1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "BranchFolding.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 39 #include "llvm/CodeGen/MachineDominators.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineLoopInfo.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachinePostDominators.h" 45 #include "llvm/CodeGen/TailDuplicator.h" 46 #include "llvm/Support/Allocator.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetInstrInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetSubtargetInfo.h" 53 #include <algorithm> 54 #include <functional> 55 #include <utility> 56 using namespace llvm; 57 58 #define DEBUG_TYPE "block-placement" 59 60 STATISTIC(NumCondBranches, "Number of conditional branches"); 61 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 62 STATISTIC(CondBranchTakenFreq, 63 "Potential frequency of taking conditional branches"); 64 STATISTIC(UncondBranchTakenFreq, 65 "Potential frequency of taking unconditional branches"); 66 67 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 68 cl::desc("Force the alignment of all " 69 "blocks in the function."), 70 cl::init(0), cl::Hidden); 71 72 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 73 "align-all-nofallthru-blocks", 74 cl::desc("Force the alignment of all " 75 "blocks that have no fall-through predecessors (i.e. don't add " 76 "nops that are executed)."), 77 cl::init(0), cl::Hidden); 78 79 // FIXME: Find a good default for this flag and remove the flag. 80 static cl::opt<unsigned> ExitBlockBias( 81 "block-placement-exit-block-bias", 82 cl::desc("Block frequency percentage a loop exit block needs " 83 "over the original exit to be considered the new exit."), 84 cl::init(0), cl::Hidden); 85 86 // Definition: 87 // - Outlining: placement of a basic block outside the chain or hot path. 88 89 static cl::opt<bool> OutlineOptionalBranches( 90 "outline-optional-branches", 91 cl::desc("Outlining optional branches will place blocks that are optional " 92 "branches, i.e. branches with a common post dominator, outside " 93 "the hot path or chain"), 94 cl::init(false), cl::Hidden); 95 96 static cl::opt<unsigned> OutlineOptionalThreshold( 97 "outline-optional-threshold", 98 cl::desc("Don't outline optional branches that are a single block with an " 99 "instruction count below this threshold"), 100 cl::init(4), cl::Hidden); 101 102 static cl::opt<unsigned> LoopToColdBlockRatio( 103 "loop-to-cold-block-ratio", 104 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 105 "(frequency of block) is greater than this ratio"), 106 cl::init(5), cl::Hidden); 107 108 static cl::opt<bool> 109 PreciseRotationCost("precise-rotation-cost", 110 cl::desc("Model the cost of loop rotation more " 111 "precisely by using profile data."), 112 cl::init(false), cl::Hidden); 113 static cl::opt<bool> 114 ForcePreciseRotationCost("force-precise-rotation-cost", 115 cl::desc("Force the use of precise cost " 116 "loop rotation strategy."), 117 cl::init(false), cl::Hidden); 118 119 static cl::opt<unsigned> MisfetchCost( 120 "misfetch-cost", 121 cl::desc("Cost that models the probabilistic risk of an instruction " 122 "misfetch due to a jump comparing to falling through, whose cost " 123 "is zero."), 124 cl::init(1), cl::Hidden); 125 126 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 127 cl::desc("Cost of jump instructions."), 128 cl::init(1), cl::Hidden); 129 static cl::opt<bool> 130 TailDupPlacement("tail-dup-placement", 131 cl::desc("Perform tail duplication during placement. " 132 "Creates more fallthrough opportunites in " 133 "outline branches."), 134 cl::init(true), cl::Hidden); 135 136 static cl::opt<bool> 137 BranchFoldPlacement("branch-fold-placement", 138 cl::desc("Perform branch folding during placement. " 139 "Reduces code size."), 140 cl::init(true), cl::Hidden); 141 142 // Heuristic for tail duplication. 143 static cl::opt<unsigned> TailDupPlacementThreshold( 144 "tail-dup-placement-threshold", 145 cl::desc("Instruction cutoff for tail duplication during layout. " 146 "Tail merging during layout is forced to have a threshold " 147 "that won't conflict."), cl::init(2), 148 cl::Hidden); 149 150 // Heuristic for tail duplication. 151 static cl::opt<unsigned> TailDupPlacementPenalty( 152 "tail-dup-placement-penalty", 153 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 154 "Copying can increase fallthrough, but it also increases icache " 155 "pressure. This parameter controls the penalty to account for that. " 156 "Percent as integer."), 157 cl::init(2), 158 cl::Hidden); 159 160 extern cl::opt<unsigned> StaticLikelyProb; 161 extern cl::opt<unsigned> ProfileLikelyProb; 162 163 #ifndef NDEBUG 164 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 165 extern cl::opt<std::string> ViewBlockFreqFuncName; 166 #endif 167 168 namespace { 169 class BlockChain; 170 /// \brief Type for our function-wide basic block -> block chain mapping. 171 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 172 } 173 174 namespace { 175 /// \brief A chain of blocks which will be laid out contiguously. 176 /// 177 /// This is the datastructure representing a chain of consecutive blocks that 178 /// are profitable to layout together in order to maximize fallthrough 179 /// probabilities and code locality. We also can use a block chain to represent 180 /// a sequence of basic blocks which have some external (correctness) 181 /// requirement for sequential layout. 182 /// 183 /// Chains can be built around a single basic block and can be merged to grow 184 /// them. They participate in a block-to-chain mapping, which is updated 185 /// automatically as chains are merged together. 186 class BlockChain { 187 /// \brief The sequence of blocks belonging to this chain. 188 /// 189 /// This is the sequence of blocks for a particular chain. These will be laid 190 /// out in-order within the function. 191 SmallVector<MachineBasicBlock *, 4> Blocks; 192 193 /// \brief A handle to the function-wide basic block to block chain mapping. 194 /// 195 /// This is retained in each block chain to simplify the computation of child 196 /// block chains for SCC-formation and iteration. We store the edges to child 197 /// basic blocks, and map them back to their associated chains using this 198 /// structure. 199 BlockToChainMapType &BlockToChain; 200 201 public: 202 /// \brief Construct a new BlockChain. 203 /// 204 /// This builds a new block chain representing a single basic block in the 205 /// function. It also registers itself as the chain that block participates 206 /// in with the BlockToChain mapping. 207 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 208 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 209 assert(BB && "Cannot create a chain with a null basic block"); 210 BlockToChain[BB] = this; 211 } 212 213 /// \brief Iterator over blocks within the chain. 214 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 215 216 /// \brief Beginning of blocks within the chain. 217 iterator begin() { return Blocks.begin(); } 218 219 /// \brief End of blocks within the chain. 220 iterator end() { return Blocks.end(); } 221 222 bool remove(MachineBasicBlock* BB) { 223 for(iterator i = begin(); i != end(); ++i) { 224 if (*i == BB) { 225 Blocks.erase(i); 226 return true; 227 } 228 } 229 return false; 230 } 231 232 /// \brief Merge a block chain into this one. 233 /// 234 /// This routine merges a block chain into this one. It takes care of forming 235 /// a contiguous sequence of basic blocks, updating the edge list, and 236 /// updating the block -> chain mapping. It does not free or tear down the 237 /// old chain, but the old chain's block list is no longer valid. 238 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 239 assert(BB); 240 assert(!Blocks.empty()); 241 242 // Fast path in case we don't have a chain already. 243 if (!Chain) { 244 assert(!BlockToChain[BB]); 245 Blocks.push_back(BB); 246 BlockToChain[BB] = this; 247 return; 248 } 249 250 assert(BB == *Chain->begin()); 251 assert(Chain->begin() != Chain->end()); 252 253 // Update the incoming blocks to point to this chain, and add them to the 254 // chain structure. 255 for (MachineBasicBlock *ChainBB : *Chain) { 256 Blocks.push_back(ChainBB); 257 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 258 BlockToChain[ChainBB] = this; 259 } 260 } 261 262 #ifndef NDEBUG 263 /// \brief Dump the blocks in this chain. 264 LLVM_DUMP_METHOD void dump() { 265 for (MachineBasicBlock *MBB : *this) 266 MBB->dump(); 267 } 268 #endif // NDEBUG 269 270 /// \brief Count of predecessors of any block within the chain which have not 271 /// yet been scheduled. In general, we will delay scheduling this chain 272 /// until those predecessors are scheduled (or we find a sufficiently good 273 /// reason to override this heuristic.) Note that when forming loop chains, 274 /// blocks outside the loop are ignored and treated as if they were already 275 /// scheduled. 276 /// 277 /// Note: This field is reinitialized multiple times - once for each loop, 278 /// and then once for the function as a whole. 279 unsigned UnscheduledPredecessors; 280 }; 281 } 282 283 namespace { 284 class MachineBlockPlacement : public MachineFunctionPass { 285 /// \brief A typedef for a block filter set. 286 typedef SmallSetVector<MachineBasicBlock *, 16> BlockFilterSet; 287 288 /// Pair struct containing basic block and taildup profitiability 289 struct BlockAndTailDupResult { 290 MachineBasicBlock * BB; 291 bool ShouldTailDup; 292 }; 293 294 /// \brief work lists of blocks that are ready to be laid out 295 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 296 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 297 298 /// \brief Machine Function 299 MachineFunction *F; 300 301 /// \brief A handle to the branch probability pass. 302 const MachineBranchProbabilityInfo *MBPI; 303 304 /// \brief A handle to the function-wide block frequency pass. 305 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 306 307 /// \brief A handle to the loop info. 308 MachineLoopInfo *MLI; 309 310 /// \brief Preferred loop exit. 311 /// Member variable for convenience. It may be removed by duplication deep 312 /// in the call stack. 313 MachineBasicBlock *PreferredLoopExit; 314 315 /// \brief A handle to the target's instruction info. 316 const TargetInstrInfo *TII; 317 318 /// \brief A handle to the target's lowering info. 319 const TargetLoweringBase *TLI; 320 321 /// \brief A handle to the dominator tree. 322 MachineDominatorTree *MDT; 323 324 /// \brief A handle to the post dominator tree. 325 MachinePostDominatorTree *MPDT; 326 327 /// \brief Duplicator used to duplicate tails during placement. 328 /// 329 /// Placement decisions can open up new tail duplication opportunities, but 330 /// since tail duplication affects placement decisions of later blocks, it 331 /// must be done inline. 332 TailDuplicator TailDup; 333 334 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 335 /// all terminators of the MachineFunction. 336 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; 337 338 /// \brief Allocator and owner of BlockChain structures. 339 /// 340 /// We build BlockChains lazily while processing the loop structure of 341 /// a function. To reduce malloc traffic, we allocate them using this 342 /// slab-like allocator, and destroy them after the pass completes. An 343 /// important guarantee is that this allocator produces stable pointers to 344 /// the chains. 345 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 346 347 /// \brief Function wide BasicBlock to BlockChain mapping. 348 /// 349 /// This mapping allows efficiently moving from any given basic block to the 350 /// BlockChain it participates in, if any. We use it to, among other things, 351 /// allow implicitly defining edges between chains as the existing edges 352 /// between basic blocks. 353 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 354 355 #ifndef NDEBUG 356 /// The set of basic blocks that have terminators that cannot be fully 357 /// analyzed. These basic blocks cannot be re-ordered safely by 358 /// MachineBlockPlacement, and we must preserve physical layout of these 359 /// blocks and their successors through the pass. 360 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 361 #endif 362 363 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 364 /// if the count goes to 0, add them to the appropriate work list. 365 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 366 const BlockFilterSet *BlockFilter = nullptr); 367 368 /// Decrease the UnscheduledPredecessors count for a single block, and 369 /// if the count goes to 0, add them to the appropriate work list. 370 void markBlockSuccessors( 371 BlockChain &Chain, MachineBasicBlock *BB, MachineBasicBlock *LoopHeaderBB, 372 const BlockFilterSet *BlockFilter = nullptr); 373 374 375 BranchProbability 376 collectViableSuccessors(MachineBasicBlock *BB, BlockChain &Chain, 377 const BlockFilterSet *BlockFilter, 378 SmallVector<MachineBasicBlock *, 4> &Successors); 379 bool shouldPredBlockBeOutlined(MachineBasicBlock *BB, MachineBasicBlock *Succ, 380 BlockChain &Chain, 381 const BlockFilterSet *BlockFilter, 382 BranchProbability SuccProb, 383 BranchProbability HotProb); 384 bool repeatedlyTailDuplicateBlock( 385 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 386 MachineBasicBlock *LoopHeaderBB, 387 BlockChain &Chain, BlockFilterSet *BlockFilter, 388 MachineFunction::iterator &PrevUnplacedBlockIt); 389 bool maybeTailDuplicateBlock(MachineBasicBlock *BB, MachineBasicBlock *LPred, 390 const BlockChain &Chain, 391 BlockFilterSet *BlockFilter, 392 MachineFunction::iterator &PrevUnplacedBlockIt, 393 bool &DuplicatedToPred); 394 bool 395 hasBetterLayoutPredecessor(MachineBasicBlock *BB, MachineBasicBlock *Succ, 396 BlockChain &SuccChain, BranchProbability SuccProb, 397 BranchProbability RealSuccProb, BlockChain &Chain, 398 const BlockFilterSet *BlockFilter); 399 BlockAndTailDupResult selectBestSuccessor(MachineBasicBlock *BB, 400 BlockChain &Chain, 401 const BlockFilterSet *BlockFilter); 402 MachineBasicBlock * 403 selectBestCandidateBlock(BlockChain &Chain, 404 SmallVectorImpl<MachineBasicBlock *> &WorkList); 405 MachineBasicBlock * 406 getFirstUnplacedBlock(const BlockChain &PlacedChain, 407 MachineFunction::iterator &PrevUnplacedBlockIt, 408 const BlockFilterSet *BlockFilter); 409 410 /// \brief Add a basic block to the work list if it is appropriate. 411 /// 412 /// If the optional parameter BlockFilter is provided, only MBB 413 /// present in the set will be added to the worklist. If nullptr 414 /// is provided, no filtering occurs. 415 void fillWorkLists(MachineBasicBlock *MBB, 416 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 417 const BlockFilterSet *BlockFilter); 418 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 419 BlockFilterSet *BlockFilter = nullptr); 420 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 421 const BlockFilterSet &LoopBlockSet); 422 MachineBasicBlock *findBestLoopExit(MachineLoop &L, 423 const BlockFilterSet &LoopBlockSet); 424 BlockFilterSet collectLoopBlockSet(MachineLoop &L); 425 void buildLoopChains(MachineLoop &L); 426 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 427 const BlockFilterSet &LoopBlockSet); 428 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L, 429 const BlockFilterSet &LoopBlockSet); 430 void collectMustExecuteBBs(); 431 void buildCFGChains(); 432 void optimizeBranches(); 433 void alignBlocks(); 434 bool shouldTailDuplicate(MachineBasicBlock *BB); 435 /// Check the edge frequencies to see if tail duplication will increase 436 /// fallthroughs. 437 bool isProfitableToTailDup( 438 MachineBasicBlock *BB, MachineBasicBlock *Succ, 439 BranchProbability AdjustedSumProb, 440 BlockChain &Chain, const BlockFilterSet *BlockFilter); 441 /// Returns true if a block can tail duplicate into all unplaced 442 /// predecessors. Filters based on loop. 443 bool canTailDuplicateUnplacedPreds( 444 MachineBasicBlock *BB, MachineBasicBlock *Succ, 445 BlockChain &Chain, const BlockFilterSet *BlockFilter); 446 447 public: 448 static char ID; // Pass identification, replacement for typeid 449 MachineBlockPlacement() : MachineFunctionPass(ID) { 450 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 451 } 452 453 bool runOnMachineFunction(MachineFunction &F) override; 454 455 void getAnalysisUsage(AnalysisUsage &AU) const override { 456 AU.addRequired<MachineBranchProbabilityInfo>(); 457 AU.addRequired<MachineBlockFrequencyInfo>(); 458 AU.addRequired<MachineDominatorTree>(); 459 if (TailDupPlacement) 460 AU.addRequired<MachinePostDominatorTree>(); 461 AU.addRequired<MachineLoopInfo>(); 462 AU.addRequired<TargetPassConfig>(); 463 MachineFunctionPass::getAnalysisUsage(AU); 464 } 465 }; 466 } 467 468 char MachineBlockPlacement::ID = 0; 469 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 470 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 471 "Branch Probability Basic Block Placement", false, false) 472 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 473 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 474 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 475 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 476 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 477 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 478 "Branch Probability Basic Block Placement", false, false) 479 480 #ifndef NDEBUG 481 /// \brief Helper to print the name of a MBB. 482 /// 483 /// Only used by debug logging. 484 static std::string getBlockName(MachineBasicBlock *BB) { 485 std::string Result; 486 raw_string_ostream OS(Result); 487 OS << "BB#" << BB->getNumber(); 488 OS << " ('" << BB->getName() << "')"; 489 OS.flush(); 490 return Result; 491 } 492 #endif 493 494 /// \brief Mark a chain's successors as having one fewer preds. 495 /// 496 /// When a chain is being merged into the "placed" chain, this routine will 497 /// quickly walk the successors of each block in the chain and mark them as 498 /// having one fewer active predecessor. It also adds any successors of this 499 /// chain which reach the zero-predecessor state to the appropriate worklist. 500 void MachineBlockPlacement::markChainSuccessors( 501 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 502 const BlockFilterSet *BlockFilter) { 503 // Walk all the blocks in this chain, marking their successors as having 504 // a predecessor placed. 505 for (MachineBasicBlock *MBB : Chain) { 506 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 507 } 508 } 509 510 /// \brief Mark a single block's successors as having one fewer preds. 511 /// 512 /// Under normal circumstances, this is only called by markChainSuccessors, 513 /// but if a block that was to be placed is completely tail-duplicated away, 514 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 515 /// for just that block. 516 void MachineBlockPlacement::markBlockSuccessors( 517 BlockChain &Chain, MachineBasicBlock *MBB, MachineBasicBlock *LoopHeaderBB, 518 const BlockFilterSet *BlockFilter) { 519 // Add any successors for which this is the only un-placed in-loop 520 // predecessor to the worklist as a viable candidate for CFG-neutral 521 // placement. No subsequent placement of this block will violate the CFG 522 // shape, so we get to use heuristics to choose a favorable placement. 523 for (MachineBasicBlock *Succ : MBB->successors()) { 524 if (BlockFilter && !BlockFilter->count(Succ)) 525 continue; 526 BlockChain &SuccChain = *BlockToChain[Succ]; 527 // Disregard edges within a fixed chain, or edges to the loop header. 528 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 529 continue; 530 531 // This is a cross-chain edge that is within the loop, so decrement the 532 // loop predecessor count of the destination chain. 533 if (SuccChain.UnscheduledPredecessors == 0 || 534 --SuccChain.UnscheduledPredecessors > 0) 535 continue; 536 537 auto *NewBB = *SuccChain.begin(); 538 if (NewBB->isEHPad()) 539 EHPadWorkList.push_back(NewBB); 540 else 541 BlockWorkList.push_back(NewBB); 542 } 543 } 544 545 /// This helper function collects the set of successors of block 546 /// \p BB that are allowed to be its layout successors, and return 547 /// the total branch probability of edges from \p BB to those 548 /// blocks. 549 BranchProbability MachineBlockPlacement::collectViableSuccessors( 550 MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter, 551 SmallVector<MachineBasicBlock *, 4> &Successors) { 552 // Adjust edge probabilities by excluding edges pointing to blocks that is 553 // either not in BlockFilter or is already in the current chain. Consider the 554 // following CFG: 555 // 556 // --->A 557 // | / \ 558 // | B C 559 // | \ / \ 560 // ----D E 561 // 562 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 563 // A->C is chosen as a fall-through, D won't be selected as a successor of C 564 // due to CFG constraint (the probability of C->D is not greater than 565 // HotProb to break top-order). If we exclude E that is not in BlockFilter 566 // when calculating the probability of C->D, D will be selected and we 567 // will get A C D B as the layout of this loop. 568 auto AdjustedSumProb = BranchProbability::getOne(); 569 for (MachineBasicBlock *Succ : BB->successors()) { 570 bool SkipSucc = false; 571 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 572 SkipSucc = true; 573 } else { 574 BlockChain *SuccChain = BlockToChain[Succ]; 575 if (SuccChain == &Chain) { 576 SkipSucc = true; 577 } else if (Succ != *SuccChain->begin()) { 578 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 579 continue; 580 } 581 } 582 if (SkipSucc) 583 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 584 else 585 Successors.push_back(Succ); 586 } 587 588 return AdjustedSumProb; 589 } 590 591 /// The helper function returns the branch probability that is adjusted 592 /// or normalized over the new total \p AdjustedSumProb. 593 static BranchProbability 594 getAdjustedProbability(BranchProbability OrigProb, 595 BranchProbability AdjustedSumProb) { 596 BranchProbability SuccProb; 597 uint32_t SuccProbN = OrigProb.getNumerator(); 598 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 599 if (SuccProbN >= SuccProbD) 600 SuccProb = BranchProbability::getOne(); 601 else 602 SuccProb = BranchProbability(SuccProbN, SuccProbD); 603 604 return SuccProb; 605 } 606 607 /// Check if a block should be tail duplicated. 608 /// \p BB Block to check. 609 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 610 // Blocks with single successors don't create additional fallthrough 611 // opportunities. Don't duplicate them. TODO: When conditional exits are 612 // analyzable, allow them to be duplicated. 613 bool IsSimple = TailDup.isSimpleBB(BB); 614 615 if (BB->succ_size() == 1) 616 return false; 617 return TailDup.shouldTailDuplicate(IsSimple, *BB); 618 } 619 620 /// Compare 2 BlockFrequency's with a small penalty for \p A. 621 /// In order to be conservative, we apply a X% penalty to account for 622 /// increased icache pressure and static heuristics. For small frequencies 623 /// we use only the numerators to improve accuracy. For simplicity, we assume the 624 /// penalty is less than 100% 625 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 626 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 627 uint64_t EntryFreq) { 628 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 629 BlockFrequency Gain = A - B; 630 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 631 } 632 633 /// Check the edge frequencies to see if tail duplication will increase 634 /// fallthroughs. It only makes sense to call this function when 635 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 636 /// always locally profitable if we would have picked \p Succ without 637 /// considering duplication. 638 bool MachineBlockPlacement::isProfitableToTailDup( 639 MachineBasicBlock *BB, MachineBasicBlock *Succ, 640 BranchProbability QProb, 641 BlockChain &Chain, const BlockFilterSet *BlockFilter) { 642 // We need to do a probability calculation to make sure this is profitable. 643 // First: does succ have a successor that post-dominates? This affects the 644 // calculation. The 2 relevant cases are: 645 // BB BB 646 // | \Qout | \Qout 647 // P| C |P C 648 // = C' = C' 649 // | /Qin | /Qin 650 // | / | / 651 // Succ Succ 652 // / \ | \ V 653 // U/ =V |U \ 654 // / \ = D 655 // D E | / 656 // | / 657 // |/ 658 // PDom 659 // '=' : Branch taken for that CFG edge 660 // In the second case, Placing Succ while duplicating it into C prevents the 661 // fallthrough of Succ into either D or PDom, because they now have C as an 662 // unplaced predecessor 663 664 // Start by figuring out which case we fall into 665 MachineBasicBlock *PDom = nullptr; 666 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 667 // Only scan the relevant successors 668 auto AdjustedSuccSumProb = 669 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 670 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 671 auto BBFreq = MBFI->getBlockFreq(BB); 672 auto SuccFreq = MBFI->getBlockFreq(Succ); 673 BlockFrequency P = BBFreq * PProb; 674 BlockFrequency Qout = BBFreq * QProb; 675 uint64_t EntryFreq = MBFI->getEntryFreq(); 676 // If there are no more successors, it is profitable to copy, as it strictly 677 // increases fallthrough. 678 if (SuccSuccs.size() == 0) 679 return greaterWithBias(P, Qout, EntryFreq); 680 681 auto BestSuccSucc = BranchProbability::getZero(); 682 // Find the PDom or the best Succ if no PDom exists. 683 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 684 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 685 if (Prob > BestSuccSucc) 686 BestSuccSucc = Prob; 687 if (PDom == nullptr) 688 if (MPDT->dominates(SuccSucc, Succ)) { 689 PDom = SuccSucc; 690 break; 691 } 692 } 693 // For the comparisons, we need to know Succ's best incoming edge that isn't 694 // from BB. 695 auto SuccBestPred = BlockFrequency(0); 696 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 697 if (SuccPred == Succ || SuccPred == BB 698 || BlockToChain[SuccPred] == &Chain 699 || (BlockFilter && !BlockFilter->count(SuccPred))) 700 continue; 701 auto Freq = MBFI->getBlockFreq(SuccPred) 702 * MBPI->getEdgeProbability(SuccPred, Succ); 703 if (Freq > SuccBestPred) 704 SuccBestPred = Freq; 705 } 706 // Qin is Succ's best unplaced incoming edge that isn't BB 707 BlockFrequency Qin = SuccBestPred; 708 // If it doesn't have a post-dominating successor, here is the calculation: 709 // BB BB 710 // | \Qout | \ 711 // P| C | = 712 // = C' | C 713 // | /Qin | | 714 // | / | C' (+Succ) 715 // Succ Succ /| 716 // / \ | \/ | 717 // U/ =V = /= = 718 // / \ | / \| 719 // D E D E 720 // '=' : Branch taken for that CFG edge 721 // Cost in the first case is: P + V 722 // For this calculation, we always assume P > Qout. If Qout > P 723 // The result of this function will be ignored at the caller. 724 // Cost in the second case is: Qout + Qin * V + P * U + P * V 725 // TODO(iteratee): If we lay out D after Succ, the P * U term 726 // goes away. This logic is coming in D28522. 727 728 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 729 BranchProbability UProb = BestSuccSucc; 730 BranchProbability VProb = AdjustedSuccSumProb - UProb; 731 BlockFrequency V = SuccFreq * VProb; 732 BlockFrequency QinV = Qin * VProb; 733 BlockFrequency BaseCost = P + V; 734 BlockFrequency DupCost = Qout + QinV + P * AdjustedSuccSumProb; 735 return greaterWithBias(BaseCost, DupCost, EntryFreq); 736 } 737 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 738 BranchProbability VProb = AdjustedSuccSumProb - UProb; 739 BlockFrequency U = SuccFreq * UProb; 740 BlockFrequency V = SuccFreq * VProb; 741 // If there is a post-dominating successor, here is the calculation: 742 // BB BB BB BB 743 // | \Qout | \ | \Qout | \ 744 // |P C | = |P C | = 745 // = C' |P C = C' |P C 746 // | /Qin | | | /Qin | | 747 // | / | C' (+Succ) | / | C' (+Succ) 748 // Succ Succ /| Succ Succ /| 749 // | \ V | \/ | | \ V | \/ | 750 // |U \ |U /\ | |U = |U /\ | 751 // = D = = =| | D | = =| 752 // | / |/ D | / |/ D 753 // | / | / | = | / 754 // |/ | / |/ | = 755 // Dom Dom Dom Dom 756 // '=' : Branch taken for that CFG edge 757 // The cost for taken branches in the first case is P + U 758 // The cost in the second case (assuming independence), given the layout: 759 // BB, Succ, (C+Succ), D, Dom 760 // is Qout + P * V + Qin * U 761 // compare P + U vs Qout + P + Qin * U. 762 // 763 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 764 // 765 // For the 3rd case, the cost is P + 2 * V 766 // For the 4th case, the cost is Qout + Qin * U + P * V + V 767 // We choose 4 over 3 when (P + V) > Qout + Qin * U + P * V 768 if (UProb > AdjustedSuccSumProb / 2 769 && !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], 770 UProb, UProb, Chain, BlockFilter)) { 771 // Cases 3 & 4 772 return greaterWithBias((P + V), (Qout + Qin * UProb + P * VProb), 773 EntryFreq); 774 } 775 // Cases 1 & 2 776 return greaterWithBias( 777 (P + U), (Qout + Qin * UProb + P * AdjustedSuccSumProb), EntryFreq); 778 } 779 780 781 /// When the option TailDupPlacement is on, this method checks if the 782 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 783 /// into all of its unplaced, unfiltered predecessors, that are not BB. 784 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 785 MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain, 786 const BlockFilterSet *BlockFilter) { 787 if (!shouldTailDuplicate(Succ)) 788 return false; 789 790 for (MachineBasicBlock *Pred : Succ->predecessors()) { 791 // Make sure all unplaced and unfiltered predecessors can be 792 // tail-duplicated into. 793 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 794 || BlockToChain[Pred] == &Chain) 795 continue; 796 if (!TailDup.canTailDuplicate(Succ, Pred)) 797 return false; 798 } 799 return true; 800 } 801 802 /// When the option OutlineOptionalBranches is on, this method 803 /// checks if the fallthrough candidate block \p Succ (of block 804 /// \p BB) also has other unscheduled predecessor blocks which 805 /// are also successors of \p BB (forming triangular shape CFG). 806 /// If none of such predecessors are small, it returns true. 807 /// The caller can choose to select \p Succ as the layout successors 808 /// so that \p Succ's predecessors (optional branches) can be 809 /// outlined. 810 /// FIXME: fold this with more general layout cost analysis. 811 bool MachineBlockPlacement::shouldPredBlockBeOutlined( 812 MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain, 813 const BlockFilterSet *BlockFilter, BranchProbability SuccProb, 814 BranchProbability HotProb) { 815 if (!OutlineOptionalBranches) 816 return false; 817 // If we outline optional branches, look whether Succ is unavoidable, i.e. 818 // dominates all terminators of the MachineFunction. If it does, other 819 // successors must be optional. Don't do this for cold branches. 820 if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) { 821 for (MachineBasicBlock *Pred : Succ->predecessors()) { 822 // Check whether there is an unplaced optional branch. 823 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 824 BlockToChain[Pred] == &Chain) 825 continue; 826 // Check whether the optional branch has exactly one BB. 827 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 828 continue; 829 // Check whether the optional branch is small. 830 if (Pred->size() < OutlineOptionalThreshold) 831 return false; 832 } 833 return true; 834 } else 835 return false; 836 } 837 838 // When profile is not present, return the StaticLikelyProb. 839 // When profile is available, we need to handle the triangle-shape CFG. 840 static BranchProbability getLayoutSuccessorProbThreshold( 841 MachineBasicBlock *BB) { 842 if (!BB->getParent()->getFunction()->getEntryCount()) 843 return BranchProbability(StaticLikelyProb, 100); 844 if (BB->succ_size() == 2) { 845 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 846 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 847 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 848 /* See case 1 below for the cost analysis. For BB->Succ to 849 * be taken with smaller cost, the following needs to hold: 850 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 851 * So the threshold T in the calculation below 852 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 853 * So T / (1 - T) = 2, Yielding T = 2/3 854 * Also adding user specified branch bias, we have 855 * T = (2/3)*(ProfileLikelyProb/50) 856 * = (2*ProfileLikelyProb)/150) 857 */ 858 return BranchProbability(2 * ProfileLikelyProb, 150); 859 } 860 } 861 return BranchProbability(ProfileLikelyProb, 100); 862 } 863 864 /// Checks to see if the layout candidate block \p Succ has a better layout 865 /// predecessor than \c BB. If yes, returns true. 866 /// \p SuccProb: The probability adjusted for only remaining blocks. 867 /// Only used for logging 868 /// \p RealSuccProb: The un-adjusted probability. 869 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 870 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 871 /// considered 872 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 873 MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &SuccChain, 874 BranchProbability SuccProb, BranchProbability RealSuccProb, 875 BlockChain &Chain, const BlockFilterSet *BlockFilter) { 876 877 // There isn't a better layout when there are no unscheduled predecessors. 878 if (SuccChain.UnscheduledPredecessors == 0) 879 return false; 880 881 // There are two basic scenarios here: 882 // ------------------------------------- 883 // Case 1: triangular shape CFG (if-then): 884 // BB 885 // | \ 886 // | \ 887 // | Pred 888 // | / 889 // Succ 890 // In this case, we are evaluating whether to select edge -> Succ, e.g. 891 // set Succ as the layout successor of BB. Picking Succ as BB's 892 // successor breaks the CFG constraints (FIXME: define these constraints). 893 // With this layout, Pred BB 894 // is forced to be outlined, so the overall cost will be cost of the 895 // branch taken from BB to Pred, plus the cost of back taken branch 896 // from Pred to Succ, as well as the additional cost associated 897 // with the needed unconditional jump instruction from Pred To Succ. 898 899 // The cost of the topological order layout is the taken branch cost 900 // from BB to Succ, so to make BB->Succ a viable candidate, the following 901 // must hold: 902 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 903 // < freq(BB->Succ) * taken_branch_cost. 904 // Ignoring unconditional jump cost, we get 905 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 906 // prob(BB->Succ) > 2 * prob(BB->Pred) 907 // 908 // When real profile data is available, we can precisely compute the 909 // probability threshold that is needed for edge BB->Succ to be considered. 910 // Without profile data, the heuristic requires the branch bias to be 911 // a lot larger to make sure the signal is very strong (e.g. 80% default). 912 // ----------------------------------------------------------------- 913 // Case 2: diamond like CFG (if-then-else): 914 // S 915 // / \ 916 // | \ 917 // BB Pred 918 // \ / 919 // Succ 920 // .. 921 // 922 // The current block is BB and edge BB->Succ is now being evaluated. 923 // Note that edge S->BB was previously already selected because 924 // prob(S->BB) > prob(S->Pred). 925 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 926 // choose Pred, we will have a topological ordering as shown on the left 927 // in the picture below. If we choose Succ, we have the solution as shown 928 // on the right: 929 // 930 // topo-order: 931 // 932 // S----- ---S 933 // | | | | 934 // ---BB | | BB 935 // | | | | 936 // | pred-- | Succ-- 937 // | | | | 938 // ---succ ---pred-- 939 // 940 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 941 // = freq(S->Pred) + freq(S->BB) 942 // 943 // If we have profile data (i.e, branch probabilities can be trusted), the 944 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 945 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 946 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 947 // means the cost of topological order is greater. 948 // When profile data is not available, however, we need to be more 949 // conservative. If the branch prediction is wrong, breaking the topo-order 950 // will actually yield a layout with large cost. For this reason, we need 951 // strong biased branch at block S with Prob(S->BB) in order to select 952 // BB->Succ. This is equivalent to looking the CFG backward with backward 953 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 954 // profile data). 955 // -------------------------------------------------------------------------- 956 // Case 3: forked diamond 957 // S 958 // / \ 959 // / \ 960 // BB Pred 961 // | \ / | 962 // | \ / | 963 // | X | 964 // | / \ | 965 // | / \ | 966 // S1 S2 967 // 968 // The current block is BB and edge BB->S1 is now being evaluated. 969 // As above S->BB was already selected because 970 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 971 // 972 // topo-order: 973 // 974 // S-------| ---S 975 // | | | | 976 // ---BB | | BB 977 // | | | | 978 // | Pred----| | S1---- 979 // | | | | 980 // --(S1 or S2) ---Pred-- 981 // 982 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 983 // + min(freq(Pred->S1), freq(Pred->S2)) 984 // Non-topo-order cost: 985 // In the worst case, S2 will not get laid out after Pred. 986 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 987 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 988 // is 0. Then the non topo layout is better when 989 // freq(S->Pred) < freq(BB->S1). 990 // This is exactly what is checked below. 991 // Note there are other shapes that apply (Pred may not be a single block, 992 // but they all fit this general pattern.) 993 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 994 995 // Make sure that a hot successor doesn't have a globally more 996 // important predecessor. 997 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 998 bool BadCFGConflict = false; 999 1000 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1001 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 1002 (BlockFilter && !BlockFilter->count(Pred)) || 1003 BlockToChain[Pred] == &Chain || 1004 // This check is redundant except for look ahead. This function is 1005 // called for lookahead by isProfitableToTailDup when BB hasn't been 1006 // placed yet. 1007 (Pred == BB)) 1008 continue; 1009 // Do backward checking. 1010 // For all cases above, we need a backward checking to filter out edges that 1011 // are not 'strongly' biased. 1012 // BB Pred 1013 // \ / 1014 // Succ 1015 // We select edge BB->Succ if 1016 // freq(BB->Succ) > freq(Succ) * HotProb 1017 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1018 // HotProb 1019 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1020 // Case 1 is covered too, because the first equation reduces to: 1021 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1022 BlockFrequency PredEdgeFreq = 1023 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1024 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1025 BadCFGConflict = true; 1026 break; 1027 } 1028 } 1029 1030 if (BadCFGConflict) { 1031 DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb 1032 << " (prob) (non-cold CFG conflict)\n"); 1033 return true; 1034 } 1035 1036 return false; 1037 } 1038 1039 /// \brief Select the best successor for a block. 1040 /// 1041 /// This looks across all successors of a particular block and attempts to 1042 /// select the "best" one to be the layout successor. It only considers direct 1043 /// successors which also pass the block filter. It will attempt to avoid 1044 /// breaking CFG structure, but cave and break such structures in the case of 1045 /// very hot successor edges. 1046 /// 1047 /// \returns The best successor block found, or null if none are viable, along 1048 /// with a boolean indicating if tail duplication is necessary. 1049 MachineBlockPlacement::BlockAndTailDupResult 1050 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, 1051 BlockChain &Chain, 1052 const BlockFilterSet *BlockFilter) { 1053 const BranchProbability HotProb(StaticLikelyProb, 100); 1054 1055 BlockAndTailDupResult BestSucc = { nullptr, false }; 1056 auto BestProb = BranchProbability::getZero(); 1057 1058 SmallVector<MachineBasicBlock *, 4> Successors; 1059 auto AdjustedSumProb = 1060 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1061 1062 DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n"); 1063 1064 // For blocks with CFG violations, we may be able to lay them out anyway with 1065 // tail-duplication. We keep this vector so we can perform the probability 1066 // calculations the minimum number of times. 1067 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4> 1068 DupCandidates; 1069 for (MachineBasicBlock *Succ : Successors) { 1070 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1071 BranchProbability SuccProb = 1072 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1073 1074 // This heuristic is off by default. 1075 if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb, 1076 HotProb)) { 1077 BestSucc.BB = Succ; 1078 return BestSucc; 1079 } 1080 1081 BlockChain &SuccChain = *BlockToChain[Succ]; 1082 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1083 // predecessor that yields lower global cost. 1084 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1085 Chain, BlockFilter)) { 1086 // If tail duplication would make Succ profitable, place it. 1087 if (TailDupPlacement && shouldTailDuplicate(Succ)) 1088 DupCandidates.push_back(std::make_tuple(SuccProb, Succ)); 1089 continue; 1090 } 1091 1092 DEBUG( 1093 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 1094 << SuccProb 1095 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1096 << "\n"); 1097 1098 if (BestSucc.BB && BestProb >= SuccProb) { 1099 DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1100 continue; 1101 } 1102 1103 DEBUG(dbgs() << " Setting it as best candidate\n"); 1104 BestSucc.BB = Succ; 1105 BestProb = SuccProb; 1106 } 1107 // Handle the tail duplication candidates in order of decreasing probability. 1108 // Stop at the first one that is profitable. Also stop if they are less 1109 // profitable than BestSucc. Position is important because we preserve it and 1110 // prefer first best match. Here we aren't comparing in order, so we capture 1111 // the position instead. 1112 if (DupCandidates.size() != 0) { 1113 auto cmp = 1114 [](const std::tuple<BranchProbability, MachineBasicBlock *> &a, 1115 const std::tuple<BranchProbability, MachineBasicBlock *> &b) { 1116 return std::get<0>(a) > std::get<0>(b); 1117 }; 1118 std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp); 1119 } 1120 for(auto &Tup : DupCandidates) { 1121 BranchProbability DupProb; 1122 MachineBasicBlock *Succ; 1123 std::tie(DupProb, Succ) = Tup; 1124 if (DupProb < BestProb) 1125 break; 1126 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1127 // If tail duplication gives us fallthrough when we otherwise wouldn't 1128 // have it, that is a strict gain. 1129 && (BestSucc.BB == nullptr 1130 || isProfitableToTailDup(BB, Succ, BestProb, Chain, 1131 BlockFilter))) { 1132 DEBUG( 1133 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 1134 << DupProb 1135 << " (Tail Duplicate)\n"); 1136 BestSucc.BB = Succ; 1137 BestSucc.ShouldTailDup = true; 1138 break; 1139 } 1140 } 1141 1142 if (BestSucc.BB) 1143 DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1144 1145 return BestSucc; 1146 } 1147 1148 /// \brief Select the best block from a worklist. 1149 /// 1150 /// This looks through the provided worklist as a list of candidate basic 1151 /// blocks and select the most profitable one to place. The definition of 1152 /// profitable only really makes sense in the context of a loop. This returns 1153 /// the most frequently visited block in the worklist, which in the case of 1154 /// a loop, is the one most desirable to be physically close to the rest of the 1155 /// loop body in order to improve i-cache behavior. 1156 /// 1157 /// \returns The best block found, or null if none are viable. 1158 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1159 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1160 // Once we need to walk the worklist looking for a candidate, cleanup the 1161 // worklist of already placed entries. 1162 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1163 // some code complexity) into the loop below. 1164 WorkList.erase(remove_if(WorkList, 1165 [&](MachineBasicBlock *BB) { 1166 return BlockToChain.lookup(BB) == &Chain; 1167 }), 1168 WorkList.end()); 1169 1170 if (WorkList.empty()) 1171 return nullptr; 1172 1173 bool IsEHPad = WorkList[0]->isEHPad(); 1174 1175 MachineBasicBlock *BestBlock = nullptr; 1176 BlockFrequency BestFreq; 1177 for (MachineBasicBlock *MBB : WorkList) { 1178 assert(MBB->isEHPad() == IsEHPad); 1179 1180 BlockChain &SuccChain = *BlockToChain[MBB]; 1181 if (&SuccChain == &Chain) 1182 continue; 1183 1184 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); 1185 1186 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1187 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1188 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1189 1190 // For ehpad, we layout the least probable first as to avoid jumping back 1191 // from least probable landingpads to more probable ones. 1192 // 1193 // FIXME: Using probability is probably (!) not the best way to achieve 1194 // this. We should probably have a more principled approach to layout 1195 // cleanup code. 1196 // 1197 // The goal is to get: 1198 // 1199 // +--------------------------+ 1200 // | V 1201 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1202 // 1203 // Rather than: 1204 // 1205 // +-------------------------------------+ 1206 // V | 1207 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1208 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1209 continue; 1210 1211 BestBlock = MBB; 1212 BestFreq = CandidateFreq; 1213 } 1214 1215 return BestBlock; 1216 } 1217 1218 /// \brief Retrieve the first unplaced basic block. 1219 /// 1220 /// This routine is called when we are unable to use the CFG to walk through 1221 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1222 /// We walk through the function's blocks in order, starting from the 1223 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1224 /// re-scanning the entire sequence on repeated calls to this routine. 1225 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1226 const BlockChain &PlacedChain, 1227 MachineFunction::iterator &PrevUnplacedBlockIt, 1228 const BlockFilterSet *BlockFilter) { 1229 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1230 ++I) { 1231 if (BlockFilter && !BlockFilter->count(&*I)) 1232 continue; 1233 if (BlockToChain[&*I] != &PlacedChain) { 1234 PrevUnplacedBlockIt = I; 1235 // Now select the head of the chain to which the unplaced block belongs 1236 // as the block to place. This will force the entire chain to be placed, 1237 // and satisfies the requirements of merging chains. 1238 return *BlockToChain[&*I]->begin(); 1239 } 1240 } 1241 return nullptr; 1242 } 1243 1244 void MachineBlockPlacement::fillWorkLists( 1245 MachineBasicBlock *MBB, 1246 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1247 const BlockFilterSet *BlockFilter = nullptr) { 1248 BlockChain &Chain = *BlockToChain[MBB]; 1249 if (!UpdatedPreds.insert(&Chain).second) 1250 return; 1251 1252 assert(Chain.UnscheduledPredecessors == 0); 1253 for (MachineBasicBlock *ChainBB : Chain) { 1254 assert(BlockToChain[ChainBB] == &Chain); 1255 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1256 if (BlockFilter && !BlockFilter->count(Pred)) 1257 continue; 1258 if (BlockToChain[Pred] == &Chain) 1259 continue; 1260 ++Chain.UnscheduledPredecessors; 1261 } 1262 } 1263 1264 if (Chain.UnscheduledPredecessors != 0) 1265 return; 1266 1267 MBB = *Chain.begin(); 1268 if (MBB->isEHPad()) 1269 EHPadWorkList.push_back(MBB); 1270 else 1271 BlockWorkList.push_back(MBB); 1272 } 1273 1274 void MachineBlockPlacement::buildChain( 1275 MachineBasicBlock *BB, BlockChain &Chain, 1276 BlockFilterSet *BlockFilter) { 1277 assert(BB && "BB must not be null.\n"); 1278 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match.\n"); 1279 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1280 1281 MachineBasicBlock *LoopHeaderBB = BB; 1282 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1283 BB = *std::prev(Chain.end()); 1284 for (;;) { 1285 assert(BB && "null block found at end of chain in loop."); 1286 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1287 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1288 1289 1290 // Look for the best viable successor if there is one to place immediately 1291 // after this block. 1292 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1293 MachineBasicBlock* BestSucc = Result.BB; 1294 bool ShouldTailDup = Result.ShouldTailDup; 1295 if (TailDupPlacement) 1296 ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc)); 1297 1298 // If an immediate successor isn't available, look for the best viable 1299 // block among those we've identified as not violating the loop's CFG at 1300 // this point. This won't be a fallthrough, but it will increase locality. 1301 if (!BestSucc) 1302 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1303 if (!BestSucc) 1304 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1305 1306 if (!BestSucc) { 1307 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1308 if (!BestSucc) 1309 break; 1310 1311 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1312 "layout successor until the CFG reduces\n"); 1313 } 1314 1315 // Placement may have changed tail duplication opportunities. 1316 // Check for that now. 1317 if (TailDupPlacement && BestSucc && ShouldTailDup) { 1318 // If the chosen successor was duplicated into all its predecessors, 1319 // don't bother laying it out, just go round the loop again with BB as 1320 // the chain end. 1321 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1322 BlockFilter, PrevUnplacedBlockIt)) 1323 continue; 1324 } 1325 1326 // Place this block, updating the datastructures to reflect its placement. 1327 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1328 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1329 // we selected a successor that didn't fit naturally into the CFG. 1330 SuccChain.UnscheduledPredecessors = 0; 1331 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1332 << getBlockName(BestSucc) << "\n"); 1333 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1334 Chain.merge(BestSucc, &SuccChain); 1335 BB = *std::prev(Chain.end()); 1336 } 1337 1338 DEBUG(dbgs() << "Finished forming chain for header block " 1339 << getBlockName(*Chain.begin()) << "\n"); 1340 } 1341 1342 /// \brief Find the best loop top block for layout. 1343 /// 1344 /// Look for a block which is strictly better than the loop header for laying 1345 /// out at the top of the loop. This looks for one and only one pattern: 1346 /// a latch block with no conditional exit. This block will cause a conditional 1347 /// jump around it or will be the bottom of the loop if we lay it out in place, 1348 /// but if it it doesn't end up at the bottom of the loop for any reason, 1349 /// rotation alone won't fix it. Because such a block will always result in an 1350 /// unconditional jump (for the backedge) rotating it in front of the loop 1351 /// header is always profitable. 1352 MachineBasicBlock * 1353 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 1354 const BlockFilterSet &LoopBlockSet) { 1355 // Placing the latch block before the header may introduce an extra branch 1356 // that skips this block the first time the loop is executed, which we want 1357 // to avoid when optimising for size. 1358 // FIXME: in theory there is a case that does not introduce a new branch, 1359 // i.e. when the layout predecessor does not fallthrough to the loop header. 1360 // In practice this never happens though: there always seems to be a preheader 1361 // that can fallthrough and that is also placed before the header. 1362 if (F->getFunction()->optForSize()) 1363 return L.getHeader(); 1364 1365 // Check that the header hasn't been fused with a preheader block due to 1366 // crazy branches. If it has, we need to start with the header at the top to 1367 // prevent pulling the preheader into the loop body. 1368 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1369 if (!LoopBlockSet.count(*HeaderChain.begin())) 1370 return L.getHeader(); 1371 1372 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 1373 << "\n"); 1374 1375 BlockFrequency BestPredFreq; 1376 MachineBasicBlock *BestPred = nullptr; 1377 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 1378 if (!LoopBlockSet.count(Pred)) 1379 continue; 1380 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", has " 1381 << Pred->succ_size() << " successors, "; 1382 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 1383 if (Pred->succ_size() > 1) 1384 continue; 1385 1386 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 1387 if (!BestPred || PredFreq > BestPredFreq || 1388 (!(PredFreq < BestPredFreq) && 1389 Pred->isLayoutSuccessor(L.getHeader()))) { 1390 BestPred = Pred; 1391 BestPredFreq = PredFreq; 1392 } 1393 } 1394 1395 // If no direct predecessor is fine, just use the loop header. 1396 if (!BestPred) { 1397 DEBUG(dbgs() << " final top unchanged\n"); 1398 return L.getHeader(); 1399 } 1400 1401 // Walk backwards through any straight line of predecessors. 1402 while (BestPred->pred_size() == 1 && 1403 (*BestPred->pred_begin())->succ_size() == 1 && 1404 *BestPred->pred_begin() != L.getHeader()) 1405 BestPred = *BestPred->pred_begin(); 1406 1407 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 1408 return BestPred; 1409 } 1410 1411 /// \brief Find the best loop exiting block for layout. 1412 /// 1413 /// This routine implements the logic to analyze the loop looking for the best 1414 /// block to layout at the top of the loop. Typically this is done to maximize 1415 /// fallthrough opportunities. 1416 MachineBasicBlock * 1417 MachineBlockPlacement::findBestLoopExit(MachineLoop &L, 1418 const BlockFilterSet &LoopBlockSet) { 1419 // We don't want to layout the loop linearly in all cases. If the loop header 1420 // is just a normal basic block in the loop, we want to look for what block 1421 // within the loop is the best one to layout at the top. However, if the loop 1422 // header has be pre-merged into a chain due to predecessors not having 1423 // analyzable branches, *and* the predecessor it is merged with is *not* part 1424 // of the loop, rotating the header into the middle of the loop will create 1425 // a non-contiguous range of blocks which is Very Bad. So start with the 1426 // header and only rotate if safe. 1427 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1428 if (!LoopBlockSet.count(*HeaderChain.begin())) 1429 return nullptr; 1430 1431 BlockFrequency BestExitEdgeFreq; 1432 unsigned BestExitLoopDepth = 0; 1433 MachineBasicBlock *ExitingBB = nullptr; 1434 // If there are exits to outer loops, loop rotation can severely limit 1435 // fallthrough opportunities unless it selects such an exit. Keep a set of 1436 // blocks where rotating to exit with that block will reach an outer loop. 1437 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 1438 1439 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 1440 << "\n"); 1441 for (MachineBasicBlock *MBB : L.getBlocks()) { 1442 BlockChain &Chain = *BlockToChain[MBB]; 1443 // Ensure that this block is at the end of a chain; otherwise it could be 1444 // mid-way through an inner loop or a successor of an unanalyzable branch. 1445 if (MBB != *std::prev(Chain.end())) 1446 continue; 1447 1448 // Now walk the successors. We need to establish whether this has a viable 1449 // exiting successor and whether it has a viable non-exiting successor. 1450 // We store the old exiting state and restore it if a viable looping 1451 // successor isn't found. 1452 MachineBasicBlock *OldExitingBB = ExitingBB; 1453 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 1454 bool HasLoopingSucc = false; 1455 for (MachineBasicBlock *Succ : MBB->successors()) { 1456 if (Succ->isEHPad()) 1457 continue; 1458 if (Succ == MBB) 1459 continue; 1460 BlockChain &SuccChain = *BlockToChain[Succ]; 1461 // Don't split chains, either this chain or the successor's chain. 1462 if (&Chain == &SuccChain) { 1463 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1464 << getBlockName(Succ) << " (chain conflict)\n"); 1465 continue; 1466 } 1467 1468 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 1469 if (LoopBlockSet.count(Succ)) { 1470 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 1471 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 1472 HasLoopingSucc = true; 1473 continue; 1474 } 1475 1476 unsigned SuccLoopDepth = 0; 1477 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 1478 SuccLoopDepth = ExitLoop->getLoopDepth(); 1479 if (ExitLoop->contains(&L)) 1480 BlocksExitingToOuterLoop.insert(MBB); 1481 } 1482 1483 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 1484 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1485 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 1486 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 1487 // Note that we bias this toward an existing layout successor to retain 1488 // incoming order in the absence of better information. The exit must have 1489 // a frequency higher than the current exit before we consider breaking 1490 // the layout. 1491 BranchProbability Bias(100 - ExitBlockBias, 100); 1492 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 1493 ExitEdgeFreq > BestExitEdgeFreq || 1494 (MBB->isLayoutSuccessor(Succ) && 1495 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 1496 BestExitEdgeFreq = ExitEdgeFreq; 1497 ExitingBB = MBB; 1498 } 1499 } 1500 1501 if (!HasLoopingSucc) { 1502 // Restore the old exiting state, no viable looping successor was found. 1503 ExitingBB = OldExitingBB; 1504 BestExitEdgeFreq = OldBestExitEdgeFreq; 1505 } 1506 } 1507 // Without a candidate exiting block or with only a single block in the 1508 // loop, just use the loop header to layout the loop. 1509 if (!ExitingBB) { 1510 DEBUG(dbgs() << " No other candidate exit blocks, using loop header\n"); 1511 return nullptr; 1512 } 1513 if (L.getNumBlocks() == 1) { 1514 DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 1515 return nullptr; 1516 } 1517 1518 // Also, if we have exit blocks which lead to outer loops but didn't select 1519 // one of them as the exiting block we are rotating toward, disable loop 1520 // rotation altogether. 1521 if (!BlocksExitingToOuterLoop.empty() && 1522 !BlocksExitingToOuterLoop.count(ExitingBB)) 1523 return nullptr; 1524 1525 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 1526 return ExitingBB; 1527 } 1528 1529 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 1530 /// 1531 /// Once we have built a chain, try to rotate it to line up the hot exit block 1532 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 1533 /// branches. For example, if the loop has fallthrough into its header and out 1534 /// of its bottom already, don't rotate it. 1535 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 1536 MachineBasicBlock *ExitingBB, 1537 const BlockFilterSet &LoopBlockSet) { 1538 if (!ExitingBB) 1539 return; 1540 1541 MachineBasicBlock *Top = *LoopChain.begin(); 1542 bool ViableTopFallthrough = false; 1543 for (MachineBasicBlock *Pred : Top->predecessors()) { 1544 BlockChain *PredChain = BlockToChain[Pred]; 1545 if (!LoopBlockSet.count(Pred) && 1546 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1547 ViableTopFallthrough = true; 1548 break; 1549 } 1550 } 1551 1552 // If the header has viable fallthrough, check whether the current loop 1553 // bottom is a viable exiting block. If so, bail out as rotating will 1554 // introduce an unnecessary branch. 1555 if (ViableTopFallthrough) { 1556 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 1557 for (MachineBasicBlock *Succ : Bottom->successors()) { 1558 BlockChain *SuccChain = BlockToChain[Succ]; 1559 if (!LoopBlockSet.count(Succ) && 1560 (!SuccChain || Succ == *SuccChain->begin())) 1561 return; 1562 } 1563 } 1564 1565 BlockChain::iterator ExitIt = find(LoopChain, ExitingBB); 1566 if (ExitIt == LoopChain.end()) 1567 return; 1568 1569 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 1570 } 1571 1572 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 1573 /// 1574 /// With profile data, we can determine the cost in terms of missed fall through 1575 /// opportunities when rotating a loop chain and select the best rotation. 1576 /// Basically, there are three kinds of cost to consider for each rotation: 1577 /// 1. The possibly missed fall through edge (if it exists) from BB out of 1578 /// the loop to the loop header. 1579 /// 2. The possibly missed fall through edges (if they exist) from the loop 1580 /// exits to BB out of the loop. 1581 /// 3. The missed fall through edge (if it exists) from the last BB to the 1582 /// first BB in the loop chain. 1583 /// Therefore, the cost for a given rotation is the sum of costs listed above. 1584 /// We select the best rotation with the smallest cost. 1585 void MachineBlockPlacement::rotateLoopWithProfile( 1586 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) { 1587 auto HeaderBB = L.getHeader(); 1588 auto HeaderIter = find(LoopChain, HeaderBB); 1589 auto RotationPos = LoopChain.end(); 1590 1591 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 1592 1593 // A utility lambda that scales up a block frequency by dividing it by a 1594 // branch probability which is the reciprocal of the scale. 1595 auto ScaleBlockFrequency = [](BlockFrequency Freq, 1596 unsigned Scale) -> BlockFrequency { 1597 if (Scale == 0) 1598 return 0; 1599 // Use operator / between BlockFrequency and BranchProbability to implement 1600 // saturating multiplication. 1601 return Freq / BranchProbability(1, Scale); 1602 }; 1603 1604 // Compute the cost of the missed fall-through edge to the loop header if the 1605 // chain head is not the loop header. As we only consider natural loops with 1606 // single header, this computation can be done only once. 1607 BlockFrequency HeaderFallThroughCost(0); 1608 for (auto *Pred : HeaderBB->predecessors()) { 1609 BlockChain *PredChain = BlockToChain[Pred]; 1610 if (!LoopBlockSet.count(Pred) && 1611 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1612 auto EdgeFreq = 1613 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 1614 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 1615 // If the predecessor has only an unconditional jump to the header, we 1616 // need to consider the cost of this jump. 1617 if (Pred->succ_size() == 1) 1618 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 1619 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 1620 } 1621 } 1622 1623 // Here we collect all exit blocks in the loop, and for each exit we find out 1624 // its hottest exit edge. For each loop rotation, we define the loop exit cost 1625 // as the sum of frequencies of exit edges we collect here, excluding the exit 1626 // edge from the tail of the loop chain. 1627 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 1628 for (auto BB : LoopChain) { 1629 auto LargestExitEdgeProb = BranchProbability::getZero(); 1630 for (auto *Succ : BB->successors()) { 1631 BlockChain *SuccChain = BlockToChain[Succ]; 1632 if (!LoopBlockSet.count(Succ) && 1633 (!SuccChain || Succ == *SuccChain->begin())) { 1634 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 1635 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 1636 } 1637 } 1638 if (LargestExitEdgeProb > BranchProbability::getZero()) { 1639 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 1640 ExitsWithFreq.emplace_back(BB, ExitFreq); 1641 } 1642 } 1643 1644 // In this loop we iterate every block in the loop chain and calculate the 1645 // cost assuming the block is the head of the loop chain. When the loop ends, 1646 // we should have found the best candidate as the loop chain's head. 1647 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 1648 EndIter = LoopChain.end(); 1649 Iter != EndIter; Iter++, TailIter++) { 1650 // TailIter is used to track the tail of the loop chain if the block we are 1651 // checking (pointed by Iter) is the head of the chain. 1652 if (TailIter == LoopChain.end()) 1653 TailIter = LoopChain.begin(); 1654 1655 auto TailBB = *TailIter; 1656 1657 // Calculate the cost by putting this BB to the top. 1658 BlockFrequency Cost = 0; 1659 1660 // If the current BB is the loop header, we need to take into account the 1661 // cost of the missed fall through edge from outside of the loop to the 1662 // header. 1663 if (Iter != HeaderIter) 1664 Cost += HeaderFallThroughCost; 1665 1666 // Collect the loop exit cost by summing up frequencies of all exit edges 1667 // except the one from the chain tail. 1668 for (auto &ExitWithFreq : ExitsWithFreq) 1669 if (TailBB != ExitWithFreq.first) 1670 Cost += ExitWithFreq.second; 1671 1672 // The cost of breaking the once fall-through edge from the tail to the top 1673 // of the loop chain. Here we need to consider three cases: 1674 // 1. If the tail node has only one successor, then we will get an 1675 // additional jmp instruction. So the cost here is (MisfetchCost + 1676 // JumpInstCost) * tail node frequency. 1677 // 2. If the tail node has two successors, then we may still get an 1678 // additional jmp instruction if the layout successor after the loop 1679 // chain is not its CFG successor. Note that the more frequently executed 1680 // jmp instruction will be put ahead of the other one. Assume the 1681 // frequency of those two branches are x and y, where x is the frequency 1682 // of the edge to the chain head, then the cost will be 1683 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 1684 // 3. If the tail node has more than two successors (this rarely happens), 1685 // we won't consider any additional cost. 1686 if (TailBB->isSuccessor(*Iter)) { 1687 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 1688 if (TailBB->succ_size() == 1) 1689 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 1690 MisfetchCost + JumpInstCost); 1691 else if (TailBB->succ_size() == 2) { 1692 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 1693 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 1694 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 1695 ? TailBBFreq * TailToHeadProb.getCompl() 1696 : TailToHeadFreq; 1697 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 1698 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 1699 } 1700 } 1701 1702 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 1703 << " to the top: " << Cost.getFrequency() << "\n"); 1704 1705 if (Cost < SmallestRotationCost) { 1706 SmallestRotationCost = Cost; 1707 RotationPos = Iter; 1708 } 1709 } 1710 1711 if (RotationPos != LoopChain.end()) { 1712 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 1713 << " to the top\n"); 1714 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 1715 } 1716 } 1717 1718 /// \brief Collect blocks in the given loop that are to be placed. 1719 /// 1720 /// When profile data is available, exclude cold blocks from the returned set; 1721 /// otherwise, collect all blocks in the loop. 1722 MachineBlockPlacement::BlockFilterSet 1723 MachineBlockPlacement::collectLoopBlockSet(MachineLoop &L) { 1724 BlockFilterSet LoopBlockSet; 1725 1726 // Filter cold blocks off from LoopBlockSet when profile data is available. 1727 // Collect the sum of frequencies of incoming edges to the loop header from 1728 // outside. If we treat the loop as a super block, this is the frequency of 1729 // the loop. Then for each block in the loop, we calculate the ratio between 1730 // its frequency and the frequency of the loop block. When it is too small, 1731 // don't add it to the loop chain. If there are outer loops, then this block 1732 // will be merged into the first outer loop chain for which this block is not 1733 // cold anymore. This needs precise profile data and we only do this when 1734 // profile data is available. 1735 if (F->getFunction()->getEntryCount()) { 1736 BlockFrequency LoopFreq(0); 1737 for (auto LoopPred : L.getHeader()->predecessors()) 1738 if (!L.contains(LoopPred)) 1739 LoopFreq += MBFI->getBlockFreq(LoopPred) * 1740 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 1741 1742 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 1743 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 1744 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 1745 continue; 1746 LoopBlockSet.insert(LoopBB); 1747 } 1748 } else 1749 LoopBlockSet.insert(L.block_begin(), L.block_end()); 1750 1751 return LoopBlockSet; 1752 } 1753 1754 /// \brief Forms basic block chains from the natural loop structures. 1755 /// 1756 /// These chains are designed to preserve the existing *structure* of the code 1757 /// as much as possible. We can then stitch the chains together in a way which 1758 /// both preserves the topological structure and minimizes taken conditional 1759 /// branches. 1760 void MachineBlockPlacement::buildLoopChains(MachineLoop &L) { 1761 // First recurse through any nested loops, building chains for those inner 1762 // loops. 1763 for (MachineLoop *InnerLoop : L) 1764 buildLoopChains(*InnerLoop); 1765 1766 assert(BlockWorkList.empty()); 1767 assert(EHPadWorkList.empty()); 1768 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 1769 1770 // Check if we have profile data for this function. If yes, we will rotate 1771 // this loop by modeling costs more precisely which requires the profile data 1772 // for better layout. 1773 bool RotateLoopWithProfile = 1774 ForcePreciseRotationCost || 1775 (PreciseRotationCost && F->getFunction()->getEntryCount()); 1776 1777 // First check to see if there is an obviously preferable top block for the 1778 // loop. This will default to the header, but may end up as one of the 1779 // predecessors to the header if there is one which will result in strictly 1780 // fewer branches in the loop body. 1781 // When we use profile data to rotate the loop, this is unnecessary. 1782 MachineBasicBlock *LoopTop = 1783 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 1784 1785 // If we selected just the header for the loop top, look for a potentially 1786 // profitable exit block in the event that rotating the loop can eliminate 1787 // branches by placing an exit edge at the bottom. 1788 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 1789 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet); 1790 1791 BlockChain &LoopChain = *BlockToChain[LoopTop]; 1792 1793 // FIXME: This is a really lame way of walking the chains in the loop: we 1794 // walk the blocks, and use a set to prevent visiting a particular chain 1795 // twice. 1796 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1797 assert(LoopChain.UnscheduledPredecessors == 0); 1798 UpdatedPreds.insert(&LoopChain); 1799 1800 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1801 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 1802 1803 buildChain(LoopTop, LoopChain, &LoopBlockSet); 1804 1805 if (RotateLoopWithProfile) 1806 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 1807 else 1808 rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet); 1809 1810 DEBUG({ 1811 // Crash at the end so we get all of the debugging output first. 1812 bool BadLoop = false; 1813 if (LoopChain.UnscheduledPredecessors) { 1814 BadLoop = true; 1815 dbgs() << "Loop chain contains a block without its preds placed!\n" 1816 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1817 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 1818 } 1819 for (MachineBasicBlock *ChainBB : LoopChain) { 1820 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 1821 if (!LoopBlockSet.remove(ChainBB)) { 1822 // We don't mark the loop as bad here because there are real situations 1823 // where this can occur. For example, with an unanalyzable fallthrough 1824 // from a loop block to a non-loop block or vice versa. 1825 dbgs() << "Loop chain contains a block not contained by the loop!\n" 1826 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1827 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1828 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1829 } 1830 } 1831 1832 if (!LoopBlockSet.empty()) { 1833 BadLoop = true; 1834 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1835 dbgs() << "Loop contains blocks never placed into a chain!\n" 1836 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1837 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1838 << " Bad block: " << getBlockName(LoopBB) << "\n"; 1839 } 1840 assert(!BadLoop && "Detected problems with the placement of this loop."); 1841 }); 1842 1843 BlockWorkList.clear(); 1844 EHPadWorkList.clear(); 1845 } 1846 1847 /// When OutlineOpitonalBranches is on, this method collects BBs that 1848 /// dominates all terminator blocks of the function \p F. 1849 void MachineBlockPlacement::collectMustExecuteBBs() { 1850 if (OutlineOptionalBranches) { 1851 // Find the nearest common dominator of all of F's terminators. 1852 MachineBasicBlock *Terminator = nullptr; 1853 for (MachineBasicBlock &MBB : *F) { 1854 if (MBB.succ_size() == 0) { 1855 if (Terminator == nullptr) 1856 Terminator = &MBB; 1857 else 1858 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 1859 } 1860 } 1861 1862 // MBBs dominating this common dominator are unavoidable. 1863 UnavoidableBlocks.clear(); 1864 for (MachineBasicBlock &MBB : *F) { 1865 if (MDT->dominates(&MBB, Terminator)) { 1866 UnavoidableBlocks.insert(&MBB); 1867 } 1868 } 1869 } 1870 } 1871 1872 void MachineBlockPlacement::buildCFGChains() { 1873 // Ensure that every BB in the function has an associated chain to simplify 1874 // the assumptions of the remaining algorithm. 1875 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1876 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 1877 ++FI) { 1878 MachineBasicBlock *BB = &*FI; 1879 BlockChain *Chain = 1880 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 1881 // Also, merge any blocks which we cannot reason about and must preserve 1882 // the exact fallthrough behavior for. 1883 for (;;) { 1884 Cond.clear(); 1885 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1886 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 1887 break; 1888 1889 MachineFunction::iterator NextFI = std::next(FI); 1890 MachineBasicBlock *NextBB = &*NextFI; 1891 // Ensure that the layout successor is a viable block, as we know that 1892 // fallthrough is a possibility. 1893 assert(NextFI != FE && "Can't fallthrough past the last block."); 1894 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 1895 << getBlockName(BB) << " -> " << getBlockName(NextBB) 1896 << "\n"); 1897 Chain->merge(NextBB, nullptr); 1898 #ifndef NDEBUG 1899 BlocksWithUnanalyzableExits.insert(&*BB); 1900 #endif 1901 FI = NextFI; 1902 BB = NextBB; 1903 } 1904 } 1905 1906 // Turned on with OutlineOptionalBranches option 1907 collectMustExecuteBBs(); 1908 1909 // Build any loop-based chains. 1910 PreferredLoopExit = nullptr; 1911 for (MachineLoop *L : *MLI) 1912 buildLoopChains(*L); 1913 1914 assert(BlockWorkList.empty()); 1915 assert(EHPadWorkList.empty()); 1916 1917 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1918 for (MachineBasicBlock &MBB : *F) 1919 fillWorkLists(&MBB, UpdatedPreds); 1920 1921 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 1922 buildChain(&F->front(), FunctionChain); 1923 1924 #ifndef NDEBUG 1925 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 1926 #endif 1927 DEBUG({ 1928 // Crash at the end so we get all of the debugging output first. 1929 bool BadFunc = false; 1930 FunctionBlockSetType FunctionBlockSet; 1931 for (MachineBasicBlock &MBB : *F) 1932 FunctionBlockSet.insert(&MBB); 1933 1934 for (MachineBasicBlock *ChainBB : FunctionChain) 1935 if (!FunctionBlockSet.erase(ChainBB)) { 1936 BadFunc = true; 1937 dbgs() << "Function chain contains a block not in the function!\n" 1938 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1939 } 1940 1941 if (!FunctionBlockSet.empty()) { 1942 BadFunc = true; 1943 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 1944 dbgs() << "Function contains blocks never placed into a chain!\n" 1945 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 1946 } 1947 assert(!BadFunc && "Detected problems with the block placement."); 1948 }); 1949 1950 // Splice the blocks into place. 1951 MachineFunction::iterator InsertPos = F->begin(); 1952 DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n"); 1953 for (MachineBasicBlock *ChainBB : FunctionChain) { 1954 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 1955 : " ... ") 1956 << getBlockName(ChainBB) << "\n"); 1957 if (InsertPos != MachineFunction::iterator(ChainBB)) 1958 F->splice(InsertPos, ChainBB); 1959 else 1960 ++InsertPos; 1961 1962 // Update the terminator of the previous block. 1963 if (ChainBB == *FunctionChain.begin()) 1964 continue; 1965 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 1966 1967 // FIXME: It would be awesome of updateTerminator would just return rather 1968 // than assert when the branch cannot be analyzed in order to remove this 1969 // boiler plate. 1970 Cond.clear(); 1971 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1972 1973 #ifndef NDEBUG 1974 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 1975 // Given the exact block placement we chose, we may actually not _need_ to 1976 // be able to edit PrevBB's terminator sequence, but not being _able_ to 1977 // do that at this point is a bug. 1978 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 1979 !PrevBB->canFallThrough()) && 1980 "Unexpected block with un-analyzable fallthrough!"); 1981 Cond.clear(); 1982 TBB = FBB = nullptr; 1983 } 1984 #endif 1985 1986 // The "PrevBB" is not yet updated to reflect current code layout, so, 1987 // o. it may fall-through to a block without explicit "goto" instruction 1988 // before layout, and no longer fall-through it after layout; or 1989 // o. just opposite. 1990 // 1991 // analyzeBranch() may return erroneous value for FBB when these two 1992 // situations take place. For the first scenario FBB is mistakenly set NULL; 1993 // for the 2nd scenario, the FBB, which is expected to be NULL, is 1994 // mistakenly pointing to "*BI". 1995 // Thus, if the future change needs to use FBB before the layout is set, it 1996 // has to correct FBB first by using the code similar to the following: 1997 // 1998 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 1999 // PrevBB->updateTerminator(); 2000 // Cond.clear(); 2001 // TBB = FBB = nullptr; 2002 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2003 // // FIXME: This should never take place. 2004 // TBB = FBB = nullptr; 2005 // } 2006 // } 2007 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) 2008 PrevBB->updateTerminator(); 2009 } 2010 2011 // Fixup the last block. 2012 Cond.clear(); 2013 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2014 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) 2015 F->back().updateTerminator(); 2016 2017 BlockWorkList.clear(); 2018 EHPadWorkList.clear(); 2019 } 2020 2021 void MachineBlockPlacement::optimizeBranches() { 2022 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2023 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2024 2025 // Now that all the basic blocks in the chain have the proper layout, 2026 // make a final call to AnalyzeBranch with AllowModify set. 2027 // Indeed, the target may be able to optimize the branches in a way we 2028 // cannot because all branches may not be analyzable. 2029 // E.g., the target may be able to remove an unconditional branch to 2030 // a fallthrough when it occurs after predicated terminators. 2031 for (MachineBasicBlock *ChainBB : FunctionChain) { 2032 Cond.clear(); 2033 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2034 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2035 // If PrevBB has a two-way branch, try to re-order the branches 2036 // such that we branch to the successor with higher probability first. 2037 if (TBB && !Cond.empty() && FBB && 2038 MBPI->getEdgeProbability(ChainBB, FBB) > 2039 MBPI->getEdgeProbability(ChainBB, TBB) && 2040 !TII->reverseBranchCondition(Cond)) { 2041 DEBUG(dbgs() << "Reverse order of the two branches: " 2042 << getBlockName(ChainBB) << "\n"); 2043 DEBUG(dbgs() << " Edge probability: " 2044 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2045 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2046 DebugLoc dl; // FIXME: this is nowhere 2047 TII->removeBranch(*ChainBB); 2048 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2049 ChainBB->updateTerminator(); 2050 } 2051 } 2052 } 2053 } 2054 2055 void MachineBlockPlacement::alignBlocks() { 2056 // Walk through the backedges of the function now that we have fully laid out 2057 // the basic blocks and align the destination of each backedge. We don't rely 2058 // exclusively on the loop info here so that we can align backedges in 2059 // unnatural CFGs and backedges that were introduced purely because of the 2060 // loop rotations done during this layout pass. 2061 if (F->getFunction()->optForSize()) 2062 return; 2063 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2064 if (FunctionChain.begin() == FunctionChain.end()) 2065 return; // Empty chain. 2066 2067 const BranchProbability ColdProb(1, 5); // 20% 2068 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2069 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2070 for (MachineBasicBlock *ChainBB : FunctionChain) { 2071 if (ChainBB == *FunctionChain.begin()) 2072 continue; 2073 2074 // Don't align non-looping basic blocks. These are unlikely to execute 2075 // enough times to matter in practice. Note that we'll still handle 2076 // unnatural CFGs inside of a natural outer loop (the common case) and 2077 // rotated loops. 2078 MachineLoop *L = MLI->getLoopFor(ChainBB); 2079 if (!L) 2080 continue; 2081 2082 unsigned Align = TLI->getPrefLoopAlignment(L); 2083 if (!Align) 2084 continue; // Don't care about loop alignment. 2085 2086 // If the block is cold relative to the function entry don't waste space 2087 // aligning it. 2088 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2089 if (Freq < WeightedEntryFreq) 2090 continue; 2091 2092 // If the block is cold relative to its loop header, don't align it 2093 // regardless of what edges into the block exist. 2094 MachineBasicBlock *LoopHeader = L->getHeader(); 2095 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2096 if (Freq < (LoopHeaderFreq * ColdProb)) 2097 continue; 2098 2099 // Check for the existence of a non-layout predecessor which would benefit 2100 // from aligning this block. 2101 MachineBasicBlock *LayoutPred = 2102 &*std::prev(MachineFunction::iterator(ChainBB)); 2103 2104 // Force alignment if all the predecessors are jumps. We already checked 2105 // that the block isn't cold above. 2106 if (!LayoutPred->isSuccessor(ChainBB)) { 2107 ChainBB->setAlignment(Align); 2108 continue; 2109 } 2110 2111 // Align this block if the layout predecessor's edge into this block is 2112 // cold relative to the block. When this is true, other predecessors make up 2113 // all of the hot entries into the block and thus alignment is likely to be 2114 // important. 2115 BranchProbability LayoutProb = 2116 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2117 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2118 if (LayoutEdgeFreq <= (Freq * ColdProb)) 2119 ChainBB->setAlignment(Align); 2120 } 2121 } 2122 2123 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2124 /// it was duplicated into its chain predecessor and removed. 2125 /// \p BB - Basic block that may be duplicated. 2126 /// 2127 /// \p LPred - Chosen layout predecessor of \p BB. 2128 /// Updated to be the chain end if LPred is removed. 2129 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2130 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2131 /// Used to identify which blocks to update predecessor 2132 /// counts. 2133 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2134 /// chosen in the given order due to unnatural CFG 2135 /// only needed if \p BB is removed and 2136 /// \p PrevUnplacedBlockIt pointed to \p BB. 2137 /// @return true if \p BB was removed. 2138 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2139 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2140 MachineBasicBlock *LoopHeaderBB, 2141 BlockChain &Chain, BlockFilterSet *BlockFilter, 2142 MachineFunction::iterator &PrevUnplacedBlockIt) { 2143 bool Removed, DuplicatedToLPred; 2144 bool DuplicatedToOriginalLPred; 2145 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2146 PrevUnplacedBlockIt, 2147 DuplicatedToLPred); 2148 if (!Removed) 2149 return false; 2150 DuplicatedToOriginalLPred = DuplicatedToLPred; 2151 // Iteratively try to duplicate again. It can happen that a block that is 2152 // duplicated into is still small enough to be duplicated again. 2153 // No need to call markBlockSuccessors in this case, as the blocks being 2154 // duplicated from here on are already scheduled. 2155 // Note that DuplicatedToLPred always implies Removed. 2156 while (DuplicatedToLPred) { 2157 assert (Removed && "Block must have been removed to be duplicated into its " 2158 "layout predecessor."); 2159 MachineBasicBlock *DupBB, *DupPred; 2160 // The removal callback causes Chain.end() to be updated when a block is 2161 // removed. On the first pass through the loop, the chain end should be the 2162 // same as it was on function entry. On subsequent passes, because we are 2163 // duplicating the block at the end of the chain, if it is removed the 2164 // chain will have shrunk by one block. 2165 BlockChain::iterator ChainEnd = Chain.end(); 2166 DupBB = *(--ChainEnd); 2167 // Now try to duplicate again. 2168 if (ChainEnd == Chain.begin()) 2169 break; 2170 DupPred = *std::prev(ChainEnd); 2171 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 2172 PrevUnplacedBlockIt, 2173 DuplicatedToLPred); 2174 } 2175 // If BB was duplicated into LPred, it is now scheduled. But because it was 2176 // removed, markChainSuccessors won't be called for its chain. Instead we 2177 // call markBlockSuccessors for LPred to achieve the same effect. This must go 2178 // at the end because repeating the tail duplication can increase the number 2179 // of unscheduled predecessors. 2180 LPred = *std::prev(Chain.end()); 2181 if (DuplicatedToOriginalLPred) 2182 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 2183 return true; 2184 } 2185 2186 /// Tail duplicate \p BB into (some) predecessors if profitable. 2187 /// \p BB - Basic block that may be duplicated 2188 /// \p LPred - Chosen layout predecessor of \p BB 2189 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2190 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2191 /// Used to identify which blocks to update predecessor 2192 /// counts. 2193 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2194 /// chosen in the given order due to unnatural CFG 2195 /// only needed if \p BB is removed and 2196 /// \p PrevUnplacedBlockIt pointed to \p BB. 2197 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will 2198 /// only be true if the block was removed. 2199 /// \return - True if the block was duplicated into all preds and removed. 2200 bool MachineBlockPlacement::maybeTailDuplicateBlock( 2201 MachineBasicBlock *BB, MachineBasicBlock *LPred, 2202 const BlockChain &Chain, BlockFilterSet *BlockFilter, 2203 MachineFunction::iterator &PrevUnplacedBlockIt, 2204 bool &DuplicatedToLPred) { 2205 2206 DuplicatedToLPred = false; 2207 DEBUG(dbgs() << "Redoing tail duplication for Succ#" 2208 << BB->getNumber() << "\n"); 2209 2210 if (!shouldTailDuplicate(BB)) 2211 return false; 2212 // This has to be a callback because none of it can be done after 2213 // BB is deleted. 2214 bool Removed = false; 2215 auto RemovalCallback = 2216 [&](MachineBasicBlock *RemBB) { 2217 // Signal to outer function 2218 Removed = true; 2219 2220 // Conservative default. 2221 bool InWorkList = true; 2222 // Remove from the Chain and Chain Map 2223 if (BlockToChain.count(RemBB)) { 2224 BlockChain *Chain = BlockToChain[RemBB]; 2225 InWorkList = Chain->UnscheduledPredecessors == 0; 2226 Chain->remove(RemBB); 2227 BlockToChain.erase(RemBB); 2228 } 2229 2230 // Handle the unplaced block iterator 2231 if (&(*PrevUnplacedBlockIt) == RemBB) { 2232 PrevUnplacedBlockIt++; 2233 } 2234 2235 // Handle the Work Lists 2236 if (InWorkList) { 2237 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 2238 if (RemBB->isEHPad()) 2239 RemoveList = EHPadWorkList; 2240 RemoveList.erase( 2241 remove_if(RemoveList, 2242 [RemBB](MachineBasicBlock *BB) {return BB == RemBB;}), 2243 RemoveList.end()); 2244 } 2245 2246 // Handle the filter set 2247 if (BlockFilter) { 2248 BlockFilter->remove(RemBB); 2249 } 2250 2251 // Remove the block from loop info. 2252 MLI->removeBlock(RemBB); 2253 if (RemBB == PreferredLoopExit) 2254 PreferredLoopExit = nullptr; 2255 2256 DEBUG(dbgs() << "TailDuplicator deleted block: " 2257 << getBlockName(RemBB) << "\n"); 2258 }; 2259 auto RemovalCallbackRef = 2260 llvm::function_ref<void(MachineBasicBlock*)>(RemovalCallback); 2261 2262 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 2263 bool IsSimple = TailDup.isSimpleBB(BB); 2264 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, 2265 &DuplicatedPreds, &RemovalCallbackRef); 2266 2267 // Update UnscheduledPredecessors to reflect tail-duplication. 2268 DuplicatedToLPred = false; 2269 for (MachineBasicBlock *Pred : DuplicatedPreds) { 2270 // We're only looking for unscheduled predecessors that match the filter. 2271 BlockChain* PredChain = BlockToChain[Pred]; 2272 if (Pred == LPred) 2273 DuplicatedToLPred = true; 2274 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 2275 || PredChain == &Chain) 2276 continue; 2277 for (MachineBasicBlock *NewSucc : Pred->successors()) { 2278 if (BlockFilter && !BlockFilter->count(NewSucc)) 2279 continue; 2280 BlockChain *NewChain = BlockToChain[NewSucc]; 2281 if (NewChain != &Chain && NewChain != PredChain) 2282 NewChain->UnscheduledPredecessors++; 2283 } 2284 } 2285 return Removed; 2286 } 2287 2288 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 2289 if (skipFunction(*MF.getFunction())) 2290 return false; 2291 2292 // Check for single-block functions and skip them. 2293 if (std::next(MF.begin()) == MF.end()) 2294 return false; 2295 2296 F = &MF; 2297 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2298 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 2299 getAnalysis<MachineBlockFrequencyInfo>()); 2300 MLI = &getAnalysis<MachineLoopInfo>(); 2301 TII = MF.getSubtarget().getInstrInfo(); 2302 TLI = MF.getSubtarget().getTargetLowering(); 2303 MDT = &getAnalysis<MachineDominatorTree>(); 2304 MPDT = nullptr; 2305 2306 // Initialize PreferredLoopExit to nullptr here since it may never be set if 2307 // there are no MachineLoops. 2308 PreferredLoopExit = nullptr; 2309 2310 if (TailDupPlacement) { 2311 MPDT = &getAnalysis<MachinePostDominatorTree>(); 2312 unsigned TailDupSize = TailDupPlacementThreshold; 2313 if (MF.getFunction()->optForSize()) 2314 TailDupSize = 1; 2315 TailDup.initMF(MF, MBPI, /* LayoutMode */ true, TailDupSize); 2316 } 2317 2318 assert(BlockToChain.empty()); 2319 2320 buildCFGChains(); 2321 2322 // Changing the layout can create new tail merging opportunities. 2323 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 2324 // TailMerge can create jump into if branches that make CFG irreducible for 2325 // HW that requires structured CFG. 2326 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 2327 PassConfig->getEnableTailMerge() && 2328 BranchFoldPlacement; 2329 // No tail merging opportunities if the block number is less than four. 2330 if (MF.size() > 3 && EnableTailMerge) { 2331 unsigned TailMergeSize = TailDupPlacementThreshold + 1; 2332 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 2333 *MBPI, TailMergeSize); 2334 2335 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 2336 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 2337 /*AfterBlockPlacement=*/true)) { 2338 // Redo the layout if tail merging creates/removes/moves blocks. 2339 BlockToChain.clear(); 2340 // Must redo the dominator tree if blocks were changed. 2341 MDT->runOnMachineFunction(MF); 2342 if (MPDT) 2343 MPDT->runOnMachineFunction(MF); 2344 ChainAllocator.DestroyAll(); 2345 buildCFGChains(); 2346 } 2347 } 2348 2349 optimizeBranches(); 2350 alignBlocks(); 2351 2352 BlockToChain.clear(); 2353 ChainAllocator.DestroyAll(); 2354 2355 if (AlignAllBlock) 2356 // Align all of the blocks in the function to a specific alignment. 2357 for (MachineBasicBlock &MBB : MF) 2358 MBB.setAlignment(AlignAllBlock); 2359 else if (AlignAllNonFallThruBlocks) { 2360 // Align all of the blocks that have no fall-through predecessors to a 2361 // specific alignment. 2362 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 2363 auto LayoutPred = std::prev(MBI); 2364 if (!LayoutPred->isSuccessor(&*MBI)) 2365 MBI->setAlignment(AlignAllNonFallThruBlocks); 2366 } 2367 } 2368 #ifndef NDEBUG 2369 if (ViewBlockLayoutWithBFI != GVDT_None && 2370 (ViewBlockFreqFuncName.empty() || 2371 F->getFunction()->getName().equals(ViewBlockFreqFuncName))) { 2372 MBFI->view(false); 2373 } 2374 #endif 2375 2376 2377 // We always return true as we have no way to track whether the final order 2378 // differs from the original order. 2379 return true; 2380 } 2381 2382 namespace { 2383 /// \brief A pass to compute block placement statistics. 2384 /// 2385 /// A separate pass to compute interesting statistics for evaluating block 2386 /// placement. This is separate from the actual placement pass so that they can 2387 /// be computed in the absence of any placement transformations or when using 2388 /// alternative placement strategies. 2389 class MachineBlockPlacementStats : public MachineFunctionPass { 2390 /// \brief A handle to the branch probability pass. 2391 const MachineBranchProbabilityInfo *MBPI; 2392 2393 /// \brief A handle to the function-wide block frequency pass. 2394 const MachineBlockFrequencyInfo *MBFI; 2395 2396 public: 2397 static char ID; // Pass identification, replacement for typeid 2398 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 2399 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 2400 } 2401 2402 bool runOnMachineFunction(MachineFunction &F) override; 2403 2404 void getAnalysisUsage(AnalysisUsage &AU) const override { 2405 AU.addRequired<MachineBranchProbabilityInfo>(); 2406 AU.addRequired<MachineBlockFrequencyInfo>(); 2407 AU.setPreservesAll(); 2408 MachineFunctionPass::getAnalysisUsage(AU); 2409 } 2410 }; 2411 } 2412 2413 char MachineBlockPlacementStats::ID = 0; 2414 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 2415 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 2416 "Basic Block Placement Stats", false, false) 2417 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 2418 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 2419 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 2420 "Basic Block Placement Stats", false, false) 2421 2422 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 2423 // Check for single-block functions and skip them. 2424 if (std::next(F.begin()) == F.end()) 2425 return false; 2426 2427 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2428 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2429 2430 for (MachineBasicBlock &MBB : F) { 2431 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 2432 Statistic &NumBranches = 2433 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 2434 Statistic &BranchTakenFreq = 2435 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 2436 for (MachineBasicBlock *Succ : MBB.successors()) { 2437 // Skip if this successor is a fallthrough. 2438 if (MBB.isLayoutSuccessor(Succ)) 2439 continue; 2440 2441 BlockFrequency EdgeFreq = 2442 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 2443 ++NumBranches; 2444 BranchTakenFreq += EdgeFreq.getFrequency(); 2445 } 2446 } 2447 2448 return false; 2449 } 2450