BlockToChain[BB] = this;
173   }
174 
175   /// \brief Iterator over blocks within the chain.
176   typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
177 
178   /// \brief Beginning of blocks within the chain.
179   iterator begin() { return Blocks.begin(); }
180 
181   /// \brief End of blocks within the chain.
182   iterator end() { return Blocks.end(); }
183 
184   /// \brief Merge a block chain into this one.
185   ///
186   /// This routine merges a block chain into this one. It takes care of forming
187   /// a contiguous sequence of basic blocks, updating the edge list, and
188   /// updating the block -> chain mapping. It does not free or tear down the
189   /// old chain, but the old chain's block list is no longer valid.
190   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
191     assert(BB);
192     assert(!Blocks.empty());
193 
194     // Fast path in case we don't have a chain already.
195     if (!Chain) {
196       assert(!BlockToChain[BB]);
197       Blocks.push_back(BB);
198       BlockToChain[BB] = this;
199       return;
200     }
201 
202     assert(BB == *Chain->begin());
203     assert(Chain->begin() != Chain->end());
204 
205     // Update the incoming blocks to point to this chain, and add them to the
206     // chain structure.
207     for (MachineBasicBlock *ChainBB : *Chain) {
208       Blocks.push_back(ChainBB);
209       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
210       BlockToChain[ChainBB] = this;
211     }
212   }
213 
214 #ifndef NDEBUG
215   /// \brief Dump the blocks in this chain.
216   LLVM_DUMP_METHOD void dump() {
217     for (MachineBasicBlock *MBB : *this)
218       MBB->dump();
219   }
220 #endif // NDEBUG
221 
222   /// \brief Count of predecessors of any block within the chain which have not
223   /// yet been scheduled.  In general, we will delay scheduling this chain
224   /// until those predecessors are scheduled (or we find a sufficiently good
225   /// reason to override this heuristic.)  Note that when forming loop chains,
226   /// blocks outside the loop are ignored and treated as if they were already
227   /// scheduled.
228   ///
229   /// Note: This field is reinitialized multiple times - once for each loop,
230   /// and then once for the function as a whole.
231   unsigned UnscheduledPredecessors;
232 };
233 }
234 
235 namespace {
236 class MachineBlockPlacement : public MachineFunctionPass {
237   /// \brief A typedef for a block filter set.
238   typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
239 
240   /// \brief Machine Function
241   MachineFunction *F;
242 
243   /// \brief A handle to the branch probability pass.
244   const MachineBranchProbabilityInfo *MBPI;
245 
246   /// \brief A handle to the function-wide block frequency pass.
247   std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
248 
249   /// \brief A handle to the loop info.
250   MachineLoopInfo *MLI;
251 
252   /// \brief A handle to the target's instruction info.
253   const TargetInstrInfo *TII;
254 
255   /// \brief A handle to the target's lowering info.
256   const TargetLoweringBase *TLI;
257 
258   /// \brief A handle to the post dominator tree.
259   MachineDominatorTree *MDT;
260 
261   /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
262   /// all terminators of the MachineFunction.
263   SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
264 
265   /// \brief Allocator and owner of BlockChain structures.
266   ///
267   /// We build BlockChains lazily while processing the loop structure of
268   /// a function. To reduce malloc traffic, we allocate them using this
269   /// slab-like allocator, and destroy them after the pass completes. An
270   /// important guarantee is that this allocator produces stable pointers to
271   /// the chains.
272   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
273 
274   /// \brief Function wide BasicBlock to BlockChain mapping.
275   ///
276   /// This mapping allows efficiently moving from any given basic block to the
277   /// BlockChain it participates in, if any. We use it to, among other things,
278   /// allow implicitly defining edges between chains as the existing edges
279   /// between basic blocks.
280   DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
281 
282   void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
283                            SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
284                            SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
285                            const BlockFilterSet *BlockFilter = nullptr);
286   BranchProbability
287   collectViableSuccessors(MachineBasicBlock *BB, BlockChain &Chain,
288                           const BlockFilterSet *BlockFilter,
289                           SmallVector<MachineBasicBlock *, 4> &Successors);
290   bool shouldPredBlockBeOutlined(MachineBasicBlock *BB, MachineBasicBlock *Succ,
291                                  BlockChain &Chain,
292                                  const BlockFilterSet *BlockFilter,
293                                  BranchProbability SuccProb,
294                                  BranchProbability HotProb);
295   bool
296   hasBetterLayoutPredecessor(MachineBasicBlock *BB, MachineBasicBlock *Succ,
297                              BlockChain &SuccChain, BranchProbability SuccProb,
298                              BranchProbability RealSuccProb, BlockChain &Chain,
299                              const BlockFilterSet *BlockFilter);
300   MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
301                                          BlockChain &Chain,
302                                          const BlockFilterSet *BlockFilter);
303   MachineBasicBlock *
304   selectBestCandidateBlock(BlockChain &Chain,
305                            SmallVectorImpl<MachineBasicBlock *> &WorkList);
306   MachineBasicBlock *
307   getFirstUnplacedBlock(const BlockChain &PlacedChain,
308                         MachineFunction::iterator &PrevUnplacedBlockIt,
309                         const BlockFilterSet *BlockFilter);
310 
311   /// \brief Add a basic block to the work list if it is apropriate.
312   ///
313   /// If the optional parameter BlockFilter is provided, only MBB
314   /// present in the set will be added to the worklist. If nullptr
315   /// is provided, no filtering occurs.
316   void fillWorkLists(MachineBasicBlock *MBB,
317                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
318                      SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
319                      SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
320                      const BlockFilterSet *BlockFilter);
321   void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
322                   SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
323                   SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
324                   const BlockFilterSet *BlockFilter = nullptr);
325   MachineBasicBlock *findBestLoopTop(MachineLoop &L,
326                                      const BlockFilterSet &LoopBlockSet);
327   MachineBasicBlock *findBestLoopExit(MachineLoop &L,
328                                       const BlockFilterSet &LoopBlockSet);
329   BlockFilterSet collectLoopBlockSet(MachineLoop &L);
330   void buildLoopChains(MachineLoop &L);
331   void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
332                   const BlockFilterSet &LoopBlockSet);
333   void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L,
334                              const BlockFilterSet &LoopBlockSet);
335   void collectMustExecuteBBs();
336   void buildCFGChains();
337   void optimizeBranches();
338   void alignBlocks();
339 
340 public:
341   static char ID; // Pass identification, replacement for typeid
342   MachineBlockPlacement() : MachineFunctionPass(ID) {
343     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
344   }
345 
346   bool runOnMachineFunction(MachineFunction &F) override;
347 
348   void getAnalysisUsage(AnalysisUsage &AU) const override {
349     AU.addRequired<MachineBranchProbabilityInfo>();
350     AU.addRequired<MachineBlockFrequencyInfo>();
351     AU.addRequired<MachineDominatorTree>();
352     AU.addRequired<MachineLoopInfo>();
353     AU.addRequired<TargetPassConfig>();
354     MachineFunctionPass::getAnalysisUsage(AU);
355   }
356 };
357 }
358 
359 char MachineBlockPlacement::ID = 0;
360 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
361 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
362                       "Branch Probability Basic Block Placement", false, false)
363 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
364 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
365 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
366 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
367 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
368                     "Branch Probability Basic Block Placement", false, false)
369 
370 #ifndef NDEBUG
371 /// \brief Helper to print the name of a MBB.
372 ///
373 /// Only used by debug logging.
374 static std::string getBlockName(MachineBasicBlock *BB) {
375   std::string Result;
376   raw_string_ostream OS(Result);
377   OS << "BB#" << BB->getNumber();
378   OS << " ('" << BB->getName() << "')";
379   OS.flush();
380   return Result;
381 }
382 #endif
383 
384 /// \brief Mark a chain's successors as having one fewer preds.
385 ///
386 /// When a chain is being merged into the "placed" chain, this routine will
387 /// quickly walk the successors of each block in the chain and mark them as
388 /// having one fewer active predecessor. It also adds any successors of this
389 /// chain which reach the zero-predecessor state to the worklist passed in.
390 void MachineBlockPlacement::markChainSuccessors(
391     BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
392     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
393     SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
394     const BlockFilterSet *BlockFilter) {
395   // Walk all the blocks in this chain, marking their successors as having
396   // a predecessor placed.
397   for (MachineBasicBlock *MBB : Chain) {
398     // Add any successors for which this is the only un-placed in-loop
399     // predecessor to the worklist as a viable candidate for CFG-neutral
400     // placement. No subsequent placement of this block will violate the CFG
401     // shape, so we get to use heuristics to choose a favorable placement.
402     for (MachineBasicBlock *Succ : MBB->successors()) {
403       if (BlockFilter && !BlockFilter->count(Succ))
404         continue;
405       BlockChain &SuccChain = *BlockToChain[Succ];
406       // Disregard edges within a fixed chain, or edges to the loop header.
407       if (&Chain == &SuccChain || Succ == LoopHeaderBB)
408         continue;
409 
410       // This is a cross-chain edge that is within the loop, so decrement the
411       // loop predecessor count of the destination chain.
412       if (SuccChain.UnscheduledPredecessors == 0 ||
413           --SuccChain.UnscheduledPredecessors > 0)
414         continue;
415 
416       auto *MBB = *SuccChain.begin();
417       if (MBB->isEHPad())
418         EHPadWorkList.push_back(MBB);
419       else
420         BlockWorkList.push_back(MBB);
421     }
422   }
423 }
424 
425 /// This helper function collects the set of successors of block
426 /// \p BB that are allowed to be its layout successors, and return
427 /// the total branch probability of edges from \p BB to those
428 /// blocks.
429 BranchProbability MachineBlockPlacement::collectViableSuccessors(
430     MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter,
431     SmallVector<MachineBasicBlock *, 4> &Successors) {
432   // Adjust edge probabilities by excluding edges pointing to blocks that is
433   // either not in BlockFilter or is already in the current chain. Consider the
434   // following CFG:
435   //
436   //     --->A
437   //     |  / \
438   //     | B   C
439   //     |  \ / \
440   //     ----D   E
441   //
442   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
443   // A->C is chosen as a fall-through, D won't be selected as a successor of C
444   // due to CFG constraint (the probability of C->D is not greater than
445   // HotProb to break top-oorder). If we exclude E that is not in BlockFilter
446   // when calculating the  probability of C->D, D will be selected and we
447   // will get A C D B as the layout of this loop.
448   auto AdjustedSumProb = BranchProbability::getOne();
449   for (MachineBasicBlock *Succ : BB->successors()) {
450     bool SkipSucc = false;
451     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
452       SkipSucc = true;
453     } else {
454       BlockChain *SuccChain = BlockToChain[Succ];
455       if (SuccChain == &Chain) {
456         SkipSucc = true;
457       } else if (Succ != *SuccChain->begin()) {
458         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Mid chain!\n");
459         continue;
460       }
461     }
462     if (SkipSucc)
463       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
464     else
465       Successors.push_back(Succ);
466   }
467 
468   return AdjustedSumProb;
469 }
470 
471 /// The helper function returns the branch probability that is adjusted
472 /// or normalized over the new total \p AdjustedSumProb.
473 
474 static BranchProbability
475 getAdjustedProbability(BranchProbability OrigProb,
476                        BranchProbability AdjustedSumProb) {
477   BranchProbability SuccProb;
478   uint32_t SuccProbN = OrigProb.getNumerator();
479   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
480   if (SuccProbN >= SuccProbD)
481     SuccProb = BranchProbability::getOne();
482   else
483     SuccProb = BranchProbability(SuccProbN, SuccProbD);
484 
485   return SuccProb;
486 }
487 
488 /// When the option OutlineOptionalBranches is on, this method
489 /// checks if the fallthrough candidate block \p Succ (of block
490 /// \p BB) also has other unscheduled predecessor blocks which
491 /// are also successors of \p BB (forming triagular shape CFG).
492 /// If none of such predecessors are small, it returns true.
493 /// The caller can choose to select \p Succ as the layout successors
494 /// so that \p Succ's predecessors (optional branches) can be
495 /// outlined.
496 /// FIXME: fold this with more general layout cost analysis.
497 bool MachineBlockPlacement::shouldPredBlockBeOutlined(
498     MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain,
499     const BlockFilterSet *BlockFilter, BranchProbability SuccProb,
500     BranchProbability HotProb) {
501   if (!OutlineOptionalBranches)
502     return false;
503   // If we outline optional branches, look whether Succ is unavoidable, i.e.
504   // dominates all terminators of the MachineFunction. If it does, other
505   // successors must be optional. Don't do this for cold branches.
506   if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) {
507     for (MachineBasicBlock *Pred : Succ->predecessors()) {
508       // Check whether there is an unplaced optional branch.
509       if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
510           BlockToChain[Pred] == &Chain)
511         continue;
512       // Check whether the optional branch has exactly one BB.
513       if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
514         continue;
515       // Check whether the optional branch is small.
516       if (Pred->size() < OutlineOptionalThreshold)
517         return false;
518     }
519     return true;
520   } else
521     return false;
522 }
523 
524 // When profile is not present, return the StaticLikelyProb.
525 // When profile is available, we need to handle the triangle-shape CFG.
526 static BranchProbability getLayoutSuccessorProbThreshold(
527       MachineBasicBlock *BB) {
528   if (!BB->getParent()->getFunction()->getEntryCount())
529     return BranchProbability(StaticLikelyProb, 100);
530   if (BB->succ_size() == 2) {
531     const MachineBasicBlock *Succ1 = *BB->succ_begin();
532     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
533     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
534       /* See case 1 below for the cost analysis. For BB->Succ to
535        * be taken with smaller cost, the following needs to hold:
536        *   Prob(BB->Succ) > 2* Prob(BB->Pred)
537        *   So the threshold T
538        *   T = 2 * (1-Prob(BB->Pred). Since T + Prob(BB->Pred) == 1,
539        * We have  T + T/2 = 1, i.e. T = 2/3. Also adding user specified
540        * branch bias, we have
541        *   T = (2/3)*(ProfileLikelyProb/50)
542        *     = (2*ProfileLikelyProb)/150)
543        */
544       return BranchProbability(2 * ProfileLikelyProb, 150);
545     }
546   }
547   return BranchProbability(ProfileLikelyProb, 100);
548 }
549 
550 /// Checks to see if the layout candidate block \p Succ has a better layout
551 /// predecessor than \c BB. If yes, returns true.
552 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
553     MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &SuccChain,
554     BranchProbability SuccProb, BranchProbability RealSuccProb,
555     BlockChain &Chain, const BlockFilterSet *BlockFilter) {
556 
557   // This is no global conflict, just return false.
558   if (SuccChain.UnscheduledPredecessors == 0)
559     return false;
560 
561   // There are two basic scenarios here:
562   // -------------------------------------
563   // Case 1: triagular shape CFG:
564   //     BB
565   //     | \
566   //     |  \
567   //     |   Pred
568   //     |   /
569   //     Succ
570   // In this case, we are evaluating whether to select edge -> Succ, e.g.
571   // set Succ as the layout successor of BB. Picking Succ as BB's
572   // successor breaks the  CFG constraints. With this layout, Pred BB
573   // is forced to be outlined, so the overall cost will be cost of the
574   // branch taken from BB to Pred, plus the cost of back taken branch
575   // from Pred to Succ, as well as the additional cost asssociated
576   // with the needed unconditional jump instruction from Pred To Succ.
577   // The cost of the topological order layout is the taken branch cost
578   // from BB to Succ, so to make BB->Succ a viable candidate, the following
579   // must hold:
580   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
581   //      < freq(BB->Succ) *  taken_branch_cost.
582   // Ignoring unconditional jump cost, we get
583   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
584   //    prob(BB->Succ) > 2 * prob(BB->Pred)
585   //
586   // When real profile data is available, we can precisely compute the the
587   // probabililty threshold that is needed for edge BB->Succ to be considered.
588   // With out profile data, the heuristic requires the branch bias to be
589   // a lot larger to make sure the signal is very strong (e.g. 80% default).
590   // -----------------------------------------------------------------
591   // Case 2: diamond like CFG:
592   //     S
593   //    / \
594   //   |   \
595   //  BB    Pred
596   //   \    /
597   //    Succ
598   //    ..
599   // In this case, edge S->BB has already been selected, and we are evaluating
600   // candidate edge BB->Succ. Edge S->BB is selected because prob(S->BB)
601   // is no less than prob(S->Pred). When real profile data is *available*, if
602   // the condition is true, it will be always better to continue the trace with
603   // edge BB->Succ instead of laying out with topological order (i.e. laying
604   // Pred first).  The cost of S->BB->Succ is 2 * freq (S->Pred), while with
605   // the topo order, the cost is freq(S-> Pred) + Pred(S->BB) which is larger.
606   // When profile data is not available, however, we need to be more
607   // conservative. If the branch prediction is wrong, breaking the topo-order
608   // will actually yield a layout with large cost. For this reason, we need
609   // strong biaaed branch at block S with Prob(S->BB) in order to select
610   // BB->Succ. This is equialant to looking the CFG backward with backward
611   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
612   // profile data).
613 
614   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
615 
616   // Forward checking. For case 2, SuccProb will be 1.
617   if (SuccProb < HotProb) {
618     DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
619                  << " (prob) (CFG conflict)\n");
620     return true;
621   }
622 
623   // Make sure that a hot successor doesn't have a globally more
624   // important predecessor.
625   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
626   bool BadCFGConflict = false;
627 
628   for (MachineBasicBlock *Pred : Succ->predecessors()) {
629     if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
630         (BlockFilter && !BlockFilter->count(Pred)) ||
631         BlockToChain[Pred] == &Chain)
632       continue;
633     // Do backward checking. For case 1, it is actually redundant check. For
634     // case 2 above, we need a backward checking to filter out edges that are
635     // not 'strongly' biased. With profile data available, the check is mostly
636     // redundant too (when threshold prob is set at 50%) unless S has more than
637     // two successors.
638     // BB  Pred
639     //  \ /
640     //  Succ
641     // We select edgee BB->Succ if
642     //      freq(BB->Succ) > freq(Succ) * HotProb
643     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
644     //      HotProb
645     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
646     BlockFrequency PredEdgeFreq =
647         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
648     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
649       BadCFGConflict = true;
650       break;
651     }
652   }
653 
654   if (BadCFGConflict) {
655     DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
656                  << " (prob) (non-cold CFG conflict)\n");
657     return true;
658   }
659 
660   return false;
661 }
662 
663 /// \brief Select the best successor for a block.
664 ///
665 /// This looks across all successors of a particular block and attempts to
666 /// select the "best" one to be the layout successor. It only considers direct
667 /// successors which also pass the block filter. It will attempt to avoid
668 /// breaking CFG structure, but cave and break such structures in the case of
669 /// very hot successor edges.
670 ///
671 /// \returns The best successor block found, or null if none are viable.
672 MachineBasicBlock *
673 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
674                                            BlockChain &Chain,
675                                            const BlockFilterSet *BlockFilter) {
676   const BranchProbability HotProb(StaticLikelyProb, 100);
677 
678   MachineBasicBlock *BestSucc = nullptr;
679   auto BestProb = BranchProbability::getZero();
680 
681   SmallVector<MachineBasicBlock *, 4> Successors;
682   auto AdjustedSumProb =
683       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
684 
685   DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
686   for (MachineBasicBlock *Succ : Successors) {
687     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
688     BranchProbability SuccProb =
689         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
690 
691     // This heuristic is off by default.
692     if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb,
693                                   HotProb))
694       return Succ;
695 
696     BlockChain &SuccChain = *BlockToChain[Succ];
697     // Skip the edge \c BB->Succ if block \c Succ has a better layout
698     // predecessor that yields lower global cost.
699     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
700                                    Chain, BlockFilter))
701       continue;
702 
703     DEBUG(
704         dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
705                << " (prob)"
706                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
707                << "\n");
708     if (BestSucc && BestProb >= SuccProb)
709       continue;
710     BestSucc = Succ;
711     BestProb = SuccProb;
712   }
713   return BestSucc;
714 }
715 
716 /// \brief Select the best block from a worklist.
717 ///
718 /// This looks through the provided worklist as a list of candidate basic
719 /// blocks and select the most profitable one to place. The definition of
720 /// profitable only really makes sense in the context of a loop. This returns
721 /// the most frequently visited block in the worklist, which in the case of
722 /// a loop, is the one most desirable to be physically close to the rest of the
723 /// loop body in order to improve icache behavior.
724 ///
725 /// \returns The best block found, or null if none are viable.
726 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
727     BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
728   // Once we need to walk the worklist looking for a candidate, cleanup the
729   // worklist of already placed entries.
730   // FIXME: If this shows up on profiles, it could be folded (at the cost of
731   // some code complexity) into the loop below.
732   WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
733                                 [&](MachineBasicBlock *BB) {
734                                   return BlockToChain.lookup(BB) == &Chain;
735                                 }),
736                  WorkList.end());
737 
738   if (WorkList.empty())
739     return nullptr;
740 
741   bool IsEHPad = WorkList[0]->isEHPad();
742 
743   MachineBasicBlock *BestBlock = nullptr;
744   BlockFrequency BestFreq;
745   for (MachineBasicBlock *MBB : WorkList) {
746     assert(MBB->isEHPad() == IsEHPad);
747 
748     BlockChain &SuccChain = *BlockToChain[MBB];
749     if (&SuccChain == &Chain)
750       continue;
751 
752     assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block");
753 
754     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
755     DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
756           MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
757 
758     // For ehpad, we layout the least probable first as to avoid jumping back
759     // from least probable landingpads to more probable ones.
760     //
761     // FIXME: Using probability is probably (!) not the best way to achieve
762     // this. We should probably have a more principled approach to layout
763     // cleanup code.
764     //
765     // The goal is to get:
766     //
767     //                 +--------------------------+
768     //                 |                          V
769     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
770     //
771     // Rather than:
772     //
773     //                 +-------------------------------------+
774     //                 V                                     |
775     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
776     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
777       continue;
778 
779     BestBlock = MBB;
780     BestFreq = CandidateFreq;
781   }
782 
783   return BestBlock;
784 }
785 
786 /// \brief Retrieve the first unplaced basic block.
787 ///
788 /// This routine is called when we are unable to use the CFG to walk through
789 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
790 /// We walk through the function's blocks in order, starting from the
791 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
792 /// re-scanning the entire sequence on repeated calls to this routine.
793 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
794     const BlockChain &PlacedChain,
795     MachineFunction::iterator &PrevUnplacedBlockIt,
796     const BlockFilterSet *BlockFilter) {
797   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
798        ++I) {
799     if (BlockFilter && !BlockFilter->count(&*I))
800       continue;
801     if (BlockToChain[&*I] != &PlacedChain) {
802       PrevUnplacedBlockIt = I;
803       // Now select the head of the chain to which the unplaced block belongs
804       // as the block to place. This will force the entire chain to be placed,
805       // and satisfies the requirements of merging chains.
806       return *BlockToChain[&*I]->begin();
807     }
808   }
809   return nullptr;
810 }
811 
812 void MachineBlockPlacement::fillWorkLists(
813     MachineBasicBlock *MBB,
814     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
815     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
816     SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
817     const BlockFilterSet *BlockFilter = nullptr) {
818   BlockChain &Chain = *BlockToChain[MBB];
819   if (!UpdatedPreds.insert(&Chain).second)
820     return;
821 
822   assert(Chain.UnscheduledPredecessors == 0);
823   for (MachineBasicBlock *ChainBB : Chain) {
824     assert(BlockToChain[ChainBB] == &Chain);
825     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
826       if (BlockFilter && !BlockFilter->count(Pred))
827         continue;
828       if (BlockToChain[Pred] == &Chain)
829         continue;
830       ++Chain.UnscheduledPredecessors;
831     }
832   }
833 
834   if (Chain.UnscheduledPredecessors != 0)
835     return;
836 
837   MBB = *Chain.begin();
838   if (MBB->isEHPad())
839     EHPadWorkList.push_back(MBB);
840   else
841     BlockWorkList.push_back(MBB);
842 }
843 
844 void MachineBlockPlacement::buildChain(
845     MachineBasicBlock *BB, BlockChain &Chain,
846     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
847     SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
848     const BlockFilterSet *BlockFilter) {
849   assert(BB && "BB must not be null.\n");
850   assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match.\n");
851   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
852 
853   MachineBasicBlock *LoopHeaderBB = BB;
854   markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, EHPadWorkList,
855                       BlockFilter);
856   BB = *std::prev(Chain.end());
857   for (;;) {
858     assert(BB && "null block found at end of chain in loop.");
859     assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
860     assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
861 
862 
863     // Look for the best viable successor if there is one to place immediately
864     // after this block.
865     MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
866 
867     // If an immediate successor isn't available, look for the best viable
868     // block among those we've identified as not violating the loop's CFG at
869     // this point. This won't be a fallthrough, but it will increase locality.
870     if (!BestSucc)
871       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
872     if (!BestSucc)
873       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
874 
875     if (!BestSucc) {
876       BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
877       if (!BestSucc)
878         break;
879 
880       DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
881                       "layout successor until the CFG reduces\n");
882     }
883 
884     // Place this block, updating the datastructures to reflect its placement.
885     BlockChain &SuccChain = *BlockToChain[BestSucc];
886     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
887     // we selected a successor that didn't fit naturally into the CFG.
888     SuccChain.UnscheduledPredecessors = 0;
889     DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
890                  << getBlockName(BestSucc) << "\n");
891     markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, EHPadWorkList,
892                         BlockFilter);
893     Chain.merge(BestSucc, &SuccChain);
894     BB = *std::prev(Chain.end());
895   }
896 
897   DEBUG(dbgs() << "Finished forming chain for header block "
898                << getBlockName(*Chain.begin()) << "\n");
899 }
900 
901 /// \brief Find the best loop top block for layout.
902 ///
903 /// Look for a block which is strictly better than the loop header for laying
904 /// out at the top of the loop. This looks for one and only one pattern:
905 /// a latch block with no conditional exit. This block will cause a conditional
906 /// jump around it or will be the bottom of the loop if we lay it out in place,
907 /// but if it it doesn't end up at the bottom of the loop for any reason,
908 /// rotation alone won't fix it. Because such a block will always result in an
909 /// unconditional jump (for the backedge) rotating it in front of the loop
910 /// header is always profitable.
911 MachineBasicBlock *
912 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
913                                        const BlockFilterSet &LoopBlockSet) {
914   // Check that the header hasn't been fused with a preheader block due to
915   // crazy branches. If it has, we need to start with the header at the top to
916   // prevent pulling the preheader into the loop body.
917   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
918   if (!LoopBlockSet.count(*HeaderChain.begin()))
919     return L.getHeader();
920 
921   DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
922                << "\n");
923 
924   BlockFrequency BestPredFreq;
925   MachineBasicBlock *BestPred = nullptr;
926   for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
927     if (!LoopBlockSet.count(Pred))
928       continue;
929     DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", "
930                  << Pred->succ_size() << " successors, ";
931           MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
932     if (Pred->succ_size() > 1)
933       continue;
934 
935     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
936     if (!BestPred || PredFreq > BestPredFreq ||
937         (!(PredFreq < BestPredFreq) &&
938          Pred->isLayoutSuccessor(L.getHeader()))) {
939       BestPred = Pred;
940       BestPredFreq = PredFreq;
941     }
942   }
943 
944   // If no direct predecessor is fine, just use the loop header.
945   if (!BestPred) {
946     DEBUG(dbgs() << "    final top unchanged\n");
947     return L.getHeader();
948   }
949 
950   // Walk backwards through any straight line of predecessors.
951   while (BestPred->pred_size() == 1 &&
952          (*BestPred->pred_begin())->succ_size() == 1 &&
953          *BestPred->pred_begin() != L.getHeader())
954     BestPred = *BestPred->pred_begin();
955 
956   DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
957   return BestPred;
958 }
959 
960 /// \brief Find the best loop exiting block for layout.
961 ///
962 /// This routine implements the logic to analyze the loop looking for the best
963 /// block to layout at the top of the loop. Typically this is done to maximize
964 /// fallthrough opportunities.
965 MachineBasicBlock *
966 MachineBlockPlacement::findBestLoopExit(MachineLoop &L,
967                                         const BlockFilterSet &LoopBlockSet) {
968   // We don't want to layout the loop linearly in all cases. If the loop header
969   // is just a normal basic block in the loop, we want to look for what block
970   // within the loop is the best one to layout at the top. However, if the loop
971   // header has be pre-merged into a chain due to predecessors not having
972   // analyzable branches, *and* the predecessor it is merged with is *not* part
973   // of the loop, rotating the header into the middle of the loop will create
974   // a non-contiguous range of blocks which is Very Bad. So start with the
975   // header and only rotate if safe.
976   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
977   if (!LoopBlockSet.count(*HeaderChain.begin()))
978     return nullptr;
979 
980   BlockFrequency BestExitEdgeFreq;
981   unsigned BestExitLoopDepth = 0;
982   MachineBasicBlock *ExitingBB = nullptr;
983   // If there are exits to outer loops, loop rotation can severely limit
984   // fallthrough opportunites unless it selects such an exit. Keep a set of
985   // blocks where rotating to exit with that block will reach an outer loop.
986   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
987 
988   DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
989                << "\n");
990   for (MachineBasicBlock *MBB : L.getBlocks()) {
991     BlockChain &Chain = *BlockToChain[MBB];
992     // Ensure that this block is at the end of a chain; otherwise it could be
993     // mid-way through an inner loop or a successor of an unanalyzable branch.
994     if (MBB != *std::prev(Chain.end()))
995       continue;
996 
997     // Now walk the successors. We need to establish whether this has a viable
998     // exiting successor and whether it has a viable non-exiting successor.
999     // We store the old exiting state and restore it if a viable looping
1000     // successor isn't found.
1001     MachineBasicBlock *OldExitingBB = ExitingBB;
1002     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
1003     bool HasLoopingSucc = false;
1004     for (MachineBasicBlock *Succ : MBB->successors()) {
1005       if (Succ->isEHPad())
1006         continue;
1007       if (Succ == MBB)
1008         continue;
1009       BlockChain &SuccChain = *BlockToChain[Succ];
1010       // Don't split chains, either this chain or the successor's chain.
1011       if (&Chain == &SuccChain) {
1012         DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1013                      << getBlockName(Succ) << " (chain conflict)\n");
1014         continue;
1015       }
1016 
1017       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
1018       if (LoopBlockSet.count(Succ)) {
1019         DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
1020                      << getBlockName(Succ) << " (" << SuccProb << ")\n");
1021         HasLoopingSucc = true;
1022         continue;
1023       }
1024 
1025       unsigned SuccLoopDepth = 0;
1026       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
1027         SuccLoopDepth = ExitLoop->getLoopDepth();
1028         if (ExitLoop->contains(&L))
1029           BlocksExitingToOuterLoop.insert(MBB);
1030       }
1031 
1032       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
1033       DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1034                    << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
1035             MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
1036       // Note that we bias this toward an existing layout successor to retain
1037       // incoming order in the absence of better information. The exit must have
1038       // a frequency higher than the current exit before we consider breaking
1039       // the layout.
1040       BranchProbability Bias(100 - ExitBlockBias, 100);
1041       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
1042           ExitEdgeFreq > BestExitEdgeFreq ||
1043           (MBB->isLayoutSuccessor(Succ) &&
1044            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
1045         BestExitEdgeFreq = ExitEdgeFreq;
1046         ExitingBB = MBB;
1047       }
1048     }
1049 
1050     if (!HasLoopingSucc) {
1051       // Restore the old exiting state, no viable looping successor was found.
1052       ExitingBB = OldExitingBB;
1053       BestExitEdgeFreq = OldBestExitEdgeFreq;
1054     }
1055   }
1056   // Without a candidate exiting block or with only a single block in the
1057   // loop, just use the loop header to layout the loop.
1058   if (!ExitingBB || L.getNumBlocks() == 1)
1059     return nullptr;
1060 
1061   // Also, if we have exit blocks which lead to outer loops but didn't select
1062   // one of them as the exiting block we are rotating toward, disable loop
1063   // rotation altogether.
1064   if (!BlocksExitingToOuterLoop.empty() &&
1065       !BlocksExitingToOuterLoop.count(ExitingBB))
1066     return nullptr;
1067 
1068   DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
1069   return ExitingBB;
1070 }
1071 
1072 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
1073 ///
1074 /// Once we have built a chain, try to rotate it to line up the hot exit block
1075 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
1076 /// branches. For example, if the loop has fallthrough into its header and out
1077 /// of its bottom already, don't rotate it.
1078 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
1079                                        MachineBasicBlock *ExitingBB,
1080                                        const BlockFilterSet &LoopBlockSet) {
1081   if (!ExitingBB)
1082     return;
1083 
1084   MachineBasicBlock *Top = *LoopChain.begin();
1085   bool ViableTopFallthrough = false;
1086   for (MachineBasicBlock *Pred : Top->predecessors()) {
1087     BlockChain *PredChain = BlockToChain[Pred];
1088     if (!LoopBlockSet.count(Pred) &&
1089         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1090       ViableTopFallthrough = true;
1091       break;
1092     }
1093   }
1094 
1095   // If the header has viable fallthrough, check whether the current loop
1096   // bottom is a viable exiting block. If so, bail out as rotating will
1097   // introduce an unnecessary branch.
1098   if (ViableTopFallthrough) {
1099     MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
1100     for (MachineBasicBlock *Succ : Bottom->successors()) {
1101       BlockChain *SuccChain = BlockToChain[Succ];
1102       if (!LoopBlockSet.count(Succ) &&
1103           (!SuccChain || Succ == *SuccChain->begin()))
1104         return;
1105     }
1106   }
1107 
1108   BlockChain::iterator ExitIt =
1109       std::find(LoopChain.begin(), LoopChain.end(), ExitingBB);
1110   if (ExitIt == LoopChain.end())
1111     return;
1112 
1113   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
1114 }
1115 
1116 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
1117 ///
1118 /// With profile data, we can determine the cost in terms of missed fall through
1119 /// opportunities when rotating a loop chain and select the best rotation.
1120 /// Basically, there are three kinds of cost to consider for each rotation:
1121 ///    1. The possibly missed fall through edge (if it exists) from BB out of
1122 ///    the loop to the loop header.
1123 ///    2. The possibly missed fall through edges (if they exist) from the loop
1124 ///    exits to BB out of the loop.
1125 ///    3. The missed fall through edge (if it exists) from the last BB to the
1126 ///    first BB in the loop chain.
1127 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
1128 ///  We select the best rotation with the smallest cost.
1129 void MachineBlockPlacement::rotateLoopWithProfile(
1130     BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) {
1131   auto HeaderBB = L.getHeader();
1132   auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB);
1133   auto RotationPos = LoopChain.end();
1134 
1135   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
1136 
1137   // A utility lambda that scales up a block frequency by dividing it by a
1138   // branch probability which is the reciprocal of the scale.
1139   auto ScaleBlockFrequency = [](BlockFrequency Freq,
1140                                 unsigned Scale) -> BlockFrequency {
1141     if (Scale == 0)
1142       return 0;
1143     // Use operator / between BlockFrequency and BranchProbability to implement
1144     // saturating multiplication.
1145     return Freq / BranchProbability(1, Scale);
1146   };
1147 
1148   // Compute the cost of the missed fall-through edge to the loop header if the
1149   // chain head is not the loop header. As we only consider natural loops with
1150   // single header, this computation can be done only once.
1151   BlockFrequency HeaderFallThroughCost(0);
1152   for (auto *Pred : HeaderBB->predecessors()) {
1153     BlockChain *PredChain = BlockToChain[Pred];
1154     if (!LoopBlockSet.count(Pred) &&
1155         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1156       auto EdgeFreq =
1157           MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
1158       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
1159       // If the predecessor has only an unconditional jump to the header, we
1160       // need to consider the cost of this jump.
1161       if (Pred->succ_size() == 1)
1162         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
1163       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
1164     }
1165   }
1166 
1167   // Here we collect all exit blocks in the loop, and for each exit we find out
1168   // its hottest exit edge. For each loop rotation, we define the loop exit cost
1169   // as the sum of frequencies of exit edges we collect here, excluding the exit
1170   // edge from the tail of the loop chain.
1171   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
1172   for (auto BB : LoopChain) {
1173     auto LargestExitEdgeProb = BranchProbability::getZero();
1174     for (auto *Succ : BB->successors()) {
1175       BlockChain *SuccChain = BlockToChain[Succ];
1176       if (!LoopBlockSet.count(Succ) &&
1177           (!SuccChain || Succ == *SuccChain->begin())) {
1178         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
1179         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
1180       }
1181     }
1182     if (LargestExitEdgeProb > BranchProbability::getZero()) {
1183       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
1184       ExitsWithFreq.emplace_back(BB, ExitFreq);
1185     }
1186   }
1187 
1188   // In this loop we iterate every block in the loop chain and calculate the
1189   // cost assuming the block is the head of the loop chain. When the loop ends,
1190   // we should have found the best candidate as the loop chain's head.
1191   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
1192             EndIter = LoopChain.end();
1193        Iter != EndIter; Iter++, TailIter++) {
1194     // TailIter is used to track the tail of the loop chain if the block we are
1195     // checking (pointed by Iter) is the head of the chain.
1196     if (TailIter == LoopChain.end())
1197       TailIter = LoopChain.begin();
1198 
1199     auto TailBB = *TailIter;
1200 
1201     // Calculate the cost by putting this BB to the top.
1202     BlockFrequency Cost = 0;
1203 
1204     // If the current BB is the loop header, we need to take into account the
1205     // cost of the missed fall through edge from outside of the loop to the
1206     // header.
1207     if (Iter != HeaderIter)
1208       Cost += HeaderFallThroughCost;
1209 
1210     // Collect the loop exit cost by summing up frequencies of all exit edges
1211     // except the one from the chain tail.
1212     for (auto &ExitWithFreq : ExitsWithFreq)
1213       if (TailBB != ExitWithFreq.first)
1214         Cost += ExitWithFreq.second;
1215 
1216     // The cost of breaking the once fall-through edge from the tail to the top
1217     // of the loop chain. Here we need to consider three cases:
1218     // 1. If the tail node has only one successor, then we will get an
1219     //    additional jmp instruction. So the cost here is (MisfetchCost +
1220     //    JumpInstCost) * tail node frequency.
1221     // 2. If the tail node has two successors, then we may still get an
1222     //    additional jmp instruction if the layout successor after the loop
1223     //    chain is not its CFG successor. Note that the more frequently executed
1224     //    jmp instruction will be put ahead of the other one. Assume the
1225     //    frequency of those two branches are x and y, where x is the frequency
1226     //    of the edge to the chain head, then the cost will be
1227     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
1228     // 3. If the tail node has more than two successors (this rarely happens),
1229     //    we won't consider any additional cost.
1230     if (TailBB->isSuccessor(*Iter)) {
1231       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
1232       if (TailBB->succ_size() == 1)
1233         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
1234                                     MisfetchCost + JumpInstCost);
1235       else if (TailBB->succ_size() == 2) {
1236         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
1237         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
1238         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
1239                                   ? TailBBFreq * TailToHeadProb.getCompl()
1240                                   : TailToHeadFreq;
1241         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
1242                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
1243       }
1244     }
1245 
1246     DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter)
1247                  << " to the top: " << Cost.getFrequency() << "\n");
1248 
1249     if (Cost < SmallestRotationCost) {
1250       SmallestRotationCost = Cost;
1251       RotationPos = Iter;
1252     }
1253   }
1254 
1255   if (RotationPos != LoopChain.end()) {
1256     DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
1257                  << " to the top\n");
1258     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
1259   }
1260 }
1261 
1262 /// \brief Collect blocks in the given loop that are to be placed.
1263 ///
1264 /// When profile data is available, exclude cold blocks from the returned set;
1265 /// otherwise, collect all blocks in the loop.
1266 MachineBlockPlacement::BlockFilterSet
1267 MachineBlockPlacement::collectLoopBlockSet(MachineLoop &L) {
1268   BlockFilterSet LoopBlockSet;
1269 
1270   // Filter cold blocks off from LoopBlockSet when profile data is available.
1271   // Collect the sum of frequencies of incoming edges to the loop header from
1272   // outside. If we treat the loop as a super block, this is the frequency of
1273   // the loop. Then for each block in the loop, we calculate the ratio between
1274   // its frequency and the frequency of the loop block. When it is too small,
1275   // don't add it to the loop chain. If there are outer loops, then this block
1276   // will be merged into the first outer loop chain for which this block is not
1277   // cold anymore. This needs precise profile data and we only do this when
1278   // profile data is available.
1279   if (F->getFunction()->getEntryCount()) {
1280     BlockFrequency LoopFreq(0);
1281     for (auto LoopPred : L.getHeader()->predecessors())
1282       if (!L.contains(LoopPred))
1283         LoopFreq += MBFI->getBlockFreq(LoopPred) *
1284                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
1285 
1286     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
1287       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
1288       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
1289         continue;
1290       LoopBlockSet.insert(LoopBB);
1291     }
1292   } else
1293     LoopBlockSet.insert(L.block_begin(), L.block_end());
1294 
1295   return LoopBlockSet;
1296 }
1297 
1298 /// \brief Forms basic block chains from the natural loop structures.
1299 ///
1300 /// These chains are designed to preserve the existing *structure* of the code
1301 /// as much as possible. We can then stitch the chains together in a way which
1302 /// both preserves the topological structure and minimizes taken conditional
1303 /// branches.
1304 void MachineBlockPlacement::buildLoopChains(MachineLoop &L) {
1305   // First recurse through any nested loops, building chains for those inner
1306   // loops.
1307   for (MachineLoop *InnerLoop : L)
1308     buildLoopChains(*InnerLoop);
1309 
1310   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
1311   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
1312   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
1313 
1314   // Check if we have profile data for this function. If yes, we will rotate
1315   // this loop by modeling costs more precisely which requires the profile data
1316   // for better layout.
1317   bool RotateLoopWithProfile =
1318       ForcePreciseRotationCost ||
1319       (PreciseRotationCost && F->getFunction()->getEntryCount());
1320 
1321   // First check to see if there is an obviously preferable top block for the
1322   // loop. This will default to the header, but may end up as one of the
1323   // predecessors to the header if there is one which will result in strictly
1324   // fewer branches in the loop body.
1325   // When we use profile data to rotate the loop, this is unnecessary.
1326   MachineBasicBlock *LoopTop =
1327       RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
1328 
1329   // If we selected just the header for the loop top, look for a potentially
1330   // profitable exit block in the event that rotating the loop can eliminate
1331   // branches by placing an exit edge at the bottom.
1332   MachineBasicBlock *ExitingBB = nullptr;
1333   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
1334     ExitingBB = findBestLoopExit(L, LoopBlockSet);
1335 
1336   BlockChain &LoopChain = *BlockToChain[LoopTop];
1337 
1338   // FIXME: This is a really lame way of walking the chains in the loop: we
1339   // walk the blocks, and use a set to prevent visiting a particular chain
1340   // twice.
1341   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1342   assert(LoopChain.UnscheduledPredecessors == 0);
1343   UpdatedPreds.insert(&LoopChain);
1344 
1345   for (MachineBasicBlock *LoopBB : LoopBlockSet)
1346     fillWorkLists(LoopBB, UpdatedPreds, BlockWorkList, EHPadWorkList,
1347                   &LoopBlockSet);
1348 
1349   buildChain(LoopTop, LoopChain, BlockWorkList, EHPadWorkList, &LoopBlockSet);
1350 
1351   if (RotateLoopWithProfile)
1352     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
1353   else
1354     rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
1355 
1356   DEBUG({
1357     // Crash at the end so we get all of the debugging output first.
1358     bool BadLoop = false;
1359     if (LoopChain.UnscheduledPredecessors) {
1360       BadLoop = true;
1361       dbgs() << "Loop chain contains a block without its preds placed!\n"
1362              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1363              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
1364     }
1365     for (MachineBasicBlock *ChainBB : LoopChain) {
1366       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
1367       if (!LoopBlockSet.erase(ChainBB)) {
1368         // We don't mark the loop as bad here because there are real situations
1369         // where this can occur. For example, with an unanalyzable fallthrough
1370         // from a loop block to a non-loop block or vice versa.
1371         dbgs() << "Loop chain contains a block not contained by the loop!\n"
1372                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1373                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1374                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1375       }
1376     }
1377 
1378     if (!LoopBlockSet.empty()) {
1379       BadLoop = true;
1380       for (MachineBasicBlock *LoopBB : LoopBlockSet)
1381         dbgs() << "Loop contains blocks never placed into a chain!\n"
1382                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1383                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1384                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
1385     }
1386     assert(!BadLoop && "Detected problems with the placement of this loop.");
1387   });
1388 }
1389 
1390 /// When OutlineOpitonalBranches is on, this method colects BBs that
1391 /// dominates all terminator blocks of the function \p F.
1392 void MachineBlockPlacement::collectMustExecuteBBs() {
1393   if (OutlineOptionalBranches) {
1394     // Find the nearest common dominator of all of F's terminators.
1395     MachineBasicBlock *Terminator = nullptr;
1396     for (MachineBasicBlock &MBB : *F) {
1397       if (MBB.succ_size() == 0) {
1398         if (Terminator == nullptr)
1399           Terminator = &MBB;
1400         else
1401           Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
1402       }
1403     }
1404 
1405     // MBBs dominating this common dominator are unavoidable.
1406     UnavoidableBlocks.clear();
1407     for (MachineBasicBlock &MBB : *F) {
1408       if (MDT->dominates(&MBB, Terminator)) {
1409         UnavoidableBlocks.insert(&MBB);
1410       }
1411     }
1412   }
1413 }
1414 
1415 void MachineBlockPlacement::buildCFGChains() {
1416   // Ensure that every BB in the function has an associated chain to simplify
1417   // the assumptions of the remaining algorithm.
1418   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1419   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
1420        ++FI) {
1421     MachineBasicBlock *BB = &*FI;
1422     BlockChain *Chain =
1423         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
1424     // Also, merge any blocks which we cannot reason about and must preserve
1425     // the exact fallthrough behavior for.
1426     for (;;) {
1427       Cond.clear();
1428       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1429       if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
1430         break;
1431 
1432       MachineFunction::iterator NextFI = std::next(FI);
1433       MachineBasicBlock *NextBB = &*NextFI;
1434       // Ensure that the layout successor is a viable block, as we know that
1435       // fallthrough is a possibility.
1436       assert(NextFI != FE && "Can't fallthrough past the last block.");
1437       DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
1438                    << getBlockName(BB) << " -> " << getBlockName(NextBB)
1439                    << "\n");
1440       Chain->merge(NextBB, nullptr);
1441       FI = NextFI;
1442       BB = NextBB;
1443     }
1444   }
1445 
1446   // Turned on with OutlineOptionalBranches option
1447   collectMustExecuteBBs();
1448 
1449   // Build any loop-based chains.
1450   for (MachineLoop *L : *MLI)
1451     buildLoopChains(*L);
1452 
1453   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
1454   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
1455 
1456   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1457   for (MachineBasicBlock &MBB : *F)
1458     fillWorkLists(&MBB, UpdatedPreds, BlockWorkList, EHPadWorkList);
1459 
1460   BlockChain &FunctionChain = *BlockToChain[&F->front()];
1461   buildChain(&F->front(), FunctionChain, BlockWorkList, EHPadWorkList);
1462 
1463 #ifndef NDEBUG
1464   typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
1465 #endif
1466   DEBUG({
1467     // Crash at the end so we get all of the debugging output first.
1468     bool BadFunc = false;
1469     FunctionBlockSetType FunctionBlockSet;
1470     for (MachineBasicBlock &MBB : *F)
1471       FunctionBlockSet.insert(&MBB);
1472 
1473     for (MachineBasicBlock *ChainBB : FunctionChain)
1474       if (!FunctionBlockSet.erase(ChainBB)) {
1475         BadFunc = true;
1476         dbgs() << "Function chain contains a block not in the function!\n"
1477                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1478       }
1479 
1480     if (!FunctionBlockSet.empty()) {
1481       BadFunc = true;
1482       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
1483         dbgs() << "Function contains blocks never placed into a chain!\n"
1484                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
1485     }
1486     assert(!BadFunc && "Detected problems with the block placement.");
1487   });
1488 
1489   // Splice the blocks into place.
1490   MachineFunction::iterator InsertPos = F->begin();
1491   DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n");
1492   for (MachineBasicBlock *ChainBB : FunctionChain) {
1493     DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
1494                                                        : "          ... ")
1495                  << getBlockName(ChainBB) << "\n");
1496     if (InsertPos != MachineFunction::iterator(ChainBB))
1497       F->splice(InsertPos, ChainBB);
1498     else
1499       ++InsertPos;
1500 
1501     // Update the terminator of the previous block.
1502     if (ChainBB == *FunctionChain.begin())
1503       continue;
1504     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
1505 
1506     // FIXME: It would be awesome of updateTerminator would just return rather
1507     // than assert when the branch cannot be analyzed in order to remove this
1508     // boiler plate.
1509     Cond.clear();
1510     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1511 
1512     // The "PrevBB" is not yet updated to reflect current code layout, so,
1513     //   o. it may fall-through to a block without explict "goto" instruction
1514     //      before layout, and no longer fall-through it after layout; or
1515     //   o. just opposite.
1516     //
1517     // AnalyzeBranch() may return erroneous value for FBB when these two
1518     // situations take place. For the first scenario FBB is mistakenly set NULL;
1519     // for the 2nd scenario, the FBB, which is expected to be NULL, is
1520     // mistakenly pointing to "*BI".
1521     // Thus, if the future change needs to use FBB before the layout is set, it
1522     // has to correct FBB first by using the code similar to the following:
1523     //
1524     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
1525     //   PrevBB->updateTerminator();
1526     //   Cond.clear();
1527     //   TBB = FBB = nullptr;
1528     //   if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1529     //     // FIXME: This should never take place.
1530     //     TBB = FBB = nullptr;
1531     //   }
1532     // }
1533     if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond))
1534       PrevBB->updateTerminator();
1535   }
1536 
1537   // Fixup the last block.
1538   Cond.clear();
1539   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1540   if (!TII->AnalyzeBranch(F->back(), TBB, FBB, Cond))
1541     F->back().updateTerminator();
1542 }
1543 
1544 void MachineBlockPlacement::optimizeBranches() {
1545   BlockChain &FunctionChain = *BlockToChain[&F->front()];
1546   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1547 
1548   // Now that all the basic blocks in the chain have the proper layout,
1549   // make a final call to AnalyzeBranch with AllowModify set.
1550   // Indeed, the target may be able to optimize the branches in a way we
1551   // cannot because all branches may not be analyzable.
1552   // E.g., the target may be able to remove an unconditional branch to
1553   // a fallthrough when it occurs after predicated terminators.
1554   for (MachineBasicBlock *ChainBB : FunctionChain) {
1555     Cond.clear();
1556     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1557     if (!TII->AnalyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
1558       // If PrevBB has a two-way branch, try to re-order the branches
1559       // such that we branch to the successor with higher probability first.
1560       if (TBB && !Cond.empty() && FBB &&
1561           MBPI->getEdgeProbability(ChainBB, FBB) >
1562               MBPI->getEdgeProbability(ChainBB, TBB) &&
1563           !TII->ReverseBranchCondition(Cond)) {
1564         DEBUG(dbgs() << "Reverse order of the two branches: "
1565                      << getBlockName(ChainBB) << "\n");
1566         DEBUG(dbgs() << "    Edge probability: "
1567                      << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
1568                      << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
1569         DebugLoc dl; // FIXME: this is nowhere
1570         TII->RemoveBranch(*ChainBB);
1571         TII->InsertBranch(*ChainBB, FBB, TBB, Cond, dl);
1572         ChainBB->updateTerminator();
1573       }
1574     }
1575   }
1576 }
1577 
1578 void MachineBlockPlacement::alignBlocks() {
1579   // Walk through the backedges of the function now that we have fully laid out
1580   // the basic blocks and align the destination of each backedge. We don't rely
1581   // exclusively on the loop info here so that we can align backedges in
1582   // unnatural CFGs and backedges that were introduced purely because of the
1583   // loop rotations done during this layout pass.
1584   if (F->getFunction()->optForSize())
1585     return;
1586   BlockChain &FunctionChain = *BlockToChain[&F->front()];
1587   if (FunctionChain.begin() == FunctionChain.end())
1588     return; // Empty chain.
1589 
1590   const BranchProbability ColdProb(1, 5); // 20%
1591   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
1592   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1593   for (MachineBasicBlock *ChainBB : FunctionChain) {
1594     if (ChainBB == *FunctionChain.begin())
1595       continue;
1596 
1597     // Don't align non-looping basic blocks. These are unlikely to execute
1598     // enough times to matter in practice. Note that we'll still handle
1599     // unnatural CFGs inside of a natural outer loop (the common case) and
1600     // rotated loops.
1601     MachineLoop *L = MLI->getLoopFor(ChainBB);
1602     if (!L)
1603       continue;
1604 
1605     unsigned Align = TLI->getPrefLoopAlignment(L);
1606     if (!Align)
1607       continue; // Don't care about loop alignment.
1608 
1609     // If the block is cold relative to the function entry don't waste space
1610     // aligning it.
1611     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
1612     if (Freq < WeightedEntryFreq)
1613       continue;
1614 
1615     // If the block is cold relative to its loop header, don't align it
1616     // regardless of what edges into the block exist.
1617     MachineBasicBlock *LoopHeader = L->getHeader();
1618     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1619     if (Freq < (LoopHeaderFreq * ColdProb))
1620       continue;
1621 
1622     // Check for the existence of a non-layout predecessor which would benefit
1623     // from aligning this block.
1624     MachineBasicBlock *LayoutPred =
1625         &*std::prev(MachineFunction::iterator(ChainBB));
1626 
1627     // Force alignment if all the predecessors are jumps. We already checked
1628     // that the block isn't cold above.
1629     if (!LayoutPred->isSuccessor(ChainBB)) {
1630       ChainBB->setAlignment(Align);
1631       continue;
1632     }
1633 
1634     // Align this block if the layout predecessor's edge into this block is
1635     // cold relative to the block. When this is true, other predecessors make up
1636     // all of the hot entries into the block and thus alignment is likely to be
1637     // important.
1638     BranchProbability LayoutProb =
1639         MBPI->getEdgeProbability(LayoutPred, ChainBB);
1640     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1641     if (LayoutEdgeFreq <= (Freq * ColdProb))
1642       ChainBB->setAlignment(Align);
1643   }
1644 }
1645 
1646 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
1647   if (skipFunction(*MF.getFunction()))
1648     return false;
1649 
1650   // Check for single-block functions and skip them.
1651   if (std::next(MF.begin()) == MF.end())
1652     return false;
1653 
1654   F = &MF;
1655   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1656   MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>(
1657       getAnalysis<MachineBlockFrequencyInfo>());
1658   MLI = &getAnalysis<MachineLoopInfo>();
1659   TII = MF.getSubtarget().getInstrInfo();
1660   TLI = MF.getSubtarget().getTargetLowering();
1661   MDT = &getAnalysis<MachineDominatorTree>();
1662   assert(BlockToChain.empty());
1663 
1664   buildCFGChains();
1665 
1666   // Changing the layout can create new tail merging opportunities.
1667   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
1668   // TailMerge can create jump into if branches that make CFG irreducible for
1669   // HW that requires structurized CFG.
1670   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
1671                          PassConfig->getEnableTailMerge() &&
1672                          BranchFoldPlacement;
1673   // No tail merging opportunities if the block number is less than four.
1674   if (MF.size() > 3 && EnableTailMerge) {
1675     BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
1676                     *MBPI);
1677 
1678     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
1679                             getAnalysisIfAvailable<MachineModuleInfo>(), MLI,
1680                             /*AfterBlockPlacement=*/true)) {
1681       // Redo the layout if tail merging creates/removes/moves blocks.
1682       BlockToChain.clear();
1683       ChainAllocator.DestroyAll();
1684       buildCFGChains();
1685     }
1686   }
1687 
1688   optimizeBranches();
1689   alignBlocks();
1690 
1691   BlockToChain.clear();
1692   ChainAllocator.DestroyAll();
1693 
1694   if (AlignAllBlock)
1695     // Align all of the blocks in the function to a specific alignment.
1696     for (MachineBasicBlock &MBB : MF)
1697       MBB.setAlignment(AlignAllBlock);
1698   else if (AlignAllNonFallThruBlocks) {
1699     // Align all of the blocks that have no fall-through predecessors to a
1700     // specific alignment.
1701     for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
1702       auto LayoutPred = std::prev(MBI);
1703       if (!LayoutPred->isSuccessor(&*MBI))
1704         MBI->setAlignment(AlignAllNonFallThruBlocks);
1705     }
1706   }
1707 
1708   // We always return true as we have no way to track whether the final order
1709   // differs from the original order.
1710   return true;
1711 }
1712 
1713 namespace {
1714 /// \brief A pass to compute block placement statistics.
1715 ///
1716 /// A separate pass to compute interesting statistics for evaluating block
1717 /// placement. This is separate from the actual placement pass so that they can
1718 /// be computed in the absence of any placement transformations or when using
1719 /// alternative placement strategies.
1720 class MachineBlockPlacementStats : public MachineFunctionPass {
1721   /// \brief A handle to the branch probability pass.
1722   const MachineBranchProbabilityInfo *MBPI;
1723 
1724   /// \brief A handle to the function-wide block frequency pass.
1725   const MachineBlockFrequencyInfo *MBFI;
1726 
1727 public:
1728   static char ID; // Pass identification, replacement for typeid
1729   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
1730     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
1731   }
1732 
1733   bool runOnMachineFunction(MachineFunction &F) override;
1734 
1735   void getAnalysisUsage(AnalysisUsage &AU) const override {
1736     AU.addRequired<MachineBranchProbabilityInfo>();
1737     AU.addRequired<MachineBlockFrequencyInfo>();
1738     AU.setPreservesAll();
1739     MachineFunctionPass::getAnalysisUsage(AU);
1740   }
1741 };
1742 }
1743 
1744 char MachineBlockPlacementStats::ID = 0;
1745 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
1746 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
1747                       "Basic Block Placement Stats", false, false)
1748 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
1749 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1750 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
1751                     "Basic Block Placement Stats", false, false)
1752 
1753 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
1754   // Check for single-block functions and skip them.
1755   if (std::next(F.begin()) == F.end())
1756     return false;
1757 
1758   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1759   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1760 
1761   for (MachineBasicBlock &MBB : F) {
1762     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
1763     Statistic &NumBranches =
1764         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
1765     Statistic &BranchTakenFreq =
1766         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
1767     for (MachineBasicBlock *Succ : MBB.successors()) {
1768       // Skip if this successor is a fallthrough.
1769       if (MBB.isLayoutSuccessor(Succ))
1770         continue;
1771 
1772       BlockFrequency EdgeFreq =
1773           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
1774       ++NumBranches;
1775       BranchTakenFreq += EdgeFreq.getFrequency();
1776     }
1777   }
1778 
1779   return false;
1780 }
1781